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ABSTRACT 

In our project, we first build up a wireless communication 
simulator including Gray coding, modulation, different 
channel models (AWGN, flat fading and frequency selective 
fading channels), channel estimation, adaptive equalization, 
and demodulation. Next, we test the effect of different 
channel models to the data and image in receiver with 
constellation and BER (bit error rate) plots under QPSK 
modulation. For Image data source, we also compare the 
received image quality to original image in different chan-
nels. At last, we give detail results and analyses of the per-
formance improvement with channel estimation and adap-
tive equalization in slow Rayleigh fading channel. For 
frequency selective fading channel, we use linear equaliza-
tion with both LMS (least mean squares) and RLS (Recur-
sive Least Squares) algorithms to compare the different 
improvements. We will see that in AWGN channel, the 
image is degraded by random noise; in flat fading channel, 
the image is degraded by random noise and block noise; in 
frequency selective fading channel, the image is degraded 
by random noise, block noise, and ISI. 
 
Keywords: Slow fading, flat fading, frequency selective 
fading, channel estimation, LMS, RLS 

I. INTRODUCTION 

Mobile communications and wireless network have 
experienced massive growth and commercial success in 

the recent years. However, the radio channels in mobile radio 
systems are usually not amiable as the wired one. Unlike wired 
channels that are stationary and predictable, wireless channels 
are extremely random and time-variant. It is well known that the 
wireless multi-path channel causes an arbitrary time dispersion, 
attenuation, and phase shift, know as fading, in the received 
signal. Fading is caused by interference between two or more 
versions of the transmitted signal which arrive at the receiver at 
slightly different times.   

There are many diversity techniques to address fading issue, 
such as OFDM, MIMO, RAKE receiver and etc. However, it 
may be still necessary to remove the amplitude and phase shift 
caused by the channel if you want to apply linear modulation 
schemes, such as the ones used in WiMAX. The function of 
channel estimation is to form an estimate of the amplitude and 
phase shift caused by the wireless channel from the available 
pilot information. Channel estimation methods may be divided 
into two classes: pilot-based estimation and blind estimation. In 
our project, we will focus on pilot-based channel estimation 

with training data. The equalization removes the effect of the 
wireless channel and allows subsequent symbol demodulation. 
An adaptive equalizer is a time-varying filter which must con-
stantly be retuned. A number of different algorithms can be 
employed for these modules. In our project, we use LMS (least 
mean squares) and RLS (Recursive Least Squares). 

Digital communication systems operating on time varying 
dispersive channels often employ a signaling format in which 
customer data are organized in blocks preceded by a known 
training sequence. The training sequence at the beginning of 
each block is used to estimate channel or train an adaptive 
equalizer. Depending on the rate at which the channel changes 
with time, there may or may not be a need to further track the 
channel variations during the customer data sequence. 

Fig.1 shows the flow chart of our Matlab simulation which is 
used in this project. 

II.  SYSTEM MODEL AND MAIN TECHNIQUES 

A. To build up our Model 

In our project, our target is to build up a slow fading channel 
for both flat fading and frequency selective fading, so we choose 
two different environments to simulate them, as described be-
low: 

For slow fading, Ts<<Tc, and for flat fading, Ts>> τσ  

(equation 5.42 in Rappaport textbook), so we get τσ  

<<Ts<<Tc for a slow flat fading channel. For frequency se-

lective fading, Ts < τσ , so we get Ts< τσ <Tc for slow fre-

quency selective fading channel. 

We choose a model simulated to GSM, where the carrier 
frequency is 1.8GHz, and bandwidth of each channel is 200KHz. 
Suppose we use Nyquist pulse to transmit, we get Ts = 5 micro 
second, where Ts  is symbol period. We simulate two scenarios: 
in the first scenario, we simulate an urban environment, where 
RMS delay spread is 10-25us (Table 5.1 in Rappaport textbook) 
and we choose delay spread as 10 us. Now suppose the user is 
walking in a velocity of 5km/hr. so Tc = 9 / (16*pi *fm) (equa-
tion 5.40.b in Rappaport textbook) =21.5ms>>10us>5us, it is a 
slow frequency selective fading channel. In the second scenario, 
we simulate a suburb environment, where RMS delay spread is 
200-310ns (Table 5.1 in Rappaport textbook) and we choose 
delay spread as 300ns.  
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Now auppose the user is on a training which has a velocity of 
20-120km/hr. (actually we may set the velocity from 
0-1000km/hr to simulate a slow fading channel, but it is out of 
the practical scenario and may out of Matlab processing capa-
bility, so we let the velocity in the range from 20km/hr to 
120km/hr) We will test two different velocity in this scenario for 
20km/hr and 120km/hr. For 20km/hr, we get Tc 
=5.4ms>>5us>>300ns, so it is a slow flat fading channel. For 
120km/hr, we get Tc =900us>>5us>>300ns, so it is also a slow 
flat fading channel. 

In both above two scenario, we suppose there are no domi-
nant stationary (non-fading) signal component present at re-
ceiver side, such as a line-of-sight propagation path, and the 
fading follow a Rayleigh distribution, so both of them are slow 
Rayleigh fading channel. 

B. To produce data and set parameter 

Since the baseband complex envelope expression can be used 
to represent bandpass waveforms, the channel response, de-
modulated signal, and adaptive algorithms are usually simulated 
and implemented at baseband. So, our simulations are built up 
by baseband simulation. 

Our simulation supports two kinds of data source, either 
randomly produced data or an image file. While random data is 
ideal to test the BER performance and channel effect to signal 
constellation, image files give us an intuitive impression and 
comparison for different channels. In our model, we use phase 
shift keying (PSK) modulation to modulate the data source, and 
user may choose arbitrary M-ary PSK to modulate the signal. In 
our simulation, we test the QPSK modulation. User may also 
have an option to select using gray coding or not in the simula-
tion.   

Since we choose PSK modulation, we need to estimate 
channel phase during each coherence time. In our model, the 
pilot data length is 8% of the total data length and is inserted 
into head of source data in each coherence time. It is used to 
estimate the random phase shift of the fading channel and train 
the decision to adjust the received signal with phase recover. 
The received signal constellations of both with and without 
phase recover are dynamically showed in the simulation. User 
may choose to plot constellation or not in the program, and if 
they choose to plot constellation, they may also set the SNR for 
the constellation. 

C. To produce different channels 

In our simulation, we simulate three different channels: 

AWGN channel, slow flat Rayleigh fading channel, and slow 
frequency selective Rayleigh fading channel. While AWGN 
channel is very straightforward by just add a white Gaussian 
noise into signal to meet specified SNR, we need to derive the 
fading channel to meet our requirement. In Matlab program, 
MyRayleigh.m and MyRayleighPDP.m, a simulation of Clarke 
and Gans fading model is produced. Here, I will derive the 
calculations and equations which are used in both the flat fading 
channel impulse response in MyRayleigh.m and frequency 
selective fading channel impulse response in 
MyRayleighPDP.m.  

1) For flat fading channel 

We note that in the Rappaport textbook 5.7.2, it produces 
complex Gaussian random variables by step 3 and step 4 in page 
222. While in MyRayleigh.m, N samples of iid complex Gaus-
sian random variable are produced by directly generating 

 fd/fs*N  numbers[1] of iid complex Gaussian random variable 

in frequency domain. The other steps are same as in the text-
book. The proof of these N samples complex Gaussian random 
variable in time domain are still all iid is not provided in this 
document.  

I would derive the calculation by below three steps: 

1. To explain that, in flat fading channel with N samples, 

N]||[||E 2 =h
r

, where h
r
 represent channel impulse response 

with N samples. 

2. To calculate the channel impulse response before nor-
malization, denoted as 

bh
r . 

3. To calculate the channel impulse response after normali-
zation, denoted as h

r
. 

The more details of these three steps are described as below. 

First Step: 

In a fading channel with impulse response of L bins, 

∑
−

=

=
1L

0i

2
i

2
L ]|a[|E]||h[||E

r  (1) 

where ia  is the ith tap of impulse response in 
Lh

r [2] (May refer 

to equation 5.19 and 5.24 in Rappaport Textbook). In a flat 
fading channel, since there is only one tap in channel impulse 
response h, for each sample of h, the expectation value of h is 

]|a[|E]|h[|E 2
0

2 = .  

To get the comparable SNR to a non-fading AWGN channel, 
1]|h[|E 2 = . So, in a flat fading channel, the expectation value of h

r  
with N samples is  

N]|h[|E*N]||[||E 22 ==h
r

 

so we get: 

 
 
[1] It is easy to prove that in N points IFFT, with sampling rate fs and Doppler 
shift fd, there are only  fd/fs*N  points of non-zero vaule in frequency do-

main. 
[2] Note: 

Lh
r

 represent the impulse response with L bins in a frequency selective 

fading channel, and it should be conceptually differentiated with N samples of 
impulse response with only 1 tap in a flat fading channel. 
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Figure 1. The flow chart of Matlab simulation 
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N]||[||E 2 =h
r

 (2) 

Second step:  

Refer to Rappaport textbook 5.7.1.1, we may get RF signal 
spectral shape after Doppler spread by the product of amplitude 
of complex Gaussian random variable and root square of Dop-
pler power spectrum. We denote A

r
 as amplitude of complex 

Gaussian random variable in frequency domain, D
r

 as root 
square of Doppler power spectrum (In MyRayleigh.m, they are 
denoted as ampl and sqrtpsd respectively), and 

bH
r

 as the RF 

signal spectral shape after Doppler spread. So, 
bH

r
 is actually a 

scaled version of D
r

, where each point in A
r

 is a scaler of 
complex Gaussian random variable. To represent 

bH
r

 by prod-

uct of D
r

 and A
r

, we should use a diagonal matrix with each 
component in the main diagonal come from A

r
. Therefore, we 

get: 

DH b

rr
⋅∑= , where ),0(CN~ 2σ∑  (3) 

 (In MyRayleigh.m, D
r

⋅∑  is calculated by ampl .* sqrtpsd), 
where ∑  is a diagonal matrix and each component in the main 
diagonal is a complex Gaussian random variable, which is 
produced by randn() function, so variance of all components in 
the main diagonal are 2 22 =σ . Thus, the expectation value of 

∑  is I2I2][E 22 ⋅=⋅=∑ σ , where I is a identity matrix. By 

equation (3), 
22222

b ||D||2||D||]||D[||E]||H[||E
rrrr

⋅=⋅=⋅∑= σ , so we 

get: 

22
b ||D||2]||H[||E

rr
⋅=  (4) 

Now we calculate 
bh

r
 by  

}H{Fh b
1

b

rr
−=  (5) 

According to Parseval’s theorem for Discrete Fourier Trans-
form, 

2
N

1N

0k

2
k

1N

0n

2
n

2
N ||H||

N

1
|H|

N

1
|h|||h||

rr
∗=∗== ∑∑

−

=

−

=

 

and we get: 

2
b

2
b ||H||

N

1
||h||

rr
∗=  (6) 

With equation (4),  
22

b
2

b ||D||
N

2
]||H[||E

N

1
]||h[||E

rrr
⋅=∗=   

so we get: 

22
b ||D||

N

2
]||h[||E

rr
⋅=  (7) 

Third step: 

To normalize bh
r

to get equation (2), we set bhh
rr

⋅= λ . λ  

is calculate as below. By equation (2), we have  
N]||h[||E]||h[||E]||[||E 2

b
22

b
2 =⋅=⋅=

rrr
λλh  

We get 

]||h[||E

N
2

b

r=λ  (8) 

and 

]||h[||E

hN
hh

2
b

b
b r

r
rr ⋅=⋅= λ   (9) 

With equation (7), We finally get: 

2

b

||D||
N

2

hN
h

r

r
r

⋅

⋅=
 

(10) 

2) For frequency selective fading channel  

In MyRayleighPDP.m, we produce a frequency selective 
fading channel with impulse response of L bins, where each tap 
is a flat fading channel scaled by an exponential PDP (Power 
Delay Profile). We may use the same method come from 
MyRayleigh.m to derive h

r
 for each tap. However, we note that 

in a frequency selective fading channel, 1]|a[|E 2
i ≠ , where ia  

is the ith tap of impulse response in 
Lh

r
, and instead, we should 

use the following equation 

1]|a[|E]||h[||E
1L

0i

2
i

2
L ==∑

−

=

r   

as mentioned above. Since the channel has an exponential PDP, 
the expectation value of each bin is 

τα
Ti

2
i e]|a[|E

⋅
−

⋅=  (11) 

where T is the sampling period, and τ is the time constant. So, 
we get 

1ee]|a[|E
1L

0i

Ti1L

0i

Ti1L

0i

2
i =⋅=⋅= ∑∑∑

−

=

⋅−−

=

⋅−−

=

ττ αα  (12) 

and 

∑
−

=

⋅
−

=
1L

0i

Ti

e

1

τ

α
 

 (13) 

Now we may calculate ia  from ih , which come from the 

result of MyRayleigh.m, that is N]||[||E 2 =h
r

, and ih  is each 

sample in the N sample vector h
r

, So 1]|h[|E 2
i = . With equa-

tion (11), it is easy to get  

i

Ti

i hea ⋅⋅=
⋅−
τα   (14) 

D. Equalization algorithm 

The performance of an estimation algorithm is determined by 
various factors, which include: 

1. Rate of convergence – This is defined as the number of 
iterations required for the algorithm, in response to sta-
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tionary inputs, to converge close enough to the optimum 
solution. A fast rate of convergence allows the algorithm to 
adapt rapidly to a stationary environment of unknown 
statistics. Furthermore, it enables the algorithm to track 
statistical variations when operating in a non-stationary 
environment 

2. Maladjustment – For an algorithm of interest, this pa-
rameter provides a quantitative measure of the amount by 
which the final value of the mean square error, averaged 
over an ensemble of adaptive filters, deviates from the 
optimal minimum mean square error. 

3. Computational complexity – This is the number of opera-
tions required to make one complete iteration of the algo-
rithm. 

4. Numerical properties – When an algorithm is implemented 
numerically, inaccuracies are produced due to round-off 
noise and representation errors in the computer. There 
kinds of errors influence the stability of the algorithm. 

The radio channel characteristics and intended use of the 
subscriber equipment is another key issue. The speed of the 
mobile unit determines the channel fading rate and the Doppler 
spread, which is directly related to the coherence time of the 
channel. The choice of algorithm, and its corresponding rate of 
convergence, depends on the channel data and coherence time. 
We use LMS (least mean squares) and RLS (Recursive Least 
Squares) to produce a equalize object in Matlab name eqObj. 

For adaptive algorithms, the equalizer may adapt in deci-
sion-directed mode using a detector specified by the property of 
equalizer or in training only mode using only pilot data to train 
the detector. In decision-directed mode, the equalizer uses a 
detected version of its output signal when adapting the weights. 
Adaptive equalizers typically start with training and switch to 
decision-directed mode after exhausting all symbols in the 
training sequence. The equalize function operates in deci-
sion-directed mode when one of these conditions is true: the 
syntax does not include a training sequence; or the equalizer has 
exhausted all symbols in the training sequence and still has more 
input symbols to process. 
We may choose to reset the estimated weights of a equalizer or 
not before equalizer begin a new training cycle in next coher-

ence time. If set ResetBeforeFiltering property to 1, during each 
coherence time, equalizer resets the state of equalizer come 
from training result of last coherence time. If 0, the equalization 
process uses the result of last coherence time either from 
training only mode or decision-directed mode. 

III.  SIMULATION AND EXPERIMENTAL RESULT 

We discuss our simulation result by two steps. First we ana-
lyze the performance comparison by different parameter setting 
in each channel. Then we analyze the performance by com-
paring three different channels under the same parameters set-
ting. All the simulations are based on QPSK modulation with 
gray code. 

A. For AWGN channel  

1) BER of simulation vs theoretical  

As shown in figure 2, The BER performance of simulation 
result is closely identical to theoretical BER. 

2) Image quality of received vs original  

In figure 3, the received image is plot at SNR = 5dB, we see 
there are some random noises in the image. From simulation 
result, the received image quality is almost the same as original 
at SNR = 10dB. 
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3) BER of Image vs random data 

The correlation between image pixels does not effect the BER 
in AWGN channel.  

B. For flat fading channel 

1) BER of simulation vs theoretical 

As shown in figure 4, the BER performance of simulation 
result is worse than theoretical BER. This is reasonable, since 
the theoretical BER is based on the assumption that we know 
exactly the phase information of modulated signal. However, 
due to the time-variant channel, we always have estimation error 
for phase information. We also find the BER performance is 
improved dramatically in low SNR, while not in high SNR. This 
is also reasonable, since in low SNR, white Gaussian noise 
dominate the BER error, which can be improved by enhancing 
SNR, while in high SNR, phase estimation error dominate the 
BER error, which can not be improved by simply enhancing 
SNR. 

2) BER & constellation of training vs non-training   

As shown in figure 4 and figure 5, the constellation is plot at 
SNR = 10dB, we see both the BER performance and constel-
lation are greatly improved by channel phase estimation. 

3) Image quality of received vs adjusted 

In figure 6, the received image is plot at SNR = 10dB, we see 
that other than some random noise, there is some block noise in 
the image. This is due to the phase estimation error in a co-
herence time. 

4) BER of Image vs random data 

The correlation between image pixels does not affect the BER 
in flat fading channel. 

C. For frequency selective fading channel 

1) BER of simulation vs theoretical   

As shown in figure 7, the BER performance of simulation 
result is worse than theoratical BER. The reason is same from 
above reason addressed in flat fading channel. Different from in 
flat fading channel, the BER performance is improved dramas-
tically in low SNR, while even degraded in high SNR. This is 
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Figure 4: BER of simulation vs theoretical 
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also reasonable, since in high SNR, phase estimation error and 
ISI dominate the BER error, and the estimation error will cause 
even severe ISI., which cause the BER even worse. 

2) BER & constellation equalized vs non-equalized  

In figure7 and figure 8, the constellation is plot at SNR = 15dB, 
we see both the BER performance and constellation are greatly 
improved by channel phase estimation. 

3) Reset vs continue training result  

The BER performances of resetting the state of equalizer 
come from training result of last coherence time is worse than 
using the result of last coherence time. 

4) Training only vs decision directed mode   

The BER is improved by using decision directed mode, since 
the time-variant property of the channel cause the channel 
change from estimation result of training data. 

5) LMS vs RLS  

The BER performances are almost same for both of them. But 
during the simulation, we find, LMS need more training data to 

converge the equalizer comparing to RLS, while latter has more 
complexity and time consuming. 

6) Image quality of received vs original  

In figure 9, the received image is plot at SNR = 15dB, we see 
that other than some random noise and block noise in the image, 
there are some overlaps in the image. This is due to the whilte 
Gaussian noise, phase estimation error in a coherence time, and 
ISI caused by frequency selective fading channel. 

7) BER of Image vs random data 

The correlation between image pixels does not affect the BER 
in frequency selective fading channel, since we use PN code to 
train the equalizer. 

D. Comparison among three channels 

1) For Image comparison   

In figure 11, we may see that in AWGN channel, the image is 
degraded by random noise; in flat fading channel, the image is 
degraded by random noise and block noise; in frequency se-
lective fading channel, the image is degraded by random noise,  
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block noise, and overlap. 

2) For BER performance comparison 

As in figure 12, we see the BER performance is best in 
AWGN channel, worse in flat fading channel and worst in 
frequency selective fading channel. They are exactly as the 
theoretical analysis. 

IV. FUTURE WORK 

In this project, we choose PSK modulation to test the effect of 
different channels to the received data. So, we only estimate the 
channel phase information in channel estimation. We may add 
more modulation techniques in our model, such as ASK and 
QAM with different modulation orders. Then we will need to 
estimation both the channel phase information and amplitude 
information. 

In flat fading channel, we train the detector by the pilot data in 
the head of source data in each coherence time. But the channel 
is time-variant even during one coherence time, so in our future 
simulation, we may use different interpolation algorithms be-
tween different coherence time to improve the estimated 
channel phase and amplitude informance. 

We use linear equalizer in our present model. As well know, 
linear equalizers do not perform well on channels which have 

deep spectral nulls in the passband. While frequency selective 
fading channel normally causes the deep spectral nulls, so in our 
future simulation, we may improve this by add Decision 
Feedback Equalization (DFE). 

In this project, we produce two different scenarios by simu-
late a GSM carrier frequency and bandwidth, and use pilot data 
to estimate the channel phase. All of these are simulated in 
Matlab at present. In our future model, we may integrate our 
model into GNU radio with USRP hardware support, which will 
give a practical environment to test our wireless communica-
tions simulation and our own algorithm. 

V. CONCLUSION 

In this paper, we test the effect of three different channel 
models, AWGN channel, flat fading channel, and frequency 
selective fading channel, to the data and image under two sce-
narios. We also compare and analysis the improvement of 
channel estimation and adaptive equalization in slow fading 
channel. Our result is exactly identical to the theoretical analysis. 
We also propose some possible improvements and probable 
future work, which will introduce more research interests. 

REFERENCES 

[1] T. S. Rappaport, “Wireless Communications: Principles 
and Practice”, Second Edition, 2002 

[2] J. G. Proakis, “Digital Communications”, Fourth Edition, 
2001 

[3] S. Haykin, “Adaptive Filter Theory”, Fourth Edition, 
2002 

[4] A. V. Oppenheim, R. W. Schafer, J. R. Buck, “Dis-
crete-time Signal Processing”, Second Edition, 1999 

[5] Monsen, P.: ‘Adaptive Equalization of the Slow Fading 
Channel’, IEEE Trans., Aug 1974, IT-22, pp. 1064-1075 

[6] Ziv, J.: ‘Probability of decoding error for random phase 
and Rayleigh fading channels’, IEEE Trans., Jan 1965, 
IT-11, pp. 53- 61 

[7] M. Pukkila, “Channel Estimation Modeling”, 2000 
[8] CROZIER, S., FALCONER, D., and MAHMOUD, S.: 

‘Shortblock equalization techniques employing channel 
estimation for fading timedispersive channels’. IEEE 
Vehicular Technology Conference, May 1989, pp. 
142-146 

[9] UNGERBOECK, G.: ‘Adaptive maximum-likelihood 
receiver for carrier-modulated data-transmission systems’, 

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

BER vs SNR in AWGN

SNR

B
E

R

simulated BER
simulated SER

Theoratical BER

 
0 2 4 6 8 10 12 14 16 18 20

10
-3

10
-2

10
-1

10
0

BER vs SNR in flat fading

SNR

B
E

R

SER with channel estimation

BER with channel estimation

SER without channel estimation
BER without channel estimation

Theoratical BER with exactly known phase

 
0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

BER vs SNR in frequency selective fading

SNR

B
E

R

SER with adaptive equalization

BER with adaptive equalization

SER without adaptive equalization
BER without adaptive equalization
Theoratical BER

 
(a) (b) (c)  
Figure 12: (a) AWGN channel (b) flat fading channel (c) frequency selective fading channel 
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