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ABSTRACT
In our project, wefirst build up a wirelesscommunication
simulator including Gray coding, modulation, different
channel models (AWGN, flat fading and frequency selective
fading channels), channel estimation, adaptive equalization,
and demodulation. Next, wetest the effect of different
channel modelsto the data and imagein receiver with
constellation and BER (bit error rate) plots under QPSK
modulation. For Image data sour ce, we also comparethe
received image quality to original imagein different chan-
nels. At last, we give detail results and analyses of the per-
formance improvement with channel estimation and adap-
tive equalization in dow Rayleigh fading channel. For
frequency selective fading channel, we use linear equaliza-
tion with both LM S (Ileast mean squares) and RL S (Recur -
sive Least Squares) algorithmsto compar e the different
improvements. We will seethat in AWGN channel, the
image is degraded by random noise; in flat fading channel,
theimageis degraded by random noise and block noise; in
frequency selective fading channel, theimageis degraded
by random noise, block noise, and I Sl.
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with training data. The equalization removes tHeatfof the
wireless channel and allows subsequent symbol delsidoh.
An adaptive equalizer is a time-varying filter whimust con-
stantly be retuned. A number of different algorithoan be
employed for these modules. In our project, wellM8 (least
mean squares) and RLS (Recursive Least Squares).

Digital communication systems operating on timeyiray
dispersive channels often employ a signaling formawhich
customer data are organized in blocks preceded kiyoan
training sequence. The training sequence at thehieg of
each block is used to estimate channel or trairadaptive
equalizer. Depending on the rate at which the cblacimanges
with time, there may or may not be a need to furtreck the
channel variations during the customer data seguenc

Fig.1 shows the flow chart of our Matlab simulatishich is
used in this project.

Il. SYSTEM MODEL AND MAIN TECHNIQUES

A. To build up our Model

In our project, our target is to build up a slowifeg channel
for both flat fading and frequency selective fadisgwe choose
two different environments to simulate them, ascdbed be-
low:

fading, channel estimation, LMS, RLS

Mobile communications and wireless network hay
experienced massive growth and commercial sucoess
the recent years. However, the radio channels ibilmoadio
systems are usually not amiable as the wired onékéJwired
channels that are stationary and predictable, @ssethannels
are extremely random and time-variant. It is walbn that the

INTRODUCTION

For dow fading, Ts<<Tc, and forflat fading, Ts>>0,

c(equation 5.42 in Rappaport textbook), so we ggt
k<Ts<<Tc for a slow flat fading channel. For fregog se-
lective fading, Ts O, so we get Ts¢g, <Tc for slow fre-

quency selective fading channel.

wireless multi-path channel causes an arbitrarg tiispersion,
attenuation, and phase shift, know as fading, e réceived
signal. Fading is caused by interference betweenamwmore
versions of the transmitted signal which arrivéhatreceiver at
slightly different times.

There are many diversity techniques to addressdadsue,
such as OFDM, MIMO, RAKE receiver and etc. However,
may be still necessary to remove the amplitudepdrase shift
caused by the channel if you want to apply lineaduafation
schemes, such as the ones used in WiMAX. The fomatf
channel estimation is to form an estimate of thelande and
phase shift caused by the wireless channel fronatadable
pilot information. Channel estimation methods maydivided
into two classes: pilot-based estimation and béistimation. In
our project, we will focus on pilot-based channstireation

We choose a model simulated to GSM, where the ezarri
frequency is 1.8GHz, and bandwidth of each chaisrRO0KHz.
Suppose we use Nyquist pulse to transmit, we get 3 snicro
second, where Ts is symbol period. We simulateswemarios:
in the first scenario, we simulate an urban envirent, where
RMS delay spread is 10-25us (Table 5.1 in Rappaextthiook)
and we choose delay spread as 10 us. Now suppossdh is
walking in a velocity of 5km/hr. so Tc = 9/ (16*fim) (equa-
tion 5.40.b in Rappaport textbook) =21.5ms>>10us>48us a
slow frequency selective fading channel. In th@sdcscenario,
we simulate a suburb environment, where RMS deleyaal is
200-310ns (Table 5.1 in Rappaport textbook) andcheose
delay spread as 300ns.



Figure 1. Theflow chart of Matlab simulation

Now auppose the user is on a training which hasl@city of
20-120km/hr.
0-1000km/hr to simulate a slow fading channel,ibig out of
the practical scenario and may out of Matlab prsicgscapa-
bility, so we let the velocity in the range fromk2@hr to
120km/hr) We will test two different velocity inithscenario for

(actually we may set the velocity from

AWGN channel, slow flat Rayleigh fading channeld atow
frequency selective Rayleigh fading channel. Whi/GN
channel is very straightforward by just add a wi@tgussian
noise into signal to meet specified SNR, we needketive the
fading channel to meet our requirement. In Matlabgpam,
MyRayleigh.m and MyRayleighPDP.m, a simulation ¢dr&e
and Gans fading model is produced. Here, | willvdethe
calculations and equations which are used in batliiat fading
channel impulse response in MyRayleigh.m and freque
selective  fading channel impulse response in
MyRayleighPDP.m.

1) For flat fading channel

We note that in the Rappaport textbook 5.7.2, @dpces
complex Gaussian random variables by step 3 apdidstepage
222. While in MyRayleigh.m, N samples of iid compl@aus-
sian random variable are produced by directly gmtivey

20km/hr and 120km/hr. For 20km/hr, we get TCLN*fd/fSJ number€! of iid complex Gaussian random variable

=5.4ms>>5us>>300ns, so it is a slow flat fadingneted. For
120km/hr, we get Tc =900us>>5us>>300ns, so itds alslow
flat fading channel.

In both above two scenario, we suppose there amono-
nant stationary (non-fading) signal component prese re-
ceiver side, such as a line-of-sight propagatioti,pand the
fading follow a Rayleigh distribution, so both bt are slow
Rayleigh fading channel.

B. To produce data and set parameter

Since the baseband complex envelope expressidmecased
to represent bandpass waveforms, the channel respde-
modulated signal, and adaptive algorithms are lyssiahulated
and implemented at baseband. So, our simulatiandutt up
by baseband simulation.

Our simulation supports two kinds of data sourdéhee
randomly produced data or an image file. While andlata is
ideal to test the BER performance and channel eftesignal
constellation, image files give us an intuitive m@gsion and
comparison for different channels. In our model,use phase
shift keying (PSK) modulation to modulate the dedarce, and
user may choose arbitrary M-ary PSK to modulatesifpeal. In
our simulation, we test the QPSK modulation. Usay ralso
have an option to select using gray coding or m¢bhé simula-
tion.

in frequency domain. The other steps are same Hwitext-
book. The proof of these N samples complex Gaussiatiom
variable in time domain are still all iid is notgwided in this
document.

| would derive the calculation by below three steps

1. To explain that, in flat fading channel with N sde®)
E[|lh |1 = N, wherer, represent channel impulse response

with N samples.

2. To calculate the channel impulse response before no
malization, denoted &s .

3. To calculate the channel impulse response aftemaldr
zation, denoted a.

The more details of these three steps are descabhoédlow.

First Step:

In a fading channel with impulse response of L pins

Elf, IF1=3 El1a 1) ®

where &, is the ith tap of impulse responseﬁpm (May refer

to equation 5.19 and 5.24 in Rappaport Textboak)a Iflat
fading channel, since there is only one tap in oeaimpulse

Since we choose PSK modulation, we need to estimd@sponse h, for each sample of h, the expectaaarevof h is

channel phase during each coherence time. In odeeinthe
pilot data length is 8% of the total data lengtld & inserted
into head of source data in each coherence tinie.used to
estimate the random phase shift of the fading oblasamd train
the decision to adjust the received signal withsgheecover.
The received signal constellations of both with avithout
phase recover are dynamically showed in the simomat)ser
may choose to plot constellation or not in the paoy and if
they choose to plot constellation, they may alsaleeSNR for
the constellation.

C. To produce different channels
In our simulation, we simulate three different chels:

EllhI*]=Ella|’]-

To get the comparable SNR to a non-fading AWGN ok§n
g h[2)=1- S0, in a flat fading channel, the expectatiomealf
with N samples is

ElllhIFI=N*E[h*]=N
SO we get:

|t is easy to prove that in N points IFFT, withrggling rate fs and Doppler
shift fd, there are On|¥N*fd/fSJ points of non-zero vaule in frequency do-
main.

2 Note: F]L represent the impulse response with L bins ieguency selective

fading channel, and it should be conceptually défidated with N samples of
impulse response with only 1 tap in a flat fadihgmnel.



~ We get
ElIR IF] =N ) ?
= = ®)
Second step: Efllh, IF]
Refer to Rappaport textbook 5.7.1.1, we may gesiBRal gng
spectral shape after Doppler spread by the prazfuanhplitude ~
of complex Gaussian random variable and root sqoBEop- h= A0 = mlihb 9
pler power spectrum. We denofe as amplitude of complex b | ﬁb IX] ©)
Gaussian random variable in frequency doma&@nas root _ . _
square of Doppler power spectrum (In MyRayleightmey are  With equation (7), We finally get:
d.enoted as ampl and sqrtpsd respectively), ra.bndis the RF N,
signal spectral shape after Doppler spread./Bois actually a h ‘ﬁ (10)
scaled version ofy, where each point i\ is a scaler of NEND”

complex Gaussian random variable. To repreggnby prod-

uct of D and A, we should use a diagonal matrix with eachz) For frequency selective fading channel

component in the main diagonal come frém Therefore, we
get:

In MyRayleighPDP.m, we produce a frequency selectiv
fading channel with impulse response of L bins, isteach tap
is a flat fading channel scaled by an exponentiziP KPower

Delay Profile). We may use the same method come fro
MyRayleigh.m to deriveh for each tap. However, we note that

©)

(In MyRayleigh.m,>m is calculated by ampl .* sqrtpsd), ; lective fadi h , h
where Y is a diagonal matrix and each component in theymal & 'requency selective fading ¢ anngla [°]#1, wherea,

diagonal is a complex Gaussian random variable clwfis is the ith tap of impulse responsen, and instead, we should
produced by randn() function, so variance of athponents in Use the following equation
the main diagonal arec®” = 2. Thus, the expectation value of

H, =X D, whereX ~ CN(0,0?%)

Y is E[Y?] =20° =20, wherel is a identity matrix. By
equation (3),

ENNH, IP1=EN XM |?]1=0?0)D |I?=20|D || » SO we
get:

EflIH, [F1=20D|F (4)
Now we calculateh, by
h, =F{H,} ()

According to Parseval’'s theorem for Discrete Fauflieans-
form,

- 1 1 -
lhy IF=2_1h, F==0) |H, F==0IHy P
n=0 N k=0 N
and we get:
— 1 -
IIh, ||2=NDIIH.3 I (6)
With equation (4),
~ 1 - 2
Elllh, IF] =NDE[IIHb IF] =NEIJIDII2
S0 we get:
- 2 -
Elllh, IF] =y e I (7)
Third step:

To normalizeﬁbto get equation (2), we sét=A Dﬁb. A
is calculate as below. By equation (2), we have

E[llRIF]=ElllAth, |F1= 4 Elh, IF]=N

Ellf, IF1= Y. Ella [1=1

as mentioned above. Since the channel has an exjedrizDP,
the expectation value of each bin is
iT

Elal?l=ate " (11)

where T is the sampling period, afids the time constant. So,
we get

im

L-1 =2
Der=1
i=0

L-1

SElall=Ya®  =a

i i=0

(12)

and

(13)

Now we may calculat@, from h,, which come from the
result of MyRayleigh.m, that ig[||f|f]=N, and h; is each

sample in the N sample vecthr, So E[| h, ] =1. With equa-
tion (11), it is easy to get

(14)

D. Equalization algorithm

The performance of an estimation algorithm is deteed by
various factors, which include:

1. Rate of convergence — This is defined as the nuraber

iterations required for the algorithm, in respotsesta-



BER vs SNR in AWGN
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Figure 2: BER of simulation vs theoretical
tionary inputs, to converge close enough to thémaph
solution. A fast rate of convergence allows th@gtgm to
adapt rapidly to a stationary environment of unknow
statistics. Furthermore, it enables the algoritiomrack
statistical variations when operating in a nonistetry
environment

Maladjustment — For an algorithm of interest, this
rameter provides a quantitative measure of the atrioy
which the final value of the mean square errorrayed
over an ensemble of adaptive filters, deviates ftbm
optimal minimum mean square error.

Computational complexity — This is the number oé@p
tions required to make one complete iteration efatyo-
rithm.

Numerical properties — When an algorithm is implatad
numerically, inaccuracies are produced due to renfhd
noise and representation errors in the computeereTh
kinds of errors influence the stability of the afgam.

The radio channel characteristics and intendedofighe
subscriber equipment is another key issue. Thedspé¢he
mobile unit determines the channel fading ratetandDoppler
spread, which is directly related to the coheretioe of the
channel. The choice of algorithm, and its corresiyamnrate of
convergence, depends on the channel data and ochdime.
We use LMS (least mean squares) and RLS (Recursiast
Squares) to produce a equalize object in Matlabenea®bj.

For adaptive algorithms, the equalizer may adapdeni-
sion-directed mode using a detector specified bytioperty of
equalizer or in training only mode using only pittztta to train
the detector. In decision-directed mode, the egealuses a
detected version of its output signal when adaptiegveights.
Adaptive equalizers typically start with trainingdaswitch to
decision-directed mode after exhausting all symbnlghe
training sequence. The equalize function operatesldci-
sion-directed mode when one of these conditiornsuis: the
syntax does not include a training sequence; cedfoalizer has
exhausted all symbols in the training sequencestilhtias more
input symbols to process.

We may choose to reset the estimated weights qbialieer or
not before equalizer begin a new training cycleémxt coher-

60

(b)
Figure 3:(a) original (b) Image qualit of receivec
ence time. If set ResetBeforeFiltering property tduring each
coherence time, equalizer resets the state of iequaiome
from training result of last coherence time. Ifite equalization
process uses the result of last coherence timereftom
training only mode or decision-directed mode.

20

40 100

We discuss our simulation result by two steps.tkies ana-
lyze the performance comparison by different patamsetting
in each channel. Then we analyze the performanceoby
paring three different channels under the samenpeteas set-
ting. All the simulations are based on QPSK modutatvith
gray code.

A. For AWGN channel

SIMULATION AND EXPERIMENTAL RESULT

1) BER of simulation vs theoretical

As shown in figure 2, The BER performance of sirtiata
result is closely identical to theoretical BER.

2) Image quality of received vsoriginal

In figure 3, the received image is plot at SNR B5de see
there are some random noises in the image. Fromlation
result, the received image quality is almost thaesas original
at SNR = 10dB.
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Figure 5: BER & constellation of training vs noaitring

3) BER of Image vs random data

The correlation between image pixels does not effecBER
in AWGN channel.

B. For flat fading channel

1) BER of simulation vstheoretical

As shown in figure 4, the BER performance of sirtiata
result is worse than theoretical BER. This is readte, since
the theoretical BER is based on the assumptionwhatnow
exactly the phase information of modulated sighldwever,
due to the time-variant channel, we always havienasbn error
for phase information. We also find the BER perfante is
improved dramatically in low SNR, while not in hi@NR. This
is also reasonable, since in low SNR, white Ganss@ise
dominate the BER error, which can be improved Hyaening
SNR, while in high SNR, phase estimation error date the
BER error, which can not be improved by simply ertiag
SNR.

20 40 60 80 100 120

(b)
Figure 6: (a) without adjustment (b) with adjusirne

2) BER & constellation of training vs non-training

As shown in figure 4 and figure 5, the constellati® plot at
SNR = 10dB, we see both the BER performance andtelbn
lation are greatly improved by channel phase esiima

3) Image quality of received vs adjusted

In figure 6, the received image is plot at SNR dB0we see
that other than some random noise, there is soowk bbise in
the image. This is due to the phase estimatiorr énr@ co-
herence time.

4) BER of Image vs random data

The correlation between image pixels does not effecBER
in flat fading channel.

C. For frequency selective fading channel

1) BERof simulation vs theoretical

As shown in figure 7, the BER performance of sirtiala
result is worse than theoratical BER. The reas@aise from
above reason addressed in flat fading channelei@ift from in
flat fading channel, the BER performance is imprbdeamas-
tically in low SNR, while even degraded in high SNRis is



B BER vs SNR in frequency selective fading
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Figure 9: (a) without equalization (b) with eqaalion

also reasonable, since in high SNR, phase estimatior and
ISI dominate the BER error, and the estimationrenith cause
even severe ISl., which cause the BER even worse.

2) BER& congtellation equalized vs non-equalized

In figure7 and figure 8, the constellation is @bENR = 15dB,
we see both the BER performance and constellatogreatly
improved by channel phase estimation.

3) Reset vscontinue training result

The BER performances of resetting the state of lemuia
come from training result of last coherence timevigse than
using the result of last coherence time.

4) Training only vs decision directed mode

The BER is improved by using decision directed mailece
the time-variant property of the channel cause dhannel
change from estimation result of training data.

5) LMSvsRLS

The BER performances are almost same for botheo tiBut
during the simulation, we find, LMS need more tiagndata to

converge the equalizer comparing to RLS, whiletatas more
complexity and time consuming.

6) Image quality of received vs original

In figure 9, the received image is plot at SNR dBpwe see
that other than some random noise and block noideiimage,
there are some overlaps in the image. This is dubet whilte
Gaussian noise, phase estimation error in a cobeténe, and
ISI caused by frequency selective fading channel.

7) BER of Image vs random data

The correlation between image pixels does not effecBER
in frequency selective fading channel, since weRNeode to
train the equalizer.

D. Comparison among three channels

1) For Image comparison

In figure 11, we may see that in AWGN channel,ithage is
degraded by random noise; in flat fading chaniel ithage is
degraded by random noise and block noise; in frecuae-
lective fading channel, the image is degraded hgae noise,
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block noise, and overlap.
2) For BER performance comparison

As in figure 12, we see the BER performance is lest
AWGN channel, worse in flat fading channel and wadns
frequency selective fading channel. They are exaadl the
theoretical analysis.

V.

In this project, we choose PSK modulation to testeffect of
different channels to the received data. So, we estimate the
channel phase information in channel estimation.riégy add
more modulation techniques in our model, such ak A8d
QAM with different modulation orders. Then we wilked to
estimation both the channel phase information anglitude
information.

In flat fading channel, we train the detector gy/iilot data in
the head of source data in each coherence timghBuwhannel
is time-variant even during one coherence timen saur future
simulation, we may use different interpolation aitfons be-
tween different coherence time to improve the et
channel phase and amplitude informance.

We use linear equalizer in our present model. Al kmew,
linear equalizers do not perform well on channetsctv have

FUTURE WORK

deep spectral nulls in the passband. While frequeetective
fading channel normally causes the deep spectllal sa in our
future simulation, we may improve this by add Digxgis
Feedback Equalization (DFE).

In this project, we produce two different scenabgssimu-
late a GSM carrier frequency and bandwidth, andpileé data
to estimate the channel phase. All of these arelabed in
Matlab at present. In our future model, we maygraé our
model into GNU radio with USRP hardware supportichviwill
give a practical environment to test our wirelessmmunica-
tions simulation and our own algorithm.

V. CONCLUSION

In this paper, we test the effect of three différelnannel
models, AWGN channel, flat fading channel, and diesty
selective fading channel, to the data and imagemutvd sce-
narios. We also compare and analysis the improvemgn
channel estimation and adaptive equalization invdading
channel. Our result is exactly identical to theotieical analysis.
We also propose some possible improvements andapleb
future work, which will introduce more researcteists.
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