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Abstract

Quantization is fundamental to analog-to-digital converter (ADC) and signal com-
pression. In this paper, we propose an adaptive quantizer with piecewise com-
panding and scaling for signals of Gaussian mixture model (GMM). Our adap-
tive quantizer operates under three modes, each of which corresponds to different
types of GMM. Moreover, we propose a reconfigurable architecture to implement
our adaptive quantizer in an ADC. We also use it to quantize images and design the
tone mapping algorithm for high dynamic range (HDR) image compression. Our
experimental results show that 1) the proposed quantizer isable to achieve perfor-
mance close to the optimal quantizer (i.e., Lloyd-Max quantizer for GMM) in the
sense of Mean Squared Error (MSE), at much lower computational cost than it;
2) the proposed quantizer is able to achieve much better MSE performance than a
uniform quantizer, at a cost similar to the uniform quantizer. The proposed adap-
tive quantizer holds great potential in the appilcations ofthe existing ADC and
HDR image compression.

Keywords:
Scalar quantization, Companding, Scaling, Lloyd-Max quantizer, Gaussian
mixture model (GMM), Analog-to-digital converter (ADC), High dynamic range
(HDR) image, Tone mapping

1. Introduction

Quantization is a critical technique for analog-to-digital conversion and signal
compression. On one hand, many input signals are continuousanalog signals,
therefore, quantization is indispensable for analog-to-digital converters (ADC)
[1], which are important components of many digital products. On the other hand,
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with the exponential growth of usage of computers and Internet, countless digi-
tal contents, especially digital images and videos, demandsignal compression for
efficient storage and transmission. Accordingly, quantization provides a means to
represent signals efficiently with acceptable fidelity for signal compression.

Existing quantization schemes can be classified into two categories, namely,
uniform quantization and nonuniform quantization [2, 3]. Uniform quantization
is simple, but not optimal for signals with nonuniform distribution in terms of
MMSE if more computations and storage are available. While nonuniform quan-
tization is much more complex and in a great variety. Minimummean squared
error (MMSE) quantization (a.k.a, Lloyd-Max quantization) is a major type of
nonuniform quantization. It is optimal in the sense of mean squared error (MSE),
but incurs high computational complexity. Companding, which consists of non-
linear transformation and uniform quantization, is a technique capable of trading
off quantization performance with complexity for nonuniform quantization. Es-
pecially, for high rate compression, the performance of companding can approach
that of Lloyd-Max quantization asymptotically.

Lloyd-Max quantizers and companders are already well developed for Gaus-
sian distribution or Laplacian distribution [2, 4, 5] as convenience, but not for
Gaussian mixture model (GMM). Since GMM serves as a good approximation of
an arbitrary distribution, it is important to develop quantizers and companders for
GMM, which are expected to find wide applications in ADC and high dynamic
range (HDR) image compression, as well as audio [6] and video[7] compression.

To address this, we proposes a succinct adaptive quantizer with piecewise
companding and scaling for GMM in this paper. We first consider a simple GMM
(SGMM) that consists of two Gaussian components with mean−µ andµ respec-
tively, and the same varianceσ2. The proposed quantizers have three modes,
making them capable of adapting their reconstructed levelsto the varying means
and variances of the Gaussian components in a GMM.

Specifically, for SGMMs, ifµ is small, our quantizer operates in Mode I, and
treats the input as if it were from two overlapping Gaussian random variables
(r.v.) rather than a GMM r.v.. For Mode I, our quantizer can beimplemented by
a compander or a scaled Lloyd-Max quantizer of a unit-variance Gaussian. Ifµ
is large, our quantizer operates in Mode III, i.e., if the input is negative, treat the
input as if it were a Gaussian r.v. with mean−µ; if the input is positive, treat the
input as if it were a Gaussian r.v. with meanµ. For Mode III, our quantizer can
be implemented by two companders or two scaled Lloyd-Max quantizers, each of
which corresponds to one of the two Gaussian r.v.s. Ifµ is of medium value, our
quantizer operates in Mode II, i.e., with piecewise companding.
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Moreover, we propose a reconfigurable architecture to implement our adaptive
quantizer in an ADC. The proposed adaptive quantizer is tuned by the information
from a signal histogram estimator to optimally quantize signals with available
speed and power from devices. Furthermore, the proposed quantizer is applied
into image quantization and high dynamic range image compression. We design
HDR tone mapping algorithm by jointly using adaptive quantizers and multiscale
techniques. Therefore, the proposed algorithm could mitigate the halo artifacts
in the resulted low dynamic range image, as well as keep the contrast of image
details crossing the largest gamut.

The experimental results show that 1) our proposed quantizer is able to achieve
MSE performance close to Lloyd-Max quantizer for GMM, at much lower cost
than Lloyd-Max quantizer for GMM; 2) our proposed quantizeris able to achieve
much better MSE performance than a uniform quantizer, at a cost similar to the
uniform quantizer. The experimental results also show thatthe proposed adap-
tive quantizer holds great potential in the applications ofADC and HDR image
compression. It works well with both high rate and low rate quantization.

The rest of the paper is organized as below. Section 2 presents the prelimi-
naries of optimal adaptive quantizers. Section 3 describesthe proposed adaptive
quantizer for GMM. In Section 4, we propose a reconfigurable architecture to im-
plement our adaptive quantizer in an ADC. In section 5, the proposed quantizer
is applied into high dynamic range image compression. Experimental results are
exhibited in Section 6. Section 7 concludes the paper.

2. Preliminaries of Adaptive Quantizer

2.1. MMSE Quantizer

The performance of a quantizer can be evaluated by mean square error (MSE)
between input signalX and the reconstructed signalX̂, i.e.,

MSE= E[(X − X̂)2] (1)

Lloyd-Max quantizer [8] is an MMSE quantizer. Lettk (k = 0, · · · , N) de-
note boundary points of quantization intervals, and letrk (k = 0, · · · , N − 1)
denote quantization levels. Then Lloyd-Max quantizer is characterized by:
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{t∗k, r∗k} = arg min
{tk ,rk}

MSE

= arg min
{tk ,rk}

N−1
∑

k=0

∫ tk+1

tk

(x− rk)
2fX(x)dx

(2)

wherefX(x) is the probability density function (pdf) ofX, N is the number of
quantization levels. Deriving respect totk andrk in Eq. 2, we have the centroid
and the nearest neighbor conditions as following:

t∗k =
r∗k−1 + r∗k

2
, k = 1, · · · , N − 1, (3)

and

r∗k =

∫ t∗
k+1

t∗
k

xp(x)dx
∫ t∗

k+1

t∗
k

p(x)dx
, k = 0, · · · , N − 1, (4)

where[t∗0, t
∗
N ] is the range of the quantizer input.

The Lloyd-Max quantizer for Gaussian distribution with zero mean and unit
variance has been well studied. Given the number of quantization levelsN , the
Lloyd-Max quantizer for zero mean, unit variance Gaussian could be obtained
from tables in [4]. Given the Lloyd-Max quantizer for zero mean, unit variance
Gaussian, we can use the affine law in Proposition 1 to obtain the Lloyd-Max
quantizer for Gaussian distribution with arbitrary meanµ and arbitrary variance
σ2.

2.2. Gaussian Mixture Model and Affine Law
Gaussian distribution is wildly used in signal modeling because of its simplic-

ity, ubiquity, and the Central Limit Theorem. However, signals in the real world,
such as pixel intensity of natural images, may have an arbitrary distribution, which
can be better approximated by a GMM than by a Gaussian distribution.

The pdf of a GMM r.v.X is given as below:

fX(x) =

Ng
∑

i=1

pi · gi(x) (5)

whereNg is the number of Gaussian components in the GMM;gi(x) is the Gaus-
sian pdf for componenti (i = 1, · · · , Ng); pi denotes the probability of component

4



i (i = 1, · · · , Ng); and
∑Ng

i=1 pi = 1.
In this paper, we firstly consider a Simple GMM (SGMM) given asbelow:

fX(x) =
1

2
√
2π

(e−
1
2
(x−µ)2 + e−

1
2
(x+µ)2) (6)

Given a suboptimal quantizer for SGMM, we can use the affine law in Propo-
sition 1 to obtain a suboptimal quantizer for a GMM that consists of two Gaussian
components with arbitrary mean−µ andµ (µ > 0), respectively and the same
varianceσ2 (σ2 > 0). It can also be used to obtain the suboptimal quantizer for a
GMM with arbitrary number of components.

Proposition 1. (Affine Law) For a r.v.X with zero mean and unit variance, as-
sume that itsN-level Lloyd-Max quantizer is specified bytk (k = 0, · · · , N) and
rk (k = 0, · · · , N − 1). Then for r.v.Y = σX + µ, with meanµ and variance
σ, its Lloyd-Max quantizer is specified bŷtk = σtk + µ (k = 0, · · · , N) and
r̂k = σrk + µ (k = 0, · · · , N − 1).

2.3. MMSE Compander
A compander consists of a compressor, a uniform quantizer, and an expandor;

the compressor performs nonlinear transformation and the expandor is an inverse
of the compressor. The compressor is intended to convert theinput r.v. of arbitrary
distribution into a uniformly-distributed r.v., so that wecan use a simple uniform
quantizer, which is the optimal quantizer for the one-dimensional uniform distri-
bution in the sense of MMSE. Proposition 2 gives a nonlinear transformation for
an (suboptimal) MMSE compander for any distribution.

Proposition 2. Assume that a r.v.X has Cumulative Distribution Function (CDF)
FX(x) (x ∈ R). Then r.v.Y = FX(X) is uniformly distributed in[0, 1]; and the
compander with compressorY = FX(X) is an optimal/suboptimal MMSE quan-
tizer ofX, especially whenX is quantized with high rate.

For Gaussian distribution with zero mean and unit variance,a MMSE com-
pressor performs transformation by1−Q(X), where

Q(X) =
1√
2π

∫ ∞

X

exp(−u2

2
)du. (7)

Since the integral inQ(X) has high computational complexity, in this paper, we
propose a simple compressor, which only needs computation of piecewise mono-
mials (see Section 3.4).
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3. Adaptive Quantizer for Gaussian Mixture Models

In this section, we first present our adaptive quantizer for SGMM in Eq. (6)
and then extend it to a more complicated GMM with arbitraryµ and σ2, and
arbitrary number of components, by using Proposition 1.

3.1. Design Methodology

Because Proposition 2 states that the compander with compressorY = FX(X)
is a MMSE quantizer of inputX, our design methodology is to find a compressor
whose transformation function is simple, but can achieve a good approximation of
CDFFX(X). The robust quantizer [9] will be provided through the determination
of the required parameters.

Figure 1: CDF of GaussianN(0, 1) vs. CDF of SGMM withµ = 0.5.

Figure 2: Transformation function of a piecewise compressor vs. CDF of SGMM withµ = 1.5.

Fig. 1 shows the CDF of GaussianN(0, 1) vs. that of SGMM withµ = 0.5.
We can observe that they are similar. Fig. 2 shows the transformation function of
a piecewise compressor specified by Eq. (10) vs. CDF of SGMM with µ = 1.5.
From Fig. 2, we could observe that the transformation function of a piecewise
compressor specified by Eq. (10) is similar to the CDF of SGMM with µ = 1.5.
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Figure 3: CDF of the catenated Gaussian vs. CDF of SGMM withµ = 3.

Fig. 3 shows two catenated CDFs of two Gaussians vs. the CDF ofSGMM with
µ = 3, where the catenated CDF of two Gaussians is given by Eq. (16). From
Fig. 3, it is observed that the CDF of the catenated Gaussian is similar to the CDF
of SGMM with µ = 3. For this reason, our proposed adaptive quantizer operates
under three modes, which correspond to smallµ, medium-valuedµ, and largeµ,
respectively.

3.2. Three Modes

Let qg(X) denote the Lloyd-Max quantization function for a Gaussian r.v.
X ∼ N(0, 1).

Our proposed adaptive quantizer operates in one of the following three modes,
depending on the value ofµ.

1. If 0 ≤ µ < µS, the quantizer operates in Mode I, i.e., the quantizer can
be an MMSE compander for GaussianN(0, 1), or Lloyd-Max quantizer for
GaussianN(0, 1). Denote the quantization function in Mode I byq

I
(X).

We use Lloyd-Max quantizer for GaussianN(0, 1) to implement Mode I,
i.e.,

q
I
(X) = qg(X). (8)

The motivation of using Mode I is that the CDF of GaussianN(0, 1) is
similar to the CDF of SGMM with smallµ as shown in Fig. 1.

2. If µS ≤ µ < µL, the quantizer operates in Mode II, i.e., the quantizer
is a compander with a piecewise compressor specified by Eq. (10). The
motivation of using Mode II is that the transformation function of a piece-
wise compressor specified by Eq. (10) is similar to the CDF of SGMM with
medium-valuedµ as shown in Fig. 2.
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3. If µ ≥ µL, the quantizer operates in Mode III, i.e., the quantizer canbe two
catenated MMSE compander for two Gaussians, or two catenated Lloyd-
Max quantizers for two Gaussians. Denote the quantization function in
Mode III by q

III
(X). We choose the catenated Lloyd-Max quantizer to

implement Mode III as following:

q
III

(X) =

{

qg(X − µ) , X ≥ 0

qg(X + µ) , X < 0
(9)

The motivation of using Mode III is that two catenated CDFs ofGaussian
is similar to that of SGMM with largeµ as shown in Fig. 3.

3.3. Parameter Determination

In this section, the values ofµS andµL will be determined.
It is well known the3-sigma rulethat nearly all (99.7%) of the values lie within

3 standard deviations around the mean for Gaussian distribution. Therefore, if
µ ≥ 3, the two Gaussian components of SGMM could be dealt with respectively,
as in Mode III. Whenµ < σ, for SGMM, the data of right Gaussian component
in [µ−σ, µ+ σ], always fall in the[−µ− 3σ,−µ+3σ], the 3 standard deviations
around the mean of left Gaussian component, and vise versa. Therefore, forσ =
1, when0 ≤ µ < 1, we consider the data of SGMM as Mode I. In conclusion, for
the proposed quantizerµS = 1 andµL = 3.

3.4. Piecewise Companding of Mode II

For Mode II, we choose the monomialf(x) = axb to approximate the ideal
compressor of SGMM, i.e. the CDF of SGMM, piecewisely. Thereare many
more accurate and more complicated approximative functions, like the sum of
monomialsf(x) =

∑

i aix
bi , i > 1, sigmoid functionf(x) = 1

1+e−x , andf(x) =
arctan(x). But their corresponding expandors, i.e. the inverses of compressors,
are hard to obtain or computationally expensive. However,f(x) = axb has simple
inverse and is a good approximation to the segments of the CDFof SGMM. The
piecewise compressor symmetrical to the origin can be described by Eq. (10).

f(x) =



















a(x+ µ)b + 0.25, x ≤ −µ (10a)

a′(x+ µ)b
′

+ 0.25,−µ < x ≤ 0 (10b)

−a′(µ− x)b
′

+ 0.75, 0 < x ≤ µ (10c)

a(x− µ)b + 0.75, x > µ (10d)
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with {a, a′, b, b′} = arg

min
{a,a′,b,b′}

∫ 3

1

(

∫ ∞

−∞

(FSGMM(x, µ)− f(x, µ))2dx)dµ (11)

By the steepest descent method, we obtainb = 1
3
, b′ = 1

2
, a = 0.15 anda′ = 0.125

(which can be realized by right shifting 3 bits) for simplicity and fast computation.
The compressor is shown in Fig. 2 whenµ = 1.5. Whenx < −µ andx > µ,

the PDF decaying faster, we usef(x) = ax
1
3 . Whenx > −µ andx < µ, the

PDF decaying slower, we usef(x) = a′x
1
2 . It results that the data with small

probability is compressed more and the data with large probability is compressed
less. It is more precise than piecewise linear compander [9], and still simple.

Although there are more accurate compressors to approximate the CDF with
certainµ, they may not have good approximations to the CDF with otherµ ∈ [1, 3)
in average. The proposed compressor is a good tradeoff between accuracy and
generalizability. It provides a stable good performance whenµ ∈ [1, 3) as shown
in experiments in Section 6. It is robust.
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Figure 4: Reconfigurable A/D converter.

Therefore, the proposed compander has three advantages.

1. It is easy to design compander by Eq. (10);
2. It is fast to quantize data with this compander;
3. It has good average MSE performance whenµ ∈ [1, 3).

3.5. Adaptive Quantizer for A General GMM

In this section, we design the adaptive quantizer for a general GMM based on
the adaptive quantizer for SGMM.
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3.5.1. GMM Estimation by EM
The GMM (Gaussian Mixture Model) is a probability distribution model con-

sisting finite number of Gaussian components as shown in Eq. (5). The Expectation-
Maximum (EM) algorithm [10] is a general method to find the maximum likeli-
hood estimation of GMM.
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Figure 5: GMM estimation by EM algorithm on histogram ofBarbara.

EM algorithm can efficiently estimate the components of GMM [11] as shown
in Fig. 5. The number of components of GMM should be assigned to the EM
algorithm by experience and restricted by the available computational resources
andN , the number of the reconstruction levels of quantizers.Ng could beN/5
or smaller.µi, σi andpi (i = 1, · · · , Ng) of each Gaussian component in Eq. (5)
are determined by the EM algorithm. The GMM estimation of signals with stable
distribution is obtained for later quantization once for all.

3.5.2. Generalization by Processing Neighboring GaussianComponents Pair-
wisely

For the General GMM as shown in Eq. (5), with the scaling law inProposi-
tion 1, the following generalizations are made from SGMM by considering neigh-
boring pairwise Gaussian components.

Assuming the Gaussian components are sorted by their meansµi, for the
neighboring Gaussian componentsCi andCi+1, we consider support(µi, µi+1),
wheni 6= 1, Ng, else consider(−∞, µ1) or (µNg

,+∞).

1. Allocate the numberNi from the total reconstruction levelsN for each
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Gaussian component according to its percentagepi.

Ni = [N · pi]

where[·] is round off operator. For eachNi, it is symmetrically located with
respect to the mean of the corresponding Gaussian component.

2. Origin Shift:
For any two adjacent Gaussian components with means and variances of
(µi, σ

2
i ) and(µi+1, σ

2
i+1), their pdfs equal around

xo =
σiµi + σi+1µi+1

σi + σi+1

(the effect ofpi is omitted). Then we shift the origin toxo.
3. The three-mode boundariesµS andµL are scaled by(σi + σi+1).
4. Scale the reconstruction levels according to the variance:

For the Gaussian componenti with (µi, σi), scale the reconstruction levels
obtained from SGMM byσi.

5. Tune mode II:
Since half support(µi, µi+1) of Gaussian components is considered each
time, the compressor in Eq. (10b) (10c) are needed, and should be scaled by
pi as:

f(x) =

{

pi(a
′(x+ µ)b

′

+ 0.25),−µ < x ≤ 0

pi(a
′(x+ µ)b

′

+ 0.25),−µ < x ≤ 0
(12)

In this way, the adaptive quantizer for a GMM is determined.

4. Reconfigurable A/D converter with Adaptive Quantizer

With the proliferation of autonomous sensors, and digital devices, there has
been an increasing demand for reconfigurable analog-to-digital converters (ADC) [12],
where the proposed adaptive quantizer can have important applications.

We propose a reconfigurable A/D converter adaptive to the distribution of the
input signals with the proposed quantizer as shown in Fig. 4.For the input signal
with arbitrary distribution, we quickly sample and discretize it with uniform quan-
tizer to estimate the distribution of the signal. This information is sent back to the
proposed adaptive quantizer to do mode selection. Then the adaptive quantizer
could give a more accurate discrete signal by capturing the signal characteristics
as much as possible with appropriate modes. The residual signal could also be
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iteratively sent back to the adaptive quantizer to minimizethe quantization error.
The FPGA implementation of the adaptive quantizer could be reconfigured inTq

milliseconds, whereTq < 10. Then the system can be updated at the beginning
of every cycle ofTq milliseconds, according to the distribution of the input signal.
The number of quantization levels could be adjusted according to the speed, reso-
lution and power consumption of the devices. Our scheme based on histogram es-
timation and the GMM modeling may outstand previous iterative DPCM schemes
[13].

The reconfigurable ADC architecture in Fig. 4 can dynamically adjust the
quantization speed, resolution and power consumption to match input data char-
acteristics. Therefore, it will have wide applications in many ADCs and sensor
applications.

5. High Dynamic Range Image Compression with Joint AdaptiveQuantizer
and Multiscale Techniques

High dynamic range imaging (HDRI or just HDR) is one of the frontier tech-
niques in image processing, computer graphics and photography [14, 15, 16],
where image pixels take floating values in the range of [0,1] rather than the tra-
ditional 8 bits per pixel for gray images and 24 bits per pixelfor RGB images.
HDRI try to capture the dynamic range of natural scenes, which can exceed three
orders of magnitudes of display devices. The dynamic range of natural scenes
can be captured by human eyes, many films, and new camera sensors. Whereas,
display devices, such as CRTs, LCDs, and print materials, are restricted to low dy-
namic range. Therefore, compressing the high dynamic rangeof HDRI to adapt
to the low dynamic range of display devices and keeping the vivid colors and the
rich details of the original images as much as possible, is getting more and more
attention. It is called tone mapping, which is an important component in the HDR
imaging pipeline, and widely used in virtual reality, videoadvertising, visual sim-
ulation, remote sensing images, aerospace, medical and many other fields [17].

The tone mapping techniques can be divided into two categories: tone repro-
duction curves (TRCs) and tone reproduction operators (TROs). They could be
applied to images both globally and locally. TRCs use compressive point nonlin-
earity mapping, such as a power functionf(·), to shrink the high dynamic range
images into the low dynamic range images. K. Chiuet al. proposed spatially
nonuniform scaling functions for high contrast images [18]. F. Dragoet al. used
an adaptive logrithmic mapping for displaying high contrast scenes [19]. Erik
Reinhardet al. [20] developed their tone mapping method based on the well-
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known photo-graphic pratice of dodging-and-burning. Fattal et al. [21] manipu-
late scale factors in the gradient domain of logarithmic space. Larsonet al. [22]
proposed a histogram adjustment technique adaptive to the luminance in the scene.
I.R. Khanet al. [23] and A. Boschettiet al. [24] improved the histogram based
algorithms by incorporating human visual system, and adjusting the histogram lo-
cally. Jiang Duanet al. [25] neatly combined the global tone mapping operator
HALEQ into local tone mapping operator ALHA, with fixed parameter values and
good performance. Also they proposed several algorithms [26, 27] for compress-
ing HDRI by optimally combining linear map and histogram equalization. The
TROs adjust pixel intensity by using spacial context to preserve local image con-
trast, which usually use multiscale techniques. Stockham [28] separated an HDR
imageH(x, y) into a product of an illumination imageI(x, y) and a reflectance
imageR(x, y) in an early literature. Later on, Jobsonet. al. [29], Pattanaiket.al
[30] improved the multiscale techniques by introducing mechanism of the human
visual system. Later Frdo Durand and Julie Dorsey [31] presented a new tech-
nique with fast bilateral filtering decompositing images into a base layer, and a
detail layer. These multiscale methods have halo artifacts, which happen around
the sharp edges and are caused by the blurring effect of filters. The most recent
multiscale technique proposed by Yuanzhen Li [32] properlyused a symmetric
analysis-synthesis filter bank, and local gain control of each subband to mitigate
the halo artifacts. But the luminance of the resulted low dynamic range images
seems low, and the boundary of the dynamic range is clipped, which could be seen
from their histograms. To address these problems, we proposed a joint TRC and
TRO methods for high dynamic range image tone mapping based on Li’s method
[32] and our proposed adaptive quantizer.

We proposed two methods to use the proposed adaptive quantizer for HDRI
tone mapping. The first method is shown in Fig. 6. Adaptive quantization is taken
in the log domain of pixel values. And then in each quantization range, linear
mapping is used to map vaues into target LDR values as shown inEq. (13) for
8-bit per pixel output.

f(x) =
256

N
(

x− tk
tk+1 − tk

+ k), k = 0, · · · , N − 1. (13)

whereN(1 ≤ N ≤ 256) is the number of quantization levels,[tk, tk+1] is thekth
quantization range. The adaptive quantization acts as histogram equalization, to
maximize image contrast. Linear mapping tries to keep the perceptual feeling of
the original images.q = N

256
is an indicator of balance between adaptive quanti-
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zation and linear mapping. Ifq = 1, no linear mapping is involved in HDRI tone
mapping. Ifq = 1

256
, no adaptive quantization is involved in HDRI tone mapping.

Figure 6: Tone mapping by using joint adaptive quantizer andlinear mapping.

The second method is to use the adaptive quantizer in the postprocessing of
HDR images as shown in Fig. 7. After adaptive quantization, the LDRI has more
uniform constrast in the full low dynamic range of LDRI obtained from TRO
methods.

Figure 7: Tone mapping by using joint adaptive quantizer andmultiscale techniques.

6. Experimental Results and Discussion

We compare the proposed quantizer with the actual Lloyd-Maxquantizers
for SGMM, by comparing the corresponding approximate CDFs of the proposed
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quantizer with the actual CDFs of SGMM. We also compare the proposed quan-
tizer with the Lloyd-Max quantizers for SGMM and the uniformquantizer in
terms of MSE performance.

The proposed adaptive quantizer is described in detail in Section 3. The Lloyd-
Max quantizer for SGMM is found by the LBG algorithm numerically [2]. The
uniform quantizer we compare with is the optimal uniform quantizer which is
applied uniformly to the finite region containing 99.8% of the data of the GMM
distribution.

6.1. Example and Justification of Parameter Determination

The reproduction values of 2-bit Lloyd-Max quantizer forN(0, 1) are[−1.5104, −
0.4528, 0.4528, 1.5104]. Whenµ ≥ 3, for the 3-bit quantizer for SGMM, the 8
reproduction values are[−1.5104 − µ, − 0.4528 − µ, 0.4528 − µ, 1.5104 −
µ, − 1.5104+ µ, − 0.4528+ µ, 0.4528+ µ, 1.5104+ µ] as in Mode III. When
µ < 1, i.e. in mode I, for the 2-bit quantizer for SGMM, the reproduction values
are[−1.5104, − 0.4528, 0.4528, 1.5104]. When1 ≤ µ < 3, i.e. in mode II, the
compander is chosen as shown in Eq. (10).

The differences between reproduction values of the proposed quantizer and
those of the Lloyd-Max quantizer for SGMM are evaluated by average absolute
difference (AAD) as following:

AAD =

∫ d

c

1

N

N−1
∑

k=0

|rpk(µ)− rlk(µ)|dµ (14)

whererpk andrlk are the reproduction values of the proposed quantizer and the
Lloyd-Max quantizer for SGMM,µ is the mean in SGMM,(c, d) is the support
for averaging, i.e. the region ofµ for each mode.

The approximation error between the CDF approximators in the proposed
quantizer and those of SGMM is evaluated by:

∫ d

c

(

∫ ∞

−∞

(FSGMM(x, µ)− FA(x, µ))
2dx)dµ (15)

whereFSGMM is the CDF of SGMM,FA is the CDF approximators in the pro-
posed quantizer. For Mode I,c = 0, d = 1, FA(x) = Q(x) whereQ(x) is defined
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Table 1: Proposed Quantizer vs. Lloyd-Max quantizer.

Mode I Mode II Mode III
AAD 10−2 10−1 10−4

Approximation Error 2.51 16.69 0.03

Table 2: Comparison of Complexity of Quantizaters.

Quantizers Design Time Running Time per Sample Memory

Uniform Quantizers Inv 3 O(1)
Mode I q

I
(x) N logN O(N )

Proposed Companding N 4 O(1)
Adaptive Mode II N 4 O(1)
Quantizer Mode III q

III
(x) N/2 log(N/2) O(N )

Companding N 4 O(1)
Lloyd-Max Quantizer for GMM 2k ·N ·(Int+1) logN O(N )

(N is the number of quantization levels; Inv denotes the complexity of computing the inverse of

CDF; Int denotes the complexity of computing the integral,k is the number of iterations in

Lloyd-Max algorithm.)

in Eq. (7); for Mode II,c = 1, d = 3, FA(x) is in Eq. (10); for Mode III,

FA(x) =

{

(1 +Q(x+ µ))/2, x < 0

(1 +Q(x− µ))/2 + 1/2, x ≥ 0
(16)

The numerical experiments show that the AAD in10−n order and the approx-
imation error of the proposed quantizer is small as listed inTable 1. Table 1,
Fig. 1, Fig. 2, and Fig. 3 indicate the closeness of the proposed quantizer to the
Lloyd-Max quantizer as well as the robustness [33] of the proposed quantizer.

6.2. MSE Performance Comparison

We randomly generate 10000 data from the distribution of SGMM in Eq. (6).
Then the proposed adaptive quantizer, Lloyd-Max quantizerand uniform quan-
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tizer are used to quantize the data into 8 quantization levels. We reconstruct the
data from the quantized values, and compare them with the original data in terms
of MSE with respect to differentµ as shown in Fig. 8(a).
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Figure 8: MSE comparison between the proposed adaptive quantizer, Lloyd-Max quantizer and
Uniform quantizer for SGMM.

The MSE performance of the proposed quantizer is very close to that of Lloyd-
Max quantizer and much better than that of the uniform quantizer. In mode I,
since we take the optimal uniform quantization in finite highprobability region,
the MSE gap between uniform quantizer and Lloyd-Max quantizer is small. But
the proposed quantizer still has performance gain than uniform quantizer. In mode
II, the proposed piecewise compander provides a good stableMSE performance
with a simple design. In mode III, the MSE of the uniform quantizer increases
dramatically withµ, since distribution is far away from uniform distribution when
µ is large, and the uniform quantizer wastes lots of bits for values with small prob-
ability around origin. But the proposed quantizer is still with MSE performance
very close to that of Lloyd-Max quantizer.

Again, we apply our method to:

G2(x) =

2
∑

i=1

1

(2π)1/2σ
e−

(x−µi)
2

2σ2 (17)

Whenµ1 = −µ2 = µ andσ = 2, we draw MSE results of the proposed quantizer,
the Lloyd-Max quantizer and the uniform quantizer in Fig. 8(b). From Fig. 8(b),
we could see that in Mode I and III, the quantization error of the proposed adaptive
quantizer is very close to that of the Lloyd-Max quantizer, and the quantization
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error is a little higher in Mode II.µS andµL for σ = 2 are almost the twice of
those forσ = 1.

The proposed adaptive quantizer has MSE performance close to that of the
Lloyd-Max quantizer, with similar computations as the uniform quantizer. It ver-
ifies the affine law of quantizers in Proposition 1. By the way,due to the good
MSE performance of the proposed quantizer, the reproduction values of the pro-
posed quantizer are effective initials of Lloyd-Max algorithm for quickly finding
the Lloyd-Max quantizers for GMM.

Furthermore, we compare the proposed adaptive quantizer, Lloyd-Max quan-
tizer and Uniform quantizer on seven natural images: Barbara, Lena, Pepper,
Boat, Baboon, Jet, Goldhill. MSE comparison on image Barbara is shown in
Fig. 9(a), and average MSE comparison on seven images is shown in Fig. 9(b).
The figures show that the MSE performance of the proposed quantizer is ap-
proaching that of Lloyd-Max quantizer, and much better thanthat of Uniform
quantizer.
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Figure 9: MSE comparison between the proposed adaptive quantizer, Lloyd-Max quantizer and
Uniform quantizer on natual images.

The time complexity and space complexity of the uniform quantizer, the Lloyd-
Max quantizer and the proposed quantizer forN quantization levels are shown in
Table 2. Quantizer designing time, quantization running time per sample and
memory cost of the quantizers are compared. The uniform quantizer design needs
the inverse of CDF to obtain the optimal quantization range.The uniform quanti-
zation function[x/N ] + t0 needs3 operations per sample, i.e. a multiplication, a
rounding operation and an addition. The proposed quantizeruses prior informa-
tion about signal distribution roughly estimated by real-time EM algorithm [34]
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at initializing stage. The complexity of general EM algorithm is analyzed to be
superlinear. In mode I and mode III, the computation of the proposed adaptive
quantizer usingq

I
andq

III
is just a table-lookup. When the number of quanti-

zation levelsN is small, the running time of the proposed quantizer per sample
log(N) or log(N/2) is similar to that of uniform quantization. In mode II, the
adaptive quantizer uses companding technique. Its computation is approxima-
tive 4 operations per sample, i.e. a multiplication, an exponentiation, a rounding
operation and an addition. In mode I and mode III, if companding is used, the
complexity is the same as Mode II. The computation of Lloyd-Max algorithm
includes an addition, a division in Eq. (3) and two integralsin Eq. (4) for each
reconstruction level in one iteration.

The memory costs are also compared. For uniform quantizer and proposed
quantizer in mode II and the companding in mode I and III, O(1)space is needed
for computation. Others need O(N) space for table lookup. In short, the proposed
quantizer is much more computationally efficient than the Lloyd-Max quantizer
and close to the uniform quantizer.

6.3. An Application in Image Quantization

We apply the proposed adaptive quantizer in gray image quantization. Assume
that we only have a low dynamic range displayer, such as printed paper, withm
bits per pixel, wherem < 8, i.e. we should have am bit quantization scheme for
proper display. Then what is the best image quality we can obtain from original
gray images with quantization? The quantizer should utilize the information of
image pixel distribution. Again, we compare the proposed adaptive quantizer
with uniform quantizer and Lloyd-Max quantizer.

We show the cases whenm = 4, 5 in Fig. 10 and Fig. 11 respectively on image
Barbara, whose histogram and GMM estimation are shown in Fig. 5 before. From
Fig. 10 and Fig. 11, we could see that the proposed adaptive quantizer generates
smoother images with less perceivable color stairs than theuniform quantizer,
and similar to the Lloyd-Max quantizer. The proposed quantizer has better per-
formance than the uniform quantizer, and approximate to theoptimal Lloyd-Max
quantizer in terms of perceptual quality and PSNR.

To compare the quantization performance vs. quantizer design time among
uniform quantizer, Lloyd-Max quantizer and the proposed quantizer, we use leave-
one-out cross-validation to design quantizers. We use Barbara, Lena, Pepper,
Boat, Baboon and Jet to design the quantizer, and test the quantizer on Goldhill.
We measure the PSNR and the quantizer design time. The time spent on GMM
estimation with EM in the proposed algorithm is also included. Then we do the

19



same tests for all the other images. The average performancedemonstrated with
PSNR-design time is shown in Fig. 12. The program is run in Matlab 2010. We
could see that the time of uniform quantizer spending on determing quantization
range is almost constant. The propose quantizer has much less design time than
the Lloyd-Max quantizer, but with similar or better PSNR valuess.

(a) Uniform Quantizer (34.76dB)(b) The Proposed Quantizer
(36.21dB)

(c) Lloyd-Max Quantizer (36.84dB)

Figure 10: Performance comparison of different quantizerswhenm = 4.

6.4. Experimental Results on HDR Image Tone Mapping
We show the experimental results of the proposed tone mapping algorithms of

HDR images by using joint adaptive quantizer and multiscaletechniques in this
section. We compare our algorithms with the recent algorithms: a TRC based
method [32] and a TRO based method [23].

From Fig. 13, it is observed that Li’s result [32] is a little dark due to the con-
centrated histograms, and the histogram based algorithm [23] loses some details
between trees and background, while our results look better.
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(a) Uniform Quantizer (40.72dB)(b) The Proposed Quantizer
(41.85dB)

(c) Lloyd-Max Quantizer (42.45dB)

Figure 11: Performance comparison of different quantizerswhenm = 5.

We also compare the resulted LDR images and their histogramsof RGB com-
ponents on the HDR imagechairs in Fig. 14 and Table 3. From Fig. 14, we can
see that the board on the wall in our result is clearer than that in Li’s result, and the
illumination information in our algorithm is richer. In Table 3, the first row shows
the histograms of results from Li’s algorithm [32] and the second row shows the
histograms of results from our proposed algorithm. From thetable, we could see
that histograms of Li’s output has peaks in the both ends of dynamic range, since
it is hard to control gain map output range and overflowing values are simply
capped. It will loss information and may cause false color artifacts. But the his-
tograms of RGB components from our second method with adaptive quantization
are more spread out than Li’s algorithm. We could see that theboard on the wall
in Fig. 13(d) is clearer than that in Fig. 13(a). Also the haloartifacts brought by
multiscale in our algorithm is reduced by post processing with our methods, as

21



0 10 20 30 40 50 60 70 80
26

28

30

32

34

36

38

40

42

44

Design Time (seconds)

P
S

N
R

(d
B

)

 

 
Uniform Quantizer
The Proposed Quantizer
Lloyd−Max Quantizer

Figure 12: Comparison of PSNR vs design time among differentquantizers.

shown in Fig. 14 around lamp area.
Furthermore, we compare our method 1 with differentN with histogram based

method and Erik Reinhard’s method [20] as shown in Fig. 15 andFig. 16. From
the figures, we could see that for our proposed methodN = 128 has more contrast
as a whole thanN = 64 as expected, since the algorith with largeN is close to
histogram equalization method. WhileN = 64 keeps more orignal scene visual
impression. Our method generates clearer wall painting inFig. 15, and clearer
ground and leaves in Fig. 16 than the compared methods.

7. Conclusions

In this paper, we proposed a novel adaptive quantizer for Gaussian Mixture
Model. The proposed quantizer is adaptive to the varying means and variances
of the components of Gaussian Mixture. The adaptive quantizer has less Mean
Square Error than uniform quantizer, and very close to Lloyd-Max quantizer, only
with similar computations as uniform quantizer. We also proposed a reconfig-
urable A/D converter with our adaptive quantizer. The proposed quantizer can
also have applications in image quantization and High Dynamic Range Image
compression. The quantized gray images with our quantizer have better visual
quality and higher PNSR than those with the uniform quantizer, and are similar
to those with Lloyd-Max quantizer. For HDR image compression, we proposed
the tone mapping algorithm by using our adaptive quantizer and multiscale tech-
niques. The experimental results show that the proposed adaptive quantizer holds
great potential in the applications of ADC and HDR image compression.

Our future work will focus on extending one-dimensional quantizers of Gaus-
sian Mixture Model to high dimensional space. The potentialapplications will
include high dimensional signal processing and clustering.
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(a) Li’s algorithm [32] (b) Histogram based algorithm [23]

(c) Our proposed method 1 (N=64) (d) Our proposed method 2

Figure 13: Performance comparison between different tone mapping algorithms on HDR image
mpi atrium (copyright by Rafal Mantiuk)

Appendix A. Proof of Proposition 1

Proof: The Lloyd-Max quantizer is:

min
r
′

k
,t
′

k

N
∑

k=1

∫ t
′

k

t
′

k−1

(x− r
′

k)
2fX(x)dx (A.1)

with {tk}Nk=0 and{rk}Nk=1 as the solution.
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Table 3: Histograms of images obtained by Li’s algorithm [32] (the first row) and our method 2
(the second row)

R Component HistogramG Component HistogramB Component Histogram
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(The horizontal axes are normalized into the range [0 1].)

ForY = σX + µ,

min
r
′′

k
,t
′′

k

N
∑

k=1

∫ t
′′

k

t
′′

k−1

(y − r
′′

k)
2fY (y)dy

=
N
∑

k=1

∫

t
′′

k
−µ

σ

t
′′

k−1
−µ

σ

(σx+ µ− r
′′

k)
2fX(x)dx

=σ2
N
∑

k=1

∫

t
′′

k
−µ

σ

t
′′

k−1
−µ

σ

(x− r
′′

k − µ

σ
)2fX(x)dx

(A.2)

if and only if
t
′′

k−1−µ

σ
= tk and r

′′

k
−µ

σ
= rk, Eq. (A.2) is minimal, i.e.{σtk + µ}Nk=0

and{σrk + µ}Nk=1 is the solution for Eq. (A.2).

24



(a) Li’s algorithm [32] (b) Histogram based algorithm [23]

(c) Our proposed method 1 (N=64) (d) The proposed method 2

Figure 14: Visual performance comparison among different tone mapping algorithms on HDR
imagechairs.

Appendix B. Proof of Proposition 2

Proof: TheF−1
X (y) should be well defined as

F−1
X (y) = inf{x : FX(x) ≥ y, 0 < y < 1}. Then

P (Y ≤ y) = P (FX(X) ≤ y)

= P (F−1
X [FX(X)] ≤ F−1

X (y))

= P (X ≤ F−1
X (y))

= FX(F
−1
X (y))

= y.

(B.1)

Thus,Y is uniformly distributed.
Assume thatX has a finite support or a truncated support(a, b), andfX(x) >

0 on the support. By using Bennettt’s [35] approximate expression for the mean
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square distortion for very large numberN of quantizer output levels, we have:

E[(X − X̂)2] ∼= 1

12N2

∫ b

a

1

fX(x)
dx (B.2)

It is bounded by
1

12N2
(b− a)max

(a,b)
{ 1

fX(x)
}

Therefore, Eq. (B.2) is towards 0 asN → ∞.
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(a) E. Reinhard’s method [20] (b) Histogram based algorithm [23]

(c) Our proposed method 1 (N=128) (d) Our proposed method 1 (N=64)

Figure 15: Performance comparison between different tone mapping algorithms on HDR image
Stanford Memorial Church(copyright by Paul Debevec)

30



(a) E. Reinhard’s method [20] (b) Histogram based algorithm [23]

(c) Our proposed method 1 (N=128) (d) Our proposed method 1 (N=64)

Figure 16: Performance comparison between different tone mapping algorithms on HDR image
Belgium House(copyright by Raanan Fattal)
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