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Abstract—To address the problem of segmenting an image
into sizeable homogeneous regions, this paper proposes an effi-
cient agglomerative algorithm based on modularity optimization.
Given an over-segmented image that consists of many small
regions, our algorithm automatically merges those neighboring
regions that produce the largest increase in modularity index.
When the modularity of the segmented image is maximized,
the algorithm stops merging and produces the final segmented
image. To preserve the repetitive patterns in a homogeneous
region, we propose a feature based on the histogram of states
of image gradients, and use it together with the color feature to
characterize the similarity of two regions. By constructing the
similarity matrix in an adaptive manner, the over-segmentation
problem can be effectively avoided. Our algorithm is tested on
the publicly available Berkeley Segmentation Data Set as well as
the Semantic Segmentation Data Set and compared with other
popular algorithms. Experimental results have demonstrated that
our algorithm produces sizable segmentation, preserves repetitive
patterns with appealing time complexity, and achieves object-level
segmentation to some extent.

Index Terms—Image segmentation, community detection, mod-
ularity, clustering.

I. INTRODUCTION

UE to the wide use of digital cameras and smart phones,

digital images are much more ubiquitous than they were
several decades ago, resulting in the urgent need for the anal-
ysis of images, such as object recognition, image searching,
indexing, and categorization. As a very important step for
these high level image analysis tasks, image segmentation is a
preprocessing process to group image pixels into some sizable
homogeneous regions so that the complexity of further analysis
can be substantially reduced. Image segmentation has received
considerable attention since the problem was proposed, e.g.,
[Ll-[8]l, yet it still remains to be a challenging problem due to
the following reasons: 1) image segmentation is an ill-defined
problem and the optimal segmentation is user or application
dependent; 2) image segmentation is time consuming in that
each image includes a large number of pixels, especially for
high resolution images, and this prevents image segmentation
from being applied to real-time applications. In fact, Gestalt
principles [9] and some cognition and psychological studies
[10] have pointed out that several key factors affect perceptual
grouping a lot, for example, proximity, similarity, regularity,
i.e., the repetitive patterns, relative size and etc. In this paper,
we will take all these factors into consideration, and develop
a computational efficient algorithm. Moreover, comprehensive
evaluations of the segmentation performance under various
metrics are also presented.
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A. Previous Work

In the literature, lots of image segmentation algorithms have
been proposed. Here we only give a brief review of some of
the popular algorithms.

The Mean Shift algorithm [3] treats image segmentation
as a problem of clustering by detecting the modes of the
probability density function in the feature space. Each pixel
in the image is transformed to the joint spatial-range feature
space by concatenating the pixel color value and its spatial
coordinates into a single vector. Then the mean shift procedure
is applied in this feature space to yield a convergence point for
each pixel. All the pixels whose convergence points are closer
than the spatial bandwidth h, and the range bandwidth h,
are claimed to be in the same segment. In addition, minimum
segment size is enforced to guarantee sizable segmentation.
This method is usually fast. However, it is very sensitive to
the bandwidth parameter h, and h,, and often results in over-
segmentation. Since it is based on the density estimation of
the color feature for all the pixels, some smooth changes in
brightness and texture or the regularities of different colors
will converge to different modes, though they belong to the
same segment visually.

Another line of work view the segmentation problem from
the perspective of graph partition. In this framework, the image
is regarded as an undirected weighted graph, while each pixel
is treated as a node in the graph and the edge weights measure
the similarity or dissimilarity between nodes. Felzenszwalb
and Huttenlocher (F&H) [4] consider each pixel as a single
component in the initial stage, and arrange the edge weights
of dissimilarity in non-decreasing order. For each iteration,
the algorithm merges component C; and Co connected by the
current edge if the corresponding edge weight is less than:

min(Int(Cl) + T(Cl), Int(C’Q) + T(Og)), (1)

where Int(C) is the internal difference of component C,
defined as the largest weight in the minimum spanning tree of
component C; 7(C) = k/|C/, and k is a constant parameter to
control the minimize size of the segment. This algorithm gives
nearly linear time complexity, however, it is very difficult to
tune the parameter k for optimal segmentation.

Normalized Cut |[2], as another popular graph partition
based approach, incorporates the global information of the
image into the segmentation process by studying the spectral
characteristics of the graph. Given an affinity matrix W with
each entry representing the similarity of two pixels, Normal-
ized Cut tries to solve the generalized eigenvector problem:

(D — W)y = ADy, )

where D is a diagonal matrix with its diagonal entry D;; =
Zj W;;. Then the segmentation is achieved by clustering



the eigenvectors. Due to the high computational cost, it can
only deal with images of relatively small size. A variant is
the Multiscale Normalized Cut approach [11]], which allows
to deal with larger images by compressing large images
into multiple scales. However, it has the same problem with
Normalized Cut, specifically, it 1) often breaks uniform or
smooth regions where the eigenvectors have smooth gradients;
2) has a high time complexity; 3) needs a predefined number
of segments, which itself is a challenging problem to deal with.
More graph based segmentation can be found in the literature,
e.g., [12]-[14]. However, they all need human intervention,
e.g., they need a user to specify the number of regions resulting
from image segmentation.

The Watershed segmentation method regards the gradient
magnitude of an image as a topographic surface. The pixels
where a water drop starts from would drain to the same
local intensity minimum are in one segment, which is called
catchment basins. The lines separating the catchment basins
are the watersheds, namely, the boundaries. Various improved
methods are available, e.g., [15]-[18], but these methods
are generally sensitive to noise and easily lead to over-
segmentation.

The  Compression-based  Texture  Merging (CTM)
method [19] fits the image textures using the Gaussian
Mixture Model, and employs the principle of Minimum
Description Length to find the optimal segmentation, which
gives the minimum coding length under a certain distortion
ratio. Later, the Texture and Boundary Encoding-based
Segmentation algorithm [6] improves the CTM by considering
a hierarchy of multiple window sizes and offering more
precise coding length computation. To be specific, it only
encodes the texture information inside the non-overlapping
windows in each region and also encodes the boundary with
the adaptive chain code. However, this greatly increases the
computational time cost; besides, the texture feature used in
these two algorithms is essentially the pure color information
from the cut-off windows and neglects the regularities inside
the image, thus it may split the object with some regularities
of different color.

Another broad class of methods address the image segmen-
tation problem via solving the Partial Differential Equations
(PDEs). Most of PDE based methods are carried out by the
active contour model or snakes [20], where the basic idea is to
evolve a curve (object boundary) such that an energy function
is minimized. The energy function usually contains the internal
energy as well as the external energy. The internal energy
controls the smoothness of the curve, whereas the external
energy guides the curve toward the true object boundary.
Moreover, lots of researches have made improvements over
this model (cf. [21]-[24]), however, generally, these methods
are very sensitive to the noise, the model parameters and suffer
from high computational cost.

B. Our Approach

Motivated by the limitations exposed in the existing work,
our approach takes the following three aspects into consider-
ation: 1) time complexity; 2) regularity preservation; 3) the

prevention of over-segmentation. Inspired by the application
of community detection algorithms in large scale networks, we
attempt to view an image from the perspective of a network.
For a network, modularity [25] is a crucial quantity, which
is used to evaluate the performance of various community
detection algorithms. In more detail, the larger the modularity
of a network is, the more accurate the detected communities
are. Considering the efficient calculation of modularity in the
community detection algorithm, similarly, we regard image
segmentation problem as a community detection problem, and
the optimal segmentation is achieved when the modularity of
the image is maximized.

Although modularity has been applied to image segmenta-
tion by some researchers recently, e.g., [26], [27], it still faces
similar problems as other segmentation algorithms mentioned
above, due to the ignorance of the inherent properties of
images (see Section for more details). Different from the
existing algorithms based on modularity, we identify the differ-
ences between community detection and image segmentation,
start from ‘superpixels’, and propose a new texture feature
from low level cues to capture the regularities for the visually
coherent object and encode it into the similarity matrix;
moreover, the similarity among regions of pixels is constructed
in an adaptive manner so as to avoid over-segmentation.
Compared with other existing segmentation algorithms, our
proposed algorithm can automatically detect the number of
regions/segments in an image, produces sizable regions with
coherent regularities preserved, and achieves better semantic
level segmentation to some extent. The contributions of this
paper are the following:

o An efficient agglomerative segmentation algorithm incor-
porating the advantage of community detection and the
inherent properties of images is developed. The algorithm
enjoys low time complexity as well as comparable per-
formance;

o A new texture feature, namely, Histogram of States (HoS)
is proposed to capture the regularities in the image. The
HoS feature, together with the color feature, encodes
better similarity measure from the semantic level, and
is more likely to preserve regularities in the object;

e An adaptive similarity matrix construction is proposed
to avoid over-segmentation. In each iteration, the sim-
ilarity between two regions of pixels is recalculated to
reevaluate the color and texture similarity. In this way, it
can effectively avoid breaking visually coherent regions,
which share some regularities or have smooth changes in
color or texture caused by shadow or perspectives.

The remainder of this paper is organized as follows. In
Section [T} we first briefly introduce the concepts of modularity
and community detection, and discuss the existing methods
based on modularity optimization in details. Section first
explains the relation between image segmentation and com-
munity detection, followed by the proposed overall algorithm
and the detailed technical points. Section [[V|shows the experi-
mental results on the publicly available Berkeley Segmentation
Data Set (BSDS5000) [[7] as well as the Semantic Segmenta-
tion Data Set (SSDS) [28]]; both qualitative evaluation and



quantitative evaluation from three levels are provided. Finally,
we conclude our paper in Section

II. RELATED WORK

The concepts of Modularity and Community Detection be-
come very popular in the field of network science during the
past decade. Due to its application in large scale networks,
recently, researches try to explore the possibilities of applying
these concepts to image segmentation, where millions of
pixels are included. In this section, we first review these two
concepts, and then discuss two recent approaches based on
modularity optimization in details.

A. Modularity and Community Detection

Modularity was first defined by M.E.J. Newman in [25] for
the analysis of weighted networks. For a weighted network G
with the weighted adjacency matrix A, the modularity @ is
defined by:

1 kik;
Q Z[Ai,j — —210(ci, ¢5), (3)
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where A;; represents the weight between node ¢ and node j;
m=1>, ; Aij represents the total weights of the network;
ki = y A;; is the weighted degree of the node i; c; is the
community label to which node ¢ belongs; d(c;,c;) is 1 if
node 7 and node j are in the same community, otherwise
it’s 0. Intuitively, modularity means to evaluate the difference
between the actual probability of the connectivity of two nodes
in the same community and the estimated probability under the
assumption that the two nodes are connected randomly.

Community Detection becomes a hot topic in network sci-
ence during the past few years, for example, social networks. A
community is a group of nodes from the network, where nodes
in the same community are densely connected with each other,
and nodes in different communities are sparsely connected.
Communities are of vital importance in a network, since they
may represent some functional modules in the network. For
example, a community in the social network may represent a
group of friends sharing the same hobbies; a community in
the citation network may reveal the related work in a certain
research area. To uncover the interconnection of the nodes
in a network, Community Detection algorithms aim to find
a partition of the network such that every partition can well
represent certain community property.

Since the first proposal of modularity, it has been widely
used to evaluate the performance of community detection algo-
rithms and also works as an optimization index for community
detection. For example, Louvain method [29] is based on
modularity increase to detect the communities. The modularity
increase caused by merging community j into community ¢
can be computed by Equation (@):
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where ) . in the total weights of the edges inside community
i5 Y, is the total weights of the edges incident to nodes in

community 7; k; ;,, is the sum of the weights from community
j to community i; other notations are the same as defined in
Equation (3).

As is shown in Figure [I] the basic idea of Louvain method
is to iteratively repeat the process of Modularity Optimization
in Phase 1 and Community Aggregation in Phase 2 below:

e Phase 1: Modularity Optimization
At the beginning of this phase, the network is composed
of several communities (each community is a single
node initially, after several iterations, each community
is a group of nodes), for each community 7 and its
connected nodes N; = {j|A4;; > 0}, compute the
potential modularity increase AQ);; if we merge com-
munity 5 (V5 € N;) into community ¢, according to
Equation (@). Find the maximum modularity increase
caused by merging community j* and community ¢ and
merge these two communities. Repeat this process until
no modularity increase for all the communities in the
network;

e Phase 2: Community Aggregation
To reconstruct the network, merge the communities shar-
ing the same label and relabel them; treat the communities
with the same label as a single node in the network and
recompute the weighted adjacency matrix by summing
over all the weights connecting two communities.

The above processes are repeated until there is no modularity
increase caused by merging any two communities.

B. Related Approaches for Image Segmentation

Recently, modularity optimization has been applied in image
segmentation. [26] explores the possibility of directly applying
modularity maximization to image segmentation, where a top-
down spectral method with an iterative rounding scheme is
proposed for fast computation. Such a scheme can reduce
the computational cost to some extent, compared with the
practically used exchange heuristic [30]. However, it can
only deal with images of relatively small size on normal
PCs, due to the involved manipulation of a dense modularity
matrix. Besides, direct application of modularity maximization
to image segmentation is known to result in serious over-
segmentation.

To address the over-segmentation problems, [27] proposes
to use a weighted modularity, where the modularity com-
putation only occurs locally within a pre-defined distance.
Moreover, an approximation of the Louvain method, the so-
called basic iteration, is used for faster computation. However,
the newly introduced distance parameter depends heavily on
the images and the objects. For different images with different
object sizes, the distance parameter is ad-hoc, and it is very
difficult to choose a universal distance parameter.

Both of these two methods focus on how to apply mod-
ularity optimization to segmentation, and ignore the differ-
ences between community detection and image segmentation.
Specifically, both methods start from single pixel, thus, the
computational cost, though reduced to some extent by us-
ing different computational algorithms, is still too expensive,
especially for the first one or two iterations. Furthermore,
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Fig. 1. Illustration of the process for Louvain Method: for each iteration, the algorithm first identifies the nodes which belong to the same community by
optimizing the modularity; and then aggregate the community to construct a new network. This process stops only when no labeling changes.

since they only capture the color feature, they often break the
regularities inside the object and leads to over-segmentation,
even with properly chosen distance parameter in [27]].

III. ALGORITHM DESCRIPTION

Image segmentation is related to community detection to
some extent. Similar to nodes in the same community, the
pixels inside the same segment also share some properties in
common, like pixel color value. In this sense, we can treat
each homogeneous image segment as a community, and think
of image segmentation as a community detection problem.

However, due to the inherent properties of images, seg-
mentation is not exactly a community detection problem
and directly apply community detection algorithms to image
segmentation will lead to awful performance. The differences
between image segmentation and community detection can be
revealed from the following aspects: 1) different from single
node in a community, single pixel cannot capture these regu-
larities in each visually homogeneous segment; 2) the pixels
inside the same segment possibly have completely different
properties, like color; while for communities, a community is
a group of nodes share exactly similar properties. Take the face
image as an example, the whole face should be treated as one
segment for the purpose of image segmentation. In contrast,
for community detection, the eye pixels would be treated as
a separate community, while other parts of the face would
be treated as another community due to the fact that the pixel
color value property of the eyes is totally different from that of
other parts of the face; 3) compared with communities, images
share some a priori information, say, adjacent regions are more
likely to belong to the same segment; 4) as the aggregation
process goes on, more pixels are included in one region and the
texture inside the region keeps updating, while the properties
of the aggregated communities do not change much.

To address the above mentioned problems, we propose an
efficient agglomerative image segmentation algorithm, taking

advantage of the efficient calculation of the modularity opti-
mization in community detection and the inherent properties
of images. The algorithm starts from a set of over-segmented
regions, thus, runs very fast, and produces sizable segmenta-
tion with the regularities inside the same object preserved.
The overview of the proposed segmentation algorithm is
summarized in Algorithm [I] And the detailed presentation of
some technical points for our algorithm is as follows.

A. Superpixels

The agglomerative algorithm can start the aggregation pro-
cess by treating each single pixel as a community, however,
it turns out that this will be too much time consuming,
especially for the first Louvain iteration. Fortunately, this
is indeed not necessary, because no texture information is
included for single pixel. Therefore, instead, we start with
’superpixels’, which can reduce the computational cost as
well as capture the regularities. Superpixels are a set of very
small and homogeneous regions of pixels. Initializing with
superpixels can greatly reduce the time complexity without
affecting the segmentation performance. Hence, we first em-
ploy a pre-processing step to oversegment the image into a
set of superpixels. This preprocessing step can be achieved by
simple K-Means clustering algorithm (K is set to be a relative
large value, e.g., 200 or more) or other superpixels generating
algorithms. In our implementation, we use a publicly available
code [31] to get the superpixel initialization.

As is shown in the middle of Figure [2| the superpixel gener-
ation step usually gives more than 200 oversegmented regions
on average. This step can greatly reduce the complexity to
only consider about 200 nodes in the first iteration for our al-
gorithm. The right column of Figure 2] shows the segmentation
result given by our proposed algorithm, where only around 10
homogeneous regions with similar regular patterns inside are
left. This fact demonstrates that the segmentation results are
indeed the effects of our proposed algorithm rather than the
superpixel generation algorithm.



Algorithm 1 Modularity based image segmentation

Input: Given a color image I and its oversegmented initialization with a set of superpixles R = {Ry, ...

1: while Pixel labels still change do

R}

2:  Reconstruct the neighborhood system for each region in R.
3:  Recompute the histogram of states texture feature and estimate the distribution of the color feature for each region.
4:  Adaptively update the similarity matrix W according to Equation (I0), W;; # 0 only if R; and R; are adjacent regions

in 1.

5:  while modularity increase still exists by merging any two adjacent regions do

6: for each region R; € R do

7: Compute the modularity increase caused by merging region R; with any of its neighboring regions according to
Equation @) and find the neighboring region R;, which gives the largest modularity increase among all of the
neighboring regions of R;.

8: Merge region R; and region R; by setting the labels of pixels in these two regions to be of the same label

9: end for

10:  end while

11:  Update the region labels to get a new set of regions R =

12: end while
Qutput: The set of image segments R.

{R1,..., R}, where m is current number of regions;

(a) Original image

Fig. 2. Comparison of superpixel and segmentation result.

B. Choice of Color Space

To capture different aspects of the color, various color
spaces are proposed in the literature [32]], such as RGB,
L*a*b, YUV, HSV and XYZ. To achieve good segmentation
performance, the choice of color space is very important.
Among all the color spaces, the L*a*b color space is known to
be in accordance with human visual system and perceptually
uniform, hence the image representation in this color space
has been widely used in the field of image processing and
computer vision. Due to this facet, all of our discussions of
the algorithm are in the L*a*b color space. Later, in the
experimental evaluation section, we have also validated that
the segmentation performance in L*a*b color space is much
better than that in the RGB color space.

C. Neighborhood System Construction

Different from normal networks, such as social networks or
citation networks, images have self-contained spatial a priori
information, i.e., spatial coherent regions are more likely to
be regarded as a single segment, while regions far away from
each other are more likely to belong to different segments.
Hence, different from Louvain method where two regions are
considered to be neighbors as long as the similarity weight
between them are nonzero, we have instead constructed a
different neighborhood system by incorporating this spatial a

(b) Superpixel initialization

(c) Our segmentation result

prior information of images. To be specific, we only consider
the possibility of merging neighboring regions in the image
during each aggregation process. To achieve this, for each
region in the image, we only consider the adjacent regions
of this region to be its neighbors and store its neighboring
regions using an adjacent list. The adjacent regions are defined
to be the regions that share at least one pixel with the current
region. In the following processes for the similarity matrix
construction and aggregation, we only consider the current
region and the regions in its neighborhood system.

D. Features for Similarity

Color is the most straightforward and important feature for
segmentation, so we use the pixel value in the L*a*b color
space as one of the features for computing the similarity.
However, the color feature alone cannot achieve good segmen-
tation performance, since it does not consider the repetitive
patterns of different colors in some homogeneous object. For
example, in the case of a zebra in Figure[2] the black and white
stripe regularities on zebra would be treated as a whole part
according to human’s perception. Simply using color feature
will break down these regularities into different segments. To
address this problem, we not only employ the color feature,
but we have also proposed a novel texture feature to capture
the regularities in the image. Our proposed texture depicter is



motivated by the Histogram of Oriented Gradients (HoG) [33]]
for pedestrian detection, however, instead of constructing a
histogram of gradients, we construct a Histogram of States
(HoS) for each region following the three steps below.

1) Compute the gradient magnitude and 360 degree ori-
entation information for each pixel in the image and
then eliminate those magnitude without any texture
information by thresholding the magnitude information;

2) At each pixel position, use a 5 x 5 sliding windowﬂ and
form a histogram of the oriented gradient by dividing
360 degree orientation into 8 bins, then each pixel is
represented by a 8 dimensional binary orientation vector
with each dimension indicating whether this orientation
exists in the current sliding window. In this sense, the
texture information for each pixel belongs to one of the
28 = 256 states;

3) For each region, we construct a 256 dimensional his-
togram of states vector, each dimension counts the
number of such state in the segment, then normalize
it by the total number of pixels in the segment.

An experimental comparison between segmentation with
HoG and segmentation with HoS is shown in Figure 3
It is clear that with HoG used in encoding the similarity,
the visually coherent pyramid together with the desert are
broken. In contrast, HoS leads to better visual performance,
owing to the robustness of HoS to some small noise (because
HoS thresholds the gradient magnitude with small values and
uses a 8-dimensional binary vector to indicate the existence
of the corresponding orientation), and HoS’s capability of
better capturing the texture information (a sliding overlapping
window, rather than a dense grid (for HoG), is used in HoS).

Remarks: HoS can be treated as a special case of the general
Bag-of-Words model. For the general Bag-of-Words model,
one important step is to construct the ‘Words’. In our case,
each of the 256 states is used as a “Word’. For each region,
we calculate the occurring frequency of each “Word’, and form
a normalized histogram to represent the texture for this region.

E. Similarity Measure

We use different similarity measures for the two features.
For the color feature, each pixel is represented by a three
dimensional vector in the L*a*b color space. To measure the
similarity between two regions of pixels, we assume that the
pixel value in the same region follows a three dimensional
Gaussian distribution, for example, pixels in region R; and
region I2; follow two Gaussian distributions, respectively, i.e.,
R; ~ N(u1,%1) and R; ~ N(pg2,%2). In the literature, lots
of distance measures for distributions are studied, here we take
a closer look at the following popular distance measures:

o Kullback-Leibler (KL) Divergence
Kullback-Leibler (KL) Divergence is an information crite-
ria to measure the divergence of two probabilistic density

'We test the window size with 5, 7 and 9 pixels, all these choices provide
comparable satisfactory results qualitatively as well as quantitatively, thus we
choose 5 X 5 sliding window for computational efficiency

distributions p(z) and g(x). It is defined as:

dir = x)lo M 5
KL QCEZXP( ) gq(x) (5)
We can use this criteria to measure the distance of two
regions of pixels. However, the drawback of this measure
is that when p(z) and ¢(x) have different supports, then
q(z) can be 0 and the divergence measure becomes ill-
posed.
« Earth Mover’s Distance
Earth Mover’s Distance (EMD) [34] is a popular measure
to describe the distance of two image distributions, and
hence a very good metric to measure the distance of
two regions of pixel value. It is proved that for two
independent Gaussian distributions, EMD is equivalent
to the Mallows distance [35]] defined in Equation (6).

dpamp (N (1, 21), N(p2, 22))?
= (1 — p2) " (1 — p2) + Tr(S1 + B — 2(2122)%)(-6)
e Mean Distance

Mean Distance (MD) is a trivial heuristic measure, how-
ever, it’s a good approximation to the Earth Mover’s
distance. For MD, we simply use the mean of the pixel
value for the two regions to approximate the Earth
Mover’s distance as in Equation ({7), which neglects the
difference of the covariance matrices, and hence is faster
than computing the EMD.

dyp (N (i, 1), N2, $2))? = (1 — p2)™ (11 — pia)-
(N

In our implementation, we can use both Earth Mover’s
Distance (EMD) and Mean Distance (MD) to compute the
distance between the two color feature distributions for two
regions of pixels. To transform the above distribution distance
into similarity measure, we simply use a Gaussian type radius
basis function in Equation (8):
7diSt(Ri, R]) } ®)

202 ’
where dist(R;, R;) measures the distance between the pixel
value distributions for region I; and R;. In our experiments,
we set o = 0.08 and use the Mean Distance.

For our proposed Histogram of States (HoS) texture feature,
each region is represented by a 256 dimensional vector, i.e.,
for region R; and R;, the HoS feature vector h;, h; € R256,
We use the cosine similarity measure to measure the similarity
between the regions, as indicated in Equation @])

_ hih
Al - (1725117

W;j(color) = exp{

W;j(texture) = cos(h, hj) 9)

F. Adaptive Similarity Matrix Construction

In the traditional Louvain method for community detection, a
consistent similarity matrix is used to update the new similarity
matrix by simply summing over the weights of nodes in
two different communities during each iteration. However, in
our algorithm, we propose to construct the similarity matrix



(a) Original image

Fig. 3. Comparison of segmentation results with HoG and HoS.

adaptively. We maintain an adaptive similarity matrix during
each iteration by recomputing the similarity between regions
again according to Equation (8) and (9). The reason for this
is because during the aggregation process, the region keeps
expanding, and the similarity measure computed from the
previous iteration might not suitable for current iteration. By
maintaining an adaptive similarity matrix, we reevaluate the
similarity between current regions and hence can effectively
overcome the problem of splitting the non-uniformly dis-
tributed color or texture, which should be grouped into the
same segment from the perspective of human vision system.
In this way, over-segmentation is avoided.

Figure [ shows the segmentation results based on the
consistent similarity matrix used in the community detection
and our proposed adaptive similarity matrix, respectively (for
all the segmentation result figures presented in this paper, red
contours outline the boundary of different segments and each
segment is shown by its mean color). It can be seen that with
consistent similarity matrix, the images are segmented into
homogeneous regions, but it tends to be oversegmented. This
validates our analysis in the previous section. On the contrary,
our proposed adaptive similarity matrix based segmentation
gives much better segmentation results, visually.

During each iteration, we use a hybrid model to empirically
combine the color feature and the HoS texture feature as
below:

Wi = ax \/Wij (texture) x W;;(color)+(1—a)x W;;(color),

(10)
where « is a balancing parameter. As Figure [5] shows, a given
image can have multiple segmentation results with respect to
different choices of a. When the texture information is not
taken into consideration, i.e., a = 0, the stripes on the zebra are
broken into different segments. With the increasing value of a,
more such stripe patterns are encoded into the similarity, thus
better preserves the regularities. However, if a is too large, the
trees and the grass in the image are merged into one segment.
Considering the importance of color feature, we therefore give
higher priority to the color feature.

Remarks: Recall that in [4]], adaptive weighting scheme is
also used through (I), where the adaptive threshold is decided
by the largest edge weights in the minimum spanning tree of
the two components C; and Cs5. However, the adaptiveness
here is caused by the aggregation process, and all the edge
weights are only computed once at the beginning of the

(b) Segmentation with HoG

(c) Segmentation with HoS

construction of the graph. In contrast, in our scheme, the
similarity (edge weight) is reevaluated during each iteration,
that is, the texture similarity and the color similarity are re-
computed. This is very important because as the aggregation
process goes on, the regularities inside one region keeps
changing, and simply using the edge weights constructed
at the very beginning cannot capture these changes. Hence,
our adaptive similarity matrix construction scheme effectively
helps preserve the regularities and avoids over-segmentation.

IV. EXPERIMENTAL EVALUATION

In this section, extensive experiments have been done
to evaluate the segmentation performance of our proposed
algorithm, qualitatively as well as quantitatively. Moreover,
we also discuss the time complexity of several different
algorithms. The algorithms are tested on two datasets: 1)
one dataset is the publicly available Berkeley Segmentation
Data Set 500 (BSDS500) . BSDS500 is comprised of
500 images, including 200 images for training, 200 images
for testing and 100 images for validation. BSDS500 also
provides ground-truth segmentations manually generated by
several human subjects. For each image, 5 to 8 ground-truth
segmentation maps are provided; 2) the other dataset is the
Semantic Segmentation Data Set (SSDS) , which includes
100 images selected from BSDS500, and also contains the
semantic level ground-truths that are generated by using the
existing ground-truths of BSDS500 as well as an interactive
segmentation tool. Figure |6| shows some sample images from
BSDS500 and the corresponding ground-truth segmentations
provided by BSDS500 and SSDS. It can be seen that some
ground-truth segmentations provided by BSDS500 is of fine
granularity, while SSDS gives better semantic level ground-
truth segmentations instead.

A. Qualitative Evaluation

For qualitative evaluations, we present some figures of the
segmentation results. We categorize all images in BSDS500
into four classes, namely, people, animals, urban scenery
and natural scenery. Figure []] presents some segmentation
results of our proposed modularity based image segmentation
algorithm on some randomly chosen images from the four
different classes in BSDS500. From these qualitative results,
we can see that the proposed algorithm produces sizeable
segments for all the selected images; besides, the human



Fig. 4. Segmentation results based on different similarity matrices. 7op: Original images. Middle: Segmentation results with consistent similarity matrix.

Bottom: Segmentation results with adaptive similarity matrix.

(a) Original ®)a=0

() a=04 (g) a=0.5

Fig. 5. Our segmentation results for varying choices of a.

face, animals, castle and mountains are all segmented into an
integrate part. Even if some pixels have very different values
inside the same segment, the similarity matrix encoding of the
HoS texture feature successfully preserves the regularities and
classifies those pixels into the same segment. In this sense,
our proposed algorithm achieves object-level segmentation to
some extent.

We also qualitatively compare our algorithm with other

(c) a=0.1

(h) a =0.6

(d) a=0.2 () a=0.3

(i) a=0.7 (G) a=0.8

popular segmentation algorithmsﬂ including Weighted Mod-
ularity Segmentation (WMS) [27], Mean-Shift (MS) [3]l, Mul-
tiscale Normalized Cut (MNC) (11|, F&H [4)], Marker Con-
trolled Watershed (MCW), Compression based Texture Merg-
ing (CTM) and Texture and Boundary Encoding-based
Segmentation (TBES) [6]. The segmentation results are pre-
sented in Figure As can be seen, MS, MNC, F&H and MCW
all show different extent of over-segmentation. In contrast,

2We have not compared with , because it takes too much memory, and
cannot deal with 481 x 321 images in the BSDS500 and SSDS dataset on
normal PC.



Fig. 6. Sample images. Top: Original images. Middle: Ground-truth segmentations from BSDS500. Bottom: Ground-truth segmentations from SSDS.

(a) People (b) Urban Scenery

(c) Animals (d) Natural Scenery

Fig. 7. Modularity based segmentation results for different categories in BSDS500. For each category, Top: Original images. Bottom: Segmentation
results generated by our methods.

this issue is mitigated for other algorithms. Nevertheless, we observe that WMS, CTM and TBES break the regularities in



some homogeneous regions, such as the shirt and human face.
Thanks to the HoS texture feature, our proposed algorithm
well preserves these regularities.

B. Quantitative Evaluation

Qualitative evaluation is too subjective and the evaluations
by different people vary a lot. In this paper, we quanti-
tatively evaluate the segmentation performance from three
levels, namely, region level, boundary level and semantic level,
and the segmentation results are compared with seven other
popular methods mentioned in Section In the WMS
implementation, we use the intervening contours method to
construct the affinity matrix, and set the distance parameter to
be dy = 20. The MS is run with the same parameter setting
used in [3]] for large images, say, (hs,h,) = (16, 7). For the
MNC, we choose the number of segments to be K = 20,
which is the average number of segments from the ground-
truths. According to [4], for F&H, the Gaussian smoothing
parameter is set to be ¢ = 0.8 In the CTM, we use the
distortion rate ¢ = 0.2. The quantization level in TBES is
set to be ¢ = 150 to be consistent with [6].

1) Region Level: We employ two commonly used region-
based metrics for evaluating two pairs of segmentations, i.e.,
the Probabilistic Rand Index (PRI) [36] and the Variation of
Information (VOI) [37]], which are described as below:

o The Probabilistic Rand Index (PRI) is a classical evalua-
tion criteria for clusterings. PRI measures the probability
that the pair of samples have consistent labels in the
two segmentations. The range of PRI is [0,1], with
larger value indicating greater similarity between two
segmentations;

o The Variation of Information (VOI) measures how much
we can know of one segmentation given another segmen-
tation. VOI is defined by:

VOI(C,C")=H(C)+ H(C") —2I(C,C"), (11)
where H(C') and H(C") are the entropy of segmentation

C and C’, respectively and I(C,C") is the mutual infor-

mation of two segmentations C' and C’. The range of this

metric is [0, +00), and the smaller the value is, the more
similar the two segmentations are.

We run the algorithms on the 100 validation images from
BSDS500 once so as to make the result consistent with the
BSDS300 [38]] (previous version of the dataset). Since the
ground-truth in BSDS500 has multiple segmentation maps,
typically, 5 segmentation maps per image, we simply use the
mean value of the metric calculated between the segmentation
result and all the ground-truths for each image. To determine
the balancing parameter a, we run our algorithm on each of the
100 images for varying a from 0.05 to 0.5 with 0.05 interval.
It turns out that @ = 0.25 strikes the best balance between the
PRI and VOI metrics, thus we use 0.25 across all the following
experiments. For each algorithm, we use the same parameter
settings to run across all the images. The mean values of PRI
and VOI are reported in Table [I}

TABLE I
REGION LEVEL: QUANTITATIVE COMPARISON OF DIFFERENT
ALGORITHMS ON BSDS

Algorithms PRI (larger better) | VOI (smaller better)

Human 0.87 1.16
Our’s (L*a*b) 0.777 1.879
Our’s (RGB) 0.749 2.149
WMS 0.752 2.103
MS 0.772 2.004
MNC 0.742 2.651
F&H 0.770 2.188
MCW 0.753 2.203
CTM 0.735 1.978
TBES 0.785 2.002

In Table |l the third and forth rows show the performance of
the proposed algorithm in different color spaces. Again, it has
been validated that the algorithm works better in the L*a*b
color space than in the RGB color space in terms of both
PRI and VOI. Therefore, we run our algorithm in the L*a*b
color space for all the following experiments. Also, in terms
of VOI, the proposed algorithm achieves the best performance
among all the popular segmentation algorithms; in terms of
PRI, our algorithm has a close performance with TBES, and
outperforms all the rest algorithms.

2) Boundary Level: We also evaluate the performance using
the standard boundary-based methodology developed in [39].
This framework first gets the optimal boundary matching
between the testing segmentation and the ground-truth, and
then evaluates the results from two aspects: Precision and
Recall. Given the testing segmentation C}.s; and the ground-
truth segmentation Cg, the Precision measures the fraction of
detected boundary pixels that match the ground-truth bound-
aries, and is defined as:

|Ctest‘ ﬂ ‘Cgt‘
|Ctest| ’

where |C| means the number of boundary pixels in the
segmentation C. Similarly, the Recall is defined as:

‘Ctest| ﬂ |Cgt|
|Cgt‘ ’

which measures the fraction of ground-truth boundary pixels
that are detected. To summarize these two indices, the global
F,-measure, defined in Equation @]), is used to measure the
harmonic mean of the Precision and Recall. We set o = 0.5
and use it for all the experiments.

Precision = (12)

Recall = (13)

P = Precision - Recall

(1 — @) - Recall + « - Precision” (14)
Table [ lists the Precision and Recall values for different
algorithms under the same settings as the region level eval-
uation. It can be seen that our algorithm obtains the highest
precision with a value of 0.733, indicating that most of our
generated boundaries match the ground-truth segmentation
manually generated by human subjects. However, the result
reports the lowest recall value for our algorithms compared
with other methods, which leads to a relatively lower Fj 5-
measure compared to CTM and TBES. The reason for this is
probably because the Recall is sensitive to under-segmentation.



(a) Original (b) Our’s

(f) F&H (2) MCW

Fig. 8.

In our algorithm, we encode the HoS feature into the similarity
matrix to preserve regularities, and update the similarity matrix
in an adaptive fashion to produce sizable segmentation, which
leads to some extent of under-segmentation. On the contrary,
other methods exhibit different degrees of over-segmentation,
hence obtain larger Recall values.

TABLE 11
BOUNDARY LEVEL: QUANTITATIVE COMPARISON OF DIFFERENT
ALGORITHMS ON BSDS

Algorithms | Precision | Recall | Fj 5-measure
Our’s 0.733 0.508 0.600
WMS 0.491 0.714 0.580

MS 0.431 0.750 0.548
MNC 0.575 0.602 0.588
F&H 0.442 0.762 0.560
MCW 0.480 0.726 0.578
CTM 0.702 0.532 0.607
TBES 0.730 0.522 0.609

3) Semantic Level: As is pointed out in [8], the ground-
truth segmentations provided by BSDS500 are too granular
and designed for boundary detection and general segmentation.
Therefore, we perform the semantic level evaluation on the
SSDS proposed in [28]. In addition to the semantic level
ground-truths, 28] also provides an easy-to-compute Precision
and Recall boundary evaluation metric to replace the corre-
sponding one based on optimal boundary matching in [39].
We run the algorithm once for the 100 images in SSDS, and
use the evaluation software provided by [28] to compute the
Precision, Recall and the combined Fj 5-measure. The results
are listed in Table [Tl as below:

(c) WMS

(e) MNC

(h)y CTM (i) TBES

Qualitative comparison of segmentation results by some popular methods.

TABLE III
SEMANTIC LEVEL: QUANTITATIVE COMPARISON OF DIFFERENT
ALGORITHMS ON SSDS

Algorithms | Precision | Recall | Fj 5-measure
Our’s 0.408 0.500 0.435
WMS 0.272 0.302 0.286

MS 0.168 0.399 0.226
MNC 0.312 0.264 0.277
F&H 0.235 0.331 0.271
MCW 0.228 0.342 0.274
CTM 0.387 0.458 0.407
TBES 0.404 0.492 0.430

As is shown in Table our algorithm achieves the best
performance in terms of all three indicies compared with other
algorithms. We have a relatively higher Recall value on this
dataset. This is reasonable since the ground-truths are object
level, which caters to our algorithm. This result demonstrates
that our proposed algorithm achieves better semantic level
segmentation than others. We have also noted that TBES
obtains very close performance with the proposed algorithm.

C. Time Complexity

Considering the large amount of pixels to deal with for
images, lower time complexity without impacting the perfor-
mance much is always preferred, especially in the situation
where real time application is needed. We compare the run
time of our proposed algorithm with CTM and TBES, since
these three algorithms start with superpixels. Given the same
superpixel initializations. we run the algorithms over the 100
validation images from BSDS500 once, and then compute the
mean time and the lower/upper bound of the 95% confidence
interval for the run time, which are listed in Table [[V] All



the algorithms are implemented in Matlab and run on the 2.4
G H z Intel processor with 4 GB of RAM. It can be seen that
our algorithm runs consistently faster than CTM and TBES,
specifically, about 3 times faster than CTM and more than 40
times faster than TBES on average. Besides, from the lower
and upper bound, we can see that the variation of the run
time for CTM and TBES is much larger than our proposed
algorithm. In the experiment, we have also observed that, on
average, it takes about 5 to 6 iterations before the algorithm
converges and as the aggregation process goes on, less time
is needed for each iteration, since there are fewer regions to
be aggregated after each iteration.

TABLE IV
95% CONFIDENCE INTERVAL ANALYSIS FOR TIME COMPLEXITY (IN
UNIT OF SECONDS)

Algorithms | Lower Bound | Mean | Upper Bound
Our’s 18.81 20.40 22.00
CTM 25.63 67.08 108.53
TBES 586.74 842.86 1062.97

V. CONCLUSION

In this paper, we have proposed an efficient image seg-
mentation algorithm taking advantages of the scalability of
modularity optimization and the inherent properties of images.
Adopting the bottom-up framework, the proposed algorithm
automatically detects the number of segments in the image,
and by employing the color feature as well as the proposed
Histogram of States (HoS) texture feature, it adaptively con-
structs the similarity matrix among different regions, opti-
mizes the modularity and aggregates the neighboring regions
iteratively. The optimal segmentation is achieved when no
modularity increase occurs by aggregating any neighboring re-
gions. Results of extensive experiments have validated that the
proposed algorithm gives impressive qualitative segmentation
results; besides, it is reported that the new algorithm achieves
the best performance among all the experimented popular
methods in terms of VOI and Precision on BSDS500. Since
the algorithm aims to avoid over-segmentation, it produces
low Recall value. In addition, it is demonstrated that the new
algorithm can preserve regularities in the object and achieve
the best performance from the semantic level on SSDS.
What’s more, our proposed algorithm provides appealing time
complexity and runs consistently faster than CTM and TBES
under the same experiment settings.
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