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Abstract—Recently, sparsity-based algorithms are proposed
for super-resolution spectrum estimation. However, to achieve
adequately high resolution in real-world signal analysis, the
dictionary atoms have to be close to each other in frequency,
thereby resulting in a coherent design. The popular convex
compressed sensing methods break down in presence of high
coherence and large noise. We propose a new regularization
approach to handle model collinearity and obtain parsimonious
frequency selection simultaneously. It takes advantage of the
pairing structure of sine and cosine atoms in the frequency
dictionary. A probabilistic spectrum screening is also developed
for fast computation in high dimensions. A data-resampling
version of high-dimensional Bayesian Information Criterion is
used to determine the regularization parameters. Experiments
show the efficacy and efficiency of the proposed algorithms in
challenging situations with small sample size, high frequency
resolution, and low signal-to-noise ratio.
Keywords: spectral estimation, sparsity, super-resolution, non-
convex optimization, iterative thresholding, model selection, spec-
tra screening.

I. INTRODUCTION

The problem of spectral estimation studies how signal power
is distributed over frequencies, and has rich applications in
speech coding, radar & sonar signal processing and many other
areas. Suppose a discrete-time real-valued signal is observed
at finite time points contaminated with i.i.d. Gaussian noise.
In common with all spectral models, we assume the signal can
be represented as a linear combination of sinusoids, and aim
to recover the spectrum of the signal at a desired resolution.
However, the problem becomes very challenging when the
required frequency resolution is high. In particular, the number
of the frequency levels at the desired resolution can be (much)
greater than the sample size, referred to as super-resolution
spectral estimation. For such discrete-time signals of finite
length, the classical methods based on fourier analysis [1] or
least-squares periodogram (LSP) [2], [3] suffer from power
leakage and have very limited spectral resolution [1]. Some
more recent algorithms, such as Burg [1], MUSIC [4] and
RELAX [5] only alleviate the issue to some extent.

We assume that the signal is sparse in the frequency-domain,
i.e., the number of its sinusoidal components is small relative
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to the sample size, referred to as the spectral sparsity. It is a
realistic assumption in many applications (e.g., astronomy [6]
and radar signal processing [7]), and makes it possible to apply
the revolutionary compressed sensing (CS) technique. In [6],
Chen and Donoho proposed the basis pursuit (BP) to handle
overcomplete dictionaries and unevenly sampled signals. A
number of similar works followed, see, e.g., [8]–[15] and the
references therein.

We point out two crucial facts that cannot be ignored
in super-resolution spectrum reconstruction. (a) When the
desired frequency resolution is very high, neighboring dic-
tionary atoms become very similar and thus necessarily result
in high coherence or collinearity. As is well known in the
literature, the popular convex l1 technique as used in the BP
yields inconsistent frequency selection and suboptimal rates
in estimation and prediction under such coherent setups [16]–
[20]. (b) The grouping structure of the sinusoidal components
is an essential feature in spectrum recovery: if frequency f
is absent in the signal, the coefficients for cos(2πft) and
sin(2πft) should both be zero.

In this paper we investigate super-resolution spectral re-
covery from a statistical perspective and propose a group
iterative spectrum thresholding (GIST) framework to tackle
the aforementioned challenges. GIST allows for (possibly
nonconvex) shrinkage estimation and can exploit the pairing
structure. Interestingly, we find that neither the l1 nor the
l0 regularization is satisfactory for spectrum estimation, and
advocate a hybrid l0 + l2 type shrinkage estimation. Theo-
retical analysis shows that the new regularization essentially
removes the stringent coherence requirement and can accom-
modate much lower SNR and higher coherence. Furthermore,
a GIST variant provides a screening technique for supervised
dimension reduction to deal with applications in ultrahigh
dimensions. The rest of this paper is organized as follows.
We formulate the problem from a statistical point of view
and briefly survey the literature in Section II. In Section III,
we propose the GIST framework—in more details, a novel
form of regularization, a generic algorithm for fitting group
nonconvex penalized models, a data-resampling based model
selection criterion, and a probabilistic spectral screening for
fast computation. Experimental results are shown in Section
IV. We summarize the conclusions in Section V. The technical
details are left to the Appendices.

II. MODEL SETUP AND THE SUPER-RESOLUTION
CHALLENGE

In this section, we introduce the problem of super-resolution
spectrum estimation and review some existing methods from
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a statistical point of view. Let y = [y(tn)]1≤n≤N be a
real-valued signal contaminated with i.i.d. Gaussian noise
N(0, σ2). (We focus on real signals in this paper but our
methodology carries over to complex-valued signals; see
Section V.) The sampling time sequence {tn}1≤n≤N is not
required to be uniform (cf. [6]). In order to achieve super-
resolution spectral recovery, an overcomplete frequency dic-
tionary must be applied. Concretely, we use a grid of evenly
spaced frequencies fk = fmax · k/D for k = 0, 1, · · · , D
to construct the sine and cosine frequency predictors, i.e.,
cos(2πtfk) and sin(2πtfk). Let F denote the set of nonzero
frequencies {f1, · · · , fD}. The upper band limit fmax can be
(2min1≤n≤N (tn−tn−1))

−1 or estimated based on the spectral
window [21]. The cardinality of the dictionary controls the
frequency resolution given by fmax/D. The true spectra of
the signal are assumed to be discrete for convenience, because
the quantization error can always be reduced by increasing the
value of D. The signal can be represented by

yn = y(tn) =
D∑

k=0

Ak cos(2πfktn + ϕk) + en, 1 ≤ n ≤ N, (1)

where Ak, ϕk are unknown, and the noise {en}Nn=1 are i.i.d.
Gaussian with zero mean and unknown variance σ2. Tradi-
tionally, D ≤ N . But in super resolution spectral analysis, D
can take a much larger value than N . It still results in a well-
defined problem because only a few Ak are nonzero under the
spectral sparsity assumption.

From Ak cos(2πfktn + ϕk) = Ak cos(ϕk) cos(2πfktn) −
Ak sin(ϕk) sin(2πfktn) = ak cos(2πfktn) + bk sin(2πfktn)
with ak = Ak cosϕk, bk = −Ak sinϕk, we introduce two
column vectors

Xcos(f) , [cos(2πtnf)]1≤n≤N ,

Xsin(f) , [sin(2πtnf)]1≤n≤N ,

and define the predictor matrix

X , [Xcos(f1), · · · ,Xcos(fD),Xsin(f1), · · · ,Xsin(fD)].
(2)

(Some redundant or useless predictors can be removed in
concrete problems, see (4).) Denote the coefficient vector by
β ∈ R2D and the intercept (zero frequency component) by α.
Now the model can be formulated as a linear regression

y = α+Xβ + e, (3)

where β is sparse and e ∼ N(0, σ2I). In super-
resolution analysis, D ≫ N , giving a small-sample-size-high-
dimensional design. Linear analysis such as Fourier transform
fails for such an underdetermined system.

As a demonstration, we consider a noisy ‘TwinSine’ signal
at frequencies 0.25 Hz and 0.252 Hz with 100 observations.
Obviously, the frequency resolution needs to be as fine as
0.002 HZ to perceive and distinguish the two sinusoidal
components with different coefficients. We set fmax = 1/2,
and thus 2D must be at least 500 – much larger than the
sample size. The concrete design matrix (without the intercept)

is given by

X =

 cos(π 1
D t1) ··· cos(πD

D t1) sin(π 1
D t1) ··· sin(πD−1

D t1)

...
...

...
...

...
...

cos(π 1
D tN ) ··· cos(πD

D tN ) sin(π 1
D tN ) ··· sin(πD−1

D tN )

 .

(4)
The last sine atom disappears because all tn are integers. This
yields a super-resolution spectral estimation problem.

There are many algorithms for identifying the spectrum of
a discrete-time signal. But not all of them can super-resolve.
From a modeling perspective, we classify them as nonsparse
methods and sparse methods. Most classical methods (e.g.,
[2], [3], [21]) are nonsparse and assume no knowledge on the
power spectra. For super-resolution spectrum estimation, they
may seriously broaden the main lobes and introduce side lobes.
In this paper, we focus on sparse methods. As aforementioned,
one popular assumption for solving underdetermined systems
is signal sparsity: the number of present frequency components
is small relative to the number of samples. The problem is
still NP hard because the frequency location of the truly
relevant sinusoidal components is unknown and the number
of candidate components can be very large. In fact, the
frequency grid used for constructing the dictionary can be
made arbitrarily fine by the customer.

Early attempts to enforce sparsity effects include greedy
or exhaustive searches [22], [23] and genetic algorithms
with a sparsity constraint [24]. Harikumar [25] computes
the maximally sparse solutions under a constraint on the
fitting error. A breakthrough is due to Chen & Donoho who
proposed the basis pursuit (BP) for spectrum estimation [6].
A number of similar works followed [8]–[11]. BP is able to
superresolve for unevenly sampled signals. In our notation,
the noiseless version of BP solves the convex optimization
problem min ||β||1 s.t. α+Xβ = y. The noisy versions can
be defined similarly, in a penalty/constraint form. The l1-norm
provides the tightest convex relaxation to the l0-norm and
achieves a sparse spectral representation of the signal within
feasible time and cost.

In recent years, the power and limitation of this convex
relaxation have been systematically studied in a large body
of compressed sensing literature. In short, to guarantee good
statistical performance in either prediction, estimation, or
model selection, the coherence of the system must be low,
in terms of, e.g., mutual coherence conditions [16], restricted
isometry property (RIP) [17] and irrepresentable conditions
[19] among others. For example, the RIP of order s requires
that for any index set I ⊂ F with |I| = s, there exists an
RIP constant δs ≥ 0 such that (1 − δs)∥v∥22 ≤ ∥XIv∥22 ≤
(1 + δs)∥v∥22, ∀v ∈ Rs; when δs is small, any s predictors
in X are approximately orthogonal. In theory, to guarantee
l1’s effectiveness in statistical accuracy, frequency selection
consistency, and algorithmic stability, such RIP constants have
to be small, e.g., δ3S + 3δ4S < 2 in a noisy setup, where
S = ∥β∥0 [17]. Similarly, the mutual coherence, defined as
the maximum absolute value of the off-diagonal elements in
the scaled Gram matrix XTX/N , has to be as low as O(1/S)
[16]. Such theoretical results clearly indicate that the super-
resolution challenge cannot be fully addressed by the l1-norm
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based methods, because many similar sinusoidal components
may arise in the dictionary and bring in high coherence.

To enhance the sparsity of the BP, Blumensath & Davies
proposed the iterative hard thresholding (IHT) [12], [13].
See [14], [15] for some approximation methods. Intuitively,
nonconvex penalties can better approximate the l0-norm and
yield sparser estimates than the convex l1-penalty. On the other
hand, we find that when the signal-to-noise ratio (SNR) is
low and/or the coherence is high, the l0 penalization may
give an over-sparse spectral estimate and miss certain true
frequency components. The high miss rates are due to the
fact that the l0 regularization is through (hard) thresholding
only, offering no shrinkage at all for nonzero coefficients.
Therefore, it tends to kill too many predictors to achieve the
appropriate extent of shrinkage especially when the SNR is
low. An inappropriate nonconvex penalty may seriously mask
true signal components. This issue will be examined in the
next section.

III. GIST FRAMEWORK

This section examines the super-resolution spectrum es-
timation in details. The complete group iterative spectrum
thresholding (GIST) framework is introduced at the end.

A. A novel regularization form

In this subsection, we study a group penalized least-squares
model and investigate the appropriate type of regularization.

The BP finds a solution to an underdetermined linear system
with the minimum l1 norm. When the signal is corrupted by
noise as in (3), the following l1-penalized linear model is more
commonly used:

1

2
∥y − α−Xβ∥22 + λ∥β∥1, (5)

where λ is a regularization parameter to provide a trade-off
between the fitting error and solution sparsity. The intercept
or zero frequency component α is not subject to any penalty.
To include more sparsity-enforcing penalties, we consider a
more general problem in this paper which minimizes

1

2
∥y − α−Xβ∥22 +

2D∑
k=1

P (|βk|;λ) =: F (β;λ), (6)

where P (·;λ) is a univariate penalty function parameterized
by λ and is possibly nonconvex.

Some structural information can be further incorporated in
spectrum estimation. From the derivation of (3), Ak = 0
implies βk = βD+k = 0, i.e., the sine and cosine predictors
at fk vanish simultaneously. The pairing structure shows it
is more reasonable to impose the so-called group sparsity or
block sparsity [26]–[28] on {(βk, βD+k)}1≤k≤D rather than
the unstructured sparsity on {βk}1≤k≤2D. The group penalized
model with the model design (2) minimizes

1

2
∥y − α−Xβ∥22 +

D∑
k=1

P
(√

β2
k + β2

D+k;λ
)
=: F (β;λ).

(7)

(In the problem with the design matrix given by (4), the last
sine predictor disappears and thus we always set β2D to be 0.)
The penalty function P is the same as before and is allowed
to be nonconvex. For ease in computation, the first term in (6)
and (7) will be replaced by 1

2∥y−α−Xβ∥22/C for some C
large enough; see the comment after Theorem 1.

A crucial problem is then to determine the appropriate
form of P for regularization purposes. The popular l1-penalty
P1(t;λ) = λ|t|may result in insufficient sparsity and relatively
large prediction error, as shown in Section IV. There is
still much room for improvement in super-resolution spectral
estimation. Before we proceed, it is worth pointing out that
there are two objectives involved in this task
Objective 1 (O1): accurate prediction of the signal at any new
time point in the time domain;
Objective 2 (O2): parsimonious spectral representation of the
signal in the Fourier domain.
O1+O2 complies with Occam’s razor principle—the simplest
way to explain the data is the best. A perfect approach must
reflect both concerns to produce a stable sparse model with
good generalizability.

From the perspective of O2, the l0-norm constructs an ideal
penalty

P0(t;λ) =
λ2

2
1t̸=0, (8)

where the indicator function 1t ̸=0 is 1 when t ̸= 0 and 0 other-
wise. Yet it is discrete and strongly nonconvex. Interestingly,
given any model matrix, the class of penalties aPH(t;λ/

√
a)

for any a ≥ 1 mimics the behavior of (8), where PH , referred
to as the hard-penalty, is defined by

PH(t;λ) =

{
−t2/2 + λ|t|, if |t| < λ

λ2/2, if |t| ≥ λ.
(9)

Based on [29], we can show that all penalties, including the
continuous penalty (9) (a = 1) and the discrete penalty (8)
(a = ∞), result in the same global minima in optimization.
Fig. 1 illustrates the penalty family in a neighborhood around
0.
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Fig. 1: The nonconvex ‘hard’ penalty family (a ≥ 1) in a
neighborhood around 0. All penalties lead to the same Θ-
estimators. The discrete l0-penalty P0 corresponds to a =∞.
The one with the smallest curvature is given by PH with a = 1.
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A different type of regularization is desirable for objective
O1. Even if all truly relevant sinusoidal components could
be successfully located, these atoms are not necessarily far
apart in the frequency domain, and thus collinearity may
occur. In statistical signal processing, Tikhonov regularization
is an effective means to deal with the singularity issue which
seriously affects estimation and prediction accuracy. It is in
the form of an l2-norm penalty

PR(t; η) =
1

2
ηt2, (10)

also known as the ridge penalty in statistics. The necessity
and benefit of introducing such shrinkage in multidimensional
estimation date back to the famous James-Stein estimator [30].
Even for the purpose of detection, O1 plays an important role
because most parameter tuning methods are designed to reduce
prediction error.

Taking into account both concerns, we advocate the follow-
ing hybrid hard-ridge (HR) penalty as a fusion of (9) and
(10):

PHR(t;λ, η) =

{
− 1

2 t
2 + λ|t|, if |t| < λ

1+η
1
2ηt

2 + 1
2

λ2

1+η , if |t| ≥ λ
1+η .

(11)

The hard portion induces sparsity for small coefficients, while
the ridge portion, representing Tikhonov regularization, helps
address the coherence of the design and compensates for noise
and collinearity. In the following subsections, we will show
that such defined hard-ridge penalty also allows for ease in
optimization and has better frequency selection performance.

Finally, we point out the difference between HR and the
elastic net [31] which adds an additional ridge penalty in
the lasso problem (5). However, this l1 + l2 penalty, i.e.,
λ1∥β∥1+λ2

2∥β∥22/2, may over-shrink the model (referred to as
the double-shrinkage effect [31]) and can not enforce higher
level of sparsity than the l1-penalty. In contrast, using a q-
function trick [32], it is shown that PHR results in the same
estimator as the ‘l0 + l2’ penalty

P (t;λ, η) =
1

2

λ2

1 + η
1t ̸=0 +

1

2
ηt2. (12)

The ridge part does not affect the nondifferential behavior of
the l0-norm at zero, and there is no double-shrinkage effect
for nonzero coefficient estimates.

B. GIST fitting algorithm

We discuss how to fit the group penalized model (7) for a
wide class of penalty functions. We assume both X and y
have been centered so that the intercept term vanishes in the
model. Our main tool to tackle the computational challenge
is the class of Θ-estimators [33]. Let Θ(·;λ) be an arbitrarily
given threshold function (with λ as the parameter) which is
odd, monotone, and a unbounded shrinkage rule (see [33] for
the rigorous definition) with λ as the parameter. A group Θ-
estimator is defined to be a solution to

β = Θ⃗(β +XT (y −Xβ);λ). (13)

Here, for any ξ ∈ R2D, Θ⃗(ξ;λ) is a 2D-dimensional vector
ξ′ satisfying

[ξ′k, ξ
′
k+D] = [ξk, ξk+D]Θ (∥[ξk, ξk+D]∥2;λ) /∥[ξk, ξk+D]∥2,

for 1 ≤ k ≤ D. In the simpler case when no grouping is
assumed, the Θ-estimator equation (13) reduces to

β = Θ(β +XT (y −Xβ);λ). (14)

A Θ-estimator is necessarily a P -penalized estimator provided
that

P (t;λ)− P (0;λ) =

∫ |t|

0

(sup{s : Θ(s;λ) ≤ u} − u) du+ q(t;λ)

(15)

holds for some nonnegative q(·;λ) satisfying q(Θ(s;λ);λ) =
0 for any s ∈ R [29]. Based on this result, we can compute
P -penalized estimators by solving (13) for an appropriate Θ.

Algorithm 1 GIST-fitting algorithm.

given X (design matrix, normalized), y (centered), λ (regu-
larization parameter(s)), Θ (thresholding rule), ω (relaxation
parameter), and Ω (maximum number of iterations).
1) X ← X/τ0, y ← y/τ0, with τ0 ≥ ∥X∥2 (spectral
norm).
2) Let j ← 0 and β(0) be an initial estimate, say, 0.
while ∥β(j+1) − β(j)∥ is not small enough or j ≤ Ω do

3.1) ξ(j+1) ← (1− ω)ξ(j) + ω(β(j) +XT (y−Xβ(j)))
if j > 0, and ξ(j+1) ← β(j)+XT (y−Xβ(j)) if j = 0;
GROUP FORM:

3.2a) l(j+1)
k ←

√
(ξ

(j+1)
k )2 + (ξ

(j+1)
k+D )2, 1 ≤ k ≤ D.

3.2b) If l
(j+1)
k ̸= 0, β(j+1)

k ← ξ
(j+1)
k Θ(l

(j+1)
k ;λ)/l

(j+1)
k

and β
(j+1)
k+D ← ξ

(j+1)
k+D Θ(l

(j+1)
k ;λ)/l

(j+1)
k . Otherwise

β
(j+1)
k = β

(j+1)
k+D = 0.

NON-GROUP FORM:
3.2’) β(j+1) ← Θ(ξ(j+1);λ);

end while
deliver β̂ = β(j+1).

We establish the convergence of Algorithm 1 in the follow-
ing theorem. For simplicity, assume that there is no intercept
term in the model (which is reasonable when X and y have
both been centered), and τ0 = 1 > ∥X∥2. Let Σ = XTX .
Construct an energy function for any γ, ζ,β, ξ ∈ R2D as
follows

G(γ, ζ,β, ξ) =
1

2
∥Xγ − y∥22 + P (γ;λ) +

ω

2
(γ − β)T (I −Σ)(γ − β)

+
(1− ω)2

2ω
(ζ − ξ)T (I −Σ)−1(ζ − ξ) +

1− ω

2
[γ + (I −Σ)−1XTy

− (I −Σ)−1ξ]T (I −Σ)[γ + (I −Σ)−1XTy − (I −Σ)−1ξ]

+
1− ω

2
[ζ − (I −Σ)β −XTy]T (I −Σ)−1[ζ − (I −Σ)β −XTy]

−
1− ω

2
[ξ − (I −Σ)β −XTy]T (I −Σ)−1[ξ − (I −Σ)β −XTy],

(16)

with the non-group and group versions of P (γ;λ) being∑
k P (|γk|;λ) and

∑D
k=1 P

(√
γ2
k + γ2

D+k;λ
)

, respectively.
G(γ, ζ,β, ξ) is always greater than or equal to the objective
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function F (γ) as defined in (7) or (6). This energy function
can be used to prove the convergence of the iterates to a Θ-
estimator.

Theorem 1: For any 0 < ω ≤ 1 and a thresholding rule Θ
satisfying (15), under the continuity assumption A in Appendix
A, Algorithm 1 in either group form or non-group form
converges, and the iterates (β(j), ξ(j)) satisfy

G(β(j+1), ξ(j+1),β(j+1), ξ(j+1);λ)

≤ G(β(j), ξ(j),β(j), ξ(j);λ)− δ1 − δ2, (17)

where δ1 = 1−ω
2ω (ξ(j+1) − ξ(j))T (I − Σ)−1(ξ(j+1) − ξ(j))

and δ2 = 1
2ω [ω(I − Σ)(β(j) − β(j+1)) + (1 − ω)(ξ(j) −

ξ(j+1))]T (I−Σ)−1[ω(I−Σ)(β(j)−β(j+1))+(1−ω)(ξ(j)−
ξ(j+1))]. Furthermore, any limit point β◦ of {β(j)} is a group
(or non-group) Θ-estimator that satisfies (13) (or (14)), and
the sequence G(β(j), ξ(j),β(j), ξ(j);λ) decreases to the limit
F (β◦;λ) with F defined in (7) (or (6)).

Applying the theorem to Algorithm 1, we know the
nongroup form solves the optimization problem 1

2∥y −
Xβ∥22/τ20 +

∑2D
k=1 P (|βk|;λ), and the group form solves

1
2∥y −Xβ∥22/τ20 +

∑D
k=1 P (

√
β2
k + β2

D+k;λ) for any arbi-
trarily given X , y. Algorithm 1 is justified for computing a
penalized spectrum estimate associated with P , provided that
a proper Θ can be found to satisfy (15).

The P -Θ strategy covers most commonly used penalties,
either in group form or non-group form. We give some
examples below. (i) When Θ is the soft-thresholding, the P -
function according to (15) is the l1-norm penalty used in BP,
and the non-group version of our algorithm reduces to the
iterative soft thresholding [34]. The group l1 penalty (called
the group lasso [26]) is more suitable for frequency selection,
and can be handled by Algorithm 1 as well. (ii) When Θ is the
hard-thresholding, for q(·;λ) ≡ 0 we get the hard-penalty (9),
and for q(t;λ) = (λ−|t|)2

2 10<|t|<λ we get the l0-penalty (8).
The algorithm, in non-group form, corresponds to the iterative
hard thresholding [12], [13]. (iii) Finally, if we define Θ to be
the hard-ridge thresholding:

ΘHR(t;λ, η) =

{
0, if |t| < λ
t

1+η , if |t| ≥ λ.
(18)

then PΘHR
is the hard-ridge penalty (11). Setting q(t;λ, η) =

1+η
2 (|t|−λ)210<|t|<λ, we successfully reach the l0+l2 penalty

(12). See [29] for more examples, such as SCAD, lp (0 < p <
1), and elastic net.

Algorithm 1 includes a relaxation parameter ω, which is an
effective means to accelerate the convergence. See the recent
work by Maleki & Donoho [35]. (Our relaxation form is novel
and is of Type I based on [36]). In practice, we set ω = 2,
and the number of iterations can be reduced by about 40% in
comparison to nonrelaxation form.

C. Statistical analysis

Although the l1 regularization is popular (see, e.g., BP
[6]), in the following we show that the HR penalty has
better selection power and can remove the stringent coherence

assumption and can accommodate lower SNRs. We focus on
the group form based on the discussion in Section III.

Let F be the entire frequency set covered by the dictionary.
For the design matrix defined in (2), F = {f1, · · · , fD}. Given
any frequency f ∈ F , we use Xf to denote the submatrix of
X formed by the sine and cosine frequency atoms at f , and
βf the corresponding coefficient vector. If I ⊂ F is an index
set, XI and βI are defined similarly. In general, Xf is of
size N × 2 and βf 2× 1 (but not always–cf. (4)). Given any
coefficient vector β, we introduce

z(β) = {f ∈ F : ∥βf∥2 = 0}, nz(β) = {f ∈ F : ∥βf∥2 ̸= 0}
(19)

to characterize the frequency selection outcome. In particular,
we write z∗ = z(β∗), nz∗ = nz(β∗), associated with the true
coefficient vector β∗, and let pnz∗ = |nz∗| be the number
of frequencies present in the true signal, and pz∗ = |z∗| the
number of irrelevant frequencies.

We introduce two useful quantities κ and µ. Recall Σ =
XTX and τ20 = ∥Σ∥2 = µmax(Σ) (the largest eigenvalue of
Σ). Given I ⊂ F , let ΣI,I′ = XT

I XI′ and ΣI = XT
I XI . In

this subsection, we assume the design matrix has been column-
normalized such that the 2-norm of every column is

√
N . Let

Σ(s) = Σ/N . Define

µ := µmin(Σ
(s)
nz∗,nz∗), and κ := max

f∈z∗
∥Σ(s)

f,nz∗∥2/
√
pnz∗ ,

where µmin denotes the smallest eigenvalue and ∥ · ∥2 refers
to the spectral norm. (Σ(s)

f,nz∗ is of size 2 × 2pnz∗ typically.)
Intuitively, κ measures the ‘mean’ correlation between the
relevant frequency atoms and the irrelevant atoms. When κ
is high, the coherence of the dictionary is necessarily high.
Denote by P1 the probability that with soft-thresholding being
applied, there exists at least one estimate β̂ from Algorithm 1
such that nz(β̂) = nz∗. P02 is similarly defined for hard-ridge
thresholding. Theorem 2 bounds these two probabilities.

Theorem 2: Assume µ > 0.
(i) Let Θ be the soft-thresholding. Under the assumption that
κ < µ/pnz and λ is chosen such that minf∈nz∗ ∥β∗

f∥2 ≥
λ
√
pnz∗

Nµ/τ2
0

, we have

1− P1 ≤
e

4

(
pz∗M2

eM2/4
+

pnz∗L2

eL2/4

)
, (20)

where M :=
λτ2

0

σ
√
N
(1− κpnz∗

µ ) and L := (minf∈nz∗ ∥β∗
f∥2 −

λτ2
0

√
pnz∗

Nµ )
√
Nµ
σ .

(ii) Let Θ be the hard-ridge thresholding. Assume λ, η are cho-
sen such that κ ≤ 1

η
λ(µN+ητ2

0 )
∥β∗

nz∗∥2
√
pnz∗

, ι := minf∈nz∗ ∥[(Σnz∗ +

ηI)−1Σnz∗β∗
nz∗ ]f∥2 ≥ λ

1+η , and η ≤ µN/τ20 . Then

1− P02 ≤
e

4

(
pz∗M ′2

eM ′2/4
+

pnz∗L′2

eL′2/4

)
, (21)

where M ′ := 1
σ
√
N
(λτ20 −

ητ2
0

µN+ητ2
0
κ
√
pnz∗∥β∗

nz∗∥2) and

L′ := (ι− λ
1+η )

√
µN+ητ2

0 /
√
µN

σ .
Seen from (20) and (21), both inconsistent detection prob-

abilities are small. It is worth mentioning that in practice, we
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found the value of η is usually small, which, however, effec-
tively handles singularity/collinearity in comparison to η = 0,
as supported by the literature (e.g., [37]). In the following,
we make a comparison of the assumptions and probability
bounds. The setup of pz∗ ≫ N ≫ pnz∗ is of particular
interest, which means the number of truly present frequencies
is small relative to the sample size but the number of irrel-
evant frequencies is overwhelmingly large. The κ-conditions
characterize coherence accommodation, while the conditions
on minf∈nz∗ ∥β∗

f∥2 and ι describe how small the minimum
signal strength can be. (i) For the l1 penalty, κ < µ/pnz∗ is a
version of the irrepresentable conditions and cannot be relaxed
in general [19]. In contrast, for the l0 + l2, the bound for κ
becomes large when η is small, and so the stringent coherence
requirement can be essentially removed! (ii) When η is small
in the hard-ridge thresholding, the noiseless ridge estimator
(Σnz∗ + ηI)−1Σnz∗β∗

nz∗ is close to β∗
nz∗ , but the minimum

signal strength can be much lower than that of the l1, due to the
fact that Nµ/τ20 = µmin(Σ

(s)
nz∗,nz∗)/µmax(Σ

(s)) ≤ 1 ≤ 1 + η
and in particular, the disappearance of

√
pnz∗ . (iii) Finally, for

small values of η, M ′ > M , L′ > L, and so l0 + l2 has a
better chance to recover the whole spectra correctly.

Remark. Including the ridge penalty in regularization is
helpful to enhance estimation and prediction accuracy, espe-
cially when the frequency resolution is quite high and the
true signal is multi-dimensional. Even when the purpose is
selection alone, it is meaningful because most tuning strategies
of λ are prediction error (generalization error) based.

D. Model comparison criterion

This part studies the problem of how to choose proper
regularization parameters for any given data (X,y). In (7), the
general parameter λ provides a statistical bias-variance trade-
off in regularizing the model, and ought to be tuned in a data-
driven manner. In common with most researchers (say [11],
[38], [39]), we first specify a grid Λ = {λ1, · · · , λl, · · · , λL},
then run Algorithm 1 for every λ in the grid to get a solution
path β̂(λl), 1 ≤ l ≤ L, and finally, use a model comparison
criterion to find the optimal estimate β̂opt. The commonly
used model comparison criteria are Akaike information crite-
rion (AIC), Bayesian information criterion (BIC), and cross-
validation (CV). But we found none of them is satisfactory in
the high-dimensional super-resolution spectral estimation.

Ideally, in a data-rich situation, one would divide the whole
dataset into a training subset denoted by (Xtrn,ytrn) and a
validation subset (Xval,yval). For any λ ∈ Λ, train the model
on (Xtrn,ytrn) and evaluate the prediction accuracy on the
validation subset by, say, ∥yval−Xvalβ̂(λ)∥22. However, this
data-splitting approach is only reasonable when the validation
subset is large enough to approximate the true prediction
error. It cannot be used in our problem due to insufficiency
of observations. A popular data-reusing method in small
samples is the K -fold CV. Divide the dataset into K folds.
Let (X(k ),y(k )) denote the k th subset, and (X(−k ),y(−k ))
denote the remaining data. To obtain the CV error at any
λl ∈ Λ, one needs to fit K penalized models. Concretely,
setting X = X(−k ) and y = y(−k ) as the training data, solve

the penalized problem associated with λl, the estimate repre-
sented by β̂

(−k )
(λl). Then calculate the validation error on

(X(k ),y(k )): cv-err(λl, k ) = ∥y(k ) −X(k )β̂
(−k )

(λl)∥22. The
summarized CV error, cv-err(λl) =

∑K
k =1 cv-err(λl, k )/N ,

serves as the comparison criterion. After the optimal λopt is
determined, we refit the model on the global dataset to get
β̂opt.

However, when a nonconvex penalty is applied, the above
plain CV has an inherent drawback: the K trained models
at a common value of λl may not be comparable, and thus
averaging their validation errors may make little sense. The
reasons are twofold. (i) The regularization parameter λ appears
in a Lagrangian form optimization problem (cf. (6) or (7)).
In general, the optimal λ to guarantee good selection and
estimation must be a function of both the true coefficient
vector β∗ and the data (X,y). Notice that in the trainings of
K -fold CV, (X,y) changes. The same value of λ may have
different regularization effects for different training datasets
although β∗ remains the same. Fig. 2 shows the numbers of
nonzero coefficient estimates under the l0 penalization in 5-
fold CV—they are never consistent at any fixed value of λ! (ii)
The solution path β̂(λ) associated with a nonconvex penalty
is generally discontinuous in λ. Fig. 3 plots the l0 solution
path for the default TwinSine signal. Even a small change in
λ may result in a totally different estimate and zero-nonzero
pattern. In consideration of both (i) and (ii), cross-validating
λ is not a proper tuning strategy in our problem.
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Fig. 2: The numbers of nonzero coefficients in 5-fold CV
with respect to λ. The 5 CV trainings yield (sometimes quite)
different models at the same value of λ.

To resolve the training inconsistency, we advocate a generic
selective cross validation (SCV) for parameter tuning in
sparsity-inducing penalties. First the sparsity algorithm is run
on the entire dataset to get a solution path β̂(λl), l = 1, · · · , L.
Every estimate β̂(λl) determines a candidate model with the
predictor set given by nzl = nz(β̂(λl)) = {fk ∈ F :
β̂2
k + β̂2

k+D ̸= 0}. Next, we cross-validate nzl (instead of
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Fig. 3: The l0-penalized solution path β̂(λ) is discontinuous
in λ. For clarity, only 5 frequency paths (chosen at random)
are shown.

λ) to evaluate the goodness-of-fit of each candidate model.
In this way, all K trainings are restricted to the same subset
of predictors. Concretely, for penalties without l2 shrinkage,
such as the l0-penalty, β̂

(−k )
(λl) is the unpenalized regression

estimate fitted on (y(−k ),X(−k )
nzl

), while for penalties with l2

shrinkage, such as the l0 + l2-penalty, β̂
(−k )

(λl) is the ridge
regression estimate fitted on (y(−k ),X(−k )

nzl
) (cf. Theorem 1),

i.e., β̂
(−k )

(λl) = ((X(−k )
nzl

)TX(−k )
nzl

+ ηI)T (X(−k )
nzl

)Ty(−k ).
Finally, the total SCV error is summarized by SCV(λl) =∑K

k =1 ∥y(k ) −X(k )β̂
(−k )

(λl)∥22.
Motivated by the work of [38], we add a high-dimensional

BIC correction term to define the model comparison criterion:
SCV-BIC(λl) = SCV(λl) + DF(β̂(λl)) logN , where DF is
the degrees of freedom function. When the true signal has a
parsimonious representation in the frequency domain, i.e., the
number of present frequencies is very small, such a correction
is necessary—see [38] for a further theoretical justification.
For the l0 or l1 penalty, DF is approximately the number of
nonzero components in the estimate; for the l0 + l2 penalty,
DF(β̂(λl)) is given by Tr((XT

nzl
Xnzl + ηI)−1XT

nzl
Xnzl)

[37]. The optimal estimate β̂opt is chosen from the original
solution path {β̂(λl)}Ll=1 by minimizing SCV-BIC(λl).

We point out that in SCV, the sparsity algorithm is only
required to run on the whole dataset to generate one solution
path, while CV needs K such solution paths. SCV is more
efficient in computation.

E. Probabilistic spectra screening

Computational complexity is another major challenge in
super-resolution studies. In Algorithm 1, each iteration step
involves only matrix-vector multiplications and component-
wise thresholding operations. Both have low complexity and
can be vectorized. The total number of flops is no more than

(4DN + 8D)Ω, which is linear in D. In our experiments,
Ω = 200 suffices and thus the complexity of Algorithm 1 is
O(DN). (Restricting attention to uniformly sampled data and
frequency atoms in the dictionary construction, we can use
the Fast Fourier transform (FFT) in computation to reduce the
complexity to O(D logD), as pointed out by an anonymous
reviewer, see [40] and Section IV.) On the other hand, with
a superbly high resolution dictionary (where D is very large),
dimension reduction is still desirable to further reduce the
computational cost.

This is indeed possible under the spectral sparsity assump-
tion, where the number of true components is supposed to
be much smaller than N . One may reduce the dimension
from 2D to ϑN (say ϑ = 0.5) before running the formal
algorithm. If the ϑN candidate predictors are wisely chosen,
the truly relevant atoms will be included with high probability
and the performance sacrifice in selection/estimation will be
mild. Hereinafter, we call ϑ the candidate ratio. A well
designed screening algorithm should not be very sensitive
to ϑ as long as it is reasonably large. Significant decrease
in computational time can be achieved after this supervised
dimension reduction.

We propose an iterative probabilistic screening by adapting
Algorithm 1 for dimension reduction. This has the benefit that
the screening principle is consistent with the fitting criterion.
We recommend using the hard-ridge thresholding and the
associated Algorithm 2 is stated below.

The differences in comparison to Algorithm 1 lie in (3.2b)
and (3.2’), where a dynamic threshold is constructed in per-
forming the hard-ridge thresholding. We next show that this
screening version still has convergence guarantee. Similar to
Theorem 1, assume τ0 = 1 > ∥X∥2. Let G be the same
energy function constructed in (16) with P given by (11) or
(12). For simplicity, suppose m := ϑN ∈ N. Theorem 3 shows
that Algorithm 2 solves an l0-constrained problem.

Theorem 3: For any 0 < ω ≤ 1, the sequence of iterates
(β(j), ξ(j)) from Algorithm 2 has the same function value
decreasing property (17) for the energy function G, and β(j)

satisfies nz(β(j)) ≤ m. In addition, under η > 0 and the no-
tie-occurring assumption B in Appendix C, the sequence of
β(j) has a unique limit point β◦ which corresponds to the
ridge estimate restricted to Xnz(β◦) with |nz(β◦)| ≤ m.

We can use SCV to tune η or simply set η at a small
value (say 1e-2). In practice, the screening can proceed in a
progressive fashion to avoid greedy selection: we use a varying
sequence of m(j) that decreases to ϑN in Step 3.1), and add
‘squeezing’ operations after Step 3.2) or 3.2’): d ← {f ∈
F : ∥β(j+1)

f ∥2 ̸= 0},β(j+1) ← β(j+1)[d],X ← X[,d]

(group version), or d ← {k : 1 ≤ k ≤ 2D,β
(j+1)
k ̸=

0},β(j+1) ← β(j+1)[d],X ← X[,d] (non-group version).
We have found that empirically, the sigmoidal decay cooling
schedule m(j) = ⌈2D/(1+exp(αj))⌉ with α = 0.01 achieves
good balance between selection and efficiency.

GIST-Screening works decently in super-resolution spectral
analysis seen from the experiments: after dimension reduction
the true signal components are included with high probability
and the computational cost can be significantly reduced.
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Algorithm 2 GIST-Screening algorithm.

given X (design matrix, normalized), y (centered), η (l2
shrinkage parameter), ϑ (candidate ratio–ratio of new di-
mension to sample size), ω (relaxation parameter), and Ω̃
(maximum number of iterations). (For simplicity, assume
ϑN is an integer.)
1) X ← X/τ0, y ← y/τ0, with τ0 ≥ ∥X∥2 (spectral
norm).
2) Let j ← 0 and β(0) be an initial estimate say 0.
while ∥β(j+1) − β(j)∥ is not small enough or j ≤ Ω̃ do

3.1) ξ(j+1) ← (1− ω)ξ(j) + ω(β(j) +XT (y−Xβ(j)))
if j > 0 and ξ(j+1) ← β(j) +XT (y−Xβ(j)) if j = 0,
and set m(j) = ϑN ;
GROUP FORM:

3.2a) l(j+1)
k ←

√
(ξ

(j+1)
k )2 + (ξ

(j+1)
k+D )2, 1 ≤ k ≤ D

3.2b) Let λ be the median of the m(j)th largest and
(m(j) + 1)th largest elements in {l(j+1)

k }. For each
k : 1 ≤ k ≤ D, if l

(j+1)
k ̸= 0, set [β

(j+1)
k ,β

(j+1)
k+D ] ←

[ξ
(j+1)
k , ξ

(j+1)
k+D ]ΘHR(l

(j+1)
k ;λ, η)/l

(j+1)
k ; set β

(j+1)
k =

β
(j+1)
k+D = 0 otherwise.

NON-GROUP FORM:
3.2’) β(j+1) ← ΘHR(ξ

(j+1);λ, η), where λ is the median
of the m(j)th largest component and the (m(j) + 1)th
largest component of |β(j+1)|;

end while
deliver Remaining dimensions after screening: {f ∈ F :

∥β(j+1)
f ∥2 ̸= 0} (group version) or {k : 1 ≤ k ≤

2D,β
(j+1)
k ̸= 0} (non-group version).

An interesting observation is that with β(0) = 0, the first
iteration step of Algorithm 2 ranks the frequencies based on
XTy. In other words, the correlation between the signal y
and each dictionary atom is examined separately, to determine
the candidate dimensions, see [41]. Of course, this type of
single frequency analysis is merely marginal and does not
amount to joint modeling, the resulting crude ranking not
suitable for super resolution problems due to the existence
of many correlated frequency predictors. Algorithm 2 iterates
and avoids such greediness.

GIST screening is pretty flexible and useful, even if sparsity
is not desired. It can be applied at any given value of ϑ
(possibly greater than 1) and yields a meaningful result for
super-resolution spectral problems.

F. GIST framework

We introduce the complete GIST framework to solve the
spectral estimation problem. Fig. 4 shows the flowchart out-
line.

1) Dictionary Construction and Normalization: We con-
struct an overcomplete dictionary through (2) with suf-
ficiently high resolution. Then standardize the data,
by (a) centering y and (b) normalizing each predictor
column in X to have mean 0 and variance 1. After the
standardization, all predictors are equally extended in
the predictor space.

2) GIST Spectrum Screening: This step can greatly reduce
the computational complexity. We perform the iterative
probabilistic screening to remove a number of nuisance
frequency components and keep ϑN candidate predic-
tors with ϑ < 1 (say ϑ = 0.5) to achieve supervised
dimension reduction. See Section III-E for details.

3) Model Fitting: For each given value of the regularization
parameter in a predefined grid, run the iterative group-
thresholding algorithm developed in Section III-B to
obtain a local optimum to (7). All such solutions are
collected to form a solution path parameterized by the
regularization parameters.

4) Model Selection: An optimal solution β̂opt is selected
from the solution path based on a data-resampling
version of high-dimensional BIC (Section III-D).

5) Spectrum Recovery: The signal can be reconstructed
from the coefficient estimate. The amplitudes are esti-

mated by A(fk) =

√
β̂
2

opt,k + β̂
2

opt,D+k, 1 ≤ k ≤ D.

Fig. 4: The flowchart of the GIST framework for solving the spectral
estimation problem.

IV. EXPERIMENTS

We conduct simulation experiments to show the perfor-
mance of GIST fitting Algorithm 1 in sparse spectral esti-
mation, and the power of GIST screening Algorithm 2 in
fast computation (with little performance loss in frequency
detection).

A. Simulation setup

Consider a discrete real-valued signal given by

y(tn) =
∑

fk∈nz∗

Ak cos(2πfktn + ϕk) + e(tn), (22)

where e(tn) is white Gaussian noise with variance σ2. N =
100 training samples are observed at time tn = n, 1 ≤ n ≤ N .
The spectrum frequency dictionary is constructed by setting
the maximum frequency fmax = 0.5 Hz, resolution level δ =
0.02Hz, and the number of frequency bins D = fmax/δ =
250 (and thus 500 atoms). Using the notation in Section
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III-C (cf. (19)), we set nz∗ = {0.248, 0.25, 0.252, 0.398, 0.4},
the associated amplitudes Ak and phases ϕk given by
[2, 4, 3, 3.5, 3] and [π/4, π/6, π/3, π/5, π/2], respectively. We
vary the noise level by σ2 = 1, 4, 8 to study the algorithmic
performance with respect to SNR.

Due to random fluctuation, reporting frequency identifica-
tion for one particular simulation dataset is meaningless. In-
stead, we simulated each model 50 times to enhance stability,
where at each run e(tn) are i.i.d. following N (0, σ2).

Our simulations were performed in MATLAB R2010b and
Win7 Professional 32-bit OS, on a desktop with an Intel(R)
Core(TM)2 Quad 2.66 GHz processor and 4GB memory.

B. Experimental Results

1) Comparison with some existing methods: To compare
with the advocated group hard-ridge GIST (or GIST for
short), we implemented BP [6], IAA-APES (or IAA for short)
[42], SPICE [43], LZA-F [14], CG-SLIM (or SLIM for short)
[40]. To make a fair and realistic comparison, we used a
common stopping criterion: the number of iterations reaches
200 or the change in β is less than 1e-4. In GIST, we set
ϑ = 0.25 to give the cardinality bound in screening, and used
SCV-BIC for parameter tuning. The algorithmic parameters
in the other methods took default values suggested in the
literature. (For example, the q parameter in SLIM is chosen
to be 1, as recommended and used in the numerical examples
of [40].) Figs. 5 and 6 show the frequency identification rates
in 50 simulation runs for each of the methods under σ2 = 1
and σ2 = 8, respectively. That is, given each algorithm, we
plotted the percentage of identifying fk or β̂fk

̸= 0 in all runs,
for every fk in the dictionary. The blue solid lines show such
identification rates, while the red dotted lines (with star marks
at 100%) label the true frequencies. The plot for σ2 = 4 is
similar to Fig. 6; we do not show it here due to the page limit.
We also included the running time (averaged over 50 runs) in
Table I to reflect the computational cost.

TABLE I: Average runtime in seconds of different algorithms,
with varying values of σ2 at 1, 4, and 8.

σ2 = 1 σ2 = 4 σ2 = 8

BP 0.80 0.72 0.71

LZA-F 1.64 1.88 1.97

IAA 1.18 1.09 1.13

SLIM 3.77 3.71 3.70

SLIM with FFT 0.10 0.10 0.10

SPICE 4.31 4.23 4.22

GIST 1.40 1.40 1.39

IAA, SPICE, LZA-F, and SLIM are not capable of produc-
ing inherently sparse estimates. One must make a somewhat
ad-hoc choice of the cutoff value τ to discern the present
frequencies. We set τ = 1e − 2 in performing such post-
truncation. It behaved better than τ = 1e − 3 or τ = 1e − 4
in experimentation (which gave similar yet worse detection
performance).

BP, though super fast, missed the frequency components at
0.25 and 0.4 all the time. An improvement is offered by the
CG-SLIM which makes use of the group l1 regularization. In
[40], CG-SLIM is recommended to run for only 20 iteration
steps (whereas the simulated signals there had very mild noise
contamination, with σ2 = 0.001). Here, we increased the
maximum number of iterations to 200 for better identification,
without sacrificing much efficiency. Otherwise CG-SLIM gave
much poorer spectrum recovery in experiments.

SLIM is free of parameter tuning, because from a Bayesian
perspective SLIM estimates the noise variance σ2 in addi-
tion to the coefficient vector β. Unfortunately, we found
all the variance estimates from SLIM were severely biased
downward—for example, for σ2 = 8, the mean σ̂2 in 50 runs
is about 3e−5. This is perhaps the reason why SLIM failed in
super-resolution recovery: with such a small σ2 estimate, the
threshold level tends to be very low, and thus SLIM always
overselects. Seen from the figures, SLIM results in many
spurious frequencies, some arising in more than 60 percent
of the datasets. IAA is even worse and does not seem to have
the ability to super-resolve.

It is observed that LZA-F may seriously mask the true
components. In addition, with moderate/large noise contam-
ination, we found that LZA-F may be unstable and produce
huge errors. Because the design of LZA-F is to approximate
the l0 regularization, we substituted the hard-thresholding for
Θ in GIST, which solves the exact l0-penalized problem.
However, the high miss rates of the l0-type regularization
are still commonly seen, and the resulting models are often
over-sparse. To give an explanation of this under-selection,
notice that the l0 regularization either kills or keeps, thereby
offering no shrinkage at all for nonzero coefficients. To attain
the appropriate extent of shrinkage especially when the noise is
not too small, it has to kill more predictors than necessary. As
a conclusion, inappropriate nonconvex penalties may seriously
mask true signal components.

In our experiments, SPICE performs well. GIST is much
better and shows more concentrated signal power at the true
frequencies. It produces very few spurious frequencies, and in
terms of computation, it is much more efficient than SPICE
(Table I). GIST adapts to SNR and is both stable and scalable.

Finally, a recent proposal of using the FFT for matrix-vector
multiplication [40] was shown to be very effective: for SLIM,
the average running time dropped from about 3.7 seconds to
0.1 seconds. The computational trick can be applied to all of
the methods discussed here. However, it restricts to uniformly
sampled data with Fourier dictionaries. We did not use the
FFT implementation for the other methods. (GIST algorithms
and analyses are general and do not have such restrictions, see
Section III and Section V.)

2) Probabilistic spectral screening: We examine the perfor-
mance of the GIST-screening Algorithm 2 in this experiment.
The candidate ratio ϑ determines the dimensions (ϑN ) of
the reduced predictor space. Therefore, the lower the value
of ϑ, the more efficient the computation, but also the higher
the risk of mistakenly removing some true components. Our
screening technique turns out to be pretty successful: even if
we choose ϑN to be as small as 25 (which can be even lower),
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it never misses any true frequency component. Fig. 7 shows
the frequency location of 100, 50, and 25 remaining atoms,
respectively, in GIST screening. The selected frequencies are
non-uniform, and the density near the true spectra is much
higher.

Next, we make a much more challenging problem by
modifying the signal to have 10 present frequency components
at 0.24, 0.242, . . . , 0.282 and large noise variance σ2 = 10.
Fig. 8 shows both the detection miss rates and the computation
time, averaged over 50 runs. The miss rate is the mean of
|{i : β∗

i ̸= 0, β̂i = 0}|/|{i : β∗
i ̸= 0}| in all simulations,

where | · | is the cardinality of a set. The plotted time is the
total running time of both GIST screening and model fitting
and selection. The empirical experience is that GIST-screening
is safe when ϑN is roughly 3 times greater than the number
of truly relevant atoms. It reduces the computation complexity
significantly with little performance lost.

3) Misspecified resolution level: In super-resolution spec-
tral selection, the frequency resolution level δ used in dictio-
nary construction is customized by users. This requires the
knowledge of a lower bound on frequency spacing. We are
particularly interested in the performance of GIST when δ is
misspecified in reference to the truth.

In this experiment, we set the signal frequencies at 0.2476,
0.2503, 0.2528, 0.3976, 0.4008, with amplitudes Ak and
phases ϕk unchanged. Clearly, the ideal frequency resolution
to resolve this signal should be no more than 0.0001 Hz.

We chose δ = 0.002, 20 times as large as the required
resolution. The results are nearly identical to Figs. (5f), (6f)
(not shown due to space limitation). The crude resolution spec-
ification makes GIST unable to recover the true frequencies.
On the other hand, the most frequently identified frequencies
are 0.248, 0.25, 0.252, 0.398, 0.4, and a comparison shows
that this is the best approximation in the given frequency
grid. (For example, 0.398Hz is the closest frequency in the
grid {0, 0.02, · · · , 0.396, 0.398, · · · , 0.5} to 0.3976Hz.) This
phenomenon is also seen in many other experiments: GIST
gives the best possible identification to approximate the true
frequencies, with the quantization error determined by the
resolution level.

V. CONCLUSIONS

We have presented a sparsity-based GIST framework to
tackle the super-resolution challenge in spectral estimation.
It is able to handle nonconvex penalties and take the pairing
structure of sine and cosine atoms into account in regularizing
the model. The l0 + l2 type hard-ridge penalty was shown to
be able to dramatically improve the popular convex l1 penalty
as well as the nonconvex l0 penalty. Its variant, the iterative
probabilistic spectrum screening, can be used for supervised
dimension reduction and fast computation. In parameter tun-
ing, the SCV criterion overcomes the training inconsistency
issue of the plain CV and is much more computationally
efficient. GIST can be applied to unevenly sampled signals
(in which case the sampling time sequence {tn}1≤n≤N is
not uniform) with guaranteed convergence (cf. Theorem 1 and
Theorem 3).

It is worth mentioning that in our algorithm design and
theoretical analyses, the only use of the Fourier frequency
dictionary was to extract the atom grouping manner. Our
methodology carries over to any type of dictionary as arising
in signal processing, wavelets, and statistics. For example,
although we focused on real-valued signals in the paper, for
complex-valued signals, say, y = [y(tn)] ∈ CN×1 observed
at tn (1 ≤ n ≤ N ) and the candidate frequency grid given
by fk (1 ≤ k ≤ D), a complex dictionary X can be
constructed as [exp(i2πfktn)] ∈ CN×D in place of (2), with
β = [β1, · · · , βD]T ∈ CD. The group penalized model then
minimizes 1

2∥y − α − Xβ∥22 +
∑D

k=1 P (∥βk∥2;λ) where
∥βk∥2 =

√
Re(βk)2 + Im(βk)2, simply the complex norm

of βk. It is straightforward to extend all our algorithms
and analyses to this problem. On the other hand, for real-
valued signals, the formulation using the sine-cosine predictor
matrix in (2) does not involve any imaginary/complex number
processing in implementation.

Some future research topics include the extension of GIST
to non-Gaussian and/or multivariate signals.

APPENDIX A
PROOF OF THEOREM 1

We show the result for the group form only. The proof
for the non-group form is similar and simpler. The following
continuity assumption is made throughout the proof:

Assumption A: Θ⃗ is continuous at any point in the closure
of {ξ(j)}.
For continuous thresholding rules such as soft-thresholding,
this regularity condition always holds. Practically used thresh-
olding rules (such as hard-thresholding) have few discontinu-
ity points and such discontinuities rarely occur in any real
application. For ω = 1, see [29] for the proof details. In the
following, we assume 0 < ω < 1.

Note that G is quadratic and convex in β, ξ, and ζ, but
possibly nonconvex and nonsmooth in γ.

Lemma A.1: Given an arbitrary thresholding rule Θ, let P
be any function satisfying

P (θ;λ)− P (0;λ) = PΘ(θ;λ) + q(θ;λ)

where PΘ(θ;λ) ,
∫ |θ|
0

(sup{s : Θ(s;λ) ≤ u} − u) du,
q(θ;λ) is nonnegative and q(Θ(t;λ)) = 0 for all t. Then,
the minimization problem

min
β

1

2
∥y − β∥22 + P (∥β∥2;λ)

has a unique optimal solution given by β̂ = Θ⃗(y;λ) for every
y provided that Θ(·;λ) is continuous at ∥y∥2.

See [29] for its proof.
Given β and ξ, the problem of minimizing G over (γ, ζ)

can be simplified to (detail omitted)

min
γ

1

2
∥γ − ω(I −Σ)β − ωXTy − (1− ω)ξ∥22 + P (γ;λ),

and

min
ζ

1

2

1− ω

ω
[ζ − ω(I −Σ)β − ωXTy − (1− ω)ξ]T

(I −Σ)−1[ζ − ω(I −Σ)β − ωXTy − (1− ω)ξ].
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Based on Lemma A.1, the optimal solutions are{
γopt = Θ⃗(ω(I −Σ)β + ωXTy + (1− ω)ξ;λ)

ζopt = ω(I −Σ)β + ωXTy + (1− ω)ξ.

Therefore, we obtain

G(β(j+1), ξ(j+1),β(j), ξ(j);λ) ≤ G(β(j), ξ(j),β(j), ξ(j);λ)

− 1− ω

2ω
(ξ(j+1) − ξ(j))T (I −Σ)−1(ξ(j+1) − ξ(j)). (23)

On the other hand, given γ and ζ, G can be expressed as
a quadratic form in β that is positive definite. The same fact
holds for ξ. It can be computed that{
∇Gβ = ω(I −Σ)(β − γ) + (1− ω)(ξ − ζ)

∇Gξ = 1−ω
ω (I −Σ)−1[ω(I −Σ)(β − γ) + (1− ω)(ξ − ζ)],

from which it follows that G can be written as
1
2 [ω(I − Σ)(β − γ) + (1 − ω)(ξ − ζ)]Tω−1(I −
Σ)−1[ω(I − Σ)(β − γ) + (1 − ω)(ξ − ζ)] in addition
to the terms involving only γ and ζ. Hence βopt = β and
ξopt = ζ (though not unique) achieve the minimum.
We obtain G(β(j+1), ξ(j+1),β(j+1), ξ(j+1);λ) ≤
G(β(j+1), ξ(j+1),β(j), ξ(j);λ) − 1

2ω [ω(I − Σ)(β(j) −
β(j+1)) + (1 − ω)(ξ(j) − ξ(j+1))]T (I − Σ)−1[ω(I −
Σ)(β(j) −β(j+1)) + (1− ω)(ξ(j) − ξ(j+1))]. Combining this
with (23) yields (17).

Assume a subsequence β(jl) → β◦ as l→∞. Because

G(β(jl), ξ(jl),β(jl), ξ(jl))−G(β(jl+1), ξ(jl+1),β(jl+1), ξ(jl+1))

−→ 0,

we have ξ(jl) − ξ(jl+1) → 0 and thus (β(jl) − β(jl+1))→ 0.
That is, (1−ω)ξ(jl)+ω(β(jl)+XT (y−Xβ(jl)))−ξ(jl) → 0
and Θ⃗(ξ(jl);λ)−β(jl) → 0. From XT (y−Xβ(jl))−ξ(jl) →
0 and the continuity assumption, β◦ is a group Θ-estimate
satisfying (13), and limj→∞ G(β(jl), ξ(jl),β(jl), ξ(jl)) =
F (β◦).

APPENDIX B
PROOF OF THEOREM 2

Recall that F denotes the frequency set covered by the
dictionary X and we assume all column norms of X are

√
N

(or the diagonal entries of Σ = XTX are equal to N ).
Applying Theorem 1, we can characterize any group l1

estimate β̂ from Algorithm 1 by

β̂ = Θ⃗(β̂ +XTy/τ20 −Σβ̂/τ20 ;λ) (24)

with Θ being the soft-thresholding function. Let s = s(β)
denote a function of β satisfying

∥sf∥2 ≤ 1, ∀f ∈ z(β), sf = βf/∥βf∥2, ∀f ∈ nz(β), (25)

and s(βf ) := [s(β)]f . We have ∥s(βf )∥2 ≤ 1, ∀f ∈ F . (In
the group l1 case, s is a subgradient of

∑
f∈F ∥βf∥2.) Then

(24) reduces to β̂ + λs(β̂, λ) = β̂ +XTy/τ20 −Σβ̂/τ20 or

Σβ̂ = XTy − λτ20 s(β̂), (26)

for some s satisfying (25).

Lemma B.1: Assume Σnz∗ is nonsingular. Then (26) is
equivalent to{
Sz∗ β̂z∗ = X

′T
z∗e+ λτ20Σz∗,nz∗Σ−1

nz∗s(β̂nz∗)− λτ20 s(β̂z∗)

β̂nz∗ = β∗
nz∗ +Σ−1

nz∗(XT
nz∗e− λτ20 s(β̂nz∗))−Σ−1

nz∗ΣT
z∗,nz∗ β̂z∗

(27)

where Sz∗ := Σz∗ − Σz∗,nz∗Σ−1
nz∗Σnz∗,z∗ , and X

′T
z∗ :=

XT
z∗ −Σz∗,nz∗Σ−1

nz∗XT
nz∗ .

The proof details are given in [33].

Lemma B.2: Suppose
[

z1
z2

]
∼ N

([
0
0

]
,V

)
, where V

is a correlation matrix. Then for any M , P (z21 + z22 > M2) ≤
P (ξ > M2/2) with ξ ∼ χ2(2).

From ∥V ∥2 ≤ ∥V ∥F ≤ 2, 2I−V is positive semi-definite.
Let z′1, z′2 be independent standard Gaussian random variables.
We get P (z21+z22 > M2) ≤ P ((z′1

√
2)2+(z′2

√
2)2 > M2) =

P (ξ > M2/2) from Anderson’s inequality [44].
Lemma B.3: Suppose ξ ∼ χ2(2). Then for any M , P (ξ >

2M2) ≤M2e−(M2−1).
See, e.g., [45] for a proof of this χ2 tail bound.
Let X

′T
f = XT

f − Σf,nz∗Σ−1
nz∗XT

nz∗ , ∀f ∈ z∗. From
Lemma B.1, we have P1 ≥ P (A∩ V ), with A := {∥X

′T
f e+

λτ20Σf,nz∗Σ−1
nz∗s(β̂nz∗)∥2 ≤ λτ20 ,∀s satisfying (25), ∀f ∈

z∗}, V := {∥[Σ−1
nz∗XT

nz∗e]f∥2 + λτ20 ∥[Σ
−1
nz∗s(β̂nz∗)]f∥2 <∥∥β∗

f

∥∥
2
, ∀s satisfying (25), ∀f ∈ nz∗}. Therefore, 1 − P1 ≤

P (Ac ∪ V c) ≤ P (Ac) + P (V c).
From the definition of κ, ∥Σf,nz∗Σ−1

nz∗s(β̂nz∗)∥2 ≤
κ
√
pnz∗∥Σ−1

nz∗∥2N
√
pnz∗·1 = κpnz∗/µ, ∀f ∈ z∗. It follows

that

P (Ac) ≤ pz∗P (∥e′f∥2 ≥ (1− κpnz∗/µ)λτ20 /(σ
√
N)) (28)

where e′ = X
′T
z∗e/(σ

√
N) ∼ N(0,Sz∗/N) because

X
′T
z∗X

′

z∗ = Sz∗ . Define M := (1 − κpnz∗/µ)λτ20 /(σ
√
N).

Based on Lemma B.2 and Lemma B.3 and the fact that the
diagonal entries of Sz∗ = Σz∗ −Σz∗,nz∗Σ−1

nz∗Σnz∗,z∗ are all
less than or equal to N , we obtain a bound for (28):

P (Ac) ≤ e

4
pz∗M2e−M2/4. (29)

Next we bound P (V c). Suppose the spectral decomposition
of Σnz∗ is given by UDUT with the ith row of U given
by uT

i , then we can represent Σ−1
nz∗ as

[
uT
i D

−1uj

]
, and

thus diag(Σ−1
nz∗) ≤ 1/(Nµ). Moreover, from ∥Σ−1

nz∗s∥2 ≤√
pnz∗/(Nµ), ∥[Σ−1

nz∗s]f∥2 ≤
√
pnz∗/(Nµ), ∀f ∈ nz∗.

Introduce e′′ =
√
µNΣ−1

nz∗XT
nz∗e/(σ) ∼ N(0, µNΣ−1

nz∗).
From the last two lemmas,

P (V c) ≤ pnz∗P (∥e′′f∥2 ≥ ( min
f∈nz∗

∥β∗
f∥2 −

λτ20
√
pnz∗

µN
)

√
µN

σ
)

≤ e

4
pnz∗L2e−L2/4,

where L := (minf∈nz∗ ∥β∗
f∥2 − λτ20

√
pnz∗/(µN))

√
µN
σ .

The proof of (21) for the hard-ridge thresholding follows
similar lines. First, define s(β;λ, η) as

∥sf∥2 ≤ 1, ∀f ∈ z(β) and sf =
η

λ
βf , ∀f ∈ nz(β). (30)
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Then similar to (26) we have

Σβ̂ = XTy − λτ20 s(β̂;λ, η), (31)

Let X
′′T
z∗ := XT

z∗ −Σz∗,nz∗Σ−1
nz∗ [I − η(Σnz∗ + ηI)−1]XT

nz∗ .
To bound P02, from Lemma B.1 and (30), we write (31) as
λτ20 s(β̂z∗ ;λ, η) + Sz∗ β̂z∗ =

X
′′T
z∗ e+ ητ20Σz∗,nz∗(Σnz∗ + ητ20 I)

−1β∗
nz∗ ,

β̂nz∗ = (Σnz∗ + ητ20 I)
−1Σnzβ

∗
nz∗+

(Σnz∗ + ητ20 I)
−1XT

nz∗e,

where we used Σ−1
nz∗(Σnz∗ + ητ20 I)

−1Σnz∗ = (Σnz∗ +
ητ20 I)

−1. It follows that

P02 ≥P (∃s satisfying (30) s.t. β̂z∗ = 0 and

∥β̂f∥2 ≥ λ/(1 + η),∀f ∈ nz∗) ≥ P (A ∩ V )

with

A :={∥X
′′T
f e+ ητ20Σf,nz∗(Σnz∗ + ητ20 I)

−1β∗
nz∗∥2 ≤ λτ20 ,

∀f ∈ z∗},
V :={∥[(Σnz∗ + ητ20 I)

−1Σnz∗β∗
nz∗ ]f

+ [(Σnz∗ + ητ20 I)
−1XT

nz∗e]f∥2 ≥
λ

1 + η
, ∀f ∈ nz∗}.

For e′ = X
′′T
z∗ e/(σ

√
N) and e′′ =

µN+ητ2
0√

µN
(Σnz∗ +

ητ20 I)
−1XT

nz∗e/σ, their covariance matrices are computed as

(Σz∗ −Σz∗,nz∗ [I − η2(Σnz∗ + ηI)−2]Σ−1
nz∗ΣT

z∗,nz∗)/N

and

(µN + ητ20 )
2

µN
(Σnz∗ + ητ20 I)

−1Σnz∗(Σnz∗ + ητ20 I)
−1,

respectively. Furthermore, it is not difficult to see that their
diagonal entries are bounded by 1 (under η ≤ µN/τ20 ).
Therefore,

1− P02

≤ P (∃f ∈ z∗s.t.∥e
′

f∥2 ≥
1

σ
√
N

(λτ20 −
ητ20κ

√
pnz∗∥β∗

nz∗∥2
µN + ητ20

))

+ P (∃f ∈ nz∗s.t.∥e
′′

f ∥2 ≥ (ι− λ

1 + η
)
µN + ητ20√

µNσ
)

≤ e

4
pz∗M ′2e−M ′2/4 +

e

4
pz∗L′2e−L′2/4,

where M ′ := 1
σ
√
N
(λτ20 −

ητ2
0

µN+ητ2
0
κ
√
pnz∗∥β∗

nz∗∥2) and

L′ := (ι− λ
1+η )

µN+ητ2
0√

µNσ
.

APPENDIX C
PROOF OF THEOREM 3

We show the proof for the group form only. The proof in the
non-group case is similar (and simpler). First, we introduce a
group quantile thresholding rule Θ⃗#(·;m, η) as a variant of
the hard-ridge thresholding. Given 1 ≤ m ≤ |F| and η ≥ 0,
Θ#(·;m, η) : a ∈ R2D → b ∈ R2D is defined as follows:
bf = af/(1 + η) if ∥af∥2 is among the m largest norms in
the set of {∥af∥2 : f ∈ F}, and bf = 0 otherwise. In the case

of ties, a random tie breaking rule is used. With the notation,
β(j+1) = Θ⃗#(ξ(j+1);m, η).

From the algorithm, nz(β(j)) ≤ m is obvious. To prove the
function value decreasing property, we introduce the following
lemma.

Lemma C.1: β̂ = Θ⃗#(ξ;m, η) is a globally optimal solu-
tion to

min
β

1

2
∥ξ − β∥22 +

η

2
∥β∥22 =: f0(β; η) s.t. nz(β) ≤ m.

(32)

Let I ⊂ F with |I| = m. Assuming βIc = 0, we get the
optimal solution β̂ with β̂I = ξI/(1 + η). It follows that
f0(β̂; η) = 1

2∥ξ∥
2
2 − 1

2(1+η)

∑
f∈I ∥ξf∥22. Hence the group

quantile thresholding Θ⃗#(ξ;m, η) yields a global minimizer.
Based on this lemma, (17) can be proved following the

lines of Appendix A. Details are omitted.

Now suppose that η > 0 and the following no tie occurring
assumption holds:
Assumption B: No ties occur in performing Θ⃗#(ξ;m, η)
for any ξ in the closure of {ξ(j)}, i.e., either ∥ξ(m)∥2 >
∥ξ(m+1)∥2 or ∥ξ(m)∥2 = ∥ξ(m+1)∥2 = 0 occurs, where
∥ξ(m)∥2 and ∥ξ(m+1)∥2 are the m-th and (m+ 1)-th largest
norms in {∥ξf∥2 : f ∈ F}.

From P (β(j+1); η) ≤ G(β(j+1), ξ(j+1),β(j+1), ξ(j+1); η) ≤
G(β(1), ξ(1),β(1), ξ(1); η) and η > 0, β(j) is uniformly
bounded. Let β◦ be a limit point of β(j) satisfying
β◦ = liml→∞ β(jl). Then from G(β(jl), ξ(jl),β(jl), ξ(jl)) −
G(β(jl+1), ξ(jl+1),β(jl+1), ξ(jl+1)) → 0, we have
ξ(jl) − ξ(jl+1) → 0 and thus β(jl) − β(jl+1) → 0. That is,
(1 − ω)ξ(jl) + ω(β(jl) + XT (y − Xβ(jl))) − ξ(jl) → 0
and Θ⃗#(ξ(jl);m, η) − β(jl) → 0. We obtain
β◦ = liml→∞ Θ⃗#(β(jl) +XT (y −Xβ(jl));m, η). Because
the limit of β(jl) + XT (y − Xβ(jl)) exists, it is easy to
show that β◦ is a fixed point of

β = Θ⃗#(β +XT (y −Xβ);m, η).

Let nz◦ = nz(β◦). By the definition of Θ⃗#, β◦
nz◦ =

β◦
nz◦/(1 + η) +XT

nz◦(y−Xβ◦)/(1 + η), and thus ηβ◦
nz◦ +

XT
nz◦(y −Xnz◦β◦

nz◦) = 0. But this is the KKT equation of
the convex optimization problem

min
γ

1

2
∥y −XIγ∥22 +

η

2
∥γ∥22 (33)

with I = nz◦ given. Therefore, β◦ is the ridge regression
estimate restricted to Xnz◦ . Note that η > 0 guarantees its
uniqueness given I .

Next, based on Ostrowski’s convergence theorem, the
boundedness of β(j) and lim ∥β(j) − β(j+1)∥ = 0 imply
that the set of limit points of β(j) (denoted by L) must
be connected. On the other hand, the set of all restricted
ridge regression estimates (denoted by R) is finite. Therefore,
limβ(j) = β◦. The convergence of ξ(j) is guaranteed as well.
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Fig. 5: Frequency identification rates with σ2 = 1 in 50 simulation runs, using BP, LZA-F, IAA, SLIM, SPICE, and GIST.
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Fig. 6: Frequency identification rates with σ2 = 8 in 50 simulation runs, using BP, LZA-F, IAA, SLIM, SPICE, and GIST.
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Fig. 7: Locations of the remaining frequency atoms after GIST screening with ϑN = 100, 50, 25. The true frequencies are
indicated by red lines and stars.
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Fig. 8: Performance of GIST screening on a hard problem with 10 present frequency components and large noise variance
σ2 = 10. The left panel shows the miss rates, while the right panel shows the total computational time (including the GIST
fitting time thereafter); both x-axes represent ϑN , the dimensions to be kept after screening.
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