Ripplet: a New Transform for Feature

!'_ Extraction and Image Representation

Dr. Dapeng Oliver Wu

Joint work with Jun Xu

Department of Electrical and Computer
Engineering

University of Florida



i Outline

= Motivation

= Ripplet
« Continuous ripplet transform
= Discrete ripplet transform

= Experimental results
s Conclusions & future work




Transform representation of signal

Function representation
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Transforms with fixed bases f(t)
e Fourier Transform o l
e Wavelet Transform

—— Transform

e Ridgelet Transform
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hallenges in transform

* Discontinuities (singularities)
are difficult to be efficiently
represented.

e Conventional solutions

e Fourier transform -- Gibbs
phenomenon.

e Wavelet transform can resolve 1-D
singularities, but it can not resolve
2-D singularities.
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- Existing solutions for resolving

singularities
* Ridgelet [Candes and Donoho]

e Resolve 2D singularities along lines

® Curvelet [Candes and Donoho]
e Resolve 2D singularities along curves

» Contourlet [Do and Vetterli]
e Resolve 2D singularities along curves




i Properties of Curvelet

= Multi-resolution
= Directional

= Anisotropy:
» Parabolic scaling provides anisotropy
= Key difference from rotated 2-D wavelet.



i Intuition

2-D wavelet
Square-shaped blocks

(Tensor product of
two 1-D wavelets)

Contourlet
Rectangle-shaped blocks

Curvelet
Parabola-shaped blocks



i Conjecture

= Is the parabolic scaling law optimal for
all types of boundaries?

= If not, what scaling law will be optimal?
= Our answer:

= Generalize the scaling law mm) ripplet

= Then, optimize over ripplets of different
degrees and different support ranges




‘L Intuition of Ripplet
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i Ripplet Functions

= Ripplet functions:

Pate(T) = Paiio(Ll6(T — b))

= Rotation matrix R [ cos sinf
0

—sinf cost

= Mother” function pa50(°)
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Ripplet Functions (cnt’d)

Ripplet mother function is defined in frequency domain

R 1 an ad
Pa(ryw) = %a 2 W(a - T)V(c-a,

Pa (7"7 W ) is the Fourier transform of 2,50 (f )
W(r) is“radial window” on [1/2,2]
V(w) is “angular window” on [_ 1, 1]

w)

e ¢ determines the support

d denotes degree
e Curverlet is just the special case of rippletfor c¢=1,d = 2
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Ripplet Functions in Space Domain

All ripplet
functions are
located in
the cgnter,

e, h =0

a=3,0=371/16,c=1,d=2 a=4,0=31/16,c=1,d =4

a=3,0=31/16,c=15,d=2 a=4,0=3r1/16,c=15,d=14



i Properties of Ripplets (1)

= Multi-resolution analysis

= Ripplet transform provides a hierarchical
representation of images. It can effectively
approximate Images from coarse
granularity to fine granularity.

= High directionality

= Ripplets can be pointed to arbitrary
directions.
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i Properties of Ripplets (2)

s Good localization

= Ripplets are well localized in both spatial and
frequency domains.

= Arbitrary scaling

= Ripplets allow scaling with arbitrary degree. The
degree can take any real value. Curvelet is ripplet
with degree 2.

= Anisotropy

= Achieved by flexible scaling and arbitrary support
range
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Continuous Ripplet Transform

Forward transform:

R(0.0.0) = [ 1(@)p,@)d7

Backward transform:

~ —

J(7) = / R(a,b,0)p -, (%)dH
dH is the reference measure of a, g, 0
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Discrete Ripplet-lI Transform

Substitute with discrete parameters

— 97
a; = 2

b = [c- 277 ky, 2794 Jy)”

0, = Q—W-Z_U(l_l/d“ - [ 7y k1, kol € Z

C

Forward transform:
M—-1 N-—1

jak ) Y Y f(ny,ng)p 7’%177’12)

n1=0no=0

Inverse transform:

n17n2 > > > R.j? ]k,l(n17n2)
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Experimental Results

Nonlinear approximation (NLA)

e Sort coefficients in descending order
ol = Jer| > e 2 > Jenaa| 2 en] = -

e Approximate signal by n-largest coefficients
n—1

QWQZZC@@'

1=0
e Performance measure on reconstruction error
e=¢g—4¢

e Peak Signal Noise Ratio (PSNR)

1
PSNR = 10 X loglo(w)
2
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‘L Synthetic Images (1)
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‘L Synthetic Images (2)
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‘L Synthetic Images (3)
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Natural Images (1)
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Reconstructed with 5000 largest Reconstructed with 5000 largest
ripplet coefficients PSNR = 25.58 dB  wavelet coefficients PSNR = 24.51 dB
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Natural images

PSNR (cB)

DWT ||
s—=:Mpplet
DCT

1

5 1 1 1 1 1 1
1000 2000 3000 4000 S0O0O0 €000 7000 2000 ©000 10000
nurnber of retained coefficients

23



* -
o Ve 4
4 4 i b
= .
==

Reconstructed with 4000 largest Reconstructed with 4000 largest
ripplet coefficients PSNR = 31.13 dB  wavelet coefficients PSNR = 30.13 dB
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i Conclusions & Future Work

= Ripplet transform can provide a more efficient
representation of images with singularities
along smooth curves.

= Ripplets have the capability of representing
the shape of an object, but they are not good
at representing textures.

= It is promising to combine ripplet and other
transforms such as DCT to represent the
entire image, which contains object
boundaries and textures.
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