MCN Streaming

An Adaptive Video Streaming Platform *

Qin Chen
Advisor: Prof. Dapeng Oliver Wu

Multimedia Communications and Networking (MCN) Lab

Dept. of Electrical & Computer Engineering, University of Florida,
Gainesville, FL. 32611, USA

Contents

(1 _Introduction|

[2__Architecturel

[3 Using MCN Streaming)
B.-1 Dependencies|

4 Implementation Details|
4.1 Source Package|
K42 GStreamer|. oL
4.3 A Sender Pipeline Example|00 00000

. eceiver Pipeline Example]o oo oo
IAl!i l;s:‘ s:l!sl l;l g:l l s:!:!]lli!!]; !!2 & l!]s:!z l:ll! slslszll
4.6 Write a New GStreamer Pluginf 0 00 00000000000

[F Command Line Option List]
P.1 Sender Options|
P2 Receiver Options| o . L

(6 Further Information|

*Last updated on May 1, 2010. Email: eric.qin.chen@gmail.com

N O OO e w W w W

©

1 Introduction

Video streaming has gained its popularity in both academia and industry. With the prevalence
of mobile computing, it poses new challenges and opportunities. A video encoder that adapts
to the instant channel conditions has the potential to provide better video quality even under
hostile transmission environments. The motivation of MCN Streaming is to provide a complete
video streaming platform that can ease the experimenting of various adaptive video encoding
algorithms over the real-world networks, instead of merely depending on simulations.

To summarize, MCN Streaming is:

e a complete video streaming software, including the encoder/sender and receiver/decoder.
e a platform for experimenting adaptive video coding algorithms.

e flexible and extensible.

2 Architecture

Sender
Bitstream | Transport ([RTCP
Video Adaptive Protocols
Source Video Encoder
QoS Info .
A1 :
M | RTP :
§ mmmeEmy
= 1 :
RTCP & . :
: I RTP :
Receiver RTCP :
Transport

Video Bitstream Protocols
Decoder

Figure 1: Overview of MCN Streaming architecture.

Fig. [1] shows the high level overview of the MCN Streaming architecture. MCN Streaming
consists of two components: a sender and a receiver. Sender is responsible for video encoding and
transport layer packet encoding, while receiver is responsible for transport layer packet decoding
and video decoding. Encoded packets travel through the Internet. Receiver also sends feedback
to receiver via RTCP packets. The feedback (QoS information) is used by video encoder to

adjust its encoding parameters on-the-fly. By doing this, video encoder adapts to the instant
channel conditions and better video quality is expected at the receiver side El

3 Using MCN Streaming

3.1 Dependencies

MCN Streaming is in fact a GStreamer application. Thus, in order to build and use MCN
streaming, you need to have GStreamer and its modules installed first.

Most, if not all, Linux distributions provide packages of GStreamer. You should find these
in your distribution’s package repository. Below is a list of all GStreamer modules that are
necessary to run MCN Streaming.

e GStreamer: core library and elements

e gst-plugins-base: an essential exemplary set of elements

gst-plugins: additional elements

gst-fimpeg: FFmpeg-based plug-in

gst-plugins-good: a set of good-quality plug-ins under LGPL license

gst-plugins-bad: a set of plug-ins that need more quality
e gst-plugins-ugly: a set of good-quality plug-ins that might pose distribution problems

If any of the components is not included in your Linux distribution, you can always download
the source codes and build it.

3.2 Build and Install

MCN Streaming software package uses GNU Autoconf and Automake tools. Once you down-
load the source codes, you can build and install MCN Streaming in the usual “./configure”,
“make”, and “sudo make install” way.

Once you successfully build and install MCN streaming, you shall get two binaries: mcn_sender
and mcn_receiver, which is the video encoder/sender and receiver/decoder, respectively.

MCN Streaming is very flexible in terms of selecting encoding and transmitting parameters.
These parameters can be specified from command line options, in case you wish to override
the default values. To get a complete list of the sender options, type “mcn_sender --help-
sender” in the terminal. To get a complete list of the receiver options, type “mcn_receiver
--help-receiver” in the terminal. We will cover these options in more details later.

3.3 Sender and Receiver Examples

Here we give simple examples that show how to use MCN Streaming to send and receive real-time
video.
At one terminal, type following command.

mecn_sender -s videotestsrc -e x264enc -f 20 -w 352 -h 288 -b 300

Hn current version of MCN Streaming, the adaptive video encoding algorithm has not been implemented yet,
i.e., RTCP packets are parsed but video encoder does not actually take advantage of the information.

This command indicates to encode a GStreamer test video source into an H.264 bitstream at
a frame rate of 20. The video resolution is 352x288 and the bit-rate is 300kbps. The encoded
raw video bitstream will be further encoded into corresponding RTP packets and send to the
receiver. Note that RTCP packets are also sent to receiver.

The default receiver is localhost. So we can type following command at another terminal to
receive the video.

men_receiver -d fidec_h264

The “-d” option tells the receiver to use an H.264 decoder to decode the incoming stream.
The receiver also sends RTCP packets to the sender.

If MCN Streaming has been successfully installed, you shall be able to see a display window
showing the decoded video. Meanwhile, the sender parses the RTCP packets sent by the receiver
and prints out relevant information, e.g., jitter and packet loss rate.

MCN Streaming is very flexible and the above commands only show a simple example. You
can choose to encode video captured by a webcam. You can also specify the frame-rate, bit-
rate, video encoding format, receiver IP address, port number for RTP/RTCP packets. All these
parameters can be controlled from command line options. For the complete list of options, please
refer to Section [Bl

4 Implementation Details

4.1 Source Package

The complete MCN Streaming source package consists of source files, configure and make scripts.
Source files are located in the src subdirectory, which in turn contains two sub-directories named
as receiver and sender, respectively. MCN Streaming sender and receiver implementations are
located in these two directories.

4.2 GStreamer

MCN Streaming is built upon GStreamer, which is an open source multimedia framework.
GStreamer is a powerful and versatile framework for creating streaming media applications.
Many of the virtues of the GStreamer framework come from its modularity: GStreamer can
seamlessly incorporate new plug-in modules for a specific purpose.

The framework is based on plug-ins that will provide the various codec and other function-
ality. The plug-ins can be linked and arranged in a pipeline, which defines the flow of the data.
GStreamer plug-ins could be classified into following categories:

e protocols handling

e sources: for audio and video (involves protocol plug-ins)

formats: parsers, formaters, muxers, demuxers, metadata, subtitles

codecs: coders and decoders

filters: converters, mixers, effects

sinks: for audio and video (involves protocol plugins)

[v412 | | x264enc| |h264pay | | rtpbin | [udpsink| RTP

| src->sink src->sink src->send_rtp send_rtp->sink | port=5000
b —)))) o) I | b —)

|

| . .

| | |udpsink| RTCP

| send_rtcp->sink | port=5001
S S . |

RTCP |udpsrc | |identity| | |

port=5005 | src->sink src->recv_rtcp |

Figure 2: Sender pipeline.

4.3 A Sender Pipeline Example

Fig. [2| shows an example GStreamer pipeline for MCN Streaming sender. Here the video source
is a video4linux2 device. The read-in frames are encoded by an x264 encoder, followed by a
RTP H.264 payloader. The sending and receiving of RTP and RTCP packets are managed by
a GStreamer RTP bin ﬂ In this example, RTP packets are sent on port 5000, sender RTCP
packets are sent on port 5001. The receiver RTCP packets are received on port 5005.

Note that an identity element is inserted between udpsrc and rtpbin. It is used for inspecting
the received RTCP packets and invoking a call-back RTCP handling function.

4.4 A Receiver Pipeline Example

RTP udpsrc | | rtpbin | |h264depay | |h264dec| |xvimagesink|

port=5000 | src->recv_rtp recv_rtp->sink src->sink src->sink |
_______) I | PR —— P R — PR ——

send_rtcp->sink | port=5005

RTCP |udpsrc |
port=5001 | src->recv_rtcp |

|

| . .

| | |udpsink| RTCP
|

|

|

Figure 3: Receiver pipeline.

Fig. [3] shows an example GStreamer pipeline for MCN Streaming receiver. RTP and RTCP
packets from sender are received on port 5000 and 5001, respectively. The sender RTCP packets
are sent on port 5005. Received RTP packets are decoded and displayed by an xvimage sink.

2A bin is a logical element that combines a group of linked elements

4.5 Receiver RTCP Feedback to Video Encoder

The receiver RTCP packet feedback to video encoder is implemented via GStreamer upstream
event, which is generated by an element somewhere downstream in the pipeline.

In MCN Streaming sender, once a RTCP packet is inspected by the identity element, a call-
back function will generate a custom upstream event, and this event will be sent to the source pad
of the video encoder element, as shown in following code snippet. Here we create an upstream
event called “rtcp_event”.

static gboolean send_event_to_encoder(GstElement *venc, rtcp_info *rtcp_pkt)
{

GstPad *pad;

GstEvent *event;

GstStructure *structure;

//make custom upstream event

structure = gst_structure_new("rtcp_event",
"type", G_TYPE_STRING, "receiver_report",
"jitter", G_TYPE_UINT, rtcp_pkt->jitter,
"frac_loss", G_TYPE_UINT, rtcp_pkt->fractionlost,
"pkt_loss", G_TYPE_INT, rtcp_pkt->packetslost,
NULL) ;

event = gst_event_new_custom (GST_EVENT_CUSTOM_UPSTREAM, structure);

//get venc src pad
pad = gst_element_get_static_pad (venc, "src");

//send event to venc src pad
gst_pad_send_event(pad, event);

gst_object_unref (pad);

This “rtcp_event” will then be consumed by the video encoder. Since it is a custom event, if
we are using an existing video encoder element (e.g., x264enc), we need to modify the element
accordingly to handle the custom event. Following code snippet is an illustrative example, based
on GStreamer x264enc plug-in ﬂ

static gboolean gst_x264_enc_src_event (GstPad * pad, Gst * event)
{

gbloolean ret;
GstX264Enc *encoder;

encoder = GST_X264_ENC (gst_pad_get_parent (pad));
switch (GST_EVENT_TYPE (event)) {

case GST_EVENT_CUSTOM_UPSTREAM:{
const GstStructure *s;

3The original source file is gstx264enc.c, which is located in GStreamer Ugly Plug-ins directory gst-plugins-
ugly-0.10.13/ext/x264.

s = gst_event_get_structure (event);
if (gst_structure_has_name (s, "rtcp_event")) {

//handle rtcp event here
}

break;

}
default:
break;

ret = gst_pad_push_event (encoder->sinkpad, event);

gst_object_unref (encoder);
return ret;

4.6 Write a New GStreamer Plugin

To implement the adaptive video encoding algorithm, it might be necessary to write your own
GStreamer video encoder plug-in. There are currently two ways to develop a new plug-in for
GStreamer: You can write the entire plug-in by hand, or you can copy an existing plug-in
template and write the plug-in code you need. The second method is by far the simpler of the
two. To use the second method, the first step is to check out a copy of the gst-template git
module to get an important tool and the source code template for a basic GStreamer plug-in.

For more details, please refer to GStreamer Plug-in Writers Guide [3].

5 Command Line Option List

5.1 Sender Options

Option (short)

Option (long)

Usage

-S --VSTC
-W --width

-h --height

-f --fps

-b --bitrate

-e --venc

-d --host

-t --rtp-port

-X --rtep-port-tx
-r --rtcp-port-rx
-m --mtu-size

Specify video source

Specify video width

Specify video height

Specify video frame rate
Specify video bit rate

Specify video encoder

Specify receiver IP address
Specify receiver port for RTP
Specify receiver port for RTCP
Specify sender port for RTCP
Specify maximum size of one RTP packet

Table 1: MCN Streaming sender command line options.

Table. [1] is a complete list of MCN Streaming sender options. Below we list the default and
possible alternative values for each option.
Specify Video Source

e Default value: v412src. v4l2src is used to capture video from v4l2 devices, like webcams
and tv cards.

e Alternative value: videotestsrc. The videotestsrc element is used to produce test video
data in a wide variety of formats.

Specify Video Width
Default value is 176.

Specify Video Height
Default value is 144.

Specify Video Frame Rate
Default value is 15 (in fps).

Specify Video Bit Rate
Default value is 128 (in kbps).

Specify Video Encoder
e Default value: x264enc. x264enc is libx264-based H.264 encoder plug-in.
e Alternative value:

— ffenc_h263: FFmpeg H.263/H.263-1996 encoder.
— ffenc_h263p: FFmpeg H.263+/H.263-1998/H.263 version 2 encoder.

Specify Receiver IP Address
Default value is 127.0.0.1 (localhost).

Specify Receiver Port for RTP
Default value is 5000.

Specify Receiver Port for RTCP
Default value is 5001.

Specify Sender Port for RCTP
Default value is 5005.

Specify Maximum Size of One RTP Packet
Default value is 1024 (in bytes).

5.2 Receiver Options

Option (short) Option (long) Usage

-d --vdec Specify video decoder

-s --host Specify sender IP address

-t --rtp-port Specify port for RTP

-X --rtcp-port-tx Specify port for RTCP

-r --rtcp-port-rx Specify sender port for RTCP
-1 --latency Specify jitter buffer latency

Table 2: MCN Streaming receiver command line options.

Table. [2|is a complete list of MCN Streaming receiver options. Below we list the default and
possible alternative values for each option.

Specify Video Decoder
e Default value: ffdec_h264.

e Alternative value: fldec_h263.

Specify Sender IP Address
Default value is 127.0.0.1 (localhost).

Specify Port for RTP
Default value is 5000.

Specify Port for RTCP
Default value is 5001.

Specify Sender Port for RCTP
Default value is 5005.

Specify Jitter Buffer Latency
Amount of ms to buffer in the jitterbuffers. Default value is 500.

6 Further Information

GStreamer Application Development Manual introduces GStreamer [I] from an application de-
velopers point of view. It describes how to write a GStreamer application using the GStreamer
libraries and tools. For an explanation about writing GStreamer plugins, please read the
GStreamer Plugin Writers Guide [3]. For general questions, please read GStreamer FAQ [2]. Ad-
ditional documentations are available on the GStreamer web site (http://gstreamer.freedesktop.
org/documentation/)).

References

[1] Gstreamer application development manual. Online.
[2] Gstreamer faq. Online.

[3] Gstreamer plugin writers guide. Online.

10

http://gstreamer.freedesktop.org/documentation/
http://gstreamer.freedesktop.org/documentation/

	Introduction
	Architecture
	Using MCN Streaming
	Dependencies
	Build and Install
	Sender and Receiver Examples

	Implementation Details
	Source Package
	GStreamer
	A Sender Pipeline Example
	A Receiver Pipeline Example
	Receiver RTCP Feedback to Video Encoder
	Write a New GStreamer Plugin

	Command Line Option List
	Sender Options
	Receiver Options

	Further Information

