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Abstract
In this paper, we study the problem of feature extraction for pattern classification appli-
cations. RELIEF is considered as one of the best-performed algorithms for assessing
the quality of features for pattern classification. Its extension, local feature extraction
(LFE), was proposed recently and was shown to outperform RELIEF. In this paper,
we extend LFE to the nonlinear case, and develop a new algorithm called kernel LFE
(KLFE). Compared with other feature extraction algorithms, KLFE enjoys nice proper-
ties such as low computational complexity, and high probability of identifying relevant
features; this is because KLFE is a nonlinear wrapper feature extraction method and
consists of solving a simple convex optimization problem. The experimental results
have shown the superiority of KLFE over the existing algorithms.

Keywords: Feature extraction, kernel method, pattern classification, RELIEF,
maximum margin criterion.

1. Introduction

In this paper, we study the problem of feature extraction for pattern classification
applications. As shown in Fig. 1, a typical pattern classification system consists of two
parts: one for the training phase and one for the classification phase. In the training
phase, the system is given a training data set,

D △
= {(xn, yn)}Nn=1 ⊂ X × Y, (1)

where N is the number of samples in the training data set, X ⊂ RI is the I-
dimensional feature space, and Y = {±1} 2 is the label space. At the end of the
training phase, the system obtains a parameter set, which provides information needed
by the feature extraction module and the classifier in the classification phase. Although
in many papers, the feature extraction module for a classification system is not explic-
itly specified, it is a significant component. A good feature extraction technique not
only reduces system complexity and processing time, but also improves classification
accuracy by eliminating irrelevant features.

1Correspondence author: Huanghuang Li, lihh@ufl.edu.
2In this paper, we focus on two-category pattern classification problem.
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Figure 1: A typical pattern classification system.

In this paper, we propose a feature extraction algorithm, called kernel local fea-
ture extraction (KLFE), which has low computational complexity, and achieves high
probability of identifying irrelevant features for removal (dimension reduction).

To begin with, we define feature extraction as a mapping

f : X ⊂ RI → X ′ ⊂ RI′
, (2)

which maps patterns in input feature space X to output feature space X ′, in order to op-
timize some pre-defined criterion. Usually, we have I ′ 6 I so that features are mapped
from a high-dimensional space to a lower one, which reduces system complexity.

A feature extraction method can be categorized according to the following criteria.
First, a feature extraction method can be linear or nonlinear. A linear feature ex-

traction method has the form

f(x) = A · x, x ∈ X , (3)

where A is a I ′ × I matrix. Otherwise, it is nonlinear. Usually nonlinear methods
outperform linear ones as nonlinear methods are able to capture the true pattern, which
is usually nonlinear. In this paper, we propose a nonlinear feature extraction method,
called KLFE, which has the form of

f(x) = A · φ(x), (4)

where φ : X ⊂ RI → X̄ ⊂ RĪ is a nonlinear function and A is an I ′ × Ī matrix.
Second, feature extraction has two special cases, namely, feature selection and fea-

ture weighting. If A in Eqs. (3) and (4) is a diagonal matrix whose diagonal elements
are restricted to either 0 or 1, the feature extraction method is also called feature selec-
tion; if the diagonal elements of diagonal matrix A can take any real-valued number
between 0 and 1, the feature extraction method is also called feature weighting.
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Allowing diagonal elements of A to take real-valued numbers, instead of binary
ones, enables feature weighting to employ some well-established optimization tech-
niques and thus allows for more efficient algorithm implementation than feature selec-
tion. A celebrated feature weighting method is the RELIEF algorithm [1].

One major shortcoming of feature selection and feature weighting is their inability
to remove correlation among different feature dimensions so as to achieve a sparser
representation of data samples [2]. In some applications, such as object recognition,
where there is no need to preserve the physical meaning of individual features, fea-
ture extraction is more appropriate than feature selection and feature weighting. For
example, Sun and Wu [3] [4] proposed a linear feature extraction method, called local
feature extraction (LFE), which outperforms feature selection and feature weighting.
In this paper, we extend LFE to a nonlinear one called Kernel LFE.

Third, a feature extraction method can be further categorized as a wrapper method
or a filter method [5]. A wrapper method determines the mapping in Eq. (2) by min-
imizing the classification error rate of a classifier, whereas a filter method does not.
Therefore, filter methods are computationally more efficient but usually perform worse
than wrapper methods. The famous principal component analysis (PCA) [6, page 115]
is a filter method, whereas RELIEF [1] and LFE [3] are wrapper methods, as they
both optimize a 1-nearest-neighbor (1-NN) classifier [6, page 174]. Our KLFE algo-
rithm is also a wrapper method in that it optimizes a 1-NN classifier in the nonlinear-
transformed space.

Last, a feature extraction method can be obtained by solving a convex optimiza-
tion problem or a non-convex optimization problem. A convex optimization problem
formulation is preferred since it can be solved efficiently, compared to a non-convex
optimization problem. PCA, RELIEF, and LFE are all based on convex optimization
formulation. Our KLFE algorithm is also based on a convex optimization formulation,
which admits a closed-form solution.

In summary, in this paper, we propose a nonlinear wrapper feature extraction method,
which is based on a convex optimization formulation.

The remainder of the paper is organized as follows. In Section 2, related work is
briefly reviewed. In Section 3, we describe two existing feature extraction techniques,
namely, RELIEF and LFE; our proposed KLFE is a generalization of these two algo-
rithms. In Section 4, we present a novel feature extraction algorithm, called KLFE.
Section 5 presents experimental results, which demonstrate that KLFE outperforms the
existing feature extraction algorithms. Section 6 concludes the paper.

2. Related Work

In this section, we briefly review some feature extraction algorithms, which will be
compared to our KLFE algorithm. Principal component analysis (PCA) [6, page 115]
is probably one of the most commonly used algorithms for feature extraction. One ma-
jor drawback of PCA, however, is that it is targeted at minimizing mean squared error
for data compression or efficient data representation, rather than minimizing the clas-
sification error probability for pattern classification. Other PCA-type algorithms, e.g.,
kernel PCA (KPCA) [7], usually perform better than PCA in representing nonlinear
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relationship among different feature dimensions, but suffer from the same limitation as
PCA since they do not use class labels in the training phase; i.e., they are unsupervised
algorithms. The KLFE algorithm proposed in this paper, like its predecessors LFE
and RELIEF, utilizes the class label information in the training phase; i.e., KLFE is an
supervised algorithm.

Among the existing feature weighting techniques, RELIEF [1] is considered as
one of the best-performed ones due to its simplicity and effectiveness [8]. RELIEF
determines the parameters of diagonal matrix A in Eq. (3) by solving a convex opti-
mization problem, which maximizes a margin-based criterion [9]. The LFE algorithm,
proposed in Ref. [3], is an extension to RELIEF; LFE removes the constraint of matrix
A in Eq. (3) being diagonal, which is required by RELIEF. Both LFE and RELIEF
are linear methods. In contrast, our KLFE method is a nonlinear extension to LFE;
experimental results show that KLFE performs better than LFE.

In Ref. [10], the authors extended RELIEF to a kernel space, which is the space
that contains the image of the nonlinear-transformation used in a kernel method; their
approach is to identify an orthonormal basis of the kernel space and perform RELIEF in
this kernel space; the resulting schemes are called Feature Space KPCA (FSKPCA) and
Feature Space Kernel Gram-Schmidt Process (FSKGP). They showed that FSKPCA
and FSKGP achieve similar performance to that of the state-of-the-art algorithms. Our
KLFE adopts a similar strategy, i.e., our KLFE first computes an orthonormal basis
of the kernel space and then performs LFE in the kernel space. Since LFE achieves
improved performance over RELIEF, KLFE is expected to outperform FSKPCA and
FSKGP, which are kernel-based versions of RELIEF.

In the next section, we briefly review RELIEF and LFE before we present our
KLFE in Section 4.

3. Review of RELIEF and LFE

In this section, we briefly review RELIEF and LFE since LFE is an extension of
RELIEF and KLFE is an extension of LFE. We first define two terms, nearest hit (NH)
and nearest miss (NM) in Section 3.1, which will be used in all of the three algorithms,
i.e., RELIEF, LFE, and KLFE. Then we introduce RELIEF and LFE in Sections 3.2
and 3.3, respectively.

3.1. Nearest Hit (NH) and Nearest Miss (NM)

Suppose we are given a training data set, as shown in Eq. (1). For any pattern
(x, y) ∈ D, we define its nearest hit (NH) as

NH(x, y)
△
= argminx′ ||x′ − x||p (5)

s.t. (x′, y′) ∈ D, (6)
y′ = y, (7)
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and its nearest miss (NM) as

NM(x, y)
△
= argminx′ ||x′ − x||p (8)

s.t. (x′, y′) ∈ D, (9)
y′ ̸= y, (10)

where ||x||p is Lp-norm of vector x. In this paper, we let p = 1, i.e., we choose L1

norm.
Using Eqs. (5) and (8), we further denote

mn
△
= xn −NM(xn, yn), (11)

hn
△
= xn −NH(xn, yn), (12)

for n = 1, . . . , N .

3.2. RELIEF

Now we briefly introduce RELIEF. Denote by w = [w1, . . . , wI ]
T the weight vec-

tor, where wi is the weight of the i-th dimension of xn ∈ RI . RELIEF defines the
margin of a pattern (xn, yn) ∈ D as

ρn
△
= ||mn||1 − ||hn||1, n = 1, . . . , N. (13)

Then the objective of RELIEF is to maximize the overall margin over weight vector,
i.e.,

max
w

∑N
n=1 ρn(w) =

∑N
n=1

(
wT |mn| −wT |hn|

)
, (14a)

s.t. ∥w∥22 = 1,w > 0, (14b)

where |·| denotes element-wise absolute operator. Let

z
△
=

∑N
n=1 (|mn| − |hn|) , (15)

we simplify Eq. (14) to

max
w

wT z, s.t. ∥w∥22 = 1,w > 0. (16)

Applying Lagrangian multipliers λ and θ to Eq. (16), one obtains

L = −wT z + λ
(
∥w∥22 − 1

)
+wT θ. (17)

Taking derivative with respect to w at both sides of Eq. (17) and setting it to zero results
in

∂L
∂w = −z+ 2λw − θ = 0

⇒ w = 1
2λ (z+ θ). (18)
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The closed-form solution to Eq. (14) is [9]

w = (z)+

∥(z)+∥2
, (19)

where (z)+ = [(z1)
+, . . . , (zI)

+]
T and (·)+ = max(·, 0). The RELIEF algorithm

specifies the projection matrix

A =

 w1 0
. . .

0 wI

 .

3.3. LFE

A natural extension of RELIEF is to use a full matrix instead of a diagonal matrix,
which results in LFE [3]. In LFE, the following optimization problem is considered:

max
W

∑N
n=1 ρn(W) =

∑N
n=1 m

T
nWmn −

∑N
n=1 h

T
nWhn, (20a)

s.t. ∥W∥2F = 1,W > 0, (20b)

where ∥W∥F is the Frobenius norm of W, i.e., ∥W∥F =
√∑

i,j w
2
i,j=

√∑
i λ

2
i , where

{λi}Ii=1 are the eigenvalues of W.
Sun and Wu [3] proved Theorem 1, which provides a solution to Eq. (20).

Theorem 1. Let

Σmh
△
=

∑N
n=1 mnm

T
n −

∑N
n=1 hnh

T
n , (21)

and let {(σi,ai)}Ii=1 be the eigen-system of Σmh such that σ1 > σ2 > · · · > σI . The
solution for Eq. (20), up to the difference of a constant, is

W =
∑

{i:σi>0} σiaia
T
i . (22)

According to Theorem 1, the LFE algorithm produces a projection matrix by main-
taining the dimensions specified by eigenvectors {ai}I

′

i=1, which correspond to the
largest I ′ eigenvalues of Σmh where I ′ 6 I is the target dimension size as defined in
Eq. (3) and I ′ should be chosen such that σ1 > · · · > σI′ > 0; in other words, LFE is
defined by

f(x) = Ax, x ∈ X , (23)

where

A =
[√

σ1a1, . . . ,
√
σI′aI′

]T
. (24)
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4. Kernel LFE

In this section, we propose KLFE algorithm. This section is organized as follows.
In Section 4.1, we present the extension of LFE to a high-dimensional space by in-
troducing a nonlinear mapping. In Section 4.2, we prove that both LFE and KLFE
are basis rotation invariant and thus KLFE can be considered to perform LFE under
an orthonormal basis in the kernel space. In Section 4.3, we present an algorithm for
implementing KLFE by using KPCA to find an orthonormal basis in the kernel space.
We summarize KLFE algorithm and describe the implementation details in Section 4.4.
Computational complexity is also analyzed in this section.

4.1. Nonlinear LFE in High-Dimensional Space

As presented in Section 3.3, the LFE algorithm is a linear feature extraction method
as in Eq. (3). Our idea of extending LFE is to introduce a nonlinear function,

φ : X ⊂ RI → X̄ ⊂ RĪ , (25)

where usually Ī ≫ I , which maps patterns from a low-dimensional space to a high-
dimensional one. We call X̄ or RĪ kernel space, which contains the image of φ. Then
we apply the LFE algorithm to kernel space X̄ ; the resulting algorithm is called KLFE.
We further assume Ī ≫ N , as is always the case when using a kernel method. Similar
to Eqs. (11) and (12), we let

m̄n
△
= φ(xn)− φ (NM(xn, yn)) , (26)

h̄n
△
= φ(xn)− φ (NH(xn, yn)) , (27)

n = 1, . . . , N . KLFE can be obtained by solving the following optimization problem,

max
W̄

∑N
n=1 m̄

T
nW̄m̄n −

∑N
n=1 h̄

T
nW̄h̄n, (28a)

s.t. ∥W̄∥2F = 1,W̄ > 0. (28b)

Since the only difference between Eq. (28) and Eq. (20) is the use of mapping
φ, one can directly use Theorem 1 to solve Eq. (28). Corollary 1.1 summarizes the
solution to Eq. (28).

Corollary 1.1. Let

Σ̄mh
△
=

∑N
n=1 m̄nm̄

T
n −

∑N
n=1 h̄nh̄

T
n , (29)

and let {(σ̄i, āi)}Īi=1 be the eigen-system of Σ̄mh, such that σ̄1 > σ̄2 > · · · > σ̄Ī . The
solution to Eq. (28), up to the difference of a constant, is

W̄ =
∑

{i:σ̄i>0}

σ̄iāiā
T
i .
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From Corollary 1.1, the KLFE algorithm produces a projection matrix by maintain-
ing the dimensions specified by eigenvectors {σ̄i}I

′

i=1, which correspond to the largest
I ′ eigenvalues of Σ̄mh where I ′ 6 Ī is the target dimension size as defined in Eq. (3)
and I ′ should be chosen such that σ̄1 > · · · > σ̄I′ > 0; in other words, KLFE is
defined by

f(x) = Āφ (x) , x ∈ X , (30)

where

Ā = [
√
σ̄1ā1, . . . ,

√
σ̄I′ āI′ ]

T
. (31)

4.2. Basis Rotation Invariant Property of KLFE

In this section, we study an important property of KLFE: basis rotation invariance.
Before we show the basis rotation invariant property of KLFE in Proposition 1, we
present Lemma 1.

Lemma 1 states that LFE is basis rotation invariant.

Lemma 1. Let {e(i)1 }Ii=1 and {e(i)2 }Ii=1 be two different orthonormal bases in input
feature space RI . Assume that {e(i)2 }Ii=1 can be obtained by counterclockwise rotating
{e(i)1 }Ii=1, and the rotation matrix is denoted by Q. Then, LFE is basis rotation invari-
ant, i.e., a feature vector extracted by LFE under {e(i)1 }Ii=1 is the same as the feature
vector extracted by LFE under {e(i)2 }Ii=1.

Proof. Assume training samples are given under basis {e(i)1 }Ii=1, i.e.,

D △
= {(xn, yn)}Nn=1 ⊂ X × Y,

where X ⊂ RI is the I-dimensional feature space and Y = {±1}. Under basis
{e(i)1 }Ii=1, LFE is formulated as follows:

max
W1

∑N
n=1 ρn(W1) =

∑N
n=1 m

T
nW1mn −

∑N
n=1 h

T
nW1hn, (32a)

s.t. ∥W1∥2F = 1,W1 > 0. (32b)

From Theorem 1, the projection matrix of LFE under basis {e(i)1 }Ii=1 is given by

A1 =
[√

σ1a1, . . . ,
√
σI′aI′

]T
, (33)

where I ′ 6 I is the target dimension size and {ai} are the eigenvectors of Σmh corre-
sponding to the largest I ′ eigenvalues.

Under basis {e(i)2 }Ii=1, the training samples become

D △
= {(Qxn, yn)}
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The nearest miss and nearest hit remain the same for each data sample since the
Euclidean distance does not change under different orthonormal bases. Under basis
{e(i)2 }Ii=1, LFE is formulated as below:

max
W2

∑N
n=1 ρn(W2) =

∑N
n=1(Qmn)

TW2Qmn −
∑N

n=1(Qhn)
TW2Qhn,(34a)

s.t. ∥W2∥2F = 1,W2 > 0. (34b)

Comparing (32) and (34), we have W1 = QTW2Q. Then we have

W2 = QW1Q
T (35)

(a)
= Q(

∑
{i:σi>0}

σiaia
T
i )Q

T (36)

=
∑

{i:σi>0}

σiQaia
T
i Q

T (37)

where (a) is due to (22). Let the projection matrix of LFE under basis {e(i)2 }Ii=1, be
A2. Then, from (37), (22), and (24), we have

A2 = [
√
σ1Qa1, . . . ,

√
σI′QaI′ ]

T (38)
(a)
= A1Q

T (39)

where (a) is due to (33). Then, the feature vector extracted by LFE under {e(i)2 }Ii=1 is
given by

A2Qx
(a)
= A1Q

TQx (40)
(b)
= A1x (41)

where (a) is due to (39); (b) is due to the fact that Q is an orthogonal matrix. Eq. (41)
means that a feature vector extracted by LFE under {e(i)1 }Ii=1, i.e., A1x is the same as
the feature vector extracted by LFE under {e(i)2 }Ii=1, i.e., A2Qx. This completes the
proof.

Usually we do not know the dimension of the kernel subspace that contains the
mapped data samples (including training and test data samples), but given sufficient
number of training samples, we can estimate the dimension of this kernel subspace.
Assume the rank of the mapped training data samples {φ(xn)}Nn=1 is Nt, i.e., the
mapped training data samples are contained in an Nt-dimensional kernel subspace de-
noted by S. Suppose the kernel space X̄ has an orthonormal basis {e(i)}Īi=1.

Proposition 1 states that KLFE is basis rotation invariant for bases in the kernel
space.

Proposition 1. Let {e(i)1 }Īi=1 and {e(i)2 }Īi=1 be two orthonormal bases in kernel space.
Assume that {e(i)2 }Īi=1 can be obtained by counterclockwise rotating {e(i)1 }Īi=1, and the
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rotation matrix is denoted by Q. Then, KLFE is basis rotation invariant for all samples
x where φ(x) ∈ S , i.e., a feature vector extracted by KLFE under {e(i)1 }Īi=1 for input
sample x is the same as the feature vector extracted by KLFE under {e(i)2 }Īi=1.

Proof. Assume the training sample set is

D △
= {(xn, yn)}Nn=1 ⊂ X × Y,

where X ⊂ RI is the I-dimensional feature space and Y = {±1}.
In KLFE, a sample is first mapped from a low-dimensional space to a high-dimensional

space by the following nonlinear transformation

φ : X ⊂ RI → X̄ ⊂ RĪ . (42)

The training sample set in the kernel space under basis {e(i)1 }Īi=1 is denoted by

D1
△
= {(φ(xn), yn)}Nn=1 (43)

Under basis {e(i)2 }Īi=1, the training sample set in the kernel space becomes

D2
△
= {(Qφ(xn), yn)}Nn=1

Denote the projection matrix of KLFE in (30) under basis {e(i)1 }Īi=1 and {e(i)2 }Īi=1

by Ā1 and Ā2, respectively. Note that the dimension of the feature vector extracted by
KLFE is I ′, where I ′ < Ī . Since KLFE is equivalent to applying LFE in the kernel
space, from Lemma 1, we have

Ā1φ(x) = Ā2Qφ(x) (44)

This completes the proof.

Proposition 2. Let {e(i)1 }Īi=1 be an orthonormal basis in kernel space. Denote by S
the kernel subspace spanned by training data {φ(xn)}Nn=1; the dimension of S is Nt.
Then an Ī-dimensional feature vector f(x) extracted by KLFE under {e(i)1 }Īi=1 for
input sample x (where φ(x) ∈ S) must be in the form of

f(x) =

[
f1(x)
0Ī−Nt,1

]
(45)

where f1(x) is an Nt-dimensional vector and 0Ī−Nt,1 is an (Ī − Nt)-dimensional
vector whose entries are all zero. In other words, the last Ī−Nt entries of the extracted
feature vector f(x) are all zero.

Proof. Assume the training sample set is

D △
= {(xn, yn)}Nn=1 ⊂ X × Y,
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where X ⊂ RI is the I-dimensional feature space and Y = {±1}.
After nonlinear mapping, the training sample set in the kernel space under basis

{e(i)1 }Īi=1 becomes

D1
△
= {(φ(xn), yn)}Nn=1 (46)

Let {e(i)2 }Nt
i=1 be an orthonormal basis for S. Denote by S⊥ the complementary

subspace of S. Let {e(i)3 }Īi=Nt+1 be an orthonormal basis for S⊥. Thus {e(i)2 }Nt
i=1

∪
{e(i)3 }Īi=Nt+1

form an orthonormal basis for kernel space.
From Proposition 1, the feature vector extracted by KLFE algorithm under basis

{e(i)1 }Īi=1 is the same as that extracted by KLFE under a rotated basis {e(i)2 }Nt
i=1

∪
{e(i)3 }Īi=Nt+1.

So we can compute the extracted feature vector under basis {e(i)2 }Nt
i=1

∪
{e(i)3 }Īi=Nt+1

for simplicity.
Since φ(x) ∈ S, hence the last Ī − Nt entries of the coordinates of φ(x) under

basis {e(i)2 }Nt
i=1

∪
{e(i)3 }Īi=Nt+1 are all zero. From the definition of Σ̄mh in Eq. (29),

we have

Σ̄mh =

[
Σ̄∗

mh 0
0 0

]
(47)

where Σ̄mh is an Ī × Ī matrix, and Σ̄∗
mh is an Nt ×Nt matrix.

Let Ā denote the projection matrix of KLFE in (30) under basis {e(i)2 }Nt
i=1

∪
{e(i)3 }Īi=Nt+1.

From Corollary 1.1, Eq. (30) and Eq. (47), we have

Ā =

[
Ā1 0
0 0

]
(48)

where
Ā1 =

[√
σ̄1ā1, . . . ,

√
σ̄Nt āNt

]T
, (49)

and {(σ̄i, āi)}Nt

i=1 is the eigen-system of Σ̄∗
mh.

From (30), the extracted feature vector f(x) is given by

f(x) = Āφ(x) (50)

=

[
Ā1φ

∗(x)
0

]
(51)

where

φ(x) =

[
φ∗(x)
0

]
(52)

This completes the proof.

It is worth mentioning that if φ(x) /∈ S, then the distance d(φ(x), φ′(x)) is negligi-
ble where φ′(x) is the projection of φ(x) onto S. The reason is that if the training data
{xn}Nn=1 and the test data x are sampled from the same distribution, ||φ(x)− φ′(x)||
is mainly caused by irrelevant features or measurement noise [10].

From Proposition 2, we can perform feature extraction in kernel subspace S in
which the basis can be expressed by linear combinations of mapped data samples in
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the kernel space. In this way, we can simplify the computation involved in KLFE.
Proposition 2 shows that KLFE can extract at most Nt dimensional nonzero feature
vector for arbitrary input sample which lies in S.

Based on the two propositions, KLFE can be computed in three steps. First, we find
a basis in kernel subspace. This can be done by using KPCA or Kernel Gram-Schmidt
Procedure (KGP) [10]; the dimension of the basis is equal to the rank of the mapped
data set in kernel space. Second, the data in the kernel space can be mapped onto the
basis, each basis vector of which is a linear combination of the mapped data {φ(x)},
i.e., v(i) =

∑
j αijφ(x

(j)). Note that the kernel method can be used to obtain the
kernel feature under the basis. Third, we perform LFE on the resulting kernel features
which have dimension of Nt.

Next, we present the final KLFE algorithm by using KPCA to find a basis in kernel
subspace.

4.3. KLFE using KPCA

For a given φ, its kernel function, K : X × X → R, is defined as

K (x1,x2) = ⟨φ(x1), φ(x2)⟩ , (53)

where < ·, · > represents inner-product operator. It is known that K and φ have 1-to-1
mapping [11]. In other words, we can ignore the explicit form of φ by using a given K
directly, as long as all computations are conducted through inner product.

Without loss of generality, assume the average of the data samples in kernel space is

zero. Let K
△
= X̄T X̄ be the kernel matrix, where matrix X̄

△
= [φ(x1), φ(x2), · · · , φ(xN )].

Hence the entry of i-th row, j-th column in K is given by

Ki,j =< φ(xi), φ(xj) >= K (xi,xj) , i = 1, . . . , N ; j = 1, . . . , N. (54)

Let {γn,vn}Nn=1 be the eigen-system of K, where the eigenvalues are sorted in
decreasing order, i.e., γ1 > γ2 > · · · > γN . Then, by definition of eigenvalue decom-
position,

X̄T X̄vn = γnvn, (55)
X̄X̄T

(
X̄vn

)
= γn

(
X̄vn

)
, (56)

for n = 1, . . . , N . As a result, {γn}Nn=1 are the N largest eigenvalues of X̄X̄T , whose
corresponding eigenvectors are

{
X̄vn

}N

n=1
. Denote the dimension of matrix K by N ′.

If N ′ = N , then γi > 0 for i = 1, 2, · · · , N . If N ′ < N , we perform LFE in the kernel
subspace of dimension N ′.

Normalizing eigenvectors
{
X̄vn

}N

n=1
produces an orthonormal basis

Ψ = X̄
[

v1√
γ1
, . . . , vN√

γN

]
△
= X̄V′. (57)
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Thus for input vector xn (n = 1, . . . , N ), the feature vector extracted by KLFE under
the basis in (57) is given by

x̃n = ΨTφ(xn) =

 vT
1 /

√
γ1

...
vT
N/

√
γN

 X̄Tφ(xn)

= V′T X̄Tφ(xn) = V′TK(n), (58)

where K(n) denotes the n-th column of kernel matrix K. More generally, for any
x ∈ X , we have

x̃ = V′T

 K(x1,x)
...

K(xN ,x)

 △
= φ̃(x). (59)

Eq. (59) actually specifies an N -dimensional kernel space,

X̃ = {φ̃(x) : x ∈ X} (60)

We summarize KPCA-based KLFE algorithm as follows. Let

m̃n = φ̃(xn)− φ̃ (NM(xn, yn)) , (61)
h̃n = φ̃(xn)− φ̃ (NH(xn, yn)) , (62)

n = 1, . . . , N . The KLFE algorithm solves the following optimization problem,

max
W̃

∑N
n=1 m̃

T
nW̃m̃n −

∑N
n=1 h̃

T
nW̃h̃n, (63a)

s.t. ∥W̃∥2F = 1,W̃ > 0. (63b)

Using the result in Theorem 1, the solution to Eq. (63) is given in Theorem 2.

Theorem 2. Let

Σ̃mh =
∑N

n=1 m̃nm̃
T
n −

∑N
n=1 h̃nh̃

T
n (64)

and let {(σ̃i, ãi)}Ni=1 be the eigen-system of Σ̃mh, such that σ̃1 > · · · > σ̃N . The
solution to Eq. (63), up to the difference of a constant, is

W̃ =
∑

{n:σ̃n>0}

σ̃nãnã
T
n .

Accordingly, the projection matrix is

Ã =
[√

σ̃1ã1, . . . ,
√
σ̃I′ ãI′

]T
. (65)

For an input x, the extracted feature is given by

f(x) = Ãφ̃(x) = ÃV′T

 K(x1,x)
...

K(xN ,x)

 . (66)

where V′ is defined in Eq. (57).
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�
KLFE is superior to LFE in that it performs LFE in a high-dimensional space,

where discriminant information is much easier to extract. From the above analysis,
KLFE can be considered as KPCA followed by LFE. Therefore, KLFE is superior over
KPCA since KLFE takes into account the label information; KLFE also outperforms
kernel RELIEF, i.e., FSKPCA and FSKGP [10], where FSKPCA is KPCA followed by
RELIEF.

4.4. KLFE Algorithm
Now the pseudo-code of KLFE is shown. In the initialization step, we need some

parameters, like the number of neighbors for computing Σmh. Assuming that we use
the RBF kernel and K-nearest-neighbors as classifier, we need the width of RBF kernel
and the number of neighbors for KNN. In our experiments, we use 10-fold cross vali-
dation to find these parameters.
If we use complex tuning method to find better parameter set, the performance of KLFE
will be improved. In this paper, we do not focus on complex tuning method or classi-
fication method. Therefore we use simple tuning method: 10-fold cross validation to
tune all parameters needed. For each parameter, we use only 5-10 candidate points.

Algorithm KLFE

Input: Training samples X = [x1 . . . xN ] and labels Y = [y1 . . . yN ]
1) Initialization

Normalize X , give kernel parameter, number of neighbors L.
2) Mapping to kernel space

2.1) K = kernel(X), K is the kernel of X .
2.2) [V,D] = EigenDecomposition(K),

V ’s column contains one principal component, D is a diagonal matrix with eigenvalues.
All the zero values are removed.

2.3) X̄ = DV TK
3) LFE

3.1) for n = 1 : N
ζi is the ith nearest x̄i labeled the same class with x̄
ηi is the ith nearest x̄i labeled different class with x̄
Then Hn = [x̄n − ζ1 . . . x̄n − ζL], Mn = [x̄n − η1 . . . x̄n − ζL]

3.2) Σmh =
∑N

n=1 MnM
T
n −

∑N
n=1 HnH

T
n

3.3) [V̄ , D̄] = EigenDecomposition(Σmh), the same as 2.2.
3.4) X̃ = D̄1/2V̄ T X̄

4) Output: X̃ .

The complexity of KLFE depends on the kernel function. For example, consider
the radial basis function (RBF) kernel [11, page 77], which is given by

K (x,x′) = exp
(
−∥x−x′∥2

2ρ2

)
. (67)
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Figure 2: USPS handwritten digits 3(top row) and 5(bottom row).

Table 1: UCI and USPS data sets used in the experiments

data set training sample size testing sample size number of features
UCI-diabetes 468 300 8
UCI-ringnorm 400 7000 20
USPS-(3vs.5) 326 1214 256

The complexity of computing kernel matrix, i.e., Eq. (54), is O
(
N2I

)
. The complexity

of eigenvalue decomposition for kernel matrix and the complexity of LFE in the N -
dimensional kernel space are both O

(
N3

)
. As a result, the overall complexity of

KLFE using RBF kernel is

O
(
N2I

)
+O

(
N3

)
. (68)

It is comparable to the complexity of LFE, which is also O
(
N2I

)
+ O

(
N3

)
[3].

To reduce the computational complexity of KLFE, we can use Kernel Gram-Schmidt
Procedure [10] to find a basis instead of using KPCA.

5. Experimental Results

In this section, we conduct experiments on pattern classification to show the perfor-
mance of our KLFE algorithm and compare it with existing feature extraction schemes.
This section is organized as follows. In Section 5.1, we describe the experimental set-
ting. In Sections 5.2 and 5.3, we show the experimental results for simulated data sets
and real-world data sets, respectively.

5.1. Experimental Setting
We conduct classification experiments on two types of data sets, namely, simulated

data sets (sine-surface and Swiss roll) and real-world data sets (UCI Machine Learning
Repository [12] and USPS digit handwriting data). In our experiments, we use two data
sets from UCI Machine Learning Repository, i.e., data sets for diabetes, and ringnorm.
For USPS data, we choose only two digits, namely ”3 versus 5”, since they are the most
challenging digits for recognition. (See Fig. 2) We exchange the ”traditional” training
sets and testing sets as shown in Table 1.

To make a fair comparison, we compare KLFE with the following feature extraction
schemes, which are also based on kernel. We also compare KLFE with origin LFE.

1. Generalized Discriminant Analysis (GDA) using a kernel approach [13]
2. KPCA
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3. FSKPCA, which is one type of algorithm for kernel RELIEF
4. Kernel K-Nearest Neighbor (KKNN).

GDA can generate at most n−1 features where n is the number of categories/classes.
In this paper, we only study feature extraction methods for binary classification prob-
lem. KKNN is kernelized K-nearest-neighbor (KNN) [6, page 174] based on a distance
function induced by the kernel function.

Note that KLFE, GDA, KPCA and FSKPCA are feature extraction algorithms and
we are interested in their classification capability, i.e., how well a given classifier per-
forms if the classifier uses the features obtained from these feature extraction algo-
rithms. In our experiments, we choose KNN as the classifier because of two reasons.
First, KNN is a simple yet effective classifier, which often yields competitive results,
compared to some advanced machine learning algorithms [14]. Second, the focus of
this paper is not on an optimal classifier for each dataset. KNN is surely not an opti-
mal classifier in many cases but it provides a platform where we can compare different
feature extraction algorithms with a reasonable computational cost. Actually, for fair
comparison, we let K = 1. Then we can explicitly see how these feature extraction
algorithms improve classification ability of KNN in kernel space, i.e., KKNN.

In the experiments, we use RBF kernel function defined by Eq. (67) with σ = 1.
Our comparison strategy is to use the same kernel function with the same width σ
and the same classifier KNN where K = 1. To eliminate statistical variations, each
algorithm is run several times for each data set. In each run, a data set is split into
training data subset and testing data subset randomly. Then the testing error rate is
obtained by averaging over all the runs.

5.2. Experimental Results for Simulated Data

In this section, we conduct experiments on two simulated data sets: twin sine and
Swiss roll, which are both in the following form:

D = {(xn, yn)}Nn=1 ,

where

yn ∈ {−1, 1}, (69)

xn = RI×3 ×

 x
(1)
n

x
(2)
n

x
(3)
n

 , (70)

(71)

where RI×3 denotes a random I × 3 matrix.
For twin sine data, x(1)

n is a random variable uniformly distributed in [0, 2π]; x(2)
n is a

random variable and x
(2)
n = sin

(
x
(1)
n

)
+ I(yn = 1) ×D + βN , where I(·) denotes

an indicator function, D is a constant and βN denotes a Gaussian random variable
with zero mean and variance σ2; x(3)

n is a random variable uniformly distributed in
[0, 1]. Actually, the data set is composed of two 3-dimensional sine surfaces, labeled

16



(a) 3D View (b) Projection of the data points in Fig. 3(a) onto x
(1)
n −x

(2)
n plane

Figure 3: Simulated data set containing sine surfaces.

as −1 and 1, with additive Gaussian noise βN , and the two sine surfaces are separated
apart by a distance D. Then the 3-dimensional vector [x(1)

n ,x
(2)
n ,x

(3)
n ]T is mapped to

a I-dimensional vector by matrix RI×3.
Fig. 3(a) shows simulated 3-dimensional sine-surfaces and the data set of [x(1)

n ,x
(2)
n ,x

(3)
n ]T .

Fig. 3(b) shows the projection of the data points in Fig. 3(a) onto x
(1)
n − x

(2)
n plane.

We further consider the relationship among classification error rate, separation dis-
tance D, and noise variance σ2. It is obvious that, as D increases, the two sine-surfaces
are further away from each other, resulting in better classification accuracy. Similarly,
as σ2 decreases, the probability that samples from two classes overlap decreases, which
also increases the classification accuracy. Hence, we define signal-noise-rate (SNR) as

SNR = D2

σ2 (72)

SNR (dB) = 20 log10
(
D
σ

)
. (73)

Figs. 5(a) and 5(b) show classification error rate vs. target feature dimension I ′ for
different schemes under SNR = 0dB and -5dB, respectively.

For the Swiss roll data, we let x(1)
n = θ × cos(θ) and x

(2)
n = θ × sin(θ), where θ

is a random variable uniformly distributed in [0, 4π]. Actually the x
(1)
n -x(2)

n curve is a
helix. x(3)

n is a random variable uniformly distributed in [0, 2]; then the data set is a 3-D
helix surfaces. We label samples with θ ∈ [0, 2π] as −1 and those with θ ∈ (2π, 4π]

as 1. Then the 3-dimensional vector [x(1)
n ,x

(2)
n ,x

(3)
n ]T is mapped to a I-dimensional

vector by matrix RI×3.
Fig. 4(a) shows simulated 3-dimensional Swiss roll and the data set of [x(1)

n ,x
(2)
n ,x

(3)
n ]T .

Fig. 3(b) shows the projection of the data points in Fig. 3(a) onto x
(1)
n − x

(2)
n plane.
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Figure 4: Simulated data set containing Swiss roll.

The classification error rates are all averaged over 10 simulation runs. From Figs. 5(a)
and 5(b), it is observed that KLFE+KNN achieves the minimum classification error rate
among all the schemes, for I ′ > 10; KLFE+KNN is able to reduce the classification
error rate by more than 10%, compared to other four schemes. From Fig. 6, we can see
that KLFE is similar with LFE. Both KLFE and LFE are better than PCA. When di-
mension equals to only 1, KLFE can achieve good results while the other two perform
much worse. In addition, our KLFE is quite robust against the change of target feature
dimension I ′; this is because KLFE has an explicit mechanism to eliminate irrelevant
features.

5.3. Experimental Results for Real-World Datasets

In this section, we conduct experiments on three real-world data sets: UCI-diabetes,
UCI-ringnorm, and USPS-3vs5 (digit “3” vs. “5”).

Fig. 7(a) shows classification error rate vs. target feature dimension I ′ for different
schemes on diabetes dataset. It is observed that KLFE+KNN achieves the minimum
classification error rate among all the schemes, for I ′ > 30.

Fig. 7(b) shows classification error rate vs. target feature dimension I ′ for different
schemes on ringnorm dataset. It is observed that KLFE+KNN improves the classifi-
cation ability of KKNN dramatically, by reducing the classification error rate by more
than 50%. GDA also yields good performance but FSKPCA and KPCA give quite poor
results, which are even worse than KKNN.

Fig. 8 shows classification error rate vs. target feature dimension I ′ for three dif-
ferent schemes: KLFE+KNN, LFE+KNN, and PCA+KNN. In this experiment, KLFE
performs better than PCA, and achieves performance similar to that of LFE.
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(b) TwinSine, SNR = −5 dB

Figure 5: Classification error rate vs. target feature dimension of simulated data.

In summary, our proposed KLFE achieves superior performance over the existing
algorithms in most cases. Note that there are strong relationship among KPCA, KLFE,
and FSKPCA. Both KLFE and FSKPCA find a basis in kernel subspace, differing in
that KLFE uses feature extraction matrix to maximize the average margin whereas
FSKPCA uses feature weighting to maximize the average margin. Compared to KLFE
and FSKPCA, which use supervised learning, KPCA uses unsupervised learning (i.e.,
without using label information).

It is worth mentioning that our experiments focus on comparison of various feature
extraction methods rather than optimal classifier design. In fact, in order to achieve
best classification performance using KLFE+KNN, we should select the optimal K
for KNN under KLFE, and the best kernel function. But for fair comparison, we just
use the same classifier and the same parameter setting for all the feature extraction
methods.

6. Conclusion

This paper is concerned with feature extraction techniques for pattern classification
applications. A good feature extraction algorithm is critical in a pattern classification
system as it helps reduce system complexity and enhance classification accuracy by
eliminating irrelevant features.

In this paper, we proposed a novel feature extraction algorithm, referred to as
KLFE, which is a generalization of LFE. The power of KLFE lies in the fact that KLFE
has the good properties of a feature extraction technique, i.e., it is a nonlinear wrapper
feature extraction method that solves a convex optimization problem. Although nonlin-
early mapping a pattern to a high-dimensional space followed by LFE, seems to incur
extremely high computation complexity, we theoretically proved that LFE and KLFE
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Figure 6: Classification error rate vs. target feature dimension on Swiss Roll
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(b) UCI: ringnorm

Figure 7: Classification error rate vs. target feature dimension of UCI data.
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Figure 8: Classification error rate vs. target feature dimension on usps 3 vs. 5.

are both basis rotation invariant, which allows us to implement KLFE via KPCA or
KGP followed by LFE.

As shown in Eq. (68), the overall computation complexity of KLFE using RBF
kernel function is O

(
N2I

)
+ O

(
N3

)
, comparable to LFE in original feature space.

In other words, KLFE has the advantage of better discriminant information extraction
in high-dimensional space, while preserving a comparable computation complexity as
LFE in low-dimensional space. The experiments conducted on both simulated data
set and three real-world data sets demonstrate the effectiveness and robustness of our
KLFE algorithm.
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