

1

ABSTRACT

GNU radio is a free/open-source software toolkit for
building software radios, in which software defines the
transmitted waveforms and demodulates the received
waveforms. Software radio is the technique of getting code
as close to the antenna as possible. It turns radio hardware
problems into software problems. GNU Radio provides
functions to support implementing spectrum analyzer, an
oscilloscope, concurrent multichannel receiver and an
ever-growing collection of modulators and demodulators.
In this academic semester, we will build the environment of
GNU radio, be familiar with it, and learn how to use the
existing libraries to transmit a jpeg file with Differential
Binary Phase Shift Keying (DBPSK)/ Differential
Quadrature Phase Shift Keying (DQPSK) modulation
between two end systems by TCP connection. The future
objective of this project is to build the video/audio
transmission over wireless network, including error
correction (CRC) and QoS (Quality of Service) by using
GNU Radio.

Key words—, GNUradio, Python, , DBPSK/DQPSK, TCP
socket

I. INTRODUCTION
The fundamental characteristic of software radio is that

software defines the transmitted waveforms, and software
demodulates the received waveforms. This is in contrast to
most radios in which the processing is done with either analog
circuitry or analog circuitry combined with digital chips. GNU
Radio is a free software toolkit for building software radios.

Software radio is a revolution in radio design due to its
ability to create radios that change on the fly, creating new
choices for users. At the baseline, software radios can do pretty
much anything a traditional radio can do. The exciting part is
the flexibility that software provides you. Instead of a bunch of
fixed function gadgets, in the next few years we'll see a move to
universal communication devices. Imagine a device that can
morph into a cell phone and get you connectivity using GPRS,
802.11 Wi-Fi, 802.16 WiMax, a satellite hookup or the
emerging standard of the day. You could determine your
location using GPS, GLONASS or both.

Perhaps most exciting of all is the potential to build
decentralized communication systems. If you look at today's
systems, the vast majority is infrastructure-based. Broadcast

radio and TV provide a one-way channel, are tightly regulated
and the content is controlled by a handful of organizations. Cell
phones are a great convenience, but the features your phone
supports are determined by the operator's interests, not yours.
A centralized system limits the rate of innovation. Instead of
cell phones being second-class citizens, usable only if
infrastructure is in place and limited to the capabilities
determined worthwhile by the operator, we could build smarter
devices. These user-owned devices would generate the network.
They'd create a mesh among themselves, negotiate for backhaul
and be free to evolve new solutions, features and applications.

II. DESCRIPTION

A. Basic Architecture in GNU Radio
Figure 1 shows a typical block diagram for a software radio.

To understand the software part of the radio, we first need to
understand a bit about the associated hardware.

Figure 1. Architecture of GNU Radio

The USRP (Universal Software Radio Peripheral)[1], as
described in figure 2, consists of a small motherboard
containing up to four 12-bit 64M sample/sec ADCs, four 14-bit,
128M sample/sec DACs, a million gate-field programmable
gate array (FPGA) and a programmable USB 2.0 controller.
Each fully populated USRP motherboard supports four
daughterboards, two for receive and two for transmit. RF front
ends are implemented on the daughterboards. A variety of

GNU Radio
Ke-Yu, Chen (8818-0493), Zhi-Feng Chen (1218-1197)

Dept. of Electrical Computer Engineering
University of Florida
Gainesville, Florida

User-defined
Code

RF
Front end

Sender

USRP (mother board) PC

User-defined
Code

RF
Front end

Receiver

 ADC FPGA USB

DAC USB FPGA

2

daughterboards is available to handle different frequency bands.
For amateur radio use, low-power daughterboards are available
that receive and transmit in the 440 MHz band and the 1.24
GHz band. A receive-only daughterboard based on a cable
modem tuner is available that covers the range from 50 MHz to
800 MHz. Daughterboards are designed to be easy to prototype
by hand in order to facilitate experimentation.

Examining the receive path in the figure, we see an antenna,
a mysterious RF front end, an analog-to-digital converter (ADC)
and a bunch of code. The analog-to-digital converter is the
bridge between the physical world of continuous analog signals
and the world of discrete digital samples manipulated by
software.

Figure 2. USRP (Universal Software Radio Peripheral)

ADCs have two primary characteristics, sampling rate and
dynamic range. Sampling rate is the number of times per
second that the ADC measures the analog signal. Dynamic
range refers to the difference between the smallest and largest
signal that can be distinguished; it's a function of the number of
bits in the ADC's digital output and the design of the converter.
For example, an 8-bit converter at most can represent 256 (28)
signal levels, while a 16-bit converter represents up to 65,536
levels. Generally speaking, device physics and cost impose
trade-offs between the sample rate and dynamic range.

Assuming we're dealing with low pass signals - signals
where the bandwidth of interest goes from 0 to fMAX, the
Nyquist criterion states that our sampling frequency needs to be
at least 2 * fMAX. But if our ADC runs at 20 MHz, how can we
listen to broadcast FM radio at 92.1 MHz? The answer is the RF
front end. The receive RF front end translates a range of
frequencies appearing at its input to a lower range at its output.
For example, we could imagine an RF front end that translated
the signals occurring in the 90 - 100 MHz range down to the 0 -
10 MHz range.

Mostly, we can treat the RF front end as a black box with a
single control, the center of the input range that's to be
translated. As a concrete example, a cable modem tuner module
that we've employed successfully has the following
characteristics. It translates a 6 MHz chunk of the spectrum
centered between about 50 MHz and 800 MHz down to an

output range centered at 5.75 MHz. The center frequency of the
output range is called the intermediate frequency, or IF.

In the simplest-thing-that-possibly-could-work category, the
RF front end may be eliminated altogether. One GNU Radio
experimenter has listened to AM and shortwave broadcasts by
connecting a 100-foot piece of wire directly to his 20M
sample/sec ADC.

B. Software development environment
We choose Fedora Core 5 as our testing platform. RedHat

decided stopping to develop the personal edition of Linux after
RedHat 9 and transfer all the techniques of RedHat to the new
project, called “Fedora Core”. RedHat put some experimental
packages used in enterprise edition into Fedora Core to test its
stability. That is why Fedora Core still has some critical
problems even though it has been developed into the 5th edition.
We had spent much time to solve them.

 Since Fedora still has so many “experimental packages”
inside, why do we still choose this platform? The answer is
very simple – sufficient and strong software support. Because
many experienced RedHat users keep using Fedora Core, when
any new problem occurs, it is more likely to find corresponding
solutions on the website. There are also some useful forums to
issue our problems. Designer or engineers can get quick
responses usually in one day. These considerations are why we
picked this platform.

C. Co-work of C++ and Python
There are two program languages used in GNU Radio, C++

and Python which play different roles in the whole system. All
the signal processing and performance-critical blocks are
written in C++ and Python is used to create a network or graph
and glue these blocks together. So in this particular scenario,
Python is a higher level language. Many useful and frequently
used blocks have been provided by the GNU Radio project, so
in many cases we don't need to touch C++, just using Python to
finish your task. However, to do more sophisticated work, you
have to use C++ to create your own block. In our demo
program, because Python lacks of type conversion functions,
we write a C++ block which is in charge of type converting
between character and unsigned short.

There are two methods to using C++ modules in Python. The
first one is to build the C++ into an executable file, and use
Python built-in function os.system() to call this executable file,
just like sending a command into the shell.

The second way is to use SWIG, the powerful tool in Python
to ‘glue’ the C++ blocks to Python. SWIG generates the
wrapper for C++ modules and generate the corresponding
Python code (*.py) and library (*.so) so that we can include
these classes and functions in Python. The details of what
SWIG does and how to import C++ modules into Python is
described in [5].

III. EVALUATION AND DEMO
In the previous section, we know that GNU Radio with

USRP has the ability to communicate with each other. Our
objective is to transmit a JPEG file by using the modules in
GNU Radio. Because lacking of the real hardware (USRP), we

3

have to try to substitute it with other component.
The modified architecture is shown in figure 3. We first read

a BMP file from hard disk, send it into a JPEG encoder
implemented by C++ to get a compressed image file. After
encoding, the transmitter read the JPEG file and starts the
modulation. On the completion of modulation, the transmitter
puts the bit stream into socket and sends it to the receiver.

Figure 3. Architecture of our demo program

We add modulation and demodulation respectively in the

transmitter and receiver in order to implement a practical
wireless communication system, which use DBPSK/DQPSK as
the modulation method. However, this setup needs the
hardware support of Universal Software Radio Peripheral
(USRP). In our demo, we will use TCP/IP socket to simulate
the wireless transmission, which will be discussed in detail in
the next section. So, without multiple the sinusoid carrier
signals in our modulation, the final output is a baseband
representation of the modulated signal, that is, the in-phase and
quadrate (I/Q) signals. Receiver plays the role, the server, to
listen the incoming bit stream and put the incoming bit stream
into the next block ’demodulation’ to restore the input data to
the original JPEG file. All the works described above are done
by software in PC, and we use socket to substitute USRP. We
will describe the details in each block in the following
paragraphs.

1) JPEG Encoder

JPEG Encoder reads a BMP file and compresses it into a
JPEG file. The component is implemented in C++ and is called
by the main program, written in Python. These two languages
have different functions and there are two methods to
coordinate these two languages. We will discuss it latter.

2) DBPSK/DQPSK Modulation and demodulation
The modulation and demodulation flow graph is show as below
in figure 4

Modulation module

a) Get source input from JPEG file

To modulate the source file, we need to produce a binary
stream and feed it into the modulation module. So, we first read
the jpeg file, which is just produced above, as a byte stream and
save it into a vector variable. There is a trick here, in the
DBPSK modulation block, it assume that signal starts from
zero phase. However, the first bit in the JPEG file does not
necessary zero. So, we need to add one bit “0” ahead the JPEG
file. To simplify the memory allocation, we add a byte
“0x00”here.

Figure 4 modulation and demodulation modules

b) Bits to Bytes converter
Now we will begin to process the data stream into DBPSK

I/Q signals. In DBPSK modulation, each bit represents one
symbol to be modulated. So, we will process data stream bit by
bit. Since in computer it is easier to use byte operation than bit
operation, we use one byte to represent each bit. While
mapping each bit into one byte is quite straightforward, we
need to take care of the selection of Big-Endian or
Little-Endian, and the selection should keep same in both the
modulation and demodulation side. In our program, we choose
the Big-Endian, that is, the most significant bit first.

c) Gray code encoder

In modern digital communications, gray codes play an
important role in error correction. Different from natural binary
code, in gray code the signal's constellation diagram is arranged
so that the bit patterns conveyed by adjacent constellation
points differ by only one bit. By combining this with forward
error correction (FEC) capable of correcting single-bit errors, it
is possible for a receiver to correct any transmission errors that
cause a constellation point to deviate into the area of an
adjacent point. This makes the transmission system less
susceptible to noise comparing with natural binary code.

In DQPSK, we may choose to use gray code or not, again,
the option should be the same in both the modulation and
demodulation side. In the GNUradio, there is also a function
block in processing gray code for DBPSK, but actually, the
map between natural binary code and gray code is the same.

d) Differential encoder

Instead of using the bit patterns to set the phase of the wave
known as Phase Shift Keying (PSK), we can use it to denote the

Socket JPEG
Encoder

DBPSK /
DQPSK

Modulation Hard Disk

Socket
DBPSK /
DQPSK

Demodulation

Hard Disk

Sender

Receiver

Bits to
Bytes

Gray
code

encoder

Differentia
l encoder Real to

complex
OutputSource

input
Modulation module

OutputInput

Demodulation module
Differentia
l Decoder

Complex
to real

Gray code
decoder Bytes to

bits

4

phase changes of the wave by Differential Phase Shift Keying
(DPSK). Since the DPSK demodulator then determines the
changes in the phase of the received signal rather than the phase
itself, DPSK can be significantly simpler to implement than
ordinary PSK.

Analysis shows that differential encoding approximately
doubles the error rate compared to ordinary M-PSK. However
this may be overcome by only a small increase in SNR.
Furthermore, this analysis is based on a system in which the
only corruption is additive white Gaussian noise. In
communication system, the physical channel between the
transmitter and receiver will, in general, introduce an unknown
phase-shift to the PSK signal. In these cases the differential
schemes can yield a better error-rate than the ordinary schemes
relying on precise phase information[2].

e) Map the symbol into constellation point (Real number to
Complex number)

Till now, each symbol is still represented by one byte (As
mentioned above, in fact, only one bit of the byte is used in
DBPSK, and only two bits is used in DQPSK). In DBPSK,
there are only two points in the constellation diagram, so each
point, i.e. each symbol, denote one bit baseband information.
For the digital modulation, signal processing is based on
complex number operation, and therefore, each symbol will use
one complex number to represent and computation. In
GNUradio, each complex number occupies 8 bytes, i.e. 64 bits
and denotes one bit of baseband information. So, at the end of
the modulation, we will see the output file become 64 times
bigger than the original JPEG file.

The same, if using DQPSK, one symbol denote two bits
baseband information, and for complex number computation,
each complex number, i.e. 64 bits, represent one symbol. So,
the output file is 32 times bigger than the original JPEG file.

Demodulation module

In our demodulation module, there are main 4 function
blocks: Differential Decoder, Constellation mapping (Complex
number to Real number), Gray code decoder, Bytes to bits
converter. Other than Differential decoder, each function block
performs the reverse procedure of their respective opposite
function block in the modulation module.

The reason why the position of Differential Decoder in
demodulation module is not exactly the reverse position of
Differential encoder in the modulation is because the difference
of DPSK from PSK. In PSK, demodulator need a complex
carrier-recovery schemes to provide an accurate phase estimate
and determine the symbols by mapping signals directly from
constellation point. While in DPSK, as mentioned above,
demodulator only determines the changes in the phase of the
received signal rather than the phase itself. So, without a
reference signal to compare the phase of the received signal, we
cannot determine the symbols by directly mapping from
constellation points. But in an easier way in QPSK, we can
determine each symbol phase by knowing the phase change and
the initial phase, which we set as “0” at the beginning. Then we
map the symbol from constellation point (complex number) to
real number.

When differential encoding is used in this manner, the
scheme is known as differential phase-shift keying (DPSK). If
demodulator still use reference signal to first demodulate each
symbol, and then do the reverse of differential decoder, it is still
a PSK demodulation with only baseband data being differential
coded.

Limit in our modulation and demodulation modules:

As mentioned in the beginning of this section, in our demo
the final output of modulation module is a baseband
representation of the modulated signal. In the real wireless
communication, we may need to fill out the high frequency
components in the I/Q complex signal by a root raised cosine
filter and then multiple it with a sinusoid carrier signal to get
Intermediate Frequency (IF). In reverse, we also need to add
some processes in the demodulation module, such as: automatic
gain control, root raised cosine filter, symbol clock recovery.

3) Socket
As mentioned above, in our demo we simulate the wireless

channel by using TCP/IP connection, which is done by python
socket call. Python provide access to the Berkeley Software
Distribution (BSD) socket interface. Python socket interface is
a straightforward transliteration of the Unix system call and
library interface[3]. For Internet connection, two kinds of most
important socket types are SOCKET_STREAM and
SOCKET_DGRAM, which respectively represent the standard
Transmission Control Protocol (TCP) and User data Protocol
(UDP) in transportation layer. TCP provides a logical
full-duplex connection between two application layer processes
across the Internet with connection-oriented, reliable,
in-sequence service and flow control and congestion control,
while UDP is a connectionless, unreliable protocol that
provides only two additional services beyond IP:
de-multiplexing and error checking on data[4].

In our demo, we choose the TCP connection based on two
concerns: First, TCP connection is reliable and do not need
extra application layer software to ensure the file being
correctly received as in UDP. Second, we may want to extend
the demo to support data stream transmission, such as
video/audio stream, in the future, which requires a
connection-orient service.
We implement the modulation together with TCP client in
transmission side, and demodulation with TCP server in
receiver side, and send the modulated JPEG file from client to
server. First, we should assign a socket for TCP server with a
fixed port number, and then TCP server will keep listening on
the appointed port for any connection. Second, TCP client
setup a connection with TCP server by latter’s IP address and
appointed port. After the connection is established, server will
keep listening on any data stream coming from client. As soon
as server receives the whole modulated JPEG file, it will save
the file for demodulation use next.

IV. RELATED AND FUTURE WORK
The GNUradio project is still under developing, so source

code release is updated at times. In our study, we find there are
some bugs in the released software. For example, in the

5

DBPSK demodulation module, the clock recovery block does
not work well. If we choose to add this function in the
demodulation, after performing clock recovery, it will lose
some data which represent the first 11 symbols in modulation.
This definitely is not acceptable in transmitting a JPEG file,
since any bit error in it will cause the JPEG decoder can decode
it correctly. So, in our next work, we may go in detail to find the
solution for this issue. Otherwise, it will cause
DBPSK/DQPSK wrongly demodulate the received signal.

In our present demo, since we use the TCP socket to transmit
the JPEG file, so we do not worry about any packets loss and bit
error in the transmission channel since the TCP connection is a
reliable connection. However, if we use USRP hardware with a
practical wireless channel to transmit the JPEG file, things are
quite different. We need to check whether received bit stream is
correctly demodulated, and even if receiver’s demodulation
module functions well, we still have to check whether some
signals lost or interfered, which are caused by noisy wireless
channel. So, we may need to implement Forward error
correction (FEC) or Automatic Repeat-reQuest (ARQ), and in
error detection, CRC may be used.

At current stage, GNUradio also provide the functions
support for implementing Frequency Shift Keying (FSK),
Frequency Modulation (FM), Spectrum display (FFT sink) and
Oscilloscope (Scope sink). Implementing these functions in our
demo will give us more convenience to deploy future research
project and stimulate us to develop more functions based on
GNUradio environment.

V. SUMMARY AND CONCLUSIONS

In our paper, we first introduce the concept of

software-defined radio and the capacity of GNUradio.
Afterward, we describe the related hardware support and
development environment respectively. Then, we explain in
detail about what we have implemented based on our demo,
and discuss the limits in this demo. At last we present some
possible improvements and probable future work. Through this
project, we build up a systematical knowledge and experience
for developing GNUradio and it is very helpful for us to deploy
a research-oriented project next.

REFERENCES
[1] http://www.comsec.com/wiki?UniversalSoftwareRadioPe

ripheral
[2] http://en.wikipedia.org/wiki/DPSK
[3] http://www.python.org/doc/current/lib/module-socket.htm

l
[4] Communication Networks, Alberto Leon-Garcia, Indra

Widjaja, McGraw-Hill 2003
[5] http://www.geocities.com/foetsch/python/extending_pyth

on.htm
[6] http://www.nd.edu/~jnl/sdr/docs/tutorials/
[7] http://staff.washington.edu/~jon/gnuradio.html
[8] http://lists.gnu.org/archive/html/discuss-gnuradio/
[9] http://jsp.dfes.tpc.edu.tw/py-book.jsp
[10] http://www.freebsd.org.hk/html/python/tut_tw/tut.html

[11] http://www.woodpecker.org.cn:9081/doc/abyteofpython_
cn/chinese

[12] http://wiki.wxpython.org/index.cgi/Getting_Started

