Change Detection: Current State of the Art and Future Directions

Dapeng Oliver Wu Electrical & Computer Engineering University of Florida http://www.wu.ece.ufl.edu/

Outline

- Motivation & problem statement
- Change detection techniques
 - Radiometric adjustment
 - Geometric adjustment
 - Stochastic modeling and hypothesis testing
- Future directions
 - Probabilistic approach
 - Geometric approach

What's Change Detection?

• Open your eyes wide, find 5 differences

What's Change Detection?

• Open your eyes wide, find 5 differences

Motivations (1)

• In medical diagnosis, change detection can help detect diseases.

Healthy

1 month later: retina disease?

Motivations

 In remote sensing, change detection can help assessing damage from natural disaster.

Biloxi before Hurricane Katrina

Biloxi after Hurricane Katrina

Motivations

 In video surveillance, change detection can help detecting suspicious activities (activity monitoring).

Problem Statement

Technical Challenges

- Change detection is an ill-posed problem
 - since it is hard to define "changes" between images
 - Need to serve specific purposes (surveillance, disease diagnosis, etc.); hard to quantify meaningful changes
- Need to remove insignificant changes
 - Lighting variation
 - Bright under sunshine
 - Dark under cloudy weather
 - Camera motion

Should not be regarded as change

• Changes caused by camera motion are insignificant

Detecting changes is challenging!

Outline

- Motivation & problem statement
- Change detection techniques
 - Radiometric adjustment
 - Geometric adjustment
 - Stochastic modeling and hypothesis testing
- Future directions
 - Probabilistic approach
 - Geometric approach

Typical Procedure of Change Detection

Radiometric Adjustment – Why?

• Eliminate lighting variations

Radiometric Adjustment – Why? (2)

• Mitigate noise

X-ray image of circuit board corrupted by salt-and-pepper noise

Noise reduction with a 3×3 median filter

Radiometric Adjustment – How?

- Histogram matching: make two images have the same histogram
- Homomorphic filtering:

 $I(x) = I_l(x)I_o(x)$

 $\ln I(x) = \ln I_{l}(x) + \ln I_{o}(x) \qquad I_{o}(x) = \exp\{HPF(\ln I(x))\}\$

Noise Mitigation

- Intensity modeling: $I(x) = I_l(x)I_o(x) + N(x)$
- Gaussian noise
 - Frame/local spatial averaging
- Speckle noise salt and pepper noise
 - Widely exist in coherent imagery, such as SAR, ultrasound

- PDF:
$$p(z) = \begin{cases} P_a & z = a \\ P_b & z = b \\ 0 & else \end{cases}$$

- How to mitigate it?
 - Median filter

$$f(x, y) = median_{(s,t)\in S_{xy}} \{g(s,t)\}$$

Median Filtering Example

Geometric Adjustment – Why?

- A.k.a. image registration
- Camera may move
 Need to align images into the same coordinate system

Geometric Adjustment – How?

Geometric Adjustment – Example

• Input images:

• Adjusted Images:

Stochastic Modeling and Hypothesis Testing

Stochastic Modeling Process

Hypothesis Test

- Hypotheses
 - $-H_0$: no change
 - $-H_1$: change
- Testing:

maximum likelihood

 $k = \arg\max_{k \in \{0,1\}} p(x \mid H_k)$

Input Images

Change Mask

Outline

- Motivation & problem statement
- Change detection techniques
 - Radiometric adjustment
 - Geometric adjustment
 - Stochastic modeling and hypothesis testing
- Future directions
 - Probabilistic approach
 - Geometric approach

Probabilistic Approach – Flowchart

- MAP criterion: $\hat{x} = \arg \max_{x} P(x | f) = \arg \max_{x} p(f | x) P(x)$
- Limitation:
 - It does not consider spatial correlation

Statistic Model – Multiple Pixel

• MAP criterion: $\hat{\mathbf{x}} = \arg \max_{\mathbf{x}} \prod_{i=1}^{n} p(f_i / x_i) \bullet P(\mathbf{x})$

where
$$\mathbf{x} = [x_1, x_2, ..., x_N]^7$$

- Advantage: consider spatial correlation
- Limitation: complexity is too high
 - 2^{N} possible **x**, i.e., O(2^{N}) complexity, if x_i has 2 possible values. ²⁶

Hidden Markov Tree Model

- What is hidden Markov tree (HMT)?
- Advantages of HMT:
 - Utilization of spatial correlation
 - Can use Viterbi algorithm whose complexity is O(N²)

27

Classification

- Decision: MAP criterion
- $\hat{x}_{i} = \arg \max_{\mathbf{x}} \mathbf{P}(\mathbf{x} | \mathbf{f}) = \arg \max_{x_{i}, x_{\rho(i)}, \cdots} \mathbf{P}(x_{i} | x_{\rho(i)}, \mathbf{f}) \mathbf{P}(x_{\rho(i)} | x_{\rho(\rho(i))}, \mathbf{f}) \cdots \mathbf{P}(x_{root} | \mathbf{f}), \text{ for } \forall i \in V$
- How to calculate:

Training

Experimental Results

Training samples:

Experimental Results (2)

Input Images

Change Mask

Geometric Approach: Motion-based Change Detection

- Does motion mean change?
 - Global motion is caused by camera motion
 - Local motion is caused by object motion, which is useful.

Motion-based Change Detection (2)

- How to define 2D motion?
 - Translation

 $u = x + t_x$ $v = y + t_y$

- Affine motion

 $u = a_0 + a_1 x + a_2 y$ $v = b_0 + b_1 x + b_2 y$

- Bilinear motion $u = a_0 + a_1x + a_2y + a_3xy$ $v = b_0 + b_1x + b_2y + b_3xy$
- Projective mapping

$$u = \frac{a_0 + a_1 x + a_2 y}{1 + c_1 x + c_2 y}$$
$$v = \frac{b_0 + b_1 x + b_2 y}{1 + c_1 x + c_2 y}$$

Motion-based Change Detection (3)

- Single-body motion model $f_i(x, M_i) = 0$
- Multibody motion model

 $g(x,M) = f_1(x,M_1) \cdot f_2(x,M_2) \cdots f_n(x,M_n) = 0$ (for $\forall x$)

- Multibody motion estimation: estimate M
 - n and M can be obtained linearly after embedding x into a higher-dimensional space
- Motion segmentation: $M \rightarrow \{M_i\}_{i=1}^n$
- Refine motion models
- Do it recursively until it converges.

Experimental Results

Camera motion

Object motion

Grand Challenges in Image Processing & Computer Vision

Change Detection in 3D Space

- Change detection in 3D space is important for homeland security and military
- Key component of detection & classification of moving personnel in DARPA VisiBuilding program
- Challenges: need better understanding & exploitation of physics and imaging modalities

See through walls, using radar, MMW, Xray, acoustic, UWB, SAR, neutron, gamma-ray, etc.

Real-time 3D Imaging of Interior of Building & Underground Structure

- Critical for urban warfare
 - Provide critical information for commanders to make tactical decisions; help assess enemy course of action
- Need synergistic efforts from different areas
 - Wall/ground penetrating sensors
 - Microwave imaging
 - Vision processing
 - 3D image reconstruction
 - Circuits

Super Resolution in Satellite Imaging

- Can we improve the resolution of current satellite imagery by a factor of 10 or even 100?
- Potential impact: why this is important?
 - Able to see details never available previously, e.g., recognize human, car, objects of size ~1m
 - Particularly important for intelligence, Department of Defense, and homeland security
- Possible solutions
 - Multi-view image processing of multiple satellite images
 - New imaging techniques based on physics

Thank you!