Adaptive Quantization Using Piecewise Companding
and Scaling for Gaussian Mixture

Lei Yang and Dapeng Wu

leiyang@ufl.edu, wu@ece.ufl.edu
Department of Electrical and Computer Engineering, Unsitgrof Florida, Gainesville, FL

Abstract

Quantization is fundamental to analog-to-digital corsefADC) and signal com-
pression. In this paper, we propose an adaptive quantizbrpecewise com-
panding and scaling for signals of Gaussian mixture mod&NG. Our adap-
tive quantizer operates under three modes, each of whicbsponds to different
types of GMM. Moreover, we propose a reconfigurable architedo implement
our adaptive quantizer in an ADC. We also use it to quantizgies and design the
tone mapping algorithm for high dynamic range (HDR) imagmpaession. Our
experimental results show that 1) the proposed quantizdiésto achieve perfor-
mance close to the optimal quantizer (i.e., Lloyd-Max qimmtfor GMM) in the
sense of Mean Squared Error (MSE), at much lower computtmst than it;
2) the proposed quantizer is able to achieve much better M@E&mmance than a
uniform quantizer, at a cost similar to the uniform quantiZéne proposed adap-
tive quantizer holds great potential in the appilcationshef existing ADC and
HDR image compression.
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1. Introduction

Quantization is a critical technique for analog-to-dib@tanversion and signal
compression. On one hand, many input signals are continaoal®g signals,
therefore, quantization is indispensable for analogitital converters (ADC)
[1], which are important components of many digital produ€n the other hand,
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with the exponential growth of usage of computers and Itiercountless digi-

tal contents, especially digital images and videos, densagrthl compression for
efficient storage and transmission. Accordingly, quatibrgprovides a means to
represent signals efficiently with acceptable fidelity fignsl compression.

Existing quantization schemes can be classified into twegcaites, namely,
uniform quantization and nonuniform quantization [2, 3]nifdrm quantization
is simple, but not optimal for signals with nonuniform distition in terms of
MMSE if more computations and storage are available. Wioleumiform quan-
tization is much more complex and in a great variety. Minimom@an squared
error (MMSE) quantization (a.k.a, Lloyd-Max quantizafiaa a major type of
nonuniform quantization. It is optimal in the sense of meguesed error (MSE),
but incurs high computational complexity. Companding, ekhtonsists of non-
linear transformation and uniform quantization, is a tegha capable of trading
off quantization performance with complexity for nonumifoquantization. Es-
pecially, for high rate compression, the performance ofganding can approach
that of Lloyd-Max quantization asymptotically.

Lloyd-Max quantizers and companders are already well dpesl for Gaus-
sian distribution or Laplacian distribution [2, 4, 5] as wenience, but not for
Gaussian mixture model (GMM). Since GMM serves as a goodapation of
an arbitrary distribution, it is important to develop quaats and companders for
GMM, which are expected to find wide applications in ADC anghhdynamic
range (HDR) image compression, as well as audio [6] and \idlemmpression.

To address this, we proposes a succinct adaptive quantidempvecewise
companding and scaling for GMM in this paper. We first consadgimple GMM
(SGMM) that consists of two Gaussian components with mearand, respec-
tively, and the same varianee. The proposed quantizers have three modes,
making them capable of adapting their reconstructed le¢ealse varying means
and variances of the Gaussian components in a GMM.

Specifically, for SGMMs, ifi; is small, our quantizer operates in Mode |, and
treats the input as if it were from two overlapping Gaussiamdom variables
(r.v.) rather than a GMM r.v.. For Mode |, our quantizer canrbplemented by
a compander or a scaled Lloyd-Max quantizer of a unit-vaea@aussian. If
is large, our quantizer operates in Mode I, i.e., if theuhfs negative, treat the
input as if it were a Gaussian r.v. with meas; if the input is positive, treat the
input as if it were a Gaussian r.v. with mean For Mode lll, our quantizer can
be implemented by two companders or two scaled Lloyd-Maxtzers, each of
which corresponds to one of the two Gaussian r.v.g. iff of medium value, our
guantizer operates in Mode I, i.e., with piecewise comjagnd
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Moreover, we propose a reconfigurable architecture to imphe our adaptive
quantizer in an ADC. The proposed adaptive quantizer istbyehe information
from a signal histogram estimator to optimally quantizenalg with available
speed and power from devices. Furthermore, the proposeattigerais applied
into image quantization and high dynamic range image cosspa. We design
HDR tone mapping algorithm by jointly using adaptive quaaits and multiscale
techniques. Therefore, the proposed algorithm could atigighe halo artifacts
in the resulted low dynamic range image, as well as keep thgasi of image
details crossing the largest gamut.

The experimental results show that 1) our proposed quamnsiable to achieve
MSE performance close to Lloyd-Max quantizer for GMM, at indower cost
than Lloyd-Max quantizer for GMM; 2) our proposed quantizeable to achieve
much better MSE performance than a uniform quantizer, atsasimilar to the
uniform quantizer. The experimental results also show tiatproposed adap-
tive quantizer holds great potential in the application@&BIC and HDR image
compression. It works well with both high rate and low ratauwgization.

The rest of the paper is organized as below. Section 2 preteatprelimi-
naries of optimal adaptive quantizers. Section 3 desciibeproposed adaptive
guantizer for GMM. In Section 4, we propose a reconfiguraldaigecture to im-
plement our adaptive quantizer in an ADC. In section 5, tloppsed quantizer
is applied into high dynamic range image compression. Expsrtal results are
exhibited in Section 6. Section 7 concludes the paper.

2. Preliminaries of Adaptive Quantizer

2.1. MMSE Quantizer

The performance of a quantizer can be evaluated by meaneserar (MSE)
between input signaX and the reconstructed signl i.e.,

MSE = E[(X — X)?] (1)

Lloyd-Max quantizer [8] is an MMSE quantizer. Lgt (kK = 0,---, N) de-
note boundary points of quantization intervals, andrletk = 0,--- | N — 1)
denote quantization levels. Then Lloyd-Max quantizer isrelterized by:



{t;,r;} = arg min MSE
tkvrkl}
N-1

- (@)
= arg min Z / (z — 1) fx (v)dz

tv
{terey = Sy,

where fx (z) is the probability density function (pdf) oX, V is the number of
guantization levels. Deriving respecttpandr, in Eqg. 2, we have the centroid
and the nearest neighbor conditions as following:

tzzrk;;rk’ k=1,---,N—1, (3)
and -
SHap(x)de
Tlf::‘l;kt— k:O7"'7N_17 (4)

k41 p(z)dz ’

t
wherelt{, ty] is the range of the quantizer input.

The Lloyd-Max quantizer for Gaussian distribution with@enean and unit
variance has been well studied. Given the number of qudittizkevels NV, the
Lloyd-Max quantizer for zero mean, unit variance Gaussiamd be obtained
from tables in [4]. Given the Lloyd-Max quantizer for zero anme unit variance
Gaussian, we can use the affine law in Proposition 1 to obken_toyd-Max
guantizer for Gaussian distribution with arbitrary meaand arbitrary variance
0'2.

2.2. Gaussian Mixture Model and Affine Law

Gaussian distribution is wildly used in signal modelingdogse of its simplic-
ity, ubiquity, and the Central Limit Theorem. However, sa¢gin the real world,
such as pixel intensity of natural images, may have an argittistribution, which
can be better approximated by a GMM than by a Gaussian distyib

The pdf of a GMM r.v.X is given as below:

frx(@) = Y _pi- guo) ©)

whereN, is the number of Gaussian components in the GMNk;) is the Gaus-
sian pdf for componerit(: = 1, - - - , N,); p; denotes the probability of component
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i(t=1,---,Ny); andeV:'qlpi = 1.
In this paper, we firstly consider a Simple GMM (SGMM) giverbatow:

1
N

Given a suboptimal quantizer for SGMM, we can use the affinehaPropo-
sition 1 to obtain a suboptimal quantizer for a GMM that cetssof two Gaussian
components with arbitrary meanu and . (1 > 0), respectively and the same
variances? (02 > 0). It can also be used to obtain the suboptimal quantizer for a
GMM with arbitrary number of components.

fx(x) (e 3@=m? 4 emzlatn)?) (6)

Proposition 1. (Affine Law) For a r.v. X with zero mean and unit variance, as-
sume that itsV-level Lloyd-Max quantizer is specified hy(k = 0,--- , N) and
ri (k=0,---,N —1). Then forrv.Y = ¢X + u, with meanu and variance
o, its Lloyd-Max quantizer is specified by = ot + pu (k = 0,---,N) and
rr=o0rg+pu(k=0,--- ,N—1).

2.3. MMSE Compander

A compander consists of a compressor, a uniform quantizdraa expandor;
the compressor performs nonlinear transformation andxparelor is an inverse
of the compressor. The compressor is intended to converiplr.v. of arbitrary
distribution into a uniformly-distributed r.v., so that wan use a simple uniform
guantizer, which is the optimal quantizer for the one-disienal uniform distri-
bution in the sense of MMSE. Proposition 2 gives a nonlinesardformation for
an (suboptimal) MMSE compander for any distribution.

Proposition 2. Assume that a r.\X has Cumulative Distribution Function (CDF)
Fx(z) (x € R). Then rv.Y = Fx(X) is uniformly distributed irf0, 1]; and the
compander with compressdr = Fx(X) is an optimal/suboptimal MMSE quan-
tizer of X, especially wherX is quantized with high rate.

For Gaussian distribution with zero mean and unit variaacklMSE com-
pressor performs transformation by- Q(X), where

QX == [ exn(=)du @)

Since the integral i))(X') has high computational complexity, in this paper, we
propose a simple compressor, which only needs computatipiecewise mono-
mials (see Section 3.4).



3. Adaptive Quantizer for Gaussian Mixture Models

In this section, we first present our adaptive quantizer faM$1 in Eq. (6)
and then extend it to a more complicated GMM with arbitrarand o2, and
arbitrary number of components, by using Proposition 1.

3.1. Design Methodology

Because Proposition 2 states that the compander with cesgié = Fix(X)
is a MMSE quantizer of inpuk’, our design methodology is to find a compressor
whose transformation function is simple, but can achieveagpproximation of
CDF Fx(X). The robust quantizer [9] will be provided through the detieation
of the required parameters.

Figure 2: Transformation function of a piecewise compressoCDF of SGMM withy, = 1.5.

Fig. 1 shows the CDF of Gaussiaf(0, 1) vs. that of SGMM withy = 0.5.
We can observe that they are similar. Fig. 2 shows the tramsftton function of
a piecewise compressor specified by Eq. (10) vs. CDF of SGM¥ wi= 1.5.
From Fig. 2, we could observe that the transformation famcbf a piecewise
compressor specified by Eq. (10) is similar to the CDF of SGM¥thw = 1.5.
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Figure 3: CDF of the catenated Gaussian vs. CDF of SGMM with 3.

Fig. 3 shows two catenated CDFs of two Gaussians vs. the CI3GMM with

1 = 3, where the catenated CDF of two Gaussians is given by Eq. @®m

Fig. 3, itis observed that the CDF of the catenated Gaussisimilar to the CDF

of SGMM with i, = 3. For this reason, our proposed adaptive quantizer operates
under three modes, which correspond to smalhedium-valued., and largeu,
respectively.

3.2. Three Modes

Let ¢,(X) denote the Lloyd-Max quantization function for a Gaussian r
X ~ N(0,1).

Our proposed adaptive quantizer operates in one of theAfiipthree modes,
depending on the value of

1. If 0 < p < ug, the quantizer operates in Mode |, i.e., the quantizer can
be an MMSE compander for Gaussiano, 1), or Lloyd-Max quantizer for
GaussianV (0, 1). Denote the quantization function in Mode | hy(X).

We use Lloyd-Max quantizer for Gaussiaf0, 1) to implement Mode 1,
i.e.,
0,(X) = ¢,(X). (8)

The motivation of using Mode | is that the CDF of Gaussi&(0, 1) is
similar to the CDF of SGMM with smalk as shown in Fig. 1.

2. If us < p < pp, the quantizer operates in Mode 1, i.e., the quantizer
is a compander with a piecewise compressor specified by BY. (Lhe
motivation of using Mode Il is that the transformation funatof a piece-
wise compressor specified by Eq. (10) is similar to the CDF&M with
medium-valued: as shown in Fig. 2.



3. If u > py, the quantizer operates in Mode lll, i.e., the quantizerlmaiwo
catenated MMSE compander for two Gaussians, or two cathabgd-
Max quantizers for two Gaussians. Denote the quantizatioiction in
Mode Il by ¢,,,(X). We choose the catenated Lloyd-Max quantizer to
implement Mode Il as following:

4q (X o M) ) X0
drrr (X) - ! (9)
The motivation of using Mode Il is that two catenated CDF<Gafussian
is similar to that of SGMM with large: as shown in Fig. 3.

3.3. Parameter Determination

In this section, the values @fs and.;, will be determined.

It is well known the3-sigma rulehat nearly all (99.7%) of the values lie within
3 standard deviations around the mean for Gaussian distnbuTherefore, if
1 > 3, the two Gaussian components of SGMM could be dealt witheetsgely,
as in Mode Ill. Whenu < o, for SGMM, the data of right Gaussian component
in [u— o, n+ o], always fall in thegl— . — 30, — i + 30], the 3 standard deviations
around the mean of left Gaussian component, and vise vehsaefbre, forr =
1, when0 < u < 1, we consider the data of SGMM as Mode I. In conclusion, for
the proposed quantizer, = 1 andu, = 3.

3.4. Piecewise Companding of Mode I

For Mode Il, we choose the monomiélz) = ax® to approximate the ideal
compressor of SGMM, i.e. the CDF of SGMM, piecewisely. Thare many
more accurate and more complicated approximative funstibke the sum of
monomialsf(z) = >, a;z", i > 1, sigmoid functionf (z) = =, andf(z) =
arctan(z). But their corresponding expandors, i.e. the inverses pfpressors,
are hard to obtain or computationally expensive. Howeffar) = ax® has simple
inverse and is a good approximation to the segments of the @[F&MM. The

piecewise compressor symmetrical to the origin can be destby Eq. (10).

a(z + p)’ +0.25,2 < —pu (10a)
f(2) = d(z4p)? +025 —p<x<0 (10b)
—d'(p—2)" +0.75,0 <z < p (10c)
alx — p)* +0.75, 2 > p (10d)

8



with {a,a’,0,0'} = arg

min, [ (] (Fcan(ao) = f(a. o) (11)

{a,a’ bt/ .

By the steepest descent method, we obaing, ¥’ = 1, a = 0.15anda’ = 0.125
(which can be realized by right shifting 3 bits) for simpljcand fast computation.

The compressor is shown in Fig. 2 when= 1.5. Whenz < —p andz > p,
the PDF decaying faster, we ugér) = ars. Whenz > —p andzx < pu, the
PDF decaying slower, we usgz) = a’zz. It results that the data with small
probability is compressed more and the data with large fimitihais compressed
less. It is more precise than piecewise linear compandeai®@] still simple.

Although there are more accurate compressors to approxithatCDF with
certainu, they may not have good approximations to the CDF with gther[1, 3)
in average. The proposed compressor is a good tradeoff betaecuracy and
generalizability. It provides a stable good performancemvh € [1, 3) as shown
in experiments in Section 6. It is robust.

Analog Signal Discrete Signal

t K R K
x(t) e xin] Uniform Inverse Uniform Histogram
—> [ . — . — -
Quantizer Quantizer Estimation

Sampling and Hold
Circuit

Adapti E_>
Quanfizer E

Figure 4: Reconfigurable A/D converter.

Therefore, the proposed compander has three advantages.

1. Itis easy to design compander by Eqg. (10);
2. ltis fast to quantize data with this compander;
3. It has good average MSE performance when[1, 3).

3.5. Adaptive Quantizer for A General GMM

In this section, we design the adaptive quantizer for a géi&viM based on
the adaptive quantizer for SGMM.



3.5.1. GMM Estimation by EM

The GMM (Gaussian Mixture Model) is a probability distritart model con-
sisting finite number of Gaussian components as shown irbegT fie Expectation-
Maximum (EM) algorithm [10] is a general method to find the maxm likeli-
hood estimation of GMM.

x10°

T 1
Original Histogram

— — — Gaussian Component 1
— — — Gaussian Component 2
— — — Gaussian Component 3
— — — Gaussian Component 4
GMM Estimation

Pixel Frequency
o
T

IS
T

17 R S

i
0 50 100 150 200 250
Pixel Value

Figure 5: GMM estimation by EM algorithm on histogramBdirbara

EM algorithm can efficiently estimate the components of GMM][as shown
in Fig. 5. The number of components of GMM should be assigoeithé EM
algorithm by experience and restricted by the availablepugational resources
and N, the number of the reconstruction levels of quantizéyg.could beN/5
or smaller.p;, o; andp; (i = 1,--- , N,) of each Gaussian component in Eq. (5)
are determined by the EM algorithm. The GMM estimation ohsig with stable
distribution is obtained for later quantization once fdr al

3.5.2. Generalization by Processing Neighboring Gaus€iamponents Pair-
wisely

For the General GMM as shown in Eq. (5), with the scaling lawioposi-
tion 1, the following generalizations are made from SGMM bwsidering neigh-
boring pairwise Gaussian components.

Assuming the Gaussian components are sorted by their mearier the
neighboring Gaussian componeidtsandC;,,, we consider suppofiu;, ft;+1),
wheni # 1, N,, else considef—oo, ju;) or (p,, +00).

1. Allocate the numberV; from the total reconstruction level§ for each
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w

Gaussian component according to its percentage
N; =[N - pj]

where][-] is round off operator. For eadk;, it is symmetrically located with
respect to the mean of the corresponding Gaussian component

. Origin Shift:

For any two adjacent Gaussian components with means araheas of
(i, 07) and (11, 07, 1), their pdfs equal around

Ol T O flivl
0i + 041

o

(the effect ofp; is omitted). Then we shift the origin tg,.

. The three-mode boundarigs andy;, are scaled byo; + 0;,1).
. Scale the reconstruction levels according to the vaeianc

For the Gaussian componenyith (u;, 0;), scale the reconstruction levels
obtained from SGMM by, .

. Tune mode II:
Since half supporty;, 11;+1) of Gaussian components is considered each

time, the compressor in Eq. (10b) (10c) are needed, andagbetdcaled by
pi as.

(12)

fay = | @) $025), —p <o <0
xXr) = ,
pi(a' (x4 p)¥ +0.25), —p <z <0

In this way, the adaptive quantizer for a GMM is determined.

4. Reconfigurable A/D converter with Adaptive Quantizer

With the proliferation of autonomous sensors, and digilices, there has

been an increasing demand for reconfigurable analog-itatiignverters (ADC) [12],
where the proposed adaptive quantizer can have importahtapons.

We propose a reconfigurable A/D converter adaptive to theilolision of the

input signals with the proposed quantizer as shown in Figrof the input signal
with arbitrary distribution, we quickly sample and dis@etit with uniform quan-
tizer to estimate the distribution of the signal. This imi@tion is sent back to the
proposed adaptive quantizer to do mode selection. Thendhptige quantizer
could give a more accurate discrete signal by capturingiti@bcharacteristics
as much as possible with appropriate modes. The residuzlsiguld also be
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iteratively sent back to the adaptive quantizer to minintiEequantization error.
The FPGA implementation of the adaptive quantizer couldeesemfigured ir;,
milliseconds, wherd;, < 10. Then the system can be updated at the beginning
of every cycle off, milliseconds, according to the distribution of the inpgjrsl.

The number of quantization levels could be adjusted acogridi the speed, reso-
lution and power consumption of the devices. Our schemeadm@saistogram es-
timation and the GMM modeling may outstand previous iteeaDPCM schemes
[13].

The reconfigurable ADC architecture in Fig. 4 can dynamycatijust the
guantization speed, resolution and power consumption tehmaput data char-
acteristics. Therefore, it will have wide applications iamy ADCs and sensor
applications.

5. High Dynamic Range Image Compression with Joint Adaptiveuantizer
and Multiscale Techniques

High dynamic range imaging (HDRI or just HDR) is one of thenftier tech-
nigues in image processing, computer graphics and phqgibgrd4, 15, 16],
where image pixels take floating values in the range of [(aftjer than the tra-
ditional 8 bits per pixel for gray images and 24 bits per pixelRGB images.
HDRI try to capture the dynamic range of natural scenes, vbamn exceed three
orders of magnitudes of display devices. The dynamic rarfigeatural scenes
can be captured by human eyes, many films, and new cameraseWdoereas,
display devices, such as CRTs, LCDs, and print materiadgestricted to low dy-
namic range. Therefore, compressing the high dynamic rahg®RI to adapt
to the low dynamic range of display devices and keeping thiel zolors and the
rich details of the original images as much as possible, tisngemore and more
attention. It is called tone mapping, which is an importahponent in the HDR
imaging pipeline, and widely used in virtual reality, videdvertising, visual sim-
ulation, remote sensing images, aerospace, medical ang ottzer fields [17].

The tone mapping techniques can be divided into two categjotone repro-
duction curves (TRCs) and tone reproduction operators E)R®hey could be
applied to images both globally and locally. TRCs use cosgive point nonlin-
earity mapping, such as a power functiffi), to shrink the high dynamic range
images into the low dynamic range images. K. Chiual. proposed spatially
nonuniform scaling functions for high contrast images [18]Dragoet al. used
an adaptive logrithmic mapping for displaying high contrssenes [19]. Erik
Reinhardet al. [20] developed their tone mapping method based on the well-
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known photo-graphic pratice of dodging-and-burning. &adt al. [21] manipu-
late scale factors in the gradient domain of logarithmicepd.arsoret al. [22]
proposed a histogram adjustment technique adaptive tatteé&nce in the scene.
I.R. Khanet al. [23] and A. Boschettet al. [24] improved the histogram based
algorithms by incorporating human visual system, and aishigshe histogram lo-
cally. Jiang Duaret al. [25] neatly combined the global tone mapping operator
HALEQ into local tone mapping operator ALHA, with fixed parater values and
good performance. Also they proposed several algorith®sd2] for compress-
ing HDRI by optimally combining linear map and histogram aligation. The
TROs adjust pixel intensity by using spacial context to eres local image con-
trast, which usually use multiscale techniques. Stock8hgeparated an HDR
imageH (x,y) into a product of an illumination imaggx, y) and a reflectance
imageR(x,y) in an early literature. Later on, Jobset al. [29], Pattanailet.al
[30] improved the multiscale techniques by introducing hagsm of the human
visual system. Later Frdo Durand and Julie Dorsey [31] prieska new tech-
nique with fast bilateral filtering decompositing imagetoia base layer, and a
detail layer. These multiscale methods have halo artifadtech happen around
the sharp edges and are caused by the blurring effect offiléne most recent
multiscale technique proposed by Yuanzhen Li [32] propedgd a symmetric
analysis-synthesis filter bank, and local gain control @hesubband to mitigate
the halo artifacts. But the luminance of the resulted lowadyit range images
seems low, and the boundary of the dynamic range is clippleidhveould be seen
from their histograms. To address these problems, we peapbagoint TRC and
TRO methods for high dynamic range image tone mapping basédsomethod
[32] and our proposed adaptive quantizer.

We proposed two methods to use the proposed adaptive geraftizHDRI
tone mapping. The first method is shown in Fig. 6. Adaptivengjaation is taken
in the log domain of pixel values. And then in each quantaratiange, linear
mapping is used to map vaues into target LDR values as shon.ii13) for
8-bit per pixel output.

256, -1y

7)=2(—=—* 1 k), k=0,---,N—1. 13
f@) = 5 (e + 0 (13)

whereN (1 < N < 256) is the number of quantization level[s,, ¢, 1] is thekth
guantization range. The adaptive quantization acts asdrat equalization, to
maximize image contrast. Linear mapping tries to keep thegpeual feeling of

the original imagesg = - is an indicator of balance between adaptive quanti-
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zation and linear mapping. if = 1, no linear mapping is involved in HDRI tone
mapping. Ifg = ﬁ no adaptive quantization is involved in HDRI tone mapping.

Proposed
Adaptive

) Linear
HDR Quantizer Mapping LDR

ineach —»
Image Quantization Image
interval

Figure 6: Tone mapping by using joint adaptive quantizerlar@r mapping.

\J

A

The second method is to use the adaptive quantizer in theppostssing of
HDR images as shown in Fig. 7. After adaptive quantizatibe tDRI has more
uniform constrast in the full low dynamic range of LDRI olitad from TRO
methods.

Proposed
Lowpass - X Adaptive
Subband Quantizer
(o

Highpass &
| Subband

HDR [ ] Wavelet
Image ‘| Analysis

LDR
Image

Wavelet
Synthesis

Figure 7: Tone mapping by using joint adaptive quantizermnttiscale techniques.

6. Experimental Results and Discussion

We compare the proposed quantizer with the actual Lloyd-Njaantizers
for SGMM, by comparing the corresponding approximate CDR&® proposed
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quantizer with the actual CDFs of SGMM. We also compare tlop@sed quan-
tizer with the Lloyd-Max quantizers for SGMM and the uniforantizer in
terms of MSE performance.

The proposed adaptive quantizer is described in detaileti@e3. The Lloyd-
Max quantizer for SGMM is found by the LBG algorithm numetfigd2]. The
uniform quantizer we compare with is the optimal uniform wgier which is
applied uniformly to the finite region containing 99.8% oéttlata of the GMM
distribution.

6.1. Example and Justification of Parameter Determination

The reproduction values of 2-bit Lloyd-Max quantizer /6(0, 1) are[—1.5104, —

0.4528, 0.4528, 1.5104]. Wheny > 3, for the 3-bit quantizer for SGMM, the 8
reproduction values are-1.5104 — p, — 0.4528 — u, 0.4528 — p, 1.5104 —
w, —1.5104 + p, —0.4528 + p, 0.4528 + p, 1.5104 + p] as in Mode Ill. When
i < 1,i.e. in mode I, for the 2-bit quantizer for SGMM, the reprotian values
are[—1.5104, — 0.4528, 0.4528, 1.5104]. When1 < p < 3, i.e. in mode II, the
compander is chosen as shown in Eq. (10).

The differences between reproduction values of the prapgs@ntizer and
those of the Lloyd-Max quantizer for SGMM are evaluated bgrage absolute
difference (AAD) as following:

d N—-1
ARD = [ 3 () = rkin) (14)
¢ k=0

wherer} andr! are the reproduction values of the proposed quantizer amd th
Lloyd-Max quantizer for SGMMy: is the mean in SGMM(c, d) is the support
for averaging, i.e. the region @ffor each mode.

The approximation error between the CDF approximators égioposed
quantizer and those of SGMM is evaluated by:

d 0
/ ( / (Fsaamna (. 1) — Fae, 1))*dz)dp (15)

[e.e]

where Fsaary is the CDF of SGMM,F 4 is the CDF approximators in the pro-
posed quantizer. For Moded,= 0, d = 1, Fx(x) = Q(z) whereQ(z) is defined
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Table 1: Proposed Quantizer vs. Lloyd-Max quantizer.

Mode | | Mode Il | Mode 1l
AAD 1072 1071 1074
Approximation Error| 2.51 16.69 0.03

Table 2: Comparison of Complexity of Quantizaters.

\ Quantizers | Design Time | Running Time per Samplg Memory |
Uniform Quantizers Inv 3 0(1)
Mode | q;(z) N logN O(N)
Proposed Companding N 4 o)
Adaptive | Mode I N 4 0(1)
Quantizer| Mode llI q,., () N/2 log(N/2) o(V)
Companding N 4 o)
Lloyd-Max Quantizer for GMM | 2k - N-(Int+1) logN O(N)

(V is the number of quantization levels; Inv denotes the corityief computing the inverse of
CDF; Int denotes the complexity of computing the integkal the number of iterations in
Lloyd-Max algorithm.)

in Eq. (7); for Mode ll,c = 1, d = 3, F4(zx) is in EqQ. (10); for Mode |ll,

(1+Qx+p)/2, <0

falo = { (+QE—m)2+1/2 220 19

The numerical experiments show that the AADLiIT" order and the approx-
imation error of the proposed quantizer is small as listedahle 1. Table 1,
Fig. 1, Fig. 2, and Fig. 3 indicate the closeness of the pregphasiantizer to the
Lloyd-Max quantizer as well as the robustness [33] of theopsed quantizer.

6.2. MSE Performance Comparison

We randomly generate 10000 data from the distribution of SGNE(g. (6).
Then the proposed adaptive quantizer, Lloyd-Max quanarer uniform quan-
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tizer are used to quantize the data into 8 quantizationdewde reconstruct the
data from the quantized values, and compare them with tiggnatidata in terms
of MSE with respect to different as shown in Fig. 8(a).
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Figure 8: MSE comparison between the proposed adaptivetigagriloyd-Max quantizer and
Uniform quantizer for SGMM.

The MSE performance of the proposed quantizer is very ctodet of Lloyd-
Max quantizer and much better than that of the uniform gaanti In mode |,
since we take the optimal uniform quantization in finite hmbbability region,
the MSE gap between uniform quantizer and Lloyd-Max quantiz small. But
the proposed quantizer still has performance gain thamuniguantizer. In mode
I, the proposed piecewise compander provides a good sk4BEe performance
with a simple design. In mode lll, the MSE of the uniform quaet increases
dramatically withy, since distribution is far away from uniform distributiornen
w is large, and the uniform quantizer wastes lots of bits fdueswith small prob-
ability around origin. But the proposed quantizer is stitwWSE performance
very close to that of LIoyd-Max quantizer.

Again, we apply our method to:

1 _(@=py)?
Ga(z) = Z et " (17)

Wheny, = —us = ppando = 2, we draw MSE results of the proposed quantizer,
the Lloyd-Max quantizer and the uniform quantizer in Figo)8(From Fig. 8(b),
we could see thatin Mode | and Ill, the quantization errohefpproposed adaptive
guantizer is very close to that of the Lloyd-Max quantizerl ahe quantization
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error is a little higher in Mode llus and iy, for o = 2 are almost the twice of
those foro = 1.

The proposed adaptive quantizer has MSE performance abog®t of the
Lloyd-Max quantizer, with similar computations as the onmh quantizer. It ver-
ifies the affine law of quantizers in Proposition 1. By the wdye to the good
MSE performance of the proposed quantizer, the reprodugadues of the pro-
posed quantizer are effective initials of LIoyd-Max alglm for quickly finding
the Lloyd-Max quantizers for GMM.

Furthermore, we compare the proposed adaptive quantisliMax quan-
tizer and Uniform quantizer on seven natural images: Barbbena, Pepper,
Boat, Baboon, Jet, Goldhill. MSE comparison on image Babsrshown in
Fig. 9(a), and average MSE comparison on seven images isnsimokig. 9(b).
The figures show that the MSE performance of the proposedtigeans ap-
proaching that of Lloyd-Max quantizer, and much better thzat of Uniform
guantizer.

90, 100

—— Uniform Quantizer
80} ~——+— Proposed Quantizer |4
—%— Lloyd-Max Quantizer

—— Uniform Quantizer
~—+— Proposed Quantizer 1
—%— Lloyd-Max Quantizer

20 ™~

T

10n >

<~

273 274 275 2"6 "3 274 275 2"6
Number of quantization levels Number of quantization levels

(a) Barbara (b) Average

Figure 9: MSE comparison between the proposed adaptivetigagriloyd-Max quantizer and
Uniform quantizer on natual images.

The time complexity and space complexity of the uniform dizan, the Lloyd-
Max quantizer and the proposed quantizerfoguantization levels are shown in
Table 2. Quantizer designing time, quantization runnimgetiper sample and
memory cost of the quantizers are compared. The uniformtipesresign needs
the inverse of CDF to obtain the optimal quantization rarides uniform quanti-
zation functionz/N| + t, needs3 operations per sample, i.e. a multiplication, a
rounding operation and an addition. The proposed quaniges prior informa-
tion about signal distribution roughly estimated by reale EM algorithm [34]
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at initializing stage. The complexity of general EM algbnit is analyzed to be
superlinear. In mode | and mode lll, the computation of theppsed adaptive
quantizer using;, andg,,, is just a table-lookup. When the number of quanti-
zation levelsNV is small, the running time of the proposed quantizer per $amp
log(N) or log(N/2) is similar to that of uniform quantization. In mode II, the
adaptive quantizer uses companding technique. Its comiputs approxima-
tive 4 operations per sample, i.e. a multiplication, an expoma¢ioti, a rounding
operation and an addition. In mode | and mode lll, if compagds used, the
complexity is the same as Mode Il. The computation of Lloydxvalgorithm
includes an addition, a division in Eg. (3) and two integial€q. (4) for each
reconstruction level in one iteration.

The memory costs are also compared. For uniform quantizipesposed
guantizer in mode Il and the companding in mode | and Ill, Gfigce is needed
for computation. Others need @] space for table lookup. In short, the proposed
guantizer is much more computationally efficient than theybdFMax quantizer
and close to the uniform quantizer.

6.3. An Application in Image Quantization

We apply the proposed adaptive quantizer in gray image qaian. Assume
that we only have a low dynamic range displayer, such asqatipaper, withn
bits per pixel, wheren < 8, i.e. we should have & bit quantization scheme for
proper display. Then what is the best image quality we caaiolitom original
gray images with quantization? The quantizer should etithee information of
image pixel distribution. Again, we compare the proposedpéide quantizer
with uniform quantizer and Lloyd-Max quantizer.

We show the cases whemn = 4, 5 in Fig. 10 and Fig. 11 respectively on image
Barbara, whose histogram and GMM estimation are shown irsFgfore. From
Fig. 10 and Fig. 11, we could see that the proposed adaptaetiger generates
smoother images with less perceivable color stairs tharutii®rm quantizer,
and similar to the Lloyd-Max quantizer. The proposed quamthas better per-
formance than the uniform quantizer, and approximate t@ftienal Lloyd-Max
guantizer in terms of perceptual quality and PSNR.

To compare the quantization performance vs. quantizegddsne among
uniform quantizer, Lloyd-Max quantizer and the proposeaiiizer, we use leave-
one-out cross-validation to design quantizers. We usedard_ena, Pepper,
Boat, Baboon and Jet to design the quantizer, and test theigeiaon Goldhill.
We measure the PSNR and the quantizer design time. The tiemt sp GMM
estimation with EM in the proposed algorithm is also incldd@&hen we do the
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same tests for all the other images. The average perforntiemenstrated with
PSNR-design time is shown in Fig. 12. The program is run inl&be2010. We
could see that the time of uniform quantizer spending onrdetgy quantization
range is almost constant. The propose quantizer has muzkldsgyn time than
the Lloyd-Max quantizer, but with similar or better PSNRueds.

(a) Uniform Quantizer (34.76dB)(b) The Proposed Quantizer
(36.21dB)

(c) Lloyd-Max Quantizer (36.84dB)

Figure 10: Performance comparison of different quantiadrsnm = 4.

6.4. Experimental Results on HDR Image Tone Mapping

We show the experimental results of the proposed tone mggppgorithms of
HDR images by using joint adaptive quantizer and multiséad@niques in this
section. We compare our algorithms with the recent algorstha TRC based
method [32] and a TRO based method [23].

From Fig. 13, it is observed that Li’'s result [32] is a littlarét due to the con-
centrated histograms, and the histogram based algoritBiig2es some details
between trees and background, while our results look better
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(a) Uniform Quantizer (40.72dB)(b) The Proposed Quantizer
(41.85dB)

(c) Lloyd-Max Quantizer (42.45dB)

Figure 11: Performance comparison of different quantiadrsnm = 5.

We also compare the resulted LDR images and their histogohR&B com-
ponents on the HDR imagghairsin Fig. 14 and Table 3. From Fig. 14, we can
see that the board on the wall in our result is clearer thannha’s result, and the
illumination information in our algorithm is richer. In Thb3, the first row shows
the histograms of results from Li’s algorithm [32] and the&d row shows the
histograms of results from our proposed algorithm. Fromiahée, we could see
that histograms of Li’s output has peaks in the both ends nadyc range, since
it is hard to control gain map output range and overflowingigalare simply
capped. It will loss information and may cause false coltifeats. But the his-
tograms of RGB components from our second method with agagtiantization
are more spread out than Li’s algorithm. We could see thabtized on the wall
in Fig. 13(d) is clearer than that in Fig. 13(a). Also the haiftifacts brought by
multiscale in our algorithm is reduced by post processiniy wur methods, as
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Figure 12: Comparison of PSNR vs design time among diffegjaantizers.

shown in Fig. 14 around lamp area.

Furthermore, we compare our method 1 with differ®nwith histogram based
method and Erik Reinhard’s method [20] as shown in Fig. 15Fkigd16. From
the figures, we could see that for our proposed meflicd 128 has more contrast
as a whole tharv = 64 as expected, since the algorith with larijeis close to
histogram equalization method. Whilé = 64 keeps more orignal scene visual
impression. Our method generates clearer wall paintingginEs, and clearer
ground and leaves in Fig. 16 than the compared methods.

7. Conclusions

In this paper, we proposed a novel adaptive quantizer fors&an Mixture
Model. The proposed quantizer is adaptive to the varyingnm@ad variances
of the components of Gaussian Mixture. The adaptive quanhas less Mean
Square Error than uniform quantizer, and very close to Liblak quantizer, only
with similar computations as uniform quantizer. We alsoposed a reconfig-
urable A/D converter with our adaptive quantizer. The psgzbquantizer can
also have applications in image quantization and High DyodRange Image
compression. The quantized gray images with our quantizee Ibetter visual
quality and higher PNSR than those with the uniform quantiaed are similar
to those with Lloyd-Max quantizer. For HDR image compressiwe proposed
the tone mapping algorithm by using our adaptive quantiadrraultiscale tech-
niques. The experimental results show that the proposqutiada@uantizer holds
great potential in the applications of ADC and HDR image coaspion.

Our future work will focus on extending one-dimensional gjizers of Gaus-
sian Mixture Model to high dimensional space. The poterg@lications will
include high dimensional signal processing and clustering
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(a) Li’'s algorithm [32] (b) Histogram based algorithm [23]

(c) Our proposed method 1 (N=64) (d) Our proposed method 2

Figure 13: Performance comparison between different toappimg algorithms on HDR image
mpiatrium (copyright by Rafal Mantiuk)

Appendix A. Proof of Proposition 1

Proof: The Lloyd-Max quantizer is:

mmZ/ (z — 1) fx (z)dx (A.1)

with {¢ 1, and{r;}1_, as the solution.

23



Table 3: Histograms of images obtained by Li's algorithm][@Be first row) and our method 2

(the second row)

R Component Histogram G Component Histogran
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and{or, + p}4_, is the solution for Eq. (A.2).
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(a) Li's algorithm [32] (b) Histogram based algorithm [23]

(c) Our proposed method 1 (N=64) (d) The proposed method 2

Figure 14: Visual performance comparison among differenetmapping algorithms on HDR
imagechairs

Appendix B. Proof of Proposition 2

Proof: The F;'(y) should be well defined as
Fi'(y) = inf{z: Fx(r) >y,0 <y <1}. Then

X < Fy'(y) (B.1)

Thus,Y is uniformly distributed.
Assume thatX has a finite support or a truncated supgort), andfx (z) >
0 on the support. By using Bennettt's [35] approximate exgmesfor the mean
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square distortion for very large numh&rof quantizer output levels, we have:

oo ] /b 1
E[(X - X) ] = oNe |, fx(x)dx (B.2)
It is bounded by
1
v e
Therefore, Eq. (B.2) is towards 0 &5 — oo. [ |
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(c) Our proposed method 1 (N=128) (d) Our proposed method 1 (N=64)

Figure 15: Performance comparison between different toagpimg algorithms on HDR image
Stanford Memorial Churckcopyright by Paul Debevec)
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(a) E. Reinhard’s method [20] (b) Histogram based algorithm [23]

(c) Our proposed method 1 (N=128) (d) Our proposed method 1 (N=64)

Figure 16: Performance comparison between different toappimg algorithms on HDR image
Belgium Housécopyright by Raanan Fattal)
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