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Abstract—Large-scale recurrent networks have drawn increas-
ing attention recently because of their capabilities in modeling a
large variety of real-world phenomena and physical mechanisms.
This paper studies how to identify all authentic connections and
estimate system parameters of a recurrent network, given a
sequence of node observations. This task becomes extremely chal-
lenging in modern network applications, because the available
observations are usually very noisy and limited, and the associ-
ated dynamical system is strongly nonlinear. By formulating the
problem as multivariate sparse sigmoidal regression, we develop
simple-to-implement network learning algorithms, with rigorous
convergence guarantee in theory, for a variety of sparsity-
promoting penalty forms. A quantile variant of progressive
recurrent network screening is proposed for efficient computation
and allows for direct cardinality control of network topology in
estimation. Moreover, we investigate recurrent network stability
conditions in Lyapunov’s sense, and integrate such stability
constraints into sparse network learning. Experiments show
excellent performance of the proposed algorithms in network
topology identification and forecasting.

Index Terms—Recurrent networks, topology learning, shrink-
age estimation, variable selection, dynamical systems, Lyapunov
stability.

I. INTRODUCTION

There has been an increasing interest in identifying network
dynamics and topologies in the emerging scientific discipline
of network science. In a dynamical network, the evolution of
a node is controlled not only by itself, but also by other nodes.
For example, in gene regulatory networks [1], the expression
levels of genes influence each other, following some dynamic
rules, such that the genes are connected together to form a
dynamical system. If the topology and evolution rules of the
network are known, we can analyze the regulation between
genes or detect unusual behaviors to help diagnose and cure
genetic diseases. Similarly, the modeling and estimation of dy-
namical networks are of great importance in various domains
including stock market, brain network and social network
[2, 3, 4]. To accurately identify the topology and dynamics
underlying those networks, scientists are devoted to developing
appropriate mathematical models and corresponding estima-
tion methods.

In the literature, linear dynamical models are commonly
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used. For example, the human brain connectivity network [5]
can be characterized by a set of linear differential equations,
where the rate of change of activation/observation of any
node is a weighted sum of the activations/observations of its
neighbors: dxi/dt =

∑
j ̸=i αijxj − dixi, 1 ≤ i ≤ n. Here

αij provide the connection weights and di is the decay rate.
Nevertheless, a lot of complex dynamical networks clearly
demonstrate nonlinear relationships between the nodes. For
instance, the strength of influence is unbounded in the previous
simple linear combination, but the so-called “saturation”
effect widely exists in physical/biological systems (neurons,
genes, and stocks)—the external influence on a node, no matter
how strong the total input activation is, cannot go beyond
a certain threshold. To capture the mechanism, nonlinearity
must be introduced into the network system: dxi/dt =
liπ(

∑
j ̸=i αijxj+ui)−dixi+ci, where π denotes a nonlinear

activation function typically taken to be the sigmoidal function
π(θ) = 1/(1 + e−θ). It has a proper shape to resemble many
real-world mechanisms and behaviors.

The model description is associated with a continuous-time
recurrent neural network. The existing feedback loops allow
the network to exhibit interesting dynamic temporal behaviors
to capture many kinds of relationships. It is also biologically
realistic in say modeling the effect of an input spike train.
Recurrent networks have been successfully applied to a wide
range of problems in bioinformatics, financial market forecast,
electric circuits, computer vision, and robotics; see, e.g., [6,
7, 8, 9, 10] among many others.

In practical applications, it is often necessary to include
noise contamination: dxi = (liπ(

∑
j ̸=i αijxj + ui)− dixi +

ci) dt + σ dBt, 1 ≤ i ≤ n, where Bt stands for an n-
dimensional Brownian motion. Among the very many un-
known parameters, αij might be the most important: the zero-
nonzero pattern of αij indicates if there exists a (direct) con-
nection from node j to node i. Collecting all such connections
results in a directed graph to describe the node interaction
structure.

A fundamental question naturally arises: Given a sequence
of node observations (possibly at very few time points), can
one identify all existing connections and estimate all system
parameters of a recurrent network?

This task becomes extremely challenging in modern big
network applications, because the available observations are
usually very noisy and only available at a relatively small
number of time points (say T ), due to budget or equipment
limitations. One frequently faces applications with n2 much
larger than T . In addition, in this continuous time setting, no
analytical formula of the likelihood exists for the stochastic
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model, which increases the estimation difficulty even in large
samples [11]. Instead of considering multi-step ad-hoc pro-
cedures, this paper aims at learning the network system as a
whole. Multivariate statistical techniques will be developed for
identifying complete topology and recovering all dynamical
parameters. To the best of our knowledge, automatic topology
and dynamics learning in large-scale recurrent networks has
not been studied before.

In this work, we are interested in networks that are sparse in
topology. First, many real-world complex dynamical networks
indeed have sparse or approximately sparse structures. For
example, in regulatory networks, a gene is only regulated
by a handful of others [12]. Second, when the number of
nodes is large or very large compared with the number of
observations, the sparsity assumption reduces the number of
model parameters so that the system is estimable. Third, from
a philosophical point of view, a sparse network modeling is
consistent with the principle of Occam’s razor.

Not surprisingly, there is a surge of interest of using com-
pressive sensing techniques for parsimonious network topol-
ogy learning and dynamics prediction. However, relying on
sparsity alone seems to have only limited power in addressing
the difficulties of large-scale network learning from big data.
To add more prior knowledge and to further reduce the number
of effective unknowns, we propose to study how to incorporate
structural properties of the network system into learning and
estimation, in addition to sparsity. In fact, real-life networks of
interest usually demonstrate asymptotic stability. This is one
of the main reasons why practitioners only perform limited
number of measurements of the system, which again provides
a type of parsimony or shrinkage in network learning.

In this paper we develop sparse sigmoidal network learning
algorithms, with rigorous convergence guarantee in theory, for
a variety of sparsity-promoting penalty forms. A quantile vari-
ant, the progressive recurrent network screening, is proposed
for efficient computation and allows for direct cardinality
control of network topology in estimation. Moreover, we in-
vestigate recurrent network stability conditions in Lyapunov’s
sense, and incorporate such stability constraints into sparse
network learning. The remaining of this paper is organized as
follows. Section II introduces the sigmoidal recurrent network
model, and formulates a multivariate regularized problem
based on the discrete-time approximate likelihood. Section III
proposes a class of sparse network learning algorithms based
on the study of sparse sigmoidal regressions. A novel and
efficient recurrent network screening (RNS) with theoretical
guarantee of convergence is advocated for topology identifica-
tion in ultra-high dimensions. Section IV investigates asymp-
totic stability conditions in recurrent systems, resulting in a
stable-sparse sigmoidal (S3) network learning. In Section V,
synthetic data experiments and real applications are given. All
proof details are left to the Appendices.

II. MODEL FORMULATION

To describe the evolving state of a continuous-time recurrent
neural network, one usually defines an associated dynamical
system. Ideally, without any randomness, the network behavior

can be specified by a set of ordinary differential equations:

dxi
dt

= liπ(
∑
j ̸=i

αijxj + ui)− dixi + ci, i = 1, · · · , n,

(1)

where xi, short for xi(t), denotes the dynamic process of node
i. Throughout the paper, π is the sigmoidal activation function

π(θ) =
1

1 + e−θ
, (2)

which is most frequently used in recurrent networks. This
function is smooth and strictly increasing. It has a proper
shape to resemble many real-world mechanisms and behaviors.
Due to noise contamination, a stochastic differential equation
model is more realistic

dxi = (liπ(
∑
j ̸=i

αijxj + ui)− dixi + ci) dt+ σ dBt, (3)

where Bt is a standard Brownian motion and reflects the
stochastic nature of the system. Typically li > 0, di > 0, and
in some applications αii = 0 (no self-regulation) is required.

In the sigmoidal recurrent network model, the coefficients
αij characterize the between-node interactions. In particular,
αij = 0 indicates that node j does not directly influence
node i; otherwise, node j regulates node i, and is referred
to as a regulator of node i in gene regulatory networks.
Such a regulation relationship can be either excitatory (if αij

is positive) or inhibitory (if αij is negative). In this way,
A = [αij ] is associated with a directed graph that captures
the Granger causal relationships between all nodes [13], and
the topology of the recurrent network is revealed by the
zero-nonzero pattern of the matrix. Therefore, to identify all
significant regulation links, it is of great interest to estimate
A, given a sequence of node observations (snapshots of the
network).

Denote the system state at time t by x(t) =
[x1(t) · · ·xn(t)]T or xt (or simply x when there is no
ambiguity.) Define l = [l1, · · · ln]T, u = [u1, · · · , un]T,
c = [c1, · · · , cn]T, D = diag{di}, L = diag{li}, and
A = [αij ] = [α1 · · ·αn]

T ∈ Rn×n. Then (3) can be
represented in a multivariate form

dxt = (Lπ(Ax+ u)−Dx+ c) dt+ σ dBt, (4)

where Bt is an n-dimensional standard Brownian motion.
While this model is specified in continuous time, in practice,
the observations are always collected at discrete time points.
Estimating the parameters of an SDE model from few discrete
observations is very challenging. There rarely exists an analyt-
ical expression of the exact likelihood. A common treatment
is to discretize (4) and use an approximate likelihood instead.
We use the Euler discretization scheme (see, e.g., [14]):

∆x = (Lπ(Ax+ u)−Dx+ c)∆t+ σ∆Bt.

Suppose the system (4) is observed at T + 1 time points
t1, · · · , tT+1. Let xs = [x1(ts), · · · , xn(ts)]T ∈ Rn be
the observed values of all n nodes at ts. Define ∆xs =
(xs+1 − xs) and ∆ts = (ts+1 − ts), 1 ≤ s ≤ T . Because
∆Bt ∼ N (0,∆tI), the negative conditional log-likelihood
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for the discretized model is given by

ℓ(x1, · · · ,xT+1|x1) = − logP (∆x1, · · · ,∆xT |x1)

=− logP (∆x1|x1) · · ·P (∆xT |xT )

=

T∑
s=1

∥∆xs/∆ts − (Lπ(Axs + u)−Dxs + c)∥22∆ts/(2σ2)

+ C(σ2) =: f(A,u, l,d, c)/σ2 + C(σ2).

C(σ2 is a function that depends on σ2 only. The fitting crite-
rion f is separable in α1, . . . ,αn. To see this, let xi,s = xi(ts)
and ∆xi,s = xi(ts+1)− xi(ts). Then, it is easy to verify that

f(A,u, l,d, c)

=
1

2

n∑
i=1

T∑
s=1

(
∆xi,s
∆ts

− (liπ(α
T
i xs + ui)− dixi,s + ci)

)2

∆ts.

(5)

Conventionally, the unknown parameters can then be estimated
by minimizing f . In modern applications, however, the number
of available observations (T ) is often much smaller than
the number of variables to be estimated (n2 + 4n), due to,
for example, equipment/budget limitations. Classical MLE
methods do not apply well in this high-dimensional setting.

Fortunately, the networks of interest in reality often possess
topology sparsity. For example, a stock price may not be
directly influenced by all the other stocks in the stock market.
A parsimonious network with only significant regulation links
is much more interpretable. Statistically speaking, the sparsity
in A suggests the necessity of shrinkage estimation [15]
which can be done by adding penalties and/or constraints to
the loss function. The general penalized maximum likelihood
problem is

min
A,u,l,d,c

f(A,u, l,d, c) +
∑
i,j

P (αij ;λji) (6)

where P is a penalty promoting sparsity and λji are regular-
ization parameters. Among the very many possible choices of
P , the ℓ1 penalty is perhaps the popular nowadays to enforce
sparsity:

P (t;λ) = λ|t|. (7)

It provides a convex relaxation of the ℓ0 penalty

P (t;λ) =
λ2

2
1t ̸=0. (8)

Taking both topology identification and dynamics prediction
into consideration, we are particularly interested in the ℓ0+ℓ2
penalty [16]

P (t;λ, η) =
1

2

λ2

1 + η
1t ̸=0 +

η

2
t2, (9)

where the ℓ2 penalty or Tikhonov regularization can effectively
deal with large noise and collinearity [17, 18] to enhance
estimation accuracy.

The shrinkage estimation problem (6) is however nontrivial.
The loss f is nonconvex, π is nonlinear, and the penalty
P may be nonconvex or even discrete, let alone the high-
dimensionality challenge. Indeed, in many practical networks,

the available observations are usually quite limited and noisy.
Effective and efficient learning algorithms are in great need to
meet the modern big data challenge.

III. SPARSE SIGMOIDAL REGRESSION FOR RECURRENT
NETWORK LEARNING

A. Univariate-response sigmoidal regression

As analyzed previously, to solve (6), it is sufficient to study
a univariate-response learning problem

min
(β,l,γ)

1

2

T∑
s=1

ws

(
ys − lπ(x̃T

sβ)− zT
s γ
)2

+
n∑

k=1

P (βk, λk)

, F (β, l,γ)
(10)

where x̃s, zs, ys, ws are given, and l,γ,β are unknown with
β desired to be sparse. (10) is the recurrent network learning
problem for node i when we set x̃s = [1,xs]

T, ys =
∆xi,s/∆ts, zs = [1, xi,s]

T, and ws = ∆ts (1 ≤ s ≤ T )
(note that the intercept β1 is usually subject to no penaliza-
tion corresponding to λ1 = 0). For notational ease, define
X̃ = [x̃1, · · · , x̃T ]

T, y = [y1, · · · , yT ]T, Z = [z1, · · · , zT ]
T,

λ = [λk] ∈ Rn, and W = diag{w} = diag{w1, · · · , ws} (to
be used in this subsection only, unless otherwise specified).

We propose a simple-to-implement and efficient algorithm
to solve the general optimization problem in the form of (10).
First define two useful auxiliary functions

ξ(θ, y) = π(θ)(1− π(θ))(π(θ)− y), (11)

k0(y,w) = max
1≤s≤T

ws

16

(
1 +

(1− 2ys)
2

2

)
. (12)

The vector versions of π and ξ are defined compo-
nentwise: π(θ) = [π(θ1), · · · , π(θT )]T and ξ(θ,y) =
[ξ(θ1, y1), · · · , ξ(θT , yT )]T, and the matrix versions are de-
fined similarly. A prototype algorithm is described as follows,
starting with an initial estimate β(0), a thresholding rule Θ
(an odd, shrinking and nondecreasing function, cf. [19]), and
j = 0.

repeat
0) j ← j + 1
1) µ(j) ← π(X̃β(j−1))
2) Fit a weighted least-squares model

min
l,γ
∥W 1/2(y − [µ(j) Z][l γT]T)∥22, (13)

with the corresponding solution denoted by (l(j),γ(j)).
3) Construct ỹ(j) ← (y−Zγ(j))/l(j), w̃(j) ← (l(j))2w,
W̃

(j)
= diag{w̃(j)}. Let K(j) be any constant no less

than k0(ỹ
(j), w̃(j))∥X̃∥22, where ∥ · ∥2 is the spectral

norm.
4) Update β via thresholding:

β(j) = Θ(β(j−1)− 1

K(j)
X̃

T
W̃

(j)
ξ(X̃β(j−1), ỹ(j));λ(j)),

(14)
where λ(j) = [λ

(j)
k ]n×1 is a scaled version of λ satisfying

P (t;λk)/K
(j) = P (t;λ

(j)
k ) for any t ∈ R , 1 ≤ k ≤ n.

until convergence
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Before proceeding, we give some examples of Θ and λ(j).
The specific form of the thresholding function Θ in (14) is
related to the penalty P through the following formula [16]:

P (t;λ)− P (0;λ)

=

∫ |t|

0

(sup{s : Θ(s;λ) ≤ u} − u) du+ q(t;λ)
(15)

with q(·;λ) nonnegative and q(Θ(s;λ)) = 0 for all s. The reg-
ularization parameter(s) are rescaled at each iteration accord-
ing to the form of P . Examples include: (i) the ℓ1 penalty (7),
and its associated soft-thresholding ΘS(t;λ) = sgn(t)(|t| −
λ)1|t|>λ, in which case P (t;λ)/K(j) = P (t;λ(j)), ∀t im-
plies λ(j) = λ/K(j), (ii) the ℓ0 penalty (8) and the hard-
thresholding ΘH(t) = t1|t|>λ, which determines λ(j) =

λ/
√
K(j), and (iii) the ℓ0 + ℓ2 penalty (9) and its associated

hard-ridge thresholding ΘHR(t;λ, η) = t
1+η1|t|>λ, where

λ(j) = λ
K(j)

√
(η +K(j))/(η + 1), η(j) = η/K(j). The ℓp

(0 < p < 1) penalties, the elastic net penalty, and others
[16] are also instances of this framework.

Theorem 1. Given the objective function in (10), suppose
Θ and P satisfy (15) for some nonnegative q(t;λ) with
q(Θ(t;λ)) = 0 for all t and λ. Then given any ini-
tial point β(0), with probability 1 the sequence of iterates
(β(j), l(j),γ(j)) generated by the prototype algorithm satisfies

F (β(j−1), l(j−1),γ(j−1)) ≥ F (β(j), l(j),γ(j)). (16)

See Appendix A for the proof.
Normalization is usually necessary to make all predictors

equally span in the space before penalizing their coefficients
using a single regularization parameter λ. We can center and
scale all predictor columns but the intercept before calling the
algorithm. Alternatively, it is sometimes more convenient to
specify λk componentwise—e.g., in the ℓ1 penalty

∑
λk|βk|

set λk = λ · ∥X[:, k]∥2 for non-intercept coefficients.

B. Cardinality constrained sigmoidal network learning

In the recurrent network setting, one can directly apply
the prototype algorithm in Section III-A to solve (6), by
updating the columns in B one at a time. On the other
hand, a multivariate update form is usually more efficient
and convenient in implementation. Moreover, it facilitates
integrating stability into network learning (cf. Section IV).

To formulate the loss in a multivariate form, we introduce

Y = [yi,s] = [∆xi,s/∆ts] ∈ RT×n,

X = [x1, · · · ,xT ]
T ∈ RT×n,

B = AT = [α1, · · · ,αn] ∈ Rn×n,

W = diag{w} = diag{∆t1, · · · ,∆tT }.

Then f in (5) can be rewritten as

f(B,u, l,d, c)

=
1

2
∥W 1/2

{
Y − [π(XB + 1uT)L−XD + 1cT]

}
∥2F ,

(17)

with ∥ · ∥F denoting the Frobenius norm, and the objec-
tive function to minimize becomes ∥W 1/2{Y − [π(XB +

1uT)L−XD + 1cT]}∥2F + P (B,Λ).

One of the main issues is to choose a proper penalty form for
sparse network learning. Popular sparsity-promoting penalties
include ℓ1, SCAD, ℓ0, among others. The ℓ0 penalty (8) is
ideal in pursuing a parsimonious solution. However, the matter
of parameter tuning cannot be ignored. Most tuning strategies
(such as K-fold cross-validation) require computing a solution
path for a grid of values of λ, which is quite time-consuming in
large network estimation. Rather than applying the ℓ0 penalty,
we propose an ℓ0 constrained sparse network learning

∥B∥0 ≤ m, (18)

where ∥ · ∥0 denotes the number of nonzero components
in a matrix. In contrast to the penalty parameter λ in (8),
m is more meaningful and customizable. One can directly
specify its value based on prior knowledge or availability
of computational resources to have control of the network
connection cardinality. To account for collinearity and large
noise contamination, we add a further ℓ2 penalty in B,
resulting in a new ‘ℓ0 + ℓ2’ regularized criterion

min
B,L,D,u,c

1

2
∥W 1/2{Y − [π(XB + 1uT)L−XD + 1cT]}∥2F

+
η

2
∥B∥2F =: F0, s.t. ∥B∥0 ≤ m.

(19)
Not only is the cardinality bound m convenient to set, because
of the sparsity assumption, but the ℓ2 shrinkage parameter
η is easy to tune. Indeed, η is usually not a very sensitive
parameter and does not require a large grid of candidate values.
Many researchers simply fix it at a small value (say, 1e − 3)
which can effectively reduce the prediction error (e.g., [18]).
Similarly, to handle the possible collinearity between π and 1,
we recommend adding mild ridge penalties ηl

2 ∥l∥
2
2 +

ηc

2 ∥c∥
2
2

in (19) (say, ηl = 1e− 4 and ηc = 1e− 2).
The constrained optimization of (19) does not apparently

fall into the penalized framework proposed in Section III-A.
However, we can adapt the technique to handle it through a
quantile thresholding operator (as a variant of the hard-ridge
thresholding (9)). The detailed recurrent network screening
(RNS) algorithm is described as follows, where for notational
simplicity X̃ := [1 X], B̃ := [u BT]T, and we denote by
A[I, J ] the submatrix of A consisting of the rows and columns
indexed by I and J , respectively.

Theorem 2. Given any initial point B̃
(0)

, Algorithm 1 con-
verges in the sense that with probability 1, the function value
decreasing property holds:

F0(B
(j−1),L(j−1),D(j−1),u(j−1), c(j−1))

≥ F0(B
(j),L(j),D(j),u(j), c(j)),

and all B(j) satisfy ∥B(j)∥0 ≤ m, ∀j ≥ 1.

See Appendix B for the proof.
Step 2 can be achieved by solving n weighted least squares.

Or, one can re-formulate it as a single-response problem to
obtain the solution (l(j),d(j), c(j)) in one step. The latter
way is usually more efficient. When there are ridge penalties
imposed on l and c, the computation is similar.
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Algorithm 1 Recurrent Network Screening (RNS)

given B̃
(0)

(initial estimate), m (cardinality bound), η (ℓ2
shrinkage parameter).
j ← 0
repeat

0) j ← j + 1

1) µ(j) ← π(X̃B̃
(j−1)

)
2) Update L = diag{l},D = diag{d}, and c by fitting
a weighted vector least-squares model:

min
L,D,c

∥W 1/2(Y − [µ(j)L−XD + 1cT])∥2F , (20)

with the solution denoted by L(j) = diag{l(j)} =

diag{l(j)1 , · · · , l(j)n }, D(j) = diag{d(j)1 , · · · , d(j)n }, and
c(j). (This amounts to solving n separate weighted least
squares problems.)
3) Construct Ỹ ← (Y + XD(j) − 1(c(j))T)(L(j))−,
W̃ ← w · (l(j) ◦ l(j))T, where − denotes the Moore-
Penrose pseudoinverse and ◦ is the Hadamard product.
Let K(j)

i be any constant no less than k0(Ỹ [:, i], W̃ [:

, i]])∥X̃∥22, and K(j) ← diag{K(j)
1 , · · · ,K(j)

n }.
4) Update B and u:
4.1) Ξ̃← B̃

(j−1)−X̃
T{W̃ ◦ξ(X̃B̃

(j−1)
, Ỹ )}(K(j))−,

u(j) ← (Ξ̃[1, :])T, Ξ ← Ξ̃[2 : end, :] (the submatrix of
Ξ̃ without the first row), η(j) = η · (11T)(K(j))−.
4.2) Perform the hard-ridge thresholding B(j) ←
ΘHR

(
Ξ; ζ(Ξ),η(j)

)
(cf. Section III-A for the definition

of ΘHR) with an adaptive threshold matrix ζ(Ξ). The
entries of ζ(Ξ) are all set to the medium of the mth and
the (m + 1)th largest components of vec(|Ξ|). See (21)
for other variants when certain links must be maintained
or forbidden.
4.3) B̃

(j) ← [u(j) (B(j))T]T

until the decrease in function value is small
deliver B̂ = B(j), û = u(j), L̂ = L(j), D̂ = D(j),
ĉ = c(j).

In certain applications self-regulations are not allowed. Then
ζ(Ξ) should be the medium of the mth and the (m + 1)th
largest elements of |Ξ − Ξ ◦ I| (Ξ in absolute value after
excluding its diagonal entries).1 Other prohibited links can
be similarly treated in determining the dynamic threshold.
In general, given T the index set of the links that must be
maintained and F the index set of the links that are forbidden,
the threshold is constructed as follows

Ξ[i]← 0, ∀i ∈ F

ζ[i]←

{
0, if i ∈ T
|Ξ[T c]|(m+1) , otherwise,

(21)

where |Ξ[T c]|(m+1) is the (m + 1)th largest element (in
absolution value) in Ξ[T c] (all entries of Ξ except those
indexed by T ). It is easy to show that the convergence result
still holds based on the argument in Appendix B.

1Throughout the paper |A| is the absolute value of the elements of A. That
is, for A = [aij ], |A| = [|aij |].

In implementation, we advocate reducing the network car-
dinality in a progressive manner to lessen greediness: at the
jth step, m is replaced by m(j), where {m(j)} is a monotone
sequence of integers decreasing from n(n− 1) (assuming no
self-regulation) to m. Empirical study shows that the sigmoidal
decay cooling schedule m(j) =

⌈
2n(n − 1)/(1 + eαj)

⌉
with

α = 0.01, works well.
RNS involves no costly operations at each iteration, and is

simple to implement. It runs efficiently for large networks.
The RNS estimate can be directly used for analyzing the
network topology. One can also use it for screening (in which
case a relatively large value of m is specified), followed by
a fine network learning algorithm restricted on the screened
connections. In either case RNS substantially reduces the
search space of candidate links.

IV. STABLE-SPARSE SIGMOIDAL NETWORK LEARNING

For a general dynamical system possibly nonlinear, stability
is one of the most fundamental issues [20, 21]. If a system’s
equilibrium point is asymptotically stable, then the perturbed
system must approach the equilibrium point as t increases.
Moreover, one of the main reasons many real network applica-
tions only have limited number of observations measured after
perturbation is that the associated dynamical systems stabilize
fast (e.g., exponentially fast). This offers another important
type of parsimony/shrinkage in network parameter estimation.

To design a new type of regularization, we first investi-
gate stability conditions of sigmoidal recurrent networks in
Lyapunov’s sense [22, 23]. Then, we develop a stable sparse
sigmoidal (S3) network learning approach.

A. Conditions for asymptotic stability

Recall the multivariate representation of (1)

dx

dt
= Lπ(Ax+ u)−Dx+ c. (22)

Because A is sparse and typically singular and the degradation
rates di are not necessarily identical, in general (22) can not be
treated as an instance of the Cohen-Grossberg neural networks
[24]. We must first derive its own stability conditions to be
considered in network estimation.

Hereinafter, A ≽ A′ and A ≻ A′ stand for the posi-
tive semi-definiteness and positive definiteness of A − A′,
respectively, and the set of eigenvalues of A is spec(A). Our
conditions are stated below:

D ≻ 0, (A1)
L ≽ 0, (A2)

Re(λ) < 0 for any λ ∈ Spec(LA− 4D), (A3a)

LA/2 +ATL/2 ≺ 4D, (A3b)

Theorem 3. Suppose (A1) & (A2) hold. Then (A3a) guar-
antees the network defined by (22) has a unique equilibrium
point x∗ and is globally exponentially stable in the sense that
∥x(t)−x∗∥22 ≤ e−εt∥x(0)−x∗∥22 for any solution x(t). The
same conclusion holds if (A3a) is replaced by (A3b).

See Appendix C for the detailed proof.
Figure 1 shows an example of stochastic processes gener-
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ated from a stable recurrent network and an unstable recurrent
network respectively. In the upper panel, the recurrent network
system parameters satisfy the stability condition (A3a), while
those in the lower panel violate (A3a). (In both situations, the
number of nodes is 10 and the diffusion parameter σ is fixed
at 0.5.) The differences between the two models are obvious.

In reality, asymptotically stable systems are commonly
observed. The stability conditions reflect structural character-
istics. For example, when all li are equal and di > 0, then the
skew-symmetry of A, i.e., A = −AT, guarantees asymptotic
stability. The information provided by the constrains can
assist topology learning. This motivates the design of sparse
recurrent network learning with stability.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3
process of a stable model

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15
x 10

7 process of an unstable model

t

Figure 1: Stochastic processes generated from a stable recur-
rent network model and an unstable recurrent network model.

B. S3 network estimation

(A3a) is less restrictive than (A3b). In optimization, impos-
ing (A3a) seems however difficult. We propose

min
B,L,D,u,c

1

2
∥W 1/2{Y − [π(XB + 1uT)L−XD + 1cT]}∥2F

+P (B,Λ) =: F1,

s.t. L ≽ 0,D ≽ 0, (LBT +BL)/2 ≼ 4D,
(23)

referred to as the Stable-Sparse Sigmoidal (S3) network learn-
ing. The stability constraints are now imposed on B as the
transpose of the raw coefficient matrix A. Similar to the
discussion of (19), in implementation, we add mild ℓ2 penalties
on li and ci to deal with possible collinearity, and it is common
to replace 0 by ϵI with ϵ extremely small.

In this part, we focus on the ℓ1 penalty P (B,Λ) =
∥Λ ◦ B∥1 where matrix Λ usually has the form Λ[k, k′] =
∥X[:, k]∥2 for any k, k′ ≤ n (other options are possible.)
Introducing the componentwise regularization matrix is helpful
when one wants to maintain or forbid certain links based on
prior knowledge or preliminary screening. For example, if no
self-regulation is allowed, then all diagonal entries of Λ ought
to be +∞.

It turns out that one can modify Step 2 and Step 4 of the
RNS algorithm to solve (23).

First, the non-negativity of li and di can be directly incor-
porated, if the weighted least-squares problem in Step 2 is
replaced by the following quadratic programming with non-
negativity constraints:

Step 2) Solve min
L,D,c

∥W 1/2(Y − [µ(j)L−XD + 1cT])∥2F

s.t. L = diag{li} ≽ 0,D = diag{di} ≽ 0. (24)

A variety of algorithms and packages can be used [25].
Integrating the spectral constraint on B into network

learning is much trickier. We modify Step 4 of Algorithm 1
as follows.

Step 4) Update B and u:
4.1) Ξ̃← B̃

(j−1)−X̃T{W̃ ◦ξ(X̃B̃
(j−1)

, Ỹ )}(K(j))−,
u(j) ← (Ξ̃[1, :])T, Ξ ← Ξ̃[2 : end, :], and Λ(j) =
Λ · (K(j))−.

4.2) Perform the inner loop iterations, starting with
B3 ← Ξ, C3 ← (L(j)BT

3 + B3L
(j))/2, P = 0,

QB = 0, QC = 0, R = 0, and the operators
P1,P2,P3 defined in Lemmas 4-6:
repeat

i) B1 ← P1(B3 +P ;Λ(j)), C1 ← C3, P ← P +
B3 −B1.

ii) [B2,C2]← P2(B1 +QB,C1 +QC ;L(j)),
QB ← QB +B1−B2, QC ← QC +C1−C2.

iii) B3 ← B2, C3 ← P3(C2 + R;D(j)), R ←
R+C2 −C3.

until convergence
B(j) ← B3

4.3) B̃
(j) ← [u(j) (B(j))T]T

Algorithm 1 with such modifications in Step 2 and Step 4
is referred to as the S3 estimation algorithm.

Theorem 4. Given any initial point B̃
(0)

, the S3 algorithm
converges in the sense that the function value decreasing
property holds, and furthermore, B(j), L(j), and D(j) satisfy
L(j) ≽ 0,D(j) ≽ 0, (L(j)(B(j))T + B(j)L(j))/2 ≼ 4D(j)

for any j ≥ 1.

The proof is given in Appendix D.
We observe that practically, the inner loop converges fast

(usually within 100 steps). Moreover, to guarantee the func-
tional value is decreasing, one does not have to run the
inner loop till convergence. Although it is possible to apply
the stable-sparse estimation directly, we recommend running
the screening algorithm (RNS) first, followed by the fine S3

network learning.

V. EXPERIMENTS

A. Simulation Studies

In this subsection, we conduct synthetic data experiments
to demonstrate the performance of the proposed learning
framework in recurrent network analysis. An Erdős-Rényi-
like scheme of generating system parameters, including a
sparse regulation matrix A, is described as follows. Given
any node i, the number of its regulators is drawn from a
binomial distribution B(n − 1, 1

2n ). The regulator set Si is
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chosen randomly from the rest (n − 1) nodes (excluding
node i itself). If j /∈ Si, aij = 0. Otherwise, aij follows a
mixture of two Gaussians N (1.5, 0.12) ad N (−1.5, 0.12) with
probability 1/2 for each. Then draw random l, u, c from Gaus-
sian distributions (independently) li ∼ N (1.5, 0.12), ui ∼
N (0, 0.12), ci ∼ N (0, 0.12). Finally d is generated so that
the system satisfies the stability condition (A3a).

Topology identification. First, we test the performance of
RNS in recurrent network topology identification. We compare
it with TSNI [26] and QTIS [27]. TSNI is a popular network
learning approach and applies principle component analysis
for dimensionality reduction. QTIS is a network screening
algorithm based on sparsity-inducing techniques. To avoid the
ad-hoc issue of parameter tuning, ROC curves will be used to
summarize link detection results in a comprehensive way, in
terms of true positive rate (TPR) and false positive rate (FPR).

We simulate two networks according to the scheme intro-
duced early. In the first example we set n = 10, T = 100,
in the second example n = 200, T = 500, and in the third
n = 100, T = 1000. Given all system parameters, we can
call Matlab functions SDE and SDE.SIMULATE to generate
continuous-time stochastic processes according to (4). The
discrete-time observations are sampled from the stochastic
processes with sampling period ∆T = 1.

In this experiment, the number of unknowns in either case
is larger than the sample size, especially in Ex.2 which has
about 41K variables but only 500 observations. Given any
algorithm, we vary the target cardinality parameter m from 1
to n(n−1), collect all estimates, and compute their associated
TPRs and FPRs. The experiment is repeated for 50 times and
the averaged rates are shown in the ROC curves in Figure 2.
RNS beats TSNI and QTIS by a large margin. In fact, the
ROC curve of RNS is everywhere above the TSNI curve and
the QTIS curve.

System stability. Next, we show the necessity of stable
learning in network dynamics forecasting. For simplicity, the
ℓ1 penalization is used. We compare the S3 network estimation
with the approach based on sparse sigmoidal regression in Sec-
tion III-A (with no stability guarantee), denoted by SigSpar.

We use two network examples (Ex.4 and Ex.5) with n =
20, 40 respectively. In each setting, we generate T = 20
samples for training, and 200 validation samples for parameter
tuning. In this experiment, forecast error at a future time point
is the major concern. Suppose x(T ), the network snapshot at
T , is given. With system parameter estimates obtained, one
can simulate a stochastic process x̂(t) (t ≥ T ) starting with
x(T ) based on model (4). The forecast error at time point
T + h is defined as FE = ∥x(T + h) − x̂(T + h)∥22/n.
Long-term forecasting corresponds to large values of h. We
repeat the experiment for 50 times and show the average FE
in Table I. The error of SigSpar becomes extremely large as h
increases, because there is no stability guarantee of its network
estimate, while S3 has excellent performance even in long-
term forecasting.

B. Real data

Yeast gene regulatory network. We use RNS to study the
transcriptional regulatory network in the yeast cell cycle. The

dataset is publicly available and a detailed description of the
microarray experiment is in [28]. Following [29], we focus
on the 20 genes whose expression patterns fluctuate in a
periodic manner. The dataset contains their expression levels
recorded at 18 time points during a cell cycle. In this regulatory
(sub)network, five genes have been identified as transcription
factors, namely SWI4, HCM1, NDD1, SWI5, ASH1, and
19 regulatory connections from them to target genes have
been reported with direct evidence in the literature (cf. the
YEASTRACT database at http://yeastract.com/). [29] found 55
connections from the transcription factors to the target genes,
of which 14 have biological evidence (and so the true positive
rate is 14/19 = 73.7%). For a fair comparison, we also let
RNS detect 55 connections from the transcription factors to the
target genes, and achieved a higher true positive rate 89.5%.
A detailed comparison of the identified regulatory connections
is shown in Table II.

fMRI data. The resting state fMRI data provided by the
ADHD-200 consortium [30] have been preprocessed by the
NIAK interface [31]. The dataset we are using has 954 ROIs
(regions of interest) and 257 time points. In the experiment,
the first 200 observations are for training (and so T = 200 and
n = 954), and the following 57 observations are for testing.
We applied RNS to get a network pattern, followed by the
S3 network estimation for stability correction. Table III shows
the results averaged over 10 randomly chosen subjects. Our
learning algorithm can achieve much lower error than TSNI,
and its performance is pretty robust to the choice of m.

APPENDIX A
PROOF OF THEOREM 1

For notation simplicity, we introduce µs(β) := π(x̃T
sβ).

Then ∂µs(β)/∂β = µs(β)(1 − µs(β))x̃
T
s , from which it

follows that

∇(
T∑

s=1

ws(ys − µs(β))
2/2) = X̃

T
Wξ(X̃β,y),

where W = diag{ws}Ts=1 and ξ is the function defined in
(11) applied componentwise. Moreover, we can compute its
Hessian (details omitted)

H = D(∇(
∑

ws(ys − µs(β))
2/2))

= X̃
T
W diag {µs(1− µs)

[µs(1− µs) + (µs − ys)(1− 2µs)]} X̃

≡ X̃
T
WΣ(β)X̃.

Note that H is not necessarily positive semi-definite.

Let F0(β) =
1
2

∑
ws(ys − µs(β))

2 +
∑
P (βk;λ). Define

a surrogate function as G(β,β′) = 1
2

∑
ws(ys − µs(β

′))2 +∑
P (β′

k;λ) +
K
2 ∥β−β′∥22 + 1

2

∑
ws((ys − µs(β))

2 − (ys −
µs(β

′))2) +
∑
wsξ(x

T
sβ, ys)(x

T
sβ

′ − xT
sβ). Based on the
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(a) Example 1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

 

 

RNS
TSNI
QTIS
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(c) Example 3.

Figure 2: Comparison of ROC curves.

Table I: Forecasting error comparison.

h 1 5 10 15 20

Ex.4 SigSpar 0.08 3.01 41.95 450.54 4.4×103

S3 0.04 0.48 1.01 1.39 1.76

Ex.5 SigSpar 0.35 23.76 41.95 7.3×103 1.0×105

S3 0.06 0.70 1.75 2.80 4.04

Table II: Regulatory connections of the Yeast cell cycle subnetwork. ‘×’ stands for the regulatory connections identified by
RNS, ‘ ’ stands for those by [29], and ‘�’ stands for the confirmed regulatory connections with published evidence in the
literature.

SWI4 HCM1 NDD1 SWI5 ASH1
SWI4
HCM1 �
NDD1 �
SWI5
ASH1 �
CLN2 �
SVS1 �
SWE1 �
MNN1 �
CLB6 �
HTA1 �
HTB1 �
HHT1
CLB4 �
CLB2 � �

CDC20
SPO12 �
SIC1 �
CLN3 � � � �

CDC46

Table III: Forecast error for the fMRI data.

m/n2 0.5 0.6 0.7 0.8 0.9
TSNI 0.981 1.021 1.044 1.056 1.060

S3 0.194 0.194 0.194 0.194 0.194
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previous calculation, we have

1

2

∑
ws((ys − µs(β))

2 − (ys − µs(β
′))2)

=(X̃
T
Wξ(X̃β,y))T(β − β′)

− 1

2
(β − β′)T(X̃

T
WΣ(θβ + (1− θ)β′)X̃)(β − β′),

for some θ ∈ [0, 1]. Let ζ = θβ + (1− θ)β′. It follows that

K

2
∥β − β′∥22 +

1

2

∑
ws((ys − µs(β))

2 − (ys − µs(β
′))2)

+
∑

wsξ(x̃
T
sβ, ys)(x̃

T
sβ

′ − x̃T
sβ)

=
1

2
(β′ − β)T(KI − X̃

T
Σ(ζ)WX̃)(β′ − β)

≥K − ∥X̃∥
2
2∥Σ(ζ)W ∥2
2

∥β − β′∥22.

Because

wsµs(1− µs)((1− 2µs)(µs − ys) + µs(1− µs))

≤ws

4

(
1

2

(
1− 2µs + 2µs − 2ys

2

)2

+
1

4

)

=
ws

4

(
(1− 2ys)

2

8
+

1

4

)
,

the diagonal entries of WΣ(ζ) are uniformly bounded by

max
s

ws

4

(
(1− 2ys)

2

8
+

1

4

)
or k0(y,w) (see (12)). Therefore, choosing K ≥
k0(y,w)∥X̃∥22, we have G(β,β′) = 1

2

∑
ws(ys−µs(β

′))2+∑
P (β′

k;λ)+
1
2 (K−∥X̃∥

2
2∥WΣ∥22) ≥ F0(β) for any β,β′.

On the other hand, based on the definition, it is easy to show
(details omitted) that given β, minβ′ G(β,β′) is equivalent to:

min
β′

K

2
∥β′ − β +

1

K
X̃

T
Wξ(X̃β,y)∥22 +

∑
P (β′

k;λ).

(25)

Applying Lemma 1 in [16] without requiring uniqueness, there
exists a globally optimal solution

β′
o(β) = Θ(β − X̃

T
Wξ(X̃β,y)/K;λ′), (26)

provided that P (t;λ′) = P (t;λ)/K for any t. In summary,
we obtain F0(β) = G(β,β) ≥ G(β,β′

o(β)) ≥ F0(β
′
o(β)).

We are now in a position to prove (16). In fact, given γ and
l, the optimization problem

min
β

1

2

∑
ws(ys − zT

s γ − lπ(x̃T
sβ))

2 +
∑

P (βk, λ),

is equivalent to minβ
1
2

∑
w′

s(ỹs − π(x̃T
sβ))

2 +
∑
P (βk, λ)

with ỹs = (ys−zT
s γ)/l, w

′
s = l2ws. (Note that the l obtained

from WLS is nonzero with probability 1.) Therefore, the
function value decreasing property always holds during the
iteration.

APPENDIX B
PROOF OF THEOREM 2

Define a quantile thresholding rule Θ#(·;m, η) as a variant
of the hard-ridge thresholding rule (9). Given 1 ≤ m ≤ np:

A ∈ Rn×p → B ∈ Rn×p is defined as follows: bij =
aij/(1 + η) if |aij | is among the m largest in the set of
{|aij | : 1 ≤ i ≤ n, 1 ≤ j ≤ p}, and bij = 0 otherwise.

Lemma 1. B̂ = Θ#(A;m, η) is a globally optimal solution
to

min
B

f0(A) =
1

2
∥A−B∥2F +

η

2
∥B∥2F

s.t. ∥B∥0 ≤ m.

Proof: Let I ⊂ {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ p} with |I| =
m. Assuming BIc = 0, we get the optimal solution B̂ with
B̂ = 1

1+ηAI . It follows that f0(B̂) = 1
2∥A∥

2
F − 1

2

∑
i,j∈I a

2
ij .

Therefore, the quantile thresholding Θ#(A;m, η) yields a
global minimizer.

Using Lemma 1, we can prove the function value decreasing
property; the remaining part follows similar lines of Theorem 1
because of the separability of F .

APPENDIX C
PROOF OF THEOREM 3

Let f(x) = Lπ(Ax + u) − Dx + c, where x is short
for x(t). First, we prove the existence of an equilibrium. It
suffices to show that there is a solution to f(x) = 0 or x =
D−1Lπ(Ax+u)+D−1c =: φ(x). Obviously, the mapping
φ is continuous and bounded (say ∥φ∥∞ ≤ M ), Brouwer’s
fixed point theorem [32] indicates the existence of at least one
equilibrium in [−M,M ]n.

Let x∗ be an equilibrium point, i.e., f(x∗) = 0. Construct
a Lyapunov function candidate V (x) = 1

2 (x−x
∗)TP (x−x∗)

with P positive definite and to be determined. Then

dV (x)

dt
= V ′(x)f(x)

=(x− x∗)TPf(x)

=(x− x∗)TP (f(x)− f(x∗))

=− (x− x∗)TPD(x− x∗)

+ (x− x∗)TPL(π(Ax+ u)− π(Ax∗ + u))

=− (x− x∗)T(PD − PLGA)(x− x∗)

=− (x− x∗)T

(
PD +DP T

2
− PLGA+ATGLP T

2

)
· (x− x∗),

where

G = diag
{
π(αT

i x+ u)− π(αT
i x

∗ + u)

αT
i xi −αT

i x
∗
i

}
.

It is easy to verify that G = diag{π′(ξ)} ≼ I/4, and thus
PLGA + ATGLP T ≼ (PLA + ATLP T)/4. It is well
known [21] that under (A3a), the Lyapunov equation

P

(
D − LA

4

)
+

(
D − LA

4

)T

P T = −R (27)

is solvable and uniquely determines a positive definite P for
any positive definite R. Therefore, V is indeed a Lyapunov
function for the nonlinear dynamical system (22). Moreover,
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(A3a) implies

dV (x)

dt
≤ −ε0∥x− x∗∥22 ≤ −εV (x)

for some ε0, ε > 0. By the Lyapunov stability theory—see,
e.g., [33] (Chapter 3), (22) must be globally exponentially
stable. The uniqueness of the equilibrium is implied by the
global exponential stability.

The second result can be shown by setting P = I in (27);
details are omitted.

APPENDIX D
PROOF OF THEOREM 4

Based on the proof of Theorem 1, the modified Step 2 does
not affect the convergence of function value because at each
iteration a global optimum of (24) is obtained. It remains to
show that B̃

(j)
generated by the modified Step 4 improves

B̃
(j−1)

in terms of reducing the objective function value, and
B(j) obeys the stability condition.

Let Ξ̃ = B̃
(j−1)−X̃

T
Wξ(X̃B̃

(j−1)
, Ỹ )(K(j))−, Λ(j) =

Λ · (K(j))−. (The modified Step 2 may result in zeros in Ξ̃
to make the associated activation terms in π(X̃B̃) vanish;
using the pseudoinverse can handle the issue and maintain the
decreasing property.) Based on the argument of Appendix A,
the problem in Step 4 reduces to

min
B̃=[u,BT]T

1

2
∥B̃ − Ξ̃∥2F + ∥Λ(j) ◦B∥1,

s.t. (L(j)BT +BL(j))/2 ≼ 4D(j).

(28)

Therefore it suffices to prove Lemma 2 for any given Ξ(=
Ξ̃[2 : end, :]), Λ(j), L(j) ≽ 0, D(j) ≽ 0, and B(j−1). (In
fact, the lemma holds given any initialization of C3.)

Lemma 2. For any j ≥ 1, , 1
2∥B

(j)−Ξ∥2F +∥Λ(j)◦B(j)∥1 ≤
1
2∥B

(j−1) − Ξ∥2F + ∥Λ(j) ◦ B(j−1)∥1, and (L(j)B(j)T +

B(j)L(j))/2 ≼ 4D(j).

Proof: Define f(B) = 1
2∥B − Ξ∥2F + ∥Λ ◦ B∥1, and

g(B′,C ′,B,C) = 1
2∥B

′ − Ξ∥2F + ∥Λ ◦ B∥1 + 1
2∥B −

B′∥2F + 1
2∥C − C ′∥2F + ⟨B′ − Ξ,B −B′⟩. Then f(B′) =

g(B′,C ′,B′,C ′) and g(B′,C ′,B,C) ≥ f(B).
On the other hand, given (B′,C ′), we can write g as a

function of (B,C): 1
2∥[Ξ,C

′]− [B,C]∥2F +∥Λ◦B∥1 (up to
additive functions of B′ and C ′). Based on Lemma 3, with
ΞC = C ′, g(B′,C ′,B′,C ′) ≥ g(B′,C ′,Bo,Co) ≥ f(Bo)
and (LBoT +BoL)/2 = Co ≼ 4D.

Applying the result to the modified Step 4 in Section IV-B
yields the desired result.

Lemma 3. Consider the sequence of (B3,C3) generated
by the following procedure, with the operators P1, P2,
P3 defined in Lemma 4, Lemma 5 and Lemma 6, respec-
tively:

0) B3 ← ΞB , C3 ← ΞC , P = 0, QB = 0, QC = 0,
R = 0
repeat

1) B1 ← P1(B3 +P ;Λ), C1 ← C3, P ← P +B3−
B1

2) [B2,C2] ← P2(B1 + QB,C1 + QC ;L),
[QB,QC ]← [QB,QC ] + [B1,C1]− [B2,C2]
3) B3 ← B2, C3 ← P3(C2 +R;D), R← R+C2−
C3.

until convergence

Then, the sequence of iterates converges to a globally optimal
solution (Bo,Co) to

min
B,C

1

2
∥[ΞB,ΞC ]− [B,C]∥2F + ∥Λ ◦B∥1

s.t. C = (LBT +BL)/2,C ≼ 4D.

(29)

Proof: With the following three lemmas, applying Theo-
rem 3.2 and Theorem 3.3 in [34] yields the strict convergence
of the iterates and the global optimality of the limit point.

Lemma 4. Let P1(Φ) be the optimal solution to

min
B

1

2
∥B −Φ∥2F + ∥Λ ◦B∥1. (30)

Then P1(Φ;Λ) = ΘS(Φ;Λ) where ΘS , applied component-
wise on Φ, is the soft-thresholding rule given in Section III-A.

Proof: Apply Lemma 1 in [16].

Lemma 5. The optimal solution to

min
B,C

1

2
∥[B C]−[ΦB ΦC ]∥2F s.t. C = (LBT+BL)/2. (31)

is given by P2(ΦB,ΦC ;L) = [Bo,Co] with Bo = [boi,j ],

boi,j = ψi,j
2+l2i

2+l2i+l2j
− ψj,i

lilj
2+l2i+l2j

, and Co = (LBoT +

BoTL)/2, where Ψ = [ψi,j ] = ΦB + (ΦC +ΦT
C)L/2.

Proof: Let f(B) = ∥B−ΦB∥2F /2+∥(LBT+BL)/2−
ΦC∥2F /2. It is not difficult to obtain the gradient (details
omitted): B −ΦB + (LBTL+BL2)/2− (ΦC +ΦT

C)L/2.
The optimal B and C can be evaluated accordingly.

Lemma 6. Let P3(Φ;D) be the optimal solution to

min
C

1

2
∥C −Φ∥2F s.t. C is symmetric and satisfies C ≼ 4D.

(32)
Then it is given by Udiag{min(si, 0)}UT + 4D, where S =
diag{s1, · · · , sn} and U are from the spectral decomposition
of (Φ+ΦT)/2− 4D = USUT.

Proof: Because C is symmetric (but Φ may not be), we
have

∥C −Φ∥2F

=
∑

1≤i<j≤p

[(cij − ϕij)2 + (cij − ϕji)2] +
p∑

i=1

(cii − ϕii)2

=
∑

1≤i<j≤p

2(cij −
ϕij + ϕji

2
)2 +

p∑
i=1

(cii − ϕii)2 + const(Φ)

=∥C − Φ+ΦT

2
∥2F + const(Φ),

(33)
where const(Φ) is a term that does not depend on C.
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Therefore, problem (32) is equivalent to

min
C

1

2
∥C − Φ+ΦT

2
∥2F , s.t. C − 4D ≼ 0. (34)

The optimality of P3(Φ;D) can then be argued by von
Neumann’s trace inequality [35, 36].
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