Effective Capacity Approach to Providing Statistical Quality-of-Service Guarantees in Wireless Networks

Dapeng Wu Electrical & Computer Engineering University of Florida

QoS Provisioning in Wireless Networks

Network operator:

Wireless channel $\xrightarrow{\text{How}?}$ QoS provisioning

Quality of Service (QoS)

- Data rate (e.g., 64 kb/s?)
- Delay tolerable (e.g., 1 s?)
- Packet loss probability (e.g., 1%?)

Outline

- Motivation
- Our effective capacity (EC) approach
 - Link layer channel model: EC model

Derive QoS measures

- Design of QoS provisioning, using EC model
- Summary
- On-going projects

Definition of Statistical QoS

• Statistical QoS: {data rate r_s , D_{max} , P_D }

$$P_D = \Pr\{D(\infty) \ge D_{\max}\}$$

 $D_{max} = \max$ delay tolerable; $D(\infty) = \lim_{t \to \infty} D(t)$

D(t) = queueing delay of packet arriving at time t

Traditional Wireless QoS Provisioning

What's the complexity of the whole procedure?

E.g., QoS Provisioning with a Scheduler

- Setting
 - One wireless channel
 - K users requiring identical QoS
 - Users having independent channel gains

Problem: $\{r_s, D_{\max}, \varepsilon\} \longrightarrow$ minimum fraction of channel β ? $\beta \in (0,1]$

Solution by traditional approach:

Model each user's capacity $c_k(t)$

Model capacity $\tilde{c}_1(t)$ assigned by the scheduler to user 1

Analyze queue of user 1 for $P_D = \Pr\{D_1(\infty) \ge D_{\max}\}$

Resource allocation

Discrete-time Markov chain $X_k(t)$, $k = 1, \dots, K$.

$$\widetilde{c}_{1}(t) = \begin{cases} \beta \times c_{1}(t) & \text{if } X_{1}(t) = \max X_{k}(t) \\ 0 & \text{otherwise} \end{cases}$$

Markov chain with *K* dimensional state: $\{X_1(t), X_2(t), \dots, X_K(t)\}$

Complexity: $O(M^{K})$

where *M* is the number of states in $X_k(t)$.

min β s.t. $P_D \leq \varepsilon$

Our Approach to QoS Provisioning

What is Link-layer Channel?

(a)

How to Model Link-layer Channel?

How to Model Link-layer Channel (2)

- Assume
 - 'fluid model' of traffic
 - stationary, ergodic channel power gain g(t)
 - instantaneous channel capacity r(t) = function(g(t))
 - constant source rate $r_s < E[r(t)] \implies$ stable queue
- Question: given r(t), $\Pr\{D(\infty) \ge D_{\max}\} = ?$
- Answer: can be found by 'large deviations theory'

Idea of Large Deviations Theory

Goal: $P_D = \Pr\{D(\infty) \ge D_{\max}\} \le e^{-\theta \times D_{\max}}$ Use Chernoff boundSufficient
conditionGeneration

Effective capacity function of *r*(*t*):

$$\alpha(u) = -\lim_{t \to \infty} \frac{1}{ut} \log E[e^{-u \int_{0}^{t} r(\tau) d\tau}], \quad \forall u > 0$$

Relation between QoS and Effective Capacity

 $\alpha(u)$: maximum data rate achievable with P_D satisfied, capacity of a delay-constrained channel

Our Link-layer Channel Model

• If $\alpha(u)$ exists (e.g., for stationary, Markovian r(t)), then

 $P_{D} = \Pr\{D(\infty) \ge D_{\max}\} \approx e^{-\theta(\mu) \times D_{\max}}, \text{ for large } D_{\max}$ where $\theta(\mu) = \mu \alpha^{-1}(\mu),$

 $\alpha^{-1}(\cdot)$ is inverse function of $\alpha(u)$.

• $\theta(\mu)$ is our proposed EC channel model.

$$r(t) \longrightarrow \theta(\mu) \longrightarrow P_D(D_{\max}) \approx e^{-\theta(\mu) \times D_{\max}}$$

Closed form!

Question: How good is the approximation?

Simulation Result (AR(1), Rayleigh Fading)

Summary of EC Channel Model

- EC channel model
 - simplify analysis
- How?
 - Directly measure queue and model link-layer channel
- Why?
 - Avoid the detail in physical layer
- Next question: Is QoS provisioning an easy task, given EC model?

Outline

- Motivation
- Our effective capacity (EC) approach
 - Link layer channel model: EC model

Derive QoS measures

- Design of QoS provisioning, using EC model
- Summary
- On-going projects

Problem of QoS Provisioning

Previous Scheduling Schemes

↓ Not suitable for delay-sensitive applications

Cont'd

If all users transmit at least once in the last *L* slots, use K&H; otherwise use RR.

Cont'd

Our Joint K&H/RR Scheduling

In each frame t:

- K&H: β fraction of frame to the best user
- RR: ζ fraction of frame to each user

$$\{r_s, D_{\max}, P_D\} \xrightarrow{?} \beta, \varsigma$$

Exponential complexity

using traditional approach!

 $\beta = 0.5, \zeta = 0.25$

23

Admission Control & Resource Allocation

Given channel model $\theta_{c,\beta}(\mu)$, Complexity: O(N) K users' $\{r_s, D_{max}, P_D\}$ N: number of discrete values that ζ or β can take. $\rho = -\log P_D / D_{\max}$ Optimum $\{\varsigma, \beta\}$ $K\zeta + \beta$ min used for resource allocation $\{\zeta,\beta\}$ subject to $\theta_{\varsigma,\beta}(r_s) \ge \rho,$ $K\zeta + \beta \leq 1$, Admission control: $\zeta \ge 0, \quad \beta \ge 0.$ If satisfied, accept the new user (K-th user); otherwise,

reject it.

Procedure of QoS provisioning

Estimate $\theta_{\zeta,\beta}(\mu)$ for various values of $\{\zeta,\beta\}$.

Determine optimal $\{\varsigma, \beta\}$ that satisfies users' QoS, while minimizing frame usage.

Provide K&H/RR with optimal $\{\varsigma, \beta\}$.

Given EC model, QoS provisioning is an easy task!

$$:: \{\varsigma, \beta\} \leftarrow \xrightarrow{\theta_{\varsigma,\beta}(r_s) = -\log P_D / D_{\max}} \to \{r_s, D_{\max}, P_D\}$$

control parameter QoS

Performance Gain of Scheduling

Conclusion

- Novel Effective Capacity (EC) approach
 - Model a channel via EC function
 - Design QoS provisioning via EC channel model
- EC approach: fundamentally different from traditional approach
 - Channel modeling
 - Link-layer model vs. physical-layer model
 - QoS provisioning

Control parameters \leftarrow

closed form vs. complex relation

QoS measure

Conclusion (2)

Thank you!