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Summary

Voice and video over IP are becoming increasingly popular and represent the largest source of profits as consumer

interest in online voice and video services increases, and as broadband deployments proliferate. In order to tap the

potential profits that VoIP and IPTV offer, carrier networkshave to efficiently and accurately manage and track the

delivery of IP services. The traditional approach of using port numbers to classify traffic is infeasible due to the usage

of dynamic port number. In this paper, we focus on a statistical pattern classification technique to identify multimedia

traffic. Based on the intuitions that voice and video data streams show strong regularities in the packet inter-arrival

times and the associated packet sizes when combined together in one single stochastic process, we propose a system,

calledVOVClassifier, for voice and video traffic classification.VOVClassifieris an automated self-learning system

that classifies traffic data by extracting features from frequency domain using Power Spectral Density analysis and

grouping features using Subspace Decomposition. We applied VOVClassifier to real packet traces collected from

different network scenarios. Results demonstrate the effectiveness and robustness of our approach that is capable of

achieving a detection rate of up to 100% for voice and 96.5% for video while keeping the false positive rate close to

0%. Copyright c© 2008 John Wiley & Sons, Ltd.
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1. Introduction

Over the past 60 years or so, voice and video

services like telephony and television have established
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2 J. F.ET AL.

themselves as an integral part of everyone’s life. Tra-

ditionally, voice and video service providers built their

own networks to deliver these services to customers.

However, tremendous technical advancements in the last

decade has revolutionized the mode of delivery of these

services. Today, these services are delivered to the users

over the Internet and we believe that there are two main

reasons for this:(i) Delivering services over the Internet

in IP packets is much more economical for voice and

video service providers,(ii) The massive penetration

of broadband (i.e., higher bandwidth) Internet service

has ensured that the quality of voice and video services

over the Internet is good enough for everyday use.

The feasibility of a more economical alternative for

voice and video services attracted many Internet service

providers (ISPs) like Comcast, AT&T, and Verizon

among several others, to offer these services to end users

at a lower cost. However, non-ISPs like Skype, Google,

Microsoft, etc. have also started offering these services

to customers at extremely competitive prices (and on

many occasions for free).

From an ISP’s perspective, traffic classification has

always been a critical activity for several important

management tasks like traffic engineering, network

planning and provisioning, security, billing, and quality-

of-service (QoS). Given the popularity of voice and

video services over the Internet, it has now become all

the more important for ISPs to identify voice and video

traffic from other service providers for 3 reasons:(i)

Voice and video services other than ISP’s own service

will severely impact its revenues and hence ISPs may

wish to shape/block flows from these services,(ii) From

a traffic engineering perspective, ISPs may sometimes

need to prioritize other more important traffic (e.g. VPN

traffic) to ensure the promised QoS is met, than voice

and video services from other service providers like

Skype, Microsoft, and Google.(iii) From a security

perspective, an ISP should always have the capability

to accurately identifyall flows and block all malicious

ones.

Service providers like Skype, Microsoft (MSN), and

Google (GTalk) have evolved over the last few years

from providing isolated services to bundled services.

In other words, service providers initially offered only

individual services (either voice, video, file transfer,or

chat) to end-users. However, today, they offer voice,

video, file transfer, and chat as one bundled service.

This change in service paradigm has resulted in changes

to the voice and video traffic/flow characteristics. In

general, we categorize all multimedia (i.e., voice and

video) flows into two types:(i) Homogeneous flows:

These are flows where every multimedia flow is either a

voice or a video flow.(ii) Hybrid flows:These are flows

where voice and video streams are bundled with other

services such as file transfer and chat. In other words,

the same flow at layer-3/layer-4 can now carry multiple

streams at the application layer.

Identifying voice and video traffic in both homoge-

neous and hybrid flows is a very challenging task. Initial

approaches for voice detection relied on application

payload signatures. For example, in [1] the authors study

the problem of identifying voice traffic that use the
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PROTOCOL OBLIVIOUS CLASSIFICATION OF MULTIMEDIA TRAFFIC 3

standard H.323 protocol [2]. It identifies voice traffic by

first recognizing the TCP setup phase of H.323 using

payload signatures, and subsequently analyzing the

UDP data to identify the associated RTP stream. Such

techniques are simple, efficient, and extremely accurate.

However, service providers started using advanced

encryption techniques for their services, thus making

signature based approach obsolete. Hence, the research

community started focusing on developing general

classification techniques that rely solely on layer-

3/layer-4 information (like packet size and packet inter-

arrival time) about traffic flows. These techniques can be

broadly classified into two:(i) Techniques that classify

multimedia (i.e. voice and video) from the rest of the

Internet traffic [3] [4] [5], and(ii) Identifying traffic

originating from specific applications (for example, [6]

tries to identify Skype voice flows, while [7] tries to

identify all Skype flows). These techniques have several

drawbacks when dealing with realistic traffic on the

Internet: (i) None of these approaches can separate

generic homogeneous voice and video flows from each

other irrespective of the application that generated them.

(ii) When it comes to hybrid flows, there are no known

approaches that can effectively identify the existence of

hidden voice and/or video streams.

In this paper, we address the above issues and propose

a self-learning voice and video traffic classifier called

VOVClassifier , i.e., Voice Video Stream Identifier,

that not only identifies voice and video traffic in both

homogeneous and hybrid flows, but also labels these

flows with the application that generated these flows.

This classifier works in two phases:offline training

phase andonline detectionphase.

In the offline training phase, a sample set of flows

from applications of interest are passed as an input

to the VOVClassifier . For example, if the application

of interest is Skype, then in the training phase we

feed theVOVClassifierwith homogeneousSkype voice

and video flows. Note that irrespective of whether we

are interested in classifying homogeneous or hybrid

flows, the input to theVOVClassifierduring the training

phase is alwayshomogeneousflows. Similar to other

classifiers [3], theVOVClassifier also relies on two

main characteristics of packets in voice and video flows:

packet sizeand packet inter-arrival time. However,

unlike other approaches that consider such metrics

independently from each other, we have developed a

novel methodology that extracts the hidden temporal

and spatial correlations of these features and studies

its regularities in the frequency domain. The approach

that we propose in this work first models these features

into a two-dimensional stochastic process, and then

analyzes the properties of this process using thePower

Spectral Density(PSD) analysis. This PSD analysis

results in application fingerprints that can now be used

for accurate classification of flows from the trained

application. Note that this fingerprinting mechanism

not only identifies voice and video traffic, but further

clusters these voice and video flows into specific

applications. Such a grouping will help differentiate

between voice/video flows from different applications

(for example, Skype voice traffic and MSN voice traffic),
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thus enabling ISPs to administer application priorities

depending on the service level agreements. In the online

detection phase,VOVClassifierfirst computes the PSD

fingerprint for the flow, and then compares it to the

existing fingerprints to classify and subsequently label

the flow as belonging to a particular application.

Our main contributions in this paper are:

• We propose a novel voice and video classifier,

called VOVClassifier , that is capable of

identifying voice and video streams even if these

streams are hidden inside bundled application

sessions. This classifier works in two phases:

offline training phase and online detection phase.

In the training phase, we extract fingerprints for

voice and video flows, and in the detection phase

we use these fingerprints to accurately classify

and label flows in real-time.

• We propose a novel methodology for extracting

the fingerprint of voice and video flows. We first

model the packet size and inter-arrival time of

packets in a flow as a two dimensional stochastic

process, and subsequently use power spectral

density analysis to extract the hidden regularities

constituting the fingerprint of the flow. We show

that these fingerprints are unique for voice and

video flows (and also for each application that

generates these flows) and can be easily clustered

to create a voice and video subspace. These

subspaces can be separated by a linear classifier.

• We use real packet traces containing voice,

video, and file transfer sessions in Skype, Google

Talk, and MSN to comprehensively evaluate our

methodology. Our results show that our approach

is very effective and extremely robust to noise.

In fact, we found that the detection rate for

both voice and video flows inVOVClassifierwas

99.5% with negligible false positive rate when

considering only homogeneous flows. When

considering hybrid flows, our voice and video

detection rates were 99.5% and 95.5% for voice

and video traffic while still keeping the false

positive rate close to 0.

The rest of the paper is organized as follows. In

Section 2 we introduce related research work and

present the background for our current work. Section 3

presents some key intuitions that constitute the essence

of our methodology. In Section 4 we present the overall

architecture of our system. Section 8 demostrates the

effectiveness of our system using real packet traces

while Section 9 concludes the paper.

2. Related Work, Background, and Data

Description

In this section, we first present related work and then

give a brief introduction to voice, video, and file transfer

streams. We also describe the voice, video, and file

transfer streams that we collect for all our experiments.

2.1. Related Work

Traffic classification has received a lot of attention in the

past [3,8–18]. The focus of most of these works has been

to identify and classify traffic into categories like web,
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email, bulk transfer, peer-to-peer, and/or multimedia

(i.e., voice and video flows) among several others. For

example, in [11], the authors propose a novel approach

calledBLINC that looks at the flow attributes at multiple

levels (social, functional, and application levels) to

classify traffic into different categories. Other works

like [3,12,17,18] focus on a identifying a particular type

of application class like peer-to-peer, multimedia, chat,

etc. Our current work differs from all of above research

in several aspects:

• We focus not only on identifying mutimedia

flows (similar to other works), but also focus on

identifying if the flow contains a voice and/or a

video stream. In other words, our aim is to be

able to classify any given flow as containing voice

or video streams by looking at the layer-3/layer-4

headers in the packets belonging to the flow.

• We emphasize on identifying the presence of

voice and video streams in hybrid flows that

combine voice and video streams with other

applications like file transfer and chat. To the best

of our knowledge, we are not aware of any other

work that addresses this problem.

2.2. Background: Voice, Video and File Transfer

Streams

Voice Stream: A key aspect of most voice streams on

the Internet is the interactive behavior of users. For

example, a voice-over-IP (VoIP) phone call typically

involves two parties communicating with each other

in real-time. Hence one of the important parameters

that characterizes voice traffic is the inter-packet delay

(IPD). Several standard codecs can be used for this

voice communication, and each of these codecs specify

different IPD values. We list a few of these standard

codecs in Table I. VoIP service providers like Skype,

Microsoft (or MSN), and Google (or GTalk) give users

the ability to configure different codecs depending on

the network conditions. However, by default most of

these service providers use proprietary codecs whose

specifications are not available to analyze. In our

experiments, we noticed that Skype and MSN voice

traffic use proprietary codecs that could either transmit

packets every 20 ms or 30 ms. Although these codecs

specify the IPD at the voice transmitter side, the packets

that arrive at the receiver do not have this IPD. One of

the primary reasons for this is the indeterministic delay

(due to router queues, packet paths, etc.), also referred

to as jitter, experienced by the packets that traverse

different links in the Internet. In order to minimize the

impact of jitter on the quality of voice traffic, voice

applications typically generate packets that are very

small in size. Thus, despite the variations due to jitter,

voice streams still exhibit strong regularities in the IAT

distribution at the receiver side.

Video Streams: Video applications (i.e., live streaming

media) send images from a transmitter to a receiving

device by transmitting frames at a constant rate.

For example, the H.323 codec tries to dispense

frames at constant rate of 30 frames per second.

Typically there are two types of frames,Intra frames

(I-frame) and Predicted frames (P-frame), that are
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transmitted/interleaved in a periodic fashion. Usually,

the number of P-frames between two consecutive I-

frames is constant. AnI-frameis a frame coded without

reference to any frame except itself and usually contains

a wider range of packet sizes depending on the texture

of the image to be transmitted. I-frames serve as starting

points for a decoder to reconstruct the video stream.

A P-frame may contain both image data and motion

vector displacements and/or combinations of the two.

Its decoding requires access to previously decoded I-

and P-frames. Typically, eachP-frame is contained in

a small sized packet in the range of 100-200 Bytes. Due

to the above properties of video streaming, we expect to

still see some regularities in the IAT distribution at the

receiver side.

File Transfer Streams: File transfer applications

deliver bulk data from a transmitter to a receiver as fast

as possible leveraging the network conditions. These

applications typically partition a file into equal-sized

segments and transfer one segment at a time to the

receiver. Therefore, a file transfer flow is likely to be

composed by equal-sized packets of large size, except

a few packets at the beginning and at the end of the

data transfer. From our analysis, we observed that all

the applications under investigation show that 90% of

packets have size between 1400 and 1500 Bytes (1397

bytes for Skype, 1448 bytes for MSN), while only 10%

have size between 50 and 150 Bytes.

2.3. Data Sets

To collect data for our experiments, we setup multiple

PCs (1.8 GHz, Pentium 4 with Windows XP) in two

Standard Codec Method Inter-Packet Delay (ms)
G.711 PCM .125
G.726 ADPCM .125
G.728 LD-CELP .625
G.729 CS-ACELP 10

G.729A CS-ACELP 10
G.723.1 MP-MLQ 30
G.723.1 ACELP 30
Table I. Commonly used speech codec and their specifications

different universities to run 3 applications - Skype,

MSN, and GTalk. These universities are located in

different parts of the North American continent. We

generated voice, video, and file transfer streams between

the end hosts over the timeframe of a week (May 15-

22, 2007). We generated both homogeneous and hybrid

flows. Since we manually generated all of the flows in

the data set, we can easily label each of these flows

as either voice, video, or file transfer along with the

application that generated the flow (Skype, MSN, or

GTalk). The average time and number of packets in

each of the sessions were 8 minutes and 9500 packets

respectively. In total, we generated about 690 sessions,

and a full breakdown of the sessions generated are given

in Table II.

As we mentioned earlier in the paper, our classifier

works in two phases: training and detection. The input

to the training phase are homogeneous flows with

labels, while the input to the detection phase are both

homogeneous and hybrid flows that need to be labeled.

Hence we split our data set into two sets - training

set and detection set. The training data set contained

90 homogeneous flows (45 of them were voice and

45 of them were video). We use this set to train the

Copyright c© 2008 John Wiley & Sons, Ltd.
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PROTOCOL OBLIVIOUS CLASSIFICATION OF MULTIMEDIA TRAFFIC 7

VOVClassifier . The detection set contained the other

600 flows that includes both homogeneous and hybrid

flows. We use this set to evaluate the performance of our

classifier.

3. Challenges, Intuitions and Discussion

3.1. Challenges

We start this section, by considering the simpler case of

homogeneous voice and video flows.
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Fig. 1. CDF of IAT (on the top) and PS (on the bottom) for a
typical Skype homogeneous flow.
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Fig. 2. CDF of IAT (on the top) and PS (on the bottom) for a
typical MSN homogeneous flow.

Differentiating homogeneous voice flows from videos

flows has been addressed as a research problem with

limited success [3]. Two features that have been

repeatedly proposed for this arePacket Inter Arrival

Time (IAT) and Packet Size(PS). Figure 1 shows the

cumulative distribution function (cdf) of the two metrics

computed independently for a Skype voice and video

homogeneous flow. The sharp knees in the cdf of IAT

shows that both Skype voice and video flows show

regularity in the packet inter-arrival time (30 ms for

voice and 5 ms for video). Similarly, the knees in the

cdf of PS shows that most of the packets in Skype

voice flows are 120-160 bytes long, while most of the

packets in Skype video flows are 480-520 bytes long.

We find similar results for all of the Skype homogeneous

flows in our data set. In order to differentiate between

Skype voice and video homogeneous flows, one can

use a simple filter that first checks regularity in IAT,

and subsequently separates voice and video flows based

on the PS distribution of the flow. In other words,

Figure 1 suggests that IAT and PS can be computed

independently from each other and we can use simple

cut-off thresholds on the two distributions to distinguish

voice from video flows.

Although such a simple technique works reasonably

well for differentiating Skype traffic, it cannot be used

in the general case for differentiating voice flows from

video flows. For example, consider the case of MSN

(Figure 2) which shows the cdf of IAT and PS for

a MSN voice and video flow. We can see that voice

packets tend to reach the destination at very regular time

intervals of about 20 ms, with packets that are 105-

120 bytes long. For the case of MSN video flows, the

detection turns to be not as friendly as it was for Skype
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Homogeneous Flows Homogeneous Flows
Voice Video Voice+File Video+File

Skype 54 / 20000/ 10 42 / 125000 / 25 88 / 220000 / 60 84 / 478000 / 60
MSN 82 / 58000/ 20 58 / 68000/20 80 / 428000 / 60 93 / 420000 / 60
GTalk 26 / 39000 / 20 38 / 33000 / 20 25 / 333000 / 60 30 / 401000 / 60

Table II. Number of flows, Average number of packets per flow, and the average duration of each flow collected for each application to evaluate the
performance ofVOVClassifier

video flows. First, video packets do not exhibit a strong

regularity in IAT as shown by the complete absence

of any knees in the cdf of IAT. Video packets reach

the destination almost in a complete random fashion,

thus can be easily interpreted as packets belonging to

any other non-voice or non-video application. Second,

even if we were able to find some regularities in IAT

for video packets, we cannot distinguish video flows

from voice flows due to the significant overlap of the PS

distribution. As a consequence, it is hard to draw a clear

cut boundary between the two, thus making the simple

approach proposed for distinguishing Skype voice and

video flows not generalizable for other applications.
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Fig. 3. IAT vs PS for a typical MSN hybrid video flow.
We show the restricted range of packets between 100 and
240 Bytes to remark the impact to the IAT of voice when

considering file transfer packets.

Next, we show how the strong regularity observed

in the IAT distribution for both Skype and MSN

homogeneous voice flows is severely affected when

we consider hybrid flows. Figure 3 shows the PS and

IAT for all packets in a typical MSN homogeneous

and hybrid voice flows. We plot this graph using the

following technique. We traverse the flow from the

first packet to the last packet. For each packet,Pi,

encountered in the flow, we record its size,PSi, and

the associated inter-arrival time to the next packet,

IATi,. Each packetPi is then represented by the pair

< PSi, IATi >. In Figure 3 we plot all packetsPi

belonging to a MSN homogeneous and hybrid voice

flow. As we also noted previously in Figure 2, Figure 3

shows that MSN homogeneous voice flows have a strong

regularity with IAT of 20 ms around which the majority

of packets lie. However, in case of hybrid flows, we can

clearly see that this regularity is lost. Packets of size 100-

140 Bytes (that represent the most common packet sizes

used by MSN homogeneous voice flows) now span a

large range of IAT values. As a consequence, such a flow

does not exhibit any significant patterns that can reveal

the presence of voice.

In order to quantify this, in Figure 4, we show the

CDF of IAT for a MSN homogeneous and hybrid voice

flows. As we can see, the sharp knees that exist for

homogeneous flows (around 20 ms range) completely

disappears for hybrid flows suggesting that these packets

reach the destination in a pure random fashion.
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Fig. 4. CDF of IAT for a typical MSN homogeneous (on the
top) and hybrid (on the bottom) voice flow.

3.2. Intuition and Approach

As we saw in Figures 2 and 4, homogeneous and hybrid

voice and video flows do not always exhibit regularities

in IAT. Also, the packet size distribution could vary

considerably from one application to another. Hence,

considering IAT and PS as independent metrics will not

result in effective classification of voice and video.

However, our hypothesis is thatall voice and video

flows should exhibit some kind of a regularity/pattern in

IAT and PS. These patterns could be hidden in the packet

stream. Next we show how analyzing the spatial and

temporal correlation of these two features, can reveal

such hidden regularities. We carry out this analysis using

MSN and show that such intuition has great potential in

revealing the presence of voice and video streams in the

context of both homogeneous and hybrid flows.

First, we consider the case of MSN homogeneous

video flows for which no clear pattern can be observed

when the two features (PS and IAT) were computed and

analyzed independently (see Figure 2). For this case, we

conduct two experiments using the original video flow†:

• We consider 128-byte packets in the flow along

with their time stamps (i.e. the time at which we

received the packet). Note that we discard all other

packets in the flow, and the flow now has only 128

byte packets with their time stamps. We compute

the cdf of the IAT of this new flow (Figure 5). We

can now see that these packets exhibit regularities

in their IAT.

• We consider sequence of packets, i.e., if two

consecutive packets in the flow have sizes 128

and 42 Bytes respectively then we extract those

packets along with their time stamps and discard

the rest. We now plot the cdf of the IAT of this

series and find that these sequence of packets

exhibit regularity as well.

The main take-away point from the above experi-

ments is that, although we do not find any significant

patterns by considering the IAT and PS metrics

individually, we find very strong patterns when we

combine and analyze these metrics together. In other

words, the regularities of a video flow reside in specific

combinations of packet sizes and inter-arrival times that

are maintained for the entire duration of the session. We

observe the same phenomena for video traffic as well.

Next, we consider the case of MSN hybrid voice

flow. We apply the same concept as before and focus

on packets of sizes 100-130 bytes (the range of most

common packets observed for MSN homogeneous voice

†Looking at the PS vs. IAT graphs for MSN homogeneous video flows,
we found that there was a large number of packets of size 42 and128.
Hence we pick these packets for these experiments.
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Fig. 5. CDF of IAT with certain PS grouping for MSN
homogeneous video flows.

flows). In Figure 4, we report the CDF of IAT for such

a flow. As we can clearly see, the shape of the CDF

looks very similar to the original MSN homogeneous

voice flow, and clearly is much different from the one

computed by considering the two metrics independently

from each other.

This forms the basis of our approach. In fact, we

combine these two metrics using a stochastic process

that is further analyzed in the frequency domain

using power spectral density (PSD) analysis. Such a

methodology searches for combinations of packet sizes

and IAT pair-wise that occur more frequently than

others and thus carry the majority of the energy of the

stochastic process being created.

3.3. Chat traffic vs File Transfer traffic in Hybrid

Flows

Hybrid multimedia flows can contain voice and/or video

streams along with file transfer and/or chat streams.

Both chat and file transfer streams do not show any

hidden regularities in IAT distributions. Hence, from

the perspective of our problem, both of these streams

represent pure noise to the voice and video stream

classifier. From our data set, we see that the PS

distribution of chat streams typically ranges from 50 to

600 bytes where as the same for file transfer streams

range from 60-1500 bytes. While the PS distribution of

chat streams can be randomly distributed in its range,

the distribution of PS in file transfer streams are mainly

concentrated in two ranges: 90% of packets are in 1400-

1500 bytes and 10% in 60-110 bytes.

In this work, we only consider hybrid flows that

containvoice or video streams along with file transfer

streams. We do this for two main reasons:

• The data rate of chat streams is much lower than

the data rates of file transfer, voice, and video

streams. During our experiments, we noticed

that the number of chat packets observed in

a 10 seconds observation window is negligible

compared to the number of file transfer packets

encountered. As a consequence, the presence of

chat traffic can be interpreted as low level random

noise that minimally impacts the IAT regularities

of voice and video streams. On the other hand,

we can find a lot more file transfer packets in

any observation window. File transfer packets are

highly interleaved with voice and video packets,

and thus have great potential to severely impact

the IAT distribution of the overall flow (as we can

see in Figure 4).

• Although the PS distribution of chat spans a

wide range of packets, from 50 to 600 Bytes, the

average number of packets that fall in the same
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Fig. 6. VOVClassifier System Architecture

range of voice and video packets is minimal. On

the other hand, the PS distribution of file transfer

is heavily centered around 1400-1500 bytes, and

the remaining packets resides in the range of 60-

110 bytes, typical range used by voice traffic. As

a consequence, the PS distribution of voice traffic

might be severely impacted by the presence of

file transfer. Note that although 10% is a small

fraction of the overall file transfer PS distribution,

it translates to a large number of packets (orders

of magnitude more that the number of packets in

chat streams), since the total number of packets in

file transfer streams are very large.

4. System architecture

In this section we present the overall architecture

of our system, namedVOVClassifier and shown

in Figure 6, and provide a high-level description of

the functionalities of each of its modules. Generally

speaking, VOVClassifier is an automated learning

system that uses packet headers from raw packets

collected off the wire, organizes them into transport

network flows and processes them in realtime to search

for voice and video applications.VOVClassifier first

uses voice and video datastreams for training before

being used in realtime for classification. During the

training phase,VOVClassifierextracts feature vectors,

which is a summary (also known as a statistic) of

raw traffic bit streams, and maintains their statistics

in memory. During the online classification phase,

a classifier makes decision by measuring similarity

metrics between the feature vector extracted from on-

the-fly network traffic and the feature vectors extracted

from training data. Flows with high values of similarity

metric with the voice (or video) features are classified

as voice (or video); datastreams with low values

of similarity with voice/video are classified as other

applications.

In general,VOVClassifieris composed by four major

modules that operate in cascade: (i)Flow Summary

Generator(FSG), (ii) Feature Extractor(FE) via Power

Spectral Density analysis, (iii)Voice/Video- Subspace

Generator(VSG) and (iv)Voice/Video- CLassifier(CL).

Flow Summary Generator(FSG): All packets col-

lected off-the-wire are processed by theFlow Summary

Generatormodule, that reorders packets by removing

any duplicated packet, and organizes them into network

transport flows according to their 5-tuple, e.g., source

IP address, destination IP address, source port number,

destination port number, and protocol type. The

processed flow is then characterized in terms of packet

sizes and inter-arrival times between packets within any

generic flowFS , e.g.
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FS = {〈Pi,Ai〉 ; i = 1, . . . , I} , (1)

wherePi and Ai denote the packet size and relative

packet arrival time of theith packet in the flow with

I packets, respectively. As we only consider relative

arrival time,A1 is always 0.

Feature Extractor (FE) and Voice/Video- Subspace

Generator(VSG): The FSG output is forwarded to

the Feature Extractormodule that computes a feature

vector for each flow processed by analyzing its power

spectral density (PSD) in order to exploit regularities

residing in voice and video traffic. TheVoice/Video-

Subspace Generatorprocesses the high dimensional

feature vectors received and projects the feature vectors

into a low dimensional space that embeds the fine

granularity properties of the data stream in process. This

is achieved by first partitioning the feature vector space

into a few non-overlapping clusters or data sets and then

extracting the characteristic of each cluster. As shown in

Figure 6, the FSG and FE modules are used during both

the training and the detection phases.

Voice/Video CLassifier (CL): During the detection

phase, the data are processed by a module, named

Voice/Video- Classifier, which calculates the distance

from the feature vectors extracted from current

datastreams entering the system to the voice and video

subspaces generated during training in order to classify

the stream as voice, video or other. The problem of

datastream classification requires the implementation

of a similarity metric. In literatures, there are many

similarity metrics. For example, Bayesian classifier

uses cost function, and nearest-neighbor (1-NN) and

K-nearest-neighbor (KNN) use Euclidean distance. In

general, no similarity metric is guaranteed to be

the best for all applications. For example, Bayesian

classifier is applicable only when the likelihood and

prior probabilities are well estimated, which requires

the number of training samples to be much larger than

the number of feature dimensions. As a consequence,

it is not suitable for classification based on a high

dimensional feature vector, such as the PSD feature

vector. Furthermore, neither 1-NN classifier nor K-

NN classifier is suitable for mixed data that are in

a collection of subspaces. We overcome the above

problem by employing a similarity metric based on the

normalized distance from feature vector representing

the ongoing flow to the two subspaces obtained during

training phase. The subspace at minimum distance will

be elected as candidate only if the distance is below

specific thresholds.

We conclude this section by highlighting one minor

limitation of our approach. Our system is unable to

distinguish a flow containing video only from a flow

containing video packets piggybacked by voice data

(when video and voice applications are simultaneously

launched in Skype, voice data is piggybacked on video

packets). This is because the feature for video packets

piggybacked by voice data is very similar to that for

video only. Hence, our traffic classifier will declare a

flow containing video packets piggybacked by voice

data as "video".
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Fig. 7. PSD features extraction module. Cascade of processing
steps.

5. Feature Extractor Module

As explained in Section 3, the extraction of traffic

features like packet inter-arrival times and packet size,

and the study of each of them individually, do not solve

the problem of reliably detecting and separating voice

and video data streams from other applications and

from each other. In this section, we first introduce the

preliminary steps that we take to transform each generic

flow FS obtained from theFlow Summary Generator

(FSG) into a stochastic process that combines the inter-

arrival times and packet sizes. Then we describe how to

use power spectral density (PSD) analysis as a powerful

methodology to extract such hidden key regularities

residing in real-time multimedia network traffic.

5.1. Modeling the network flow as a stochastic

process

Each flow FS extracted from theFlow Summary

Generator(FSG) is forwarded to the Feature Extractor

(FE) module that takes several steps in cascade, as

shown in Figure 7. First, anyFS extracted (see Equation

(1)) is modeled as a continuous-time stochastic process

as illustrated in Eq. (2):

P(t) =
∑

<P,A>∈FS

Pδ(t−A), (2)

whereδ(·) denotes the delta function. As the reader can

notice, our model combines packet arrival times and

packet sizes to form a single stochastic process. Because

digital computers are more suitable to deal with discrete-

time sequences than continuous-time processes, we

transformP(t) to a discrete-time sequence by applying

sampling at frequencyFs = 1
Ts

.

Due to the fact that the signal defined in Equation

(2) is represented as a summation of delta functions, its

spectrum spans the whole frequency domain. In order

to correctly reshape the spectrum ofPh(t) to avoid

aliasing when it is sampled at intervalTs, we apply a low

pass filter (LPF) characterized by its impulse response

hLPF (t). Ph(t) can then be mathematically described

as follows:

Ph(t) =P(t) ∗ hLPF (t) =
∑

<P,A>∈FS

Ph (t−A) .

(3)

By sampling at intervalTs, we obtain the following

discrete-time sequence:

Pd(i) =Ph(iTs) =
∑

<P,A>∈FS

Ph (iTs −A) , (4)

where i = 1, . . . , Id = Amax

Ts
+ 1, Amax is the arrival

time of the last packet in the flow.

We note that the sampling intervalTs cannot be

arbitrarily chosen. IfTs is too large, then the spectrum

of the flow Fs contains information only related to
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low frequencies and thus lacks of information related

to the high frequency spectrum. On the other hands,

if Ts is too small, then the lengthId of the resulting

discrete-time sequence will be very large, resulting in

very high complexity in computing the PSD ofFs.

After an extensive analysis of widely-used voice and

video applications such as Skype, MSN, and GTalk,

we observed that choosingTs = 0.5 ms is sufficient to

extract all useful information for our purpose.

Next, we provide a methodology to extract the

regularities residing in the signalP(t). We achieve this

by studying the power spectral density of the extracted

signalPd(i).

5.2. Power spectral density computation

The power spectral density of a discrete-time signal

represents its power distribution in the frequency

domain. Regularities in time domain translate into

dominant periodic components in its autocorrelation

function and finally to peaks in its power spectral

density.

For a general second-order stationary sequence

{yi; i ∈ Z}, the power spectral density (defined in [19])

can be computed as:

ψ(̟; y) =

∞
∑

k=−∞

r(k; y)e−j̟k, ̟ ∈ [−π, π), (5)

where {r(k; y); k ∈ Z} represents the autocorrelation

function of the signal{yi; i ∈ Z}, i.e.,

r(k; y) =E [y(i)y∗(i− k)] . (6)

Note thaty in r(k; y) is not an argument of functionr(·)

but an index, indicating thatr(·) is the autocorrelation

function of {yi; i ∈ Z}. This holds true for all other

functions with two arguments separated by a semi-

colon.

Although̟ in Eq. (5) can take any value, we restrict

its domain to be within[−π, π) becauseψ(̟; y) =

ψ(̟ + 2π; y).

According to Eqs. (5) and (6), the computation of

the PSD for a discrete-time signal theoretically requires

an infinitely-long sequence. Since in reality, we cannot

have an infinitely-long sequence, we need to use a

finitely-long sequence to estimate the power spectral

density with an admissible accuracy. In literature, two

different families of PSD estimation are available:

parametric and non-parametric. Parametric methods

have shown to perform better under the assumption

that the underlying model is correct and accurate.

Furthermore, these methods are more interesting from

a computational complexity perspective as they require

the estimation of fewer variables when compared with

non-parametric methods.

There are several parametric methods like autore-

gressive (AR) model, moving average (MA) model,

and autoregressive moving average (ARMA) model. For

simplicity, we choose the AR model and solve it using

the Levinson-Durbin Algorithm (LDA). In this paper

we skip the details of this algorithm for lack of space.

For an extensive survey of parametric models for PSD

estimation and details on the implementation of the LDA

algorithm, we refer the reader to [19].
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Next, we assume{Pd(i)}
Id

i=1 to be second-order

stationary. We can compute the PSD of{Pd(i)}
Id

i=1,

denoted by

ψ (̟;Pd) ,̟ ∈ [−π, π). (7)

Recall that{Pd(i)}
Id

i=1 are obtained by sampling a

continuous-time signalPh(t) with time intervalTs (see

Fig. 7). Thus, one can further formulate the PSD in terms

of real frequency as

ψf (f ;Pd) =ψ

(

2πf

Fs

;Pd

)

, (8)

whereFs = 1
Ts

. Eq. (8) shows the relationship between

the periodic components of a stochastic process in the

continuous-time domain and the shape of its PSD in the

frequency domain.

ψf (f ;Pd) is a continuous function in frequency

domain. To represent it in a computer, we need to do

sampling in frequency domain. In other words, we select

a series of frequencies,

0 ≤ f1 < f2 < · · · < fM ≤
Fs

2
, (9)

and define the PSD feature vector as

~ψ =

[

ψf (f1;Pd) , ψf (f2;Pd) , ψf (fM ;Pd)

]T

.

(10)

~ψ ∈ R
M is the feature vector we use to perform

classification.

In the next section, we introduce a new technique

that we use to translate the characteristic of these high-

dimensional feature vectors into a more tractable low

dimensional space.

6. Subspace Decomposition and Bases

Identification on PSD Features

In many scientific and engineering problems, the data

of interest can be viewed as drawn from a mixture

of geometric or statistical models instead of a single

one. Such data are often referred to in different

contexts as “mixed,” or “multi-modal,” or “multi-

model,” or “heterogeneous,” or “hybrid.” Subspace

decomposition is a general method for modeling and

segmenting such mixed data using a collection of

subspaces, also known in mathematics as a subspace

arrangement. By introducing certain new algebraic

models and techniques into data clustering, traditionally

a statistical problem, the subspace decomposition

methodology offers a new spectrum of algorithms for

data modeling and clustering that are in many aspects

more efficient and effective than (or complementary to)

traditional methods, e.g., principle component analysis

(PCA), Expectation Maximization (EM), and K-Means

clustering [20].

As illustrated in Fig. 6, we collect voice and

video training flows during the training phase. After

processing the raw packet data through the feature

extraction module via PSD, one obtains two sets of

feature vectors, i.e.,
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1.

Ψ(1) △
=

{

~ψ1(1), ~ψ1(2), . . . , ~ψ1 (N1)
}

, (11)

which is obtained through voice training data,

whereN1 is the number of voice flows;

2.

Ψ(2) △
=

{

~ψ2(1), ~ψ2(2), . . . , ~ψ2 (N2)
}

, (12)

which is obtained through video training data,

whereN2 is the number of video flows.

To facilitate further discussion, let us also regardΨ(i)

as aM ×Ni matrix, for i = 1, 2, where each column is

a feature vector. In other word,Ψ(i) ∈ R
M×Ni .

In this section, we present techniques to identify the

low dimensional subspaces embedded inR
M , for both

Ψ1 andΨ2.

There are a lot of low dimensional subspace

identification schemes, such as Principal Components

Analysis (PCA) [21] and Metric Multidimensional

Scaling (MDS) [22], which identify linear structure, and

ISOMAP [23] and Locally Linear Embedding (LLE)

[24], which identify non-linear structure.

Unfortunately, all these methods assume that data

are embedded in one single low-dimensional subspace.

This assumption is not always true. For example, as

different software uses different voice coding, it is more

reasonable to assume that the PSD feature vector of

voice traffic is a random vector generated from a mixture

model than a single model. In such case, it is more likely

that there are several subspaces in which the feature

vectors are embedded. The same holds for video feature

vectors.

As a result, a better scheme is to first, cluster the

trained feature vectors into several groups, known as

subspace decomposition; and second, to identify the

subspace structure of each group, known as subspace

bases identification. We describe the two steps in the

following sections.

6.1. Subspace Decomposition Based on

Minimum Coding Length

The purpose of subspace decomposition is to partition

the data set

Ψ =
{

~ψ(1), ~ψ(2), . . . , ~ψ (N)
}

(13)

into non-overlappingK subsets such that

Ψ =Ψ1 ∪ Ψ2 ∪ · · · ∪ ΨK . (14)

Ma et al. [20, 25] proposed a method to decompose

subspaces according to the minimum coding length

criterion. The idea is to view the data segmentation prob-

lem from the perspective of data coding/compression.

Suppose one wants to find a coding scheme,C,

which maps data inΨ ∈ R
M×N to a bit sequence. As

all elements are real numbers, an infinitely long bit

sequence is needed to represent each element without

error. To make it practical, one has to specify a tolerable

decoding error,ǫ, to obtain a mapping with finite coding

length, i.e.,
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∥

∥

∥

~ψn − C−1
(

C
(

~ψn

))∥

∥

∥

2

≤ ǫ2, for ∀n = 1, . . . , N.

(15)

Then the coding length of the coding schemeC is a

function

LC : R
M×N → Z+. (16)

The optimal partition (see Eq. (14)) should minimize

coding length of the segmented data, i.e.,

min
Π

L̂C (Ψ; Π) =

min
Π

{

K
∑

k=1

LC (Ψk) +

K
∑

k=1

|Ψk|

[

− log2

(

|Ψk|

K

)]

}

,

(17)

whereΠ denotes the partition scheme. The first term

in Eq. (17) is the summation of coding length of each

group, and the second one is the number of bits needed

to encoding membership of each item ofΨ in theK

groups.

The optimal partition is achieved in the following

way. Let the segmentation scheme be represented by the

membership matrix,

Πk
△
=diag ([π1k, π2k, . . . , πNk]) ∈ R

N×N , (18)

where πnk denotes the probability that vector~ψ(n)

belongs to subsetk, such that

K
∑

k=1

πnk = 1, for ∀n = 1, . . . , N (19)

and diag(·) denotes converting a vector to a diagonal

matrix.

Hong [25, page 34] proved that the coding length is

bounded as follows.

L̂C (Ψ; Π)

≤
K

∑

k=1

[

tr (Πk) +M

2
log2 det

(

I +
M

tr (Πk) ǫ2
ΨΠkΨT

)]

+

K
∑

k=1

[

tr (Πk)

(

− log2

tr (Πk)

N

)]

△
=L̂(Ψ; Π), (20)

wheretr (·) denotes the trace of a matrix, anddet (·)

denotes matrix determinant. Combining Eqs. (17) and

(20), one achieves a minimax criterion

Π̂ = argmin
Π

[

max
C

L̂C (Ψ; Π)
]

= arg min
Π

L̂(Ψ; Π).

(21)

There is no closed form solution for Eq. (21).

Hong [25, page41] proposed a pairwise steepest descent

method to solve it.

Using the above method, we obtain a partition of

voice feature vector setΨ(1),

Ψ(1) = Ψ
(1)
1 ∪ · · · ∪ Ψ

(1)
K1
, (22)
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1. function
h

~µ, Û , Σ̂, Ū , Σ̄
i

= IdentifyBases
`

Ψ ∈ R
M×N , δ

´

2. ~µ = 1
|Ψ|

P

~ψ∈Ψ
~ψ

3. Ψ̄ =
h

~ψ1 − ~µ, ~ψ2 − ~µ, . . . , ~ψ|Ψ| − ~µ
i

4. Do eigenvalue decomposition on̄ΨΨ̄T such that

Ψ̄Ψ̄T =UΣUT , (25)

whereU
△
= [~u1, · · · , ~uM ], Σ

△
= diag

`ˆ

σ2
1 , . . . , σ

2
M

˜´

, and
σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
M .

5. J = arg min
Ĵ

PĴ
m=1 σ

2(m) ≥ δ
PM
m=1 σ

2(m)

6. Û = [~u1, ~u2, . . . , ~uJ−1]
7. Ū = [~uJ , ~uJ+1, . . . , ~uM ]

8. Σ̂ = diag
“h

σ2
1 , . . . , σ

2
J−1

i”

9. Σ̄ = diag
`ˆ

σ2
J , . . . , σ

2
M

˜´

10. end function

Fig. 8. FunctionIdentifyBasesidentifies bases of subspace.

and a partition of video feature vector setΨ(2),

Ψ(2) = Ψ
(2)
1 ∪ · · · ∪ Ψ

(2)
K2
. (23)

Next, we describe the method to identify subspace

bases in each of the segmentations.

6.2. Subspace Bases Identification

In this section, we use PCA algorithm to identify

subspace bases for each segmentation,

{

Ψ
(i)
k ; k = 1, . . . ,Ki, i = 1, 2

}

, (24)

which obtained in the previous section. The basic idea

is to identify uncorrelated bases and choose those bases

with dominant energy. Fig. 8 shows the algorithm.

In Fig. 8, argumentΨ represents the feature vector set

of one segmentation andδ is a user defined parameter

which specifies the percentage of energy retained,

e.g., 90% or 95%. The algorithm returns five sets of

output variables.~µ represents the sampled mean of

all feature vectors. It is the origin of the identified

subspace. The columns ofÛ are the bases with dominant

energy (i.e.,variance), whose corresponding variances

are denoted witĥΣ. These bases determine the identified

low dimensional subspace spanned byΨ. The columns

of Ū compose the null space of the previous subspace,

whose corresponding variances areΣ̄. The last two

outputs are required to calculate the distance of an

ongoing feature vector to the subspace, which will be

described in Section 7.

Applying the functionIdentifyBaseson all segmenta-

tions, we obtain

[

~µ
(i)
k , Û

(i)
k , Σ̂

(i)
k , Ū

(i)
k , Σ̄

(i)
k

]

=IdentifyBases(Ψ(i)
k )

(26)

for ∀k = 1, . . . ,Ki, ∀i = 1, 2. These are the outputs of

subspace identification module, and hence the results of

training phase, in Fig. 6.

During the classification phase, these outputs are used

as system parameters, which will be presented in the

next section.

7. Voice/Video Classifier

In Section 6, we presented an approach to identifying

subspaces spanned by PSD feature vectors of training

voice and video flows. Specifically, one obtains the

following parameters:
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[

~µ
(i)
k , Û

(i)
k , Σ̂

(i)
k , Ū

(i)
k , Σ̄

(i)
k

]

(27)

for ∀k = 1, . . . ,Ki, ∀i = 1, 2. In this section, we use

these parameters to do classification.

As shown in Fig. 6, during the classification phase,

for each ongoing flowF , one creates a sub-flow,FS , by

extracting small packets, i.e., packets smaller thanθP ,

and passes it through PSD feature extraction module to

generate PSD feature vector~ψ. This is the input to the

voice/video classifier.

The voice/video classifier works in the following way.

It first calculates the normalized distances between~ψ

and all subspaces of both categories. Then it chooses

minimum distance to each category. The decision is

made by comparing the two distance values to two

thresholds,θA andθV respectively for voice and video.

Fig. 9 shows the procedure of the voice/video classifier.

1. function
h

Ĥ1, Ĥ2

i

= voicevideoClassify
“

~ψ, θA, θV

”

2. For ∀i = 1, 2, ∀k = 1, . . . ,Ki d
(i)
k

=

NormalizedDistance
“

~ψ, ~µ
(i)
k , Ū

(i)
k , Σ̄

(i)
k

”

3. For∀i = 1, 2, di = mink d
(i)
k

4. if d1 < θA andd2 > θV
5. Ĥ1 = 1, Ĥ2 = 0, i.e., voice flow.
6. else ifd1 > θA andd2 < θV
7. Ĥ1 = 1, Ĥ2 = 1, i.e., video flow.
8. else
9. Ĥ1 = 0, Ĥ2 = 0, i.e., neither voice nor video.

10. end if
11. end function

12. functiond = NormalizedDistance
“

~ψ, ~µ, Ū , Σ̄
”

13. d =
“

~ψ − ~µ
”T

ŪΣ̄−1ŪT
“

~ψ − ~µ
”

14. end function

Fig. 9. FunctionvoicevideoClassifydetermines whether a flow
with PSD feature vector~ψ is of type voice or video or neither.
θ1 areθ2 are two user-specified threshold arguments. Function
voicevideoClassifyuses FunctionNormalizedDistanceto
calculate normalized distance between a feature vector anda

subspace.

Note that, in FunctionvoicevideoClassify, line 7,

when Ĥ2 = 1, we always setĤ1 = 1. The reason is

discussed in Section 4.

8. Experimental Results

In this section, we first validate our approach and

then demonstrate the effectiveness and feasibility of

VOVClassifier. In other words, we will first show how

the FE module extracts fingerprints that are unique to

voice and video flows. We then show how the VSG

modules generates voice and video subspaces that are

distinct from each other, thus giving us an opportunity

to use simple linear classifiers to separate voice and

video flows. Finally, we will show the effectiveness of

our entire system in clearly identifying voice and video

streams in the context of hybrid flows and multiple

applications.

8.1. Feature Extractor Module

As we explained in Section 5, the FE module takes

homogeneous voice and video flows as input to first

compute a stochastic process for a flow (Equation 2)

using IAT and packet sizes, and then extract a fingerprint

using the PSD distribution (Equation 10). Figure 10

shows the PSD of the stochastic process for voice

and video flows. We randomly picked two Skype

homogeneous voice and video flows from our data

traces. The top and bottom graphs in Figure 10 show

the PSD fingerprint generated by the FE module for the

two voice flows and two video flows respectively. There

are two main observations in this figure:(i) The PSD
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fingerprints for voice and video flows are very distinct

from each other. In other words, these fingerprints can

be used to clearly distinguish voice flows from video

flows. (ii) The PSD fingerprint of the two voice flows

(and the two video flows) are very close to each other.

This implies that when these flows are clustered together

by the VSG,all the voice flows can be clustered into a

sphere in hyperspace with very small radius. This small

and concentrated cluster can be easily differentiated

from other clusters using linear classifiers. Notice that in

the context of application classification this characterstic

can be extremely useful. Being able to extract such

similar fingerprints for voice or video flows generated

by the different applications, helps to easily make the

distinction between one application from another a very

straightforward task.
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Fig. 10. PSD Fingerprints of Skype homogenenous voice and
video streams.

8.2. Voice and Video Subspace Generator

The output from the FE module is used by the VSG

module to generate voice and video subspaces (or

clusters) that are far away from each other. The larger

the distance between the two subspaces, the easier it is

to classify any flows containing voice and video streams.

Figure 11 shows the distance of a Skype homogeneous

flow from the voice subspace on the x-axis and the

distance from the video subspace on the y-axis. For this

result, we first train theVOVClassifier using several

homogeneous voice and video flows from our traces.

After the training phase, we choose many hybrid flows

(containing voice, video, and file transfer) for which we

already know the correct classification, and feed it to the

classifier to conduct online classification. We computed

the distance of all of these flows the two subspaces that

we had computed in the offline training phase, and plot

them in Figure 11. We can clearly see that all the hybrid

flows that contain voice (marked in red in the figure),

are very close to the voice subspace as compared to the

hybrid flows that contain video streams(which are very

far from the voice subspace). This implies that as soon

as theVOVClassifiercomputes the PSD fingerprint and

calculates the distance from the existing subspaces, it

can tell whether a flow contains voice or video streams

using a simple threshold based scheme. This figure has

two important take-away points:(i) The VSG module

actually generates subspaces that are far away from each

other, thus making it easy to classify traffic based on

simple thresholds.(ii) TheVOVClassifiercan perform

efficient and effective online classification.
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Finally, we wish to point out a limitation in our

system. In Figure 11, we can see that some of the

video flows are clustered with voice flows. Our analysis

shows that these video flows are hybrid flows that

contain both voice and video. In other words, when

a flow contains both voice and video streams, the

VOVClassifier will classify this as only voice flows,

but not video flows. The reason of this is the well-

known piggy-back methodology characteristic of voice

and video applications that piggyback voice and video

packets together to reduce the overall overhead on the

data rate.
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Fig. 11. Output of the training phase when considering
multiple Skype homogeneous voice and video flows.

8.3. Overall System

After the offline training phase, the main goal of the

VOVClassifier is to label all the incoming flows as

containing voice, video, or neither. Note that these

labeling categories could be more specific than just

voice and video. For example, we could train the

VOVClassifierto label the flows as Skype voice, MSN

voice, Skype video, and MSN video. However, for the

ease of presentation in this section, we choose to label

an incoming flow as one of the following: voice, video,

and neither.

Figures 12 and 13 show theReceiver Operating

Characteristics(ROC) curve forVOVClassifier . In

other words, the y-axis in the graph shows the

probability of correctly labeling a flow,PD, and the x-

axis shows the probability of a false alarm orincorrectly

labeling a flow,PFA. We formally definePD andPFA

as follows: when a flow with actual labelX is sent

through theVOVClassifier for classification, and the

classifier labels the flow aŝX, then

PD|X
△
=P

(

X̂ = 1
∣

∣

∣
X = 1

)

, (28)

PFA|X
△
=P

(

X̂ = 1
∣

∣

∣
X = 0

)

, (29)

We first consider the case of flows generated by a

single application only, i.e., Skype. In Figure 12, we can

see that the detection rate of the Skype homogeneous

voice and video flows are very high (over 99%) when

the false alarm rate is very small (<1%). Comparable

results were obtained for hybrid voice flows, while for

hybrid video flows, we can observe a slight drop in

performance, with 94% detection rate for a false alarm

rate of 1% or below. Similar results were obtained

for MSN and Gtalk. This first set of results shows

that the VOVClassifier can effectively and accurately

classify voice and video flows generated by one single

Copyright c© 2008 John Wiley & Sons, Ltd.

Prepared usingsecauth.cls

Security Comm. Networks00: 1–25 (2008)

DOI: 10.1002/sec



22 J. F.ET AL.

application even when these flows are mixed with other

streams like file transfer.

Now we consider a more complex scenario in which

homogeneous and hybrid flows are generated by a

mixture of applications, i.e., Skype, MSN and GTalk.

In this case, theVOVClassifier is asked to(i) classify

voice and video flows as before and(ii) label each

flow with the associated application being used to

generate such a flow. As a consequence, a homogeneous

voice flow being generated by MSN but labeled as

Skype homogeneous voice will be considered as a

false positive. Figure 13 shows the ROC curve for our

classifier while using several hundred homogeneous and

hybrid voice and video flows (as described in Section 2)

as the input. As the first step, we used 15 voice and

15 video flows (5 each for Skype, MSN, and GTalk)

to train our classifier. We then use the rest of the flows

to test the system accuracy. Note that we already know

the actual labels (i.e. the ground truth) for all of the

input flows. We now let our system make a decision on

these flows and label them. In Figure 13, we can see that

the detection rate of the homogeneous voice and video

flows are very high (over 99%) when the false alarm rate

is very small (<1%). However, when we input hybrid

flows, the results are not as good. In other words, if we

want to keep the false alarm rate to less than 1%, then the

detection rate will also be very low (between 20-30%).

However, when the false positive rate is about 4%, the

overall detection rate jumps beyond 99%, thus showing

that theVOVClassifier can effectively and accurately

label voice and video flows even when these flows are

mixed with other streams like file transfer and chat.
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Fig. 12. ROC values for homogeneous and hybrid flows
generated by Skype.
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Fig. 13. ROC values for homogeneous and hybrid flows
generated by Skype, MSN, and Google Talk.

Based on the aboe figures we can make the following

observations about the overall results:

• Voice vs. Video Flows.From Figures 12 and 13,

we can see that the classification of voice flows

is more accurate than video flows. Specifically,

we can achieve 100% accurate classification for
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Skype voice flows. This is due to the fact that

voice flows have a higher regularity than video

flows, as shown in Figure 10. From the voice

PSDs, we can see that the dominant periodic

component for voice flows is at 33Hz, the

frequency corresponding to 30-millisecond IPD

of the employed voice coding. On the other hand,

video PSDs have peaks at 0, implying that a non-

periodic component dominates video flows. Also,

the PSDs of two video flows are close to each

other. This is one of the main reasons why our

approach achieves high classification accuracy by

using PSD features.

• Homogeneous vs. Hybrid Flows.From Fig-

ures 12 and 13, we can see that the classification

of homogeneous flows is more accurate than that

of hybrid flows. Mixing multiple types of traffic

together is like increasing noise. Hence, it is not

surprising that classification accuracy is reduced.

• One vs. Multiple Applications. We can also

see that the classification of Skype flows is

more accurate than the classification of flows

generated from three applications (Skype, MSN,

and GTalk). Empirically, we found that Skype

flows are similar to GTalk flows, but quite

different from MSN. For example, both Skype

and GTalk voice flows have 33-millisecond inter-

arrival time, whereas MSN voice flows have a 25-

millisecond inter-arrival time. When these flows

are mixed together, the classification accuracy is

reduced. However it is importat to note that the

reduction in accuracy still results in acceptable

detection rates. Specifically, for hybrid voice

traffic atPFA ≈ 0,PD is reduced from 1 to 0.986,

and for hybrid video traffic,PD is reduced from

0.965 to 0.948. This shows that our approach is

robust. The robustness results from the fact that

the subspace identification module, as presented

in Section 6, decomposes multiple subspaces in

the original high-dimensional feature space. As a

result, PSD feature vectors of Skype and GTalk

are likely to be within different subspaces than

those of MSN. Therefore, we can still classify

traffic accurately.

9. Conclusions

In this paper, we presented a novel system, called

VOVClassifier , that provides a robust and accurate

classification technique for voice and video flows. We

have shown that this system is able to detect the presence

of voice and video data streams both in the context

of homogeneous and hybrid flows. To determine the

existence of voice and video traffic, our system(i)

models a network flow using a stochastic process that

combines theinter-arrival timesof packets within the

flow and the associatedpacket size; (ii) extracts the

hidden regularities of voice and video streams, and

highlights their major differences by applying power

spectral density analysis. Their fundamental properties

are captured as feature vectors;(iii) groups feature

vectors characterized by some degree of similarity (e.g.,

associated to the same type of traffic and application)
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into subspaces and reduces the high dimension of this

subspace into a more manageable one by applying

principal component analysis, and(iv) uses minimum

coding length as the similarity metric to perform

classification.

The results from this system demonstrates the

effectiveness and robustness of our approach. We

showed that VOVClassifier could achieve 99.5%

detection rate with false positive close to 0% for both

voice and video in the case of homogeneous flows, and

99.5% and 95.5% (false positive close to 0) respectively

for voice and video when dealing with the more complex

scenario of hybrid flows.
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