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Abstract

In this paper, we develop algorithms for estimating transmission distortion in wireless video
communication systems. By leveraging the analytical results obtained in our previous paper
(Part I), we design low complexity algorithms that are capable of estimating transmission
distortion accurately. We also extend our algorithm for pixel-level transmission distortion
estimation to pixel-level end-to-end distortion estimation. Furthermore, we apply our pixel-
level end-to-end distortion estimation algorithm to prediction mode decision in H.264 en-
coder. Experimental results show that 1) our transmission distortion estimation algorithm
is more accurate and more robust against inaccurate channel estimation than existing dis-
tortion estimation algorithms; 2) our mode decision algorithm achieves remarkable PSNR
gain over the existing algorithms for prediction mode decision in H.264 encoder, e.g., an
average PSNR gain of 1.44dB for ‘foreman’ sequence when Packet Error Probability (PEP)
equals 5%.

Keywords: Wireless video, transmission distortion, clipping noise, slice data partitioning,
unequal error protection (UEP), prediction mode decision.

1. Introduction

Transmitting video over wireless with good quality or low end-to-end distortion is partic-
ularly challenging since the received video is subject to not only quantization distortion but
also transmission distortion (i.e., video distortion caused by packet errors). The capability
of predicting transmission distortion can assist in designing video encoding and transmission
schemes that achieve maximum video quality or minimum end-to-end video distortion. In
Ref. [1], we have theoretically derived formulae for transmission distortion. In this paper,
we leverage the analytical results in Ref. [1] to design algorithms for estimating transmission
distortion; we also develop an algorithm for estimating end-to-end distortion, and apply it
to prediction mode decision in H.264 encoder.
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To estimate frame-level transmission distortion (FTD), several linear model based algo-
rithms [2, 3, 4, 5] have been proposed. These algorithms use the sum of the newly induced
distortion in the current frame and the propagated distortion from previous frames, to es-
timate transmission distortion. The linear model based algorithms simplify the analysis
of transmission distortion at the cost of sacrificing the prediction accuracy by neglecting
the correlation between the newly induced error and the propagated error. Liang et al. [6]
extend the result in Ref. [2] by addressing the effect of correlation. However, they do not
consider the effect of motion vector (MV) error on transmission distortion and their algo-
rithm is not tested with high motion video content. Under this condition, they claim that
the LTI models [2, 3] under-estimate transmission distortion due to positive correlation be-
tween two adjacent erroneous frames. In Ref. [1], we identify that the MV concealment error
is negatively correlated with the propagated error and this correlation dominates over all
other types of correlation especially for high motion video. As long as MV transmission er-
rors exist, the transmission distortion estimated by LTI models becomes over-estimated. In
Ref. [1], we also quantify the effects of those correlations on transmission distortion by a sys-
tem parameter called correlation ratio. On the other hand, none of existing works analyzes
the impact of clipping noise on transmission distortion. In Ref. [1], we prove that clipping
noise reduces the propagated error and quantify its effect by another system parameter
called propagation factor. In this paper, we design algorithms to estimate correlation ratio
and propagation factor, which facilitates the design of a low complexity algorithm called
RMPC-FTD algorithm for estimating frame-level transmission distortion. Experimental re-
sults demonstrate that our RMPC-FTD algorithm is more accurate and more robust than
existing algorithms. Another advantage of our RMPC-FTD algorithm is that all parame-
ters in the formula derived in Ref. [1] can be estimated by using the instantaneous frame
statistics and channel conditions, which allows the frame statistics to be time-varying and
the error processes to be non-stationary. However, existing algorithms estimate their para-
meters by using the statistics averaged over multiple frames and assume these statistics do
not change over time; their models all assume the error process is stationary. As a result,
our RMPC-FTD algorithm is more suitable for real-time video communication.

For pixel-level transmission distortion (PTD), the estimation algorithm is similar to the
FTD estimation algorithm since the PTD formula is a special case of the FTD formula
as discussed in Ref. [1]. However, in some existing video encoders, e.g., H.264 reference
code JM14.0 [7], motion estimation and prediction mode decision are separately considered.
Therefore, the MV and corresponding residual are known for distortion estimation in mode
decision. In such a case, the PTD estimation algorithm can be simplified with known values
of the MV and corresponding residual, compared to using their statistics. In this paper,
we design a PTD estimation algorithm, called RMPC-PTD for such a case; we also extend
RMPC-PTD to estimate pixel-level end-to-end distortion (PEED).

PEED estimation is important for designing optimal encoding and transmission schemes.
Some existing PEED estimation algorithms are proposed in Refs. [8, 9]. In Ref. [8], the
recursive optimal per-pixel estimate (ROPE) algorithm is proposed to estimate the PEED
by recursively calculating the first and second moments of the reconstructed pixel value.
However, the ROPE algorithm neglects the significant effect of clipping noise on transmission

2



distortion, resulting in inaccurate estimate. Furthermore, the ROPE algorithm requires
intensive computation of correlation coefficients when pixel averaging operations (e.g., in
interpolation filter and deblocking filter) are involved [10], which reduces its applicability
in H.264 video encoder. Stockhammer et al. [9] propose a distortion estimation algorithm
by simulating K independent decoders at the encoder side during the encoding process and
averaging the distortions of these K decoders. This algorithm is based on the Law of Large
Number (LLN), i.e., the estimated distortion will asymptotically approach the expected
distortion as K goes to infinity. For this reason, we call the algorithm in Ref. [9] as LLN
algorithm. However, for LLN algorithm, the larger number of decoders simulated, the higher
computational complexity and the larger memory required. As a result, LLN algorithm is
not suitable for real-time video communication. To enhance estimation accuracy, reduce
complexity and improve extensibility, in this paper, we extend RMPC-PTD algorithm to
PEED estimation; the resulting algorithm is called RMPC-PEED. Compared to ROPE
algorithm, RMPC-PEED algorithm is more accurate since the significant effect of clipping
noise on transmission distortion is considered. Another advantage over ROPE algorithm is
that RMPC-PEED algorithm is much easier to be extended to support averaging operations,
e.g., interpolation filter. Compared to LLN algorithm, the computational complexity and
memory requirement of RMPC-PEED algorithm are much lower and the estimated distortion
has smaller variance.

In existing video encoders, prediction mode decision is to choose the best prediction
mode in the sense of minimizing the Rate-Distortion (R-D) cost for each Macroblock (MB)
or sub-MB. Estimation of the MB level or sub-MB level end-to-end distortion for different
prediction modes is needed. In inter-prediction, the reference pixels of the same encoding
block may belong to different blocks in the reference frame; therefore, PEED estimation is
needed for calculating R-D cost in prediction mode decision. In this paper, we apply our
RMPC-PEED algorithm to prediction mode decision in H.264; the resulting algorithm is
called RMPC-MS. Experimental results show that, for prediction mode decision in H.264
encoder, our RMPC-MS algorithm achieves an average PSNR gain of 1.44dB over ROPE
algorithm for ‘foreman’ sequence under PEP = 5%; and it achieves an average PSNR gain
of 0.89dB over LLN algorithm for ‘foreman’ sequence under PEP = 1%.

The rest of paper is organized as follows. Section 2 presents the system description
and transmission distortion formulae, which serves as the necessary preliminaries of the
RMPC algorithm design. Section 3 presents our algorithms for estimating FTD under two
scenarios: one without acknowledgement feedback and one with acknowledgement feedback.
In Section 4, we develop algorithms for estimating PTD. In Section 5, we extend our PTD
estimation algorithm to PEED estimation. In Section 6, we apply our PEED estimation
algorithm to prediction mode decision in H.264 encoder and compare its complexity with
existing algorithms. Section 7 shows the experimental results that demonstrate accuracy
and robustness of our distortion estimation algorithm and superior R-D performance of our
mode decision scheme over existing schemes. Section 8 concludes the paper.
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Figure 1: System structure, where T, Q, Q−1, and T−1 denote transform, quantization, inverse quantization,
and inverse transform, respectively.

2. System Description and Transmission Distortion Formulae

In this subsection, we presents the system description and transmission distortion for-
mulae, which serves as the necessary preliminaries of the RMPC algorithm design. For
completeness, the derivation approach and intuitive meaning are also provided in Appendix
A.

2.1. Structure of a Wireless Video Communication System

Fig. 1 shows the structure of a typical wireless video communication system. It consists
of an encoder, two channels and a decoder where residual packets and MV packets are
transmitted over their respective channels. Note that in this system, both residual channel
and MV channel are application-layer channels.

2.2. Transmission Distortion Formulae for PTD and FTD

2.2.1. Transmission Distortion Formulae for FTD

Ref. [1] derives a formula for FTD under single-reference prediction, i.e.,

Dk = Dk(r) + Dk(m) + Dk(P ) + Dk(c), (1)

where

Dk(r) = E[(εk)2] · P̄ k(r); (2)
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Dk(m) = E[(ξk)2] · P̄ k(m); (3)

Dk(P ) = P̄ k(r) ·Dk−1 + (1− βk) · (1− P̄ k(r)) · αk ·Dk−1; (4)

Dk(c) = (λk − 1) ·Dk(m); (5)

Dk(r) represents the residual packet error induced distortion; Dk(m) represents the MV
packet error induced distortion; Dk(P ) represents the propagation and clipping noise induced
distortion; Dk(c) represents the correlation, among residual error, MV error propagated error
and clipping noise, induced distortion; εk is the residual concealment error and P̄ k(r) is the
weighted average PEP of all residual packets in the k-th frame; ξk is the MV concealment
error and P̄ k(m) is the weighted average PEP of all residual packets in the k-th frame; βk

is the percentage of encoded I-MBs in the k-th frame; both the propagation factor αk and
the correlation ratio λk depend on video content, channel condition and codec structure,
and are therefore called system parameters ; Dk−1 is the transmission distortion in the k− 1
frame, which can be iteratively calculated by (1).

2.2.2. Transmission Distortion Formulae for PTD

From Ref. [1], we know that PTD can be calculated by

Dk
u = Dk

u(r) + Dk
u(m) + Dk

u(P ) + Dk
u(c), (6)

where
Dk

u(r) = E[(εk
u)2] · P k

u(r); (7)

Dk
u(m) = E[(ξk

u)2] · P k
u(m); (8)

Dk
u(P ) = P k

u ·Dk−1
u+m̌vk

u
+ (1− P k

u) ·Dk
u(p); (9)

Dk
u(c) = 2P k

u · (2E[εk
u · ξk

u] + 2E[εk
u · ζ̃k−1

u+m̌vk
u
] + 2E[ξk

u · ζ̃k−1
u+m̌vk

u
]); (10)

where Dk
u(p) , E[(ζ̃k−j

u+mvk
u

+ ∆̃k
u{r̄, m̄})2] for j ∈ {1, ..., J}; J is the number of previous

encoded frames used for inter motion search; ∆̃k
u{r̄, m̄} denotes the clipping noise under the

error event that the packet is correctly received.

3. Algorithms for Estimating FTD

In this section, we develop our algorithms for estimating FTD under two scenarios:
one without acknowledgement feedback and one with acknowledgement feedback, which are
presented in Sections 3.1 and 3.2, respectively.

3.1. FTD Estimation without Feedback Acknowledgement

Next, Sections 3.1.1 through 3.1.4 present methods to estimate each of the four distortion
terms in (1), respectively.
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3.1.1. Estimation of Residual Caused Distortion

From the analysis in Ref. [1], E[(εk)2] = E[(εk
u)2] = E[(êk

u − ěk
u)2] for all u in the k-th

frame; êk
u is the transmitted residual for pixel uk; and ěk

u is the concealed residual for pixel
uk at the decoder. E[(εk)2] can be estimated from the finite samples of εk

u in the k-th frame,

i.e., Ê[(εk)2] = 1
|V|

∑
u∈Vk(êk

u − ̂̌ek
u)2, where ̂̌ek

u is the estimate of ěk
u.

From the analysis in Ref. [1], P̄ k(r) = 1
|V|

∑Nk(r)
i=1 (P k

i (r)·Nk
i (r)), where P k

i (r) is the PEP of

the i-th residual packet in the k-th frame; Nk
i (r) is the number of pixels contained in the i-th

residual packet of the k-th frame; Nk(r) is the number of residual packets in the k-th frame.
P k

i (r) can be estimated from channel state statistics. Denote the estimated PEP by P̂ k
i (r) for

all i ∈ {1, 2, ..., Nk(r)}; then P̄ k(r) can be estimated by P̂ k(r) = 1
|V|

∑Nk(r)
i=1 (P̂ k

i (r) ·Nk
i (r)).

As a result, Dk(r) can be estimated by

D̂k(r) = Ê[(εk)2] · P̂ k(r) =
1

(|V|)2

Nk(r)∑
i=1

(P̂ k
i (r) ·Nk

i (r))
∑

u∈Vk

(êk
u − ̂̌ek

u)2. (11)

Appendix B presents how to 1) conceal êk
u at the decoder; 2) estimate ěk

u at the encoder;
and 3) estimate P k

i (r) at the encoder.

3.1.2. Estimation of MV Caused Distortion

From the analysis in Ref. [1], E[(ξk)2] = E[(ξk
u)2] = E[(f̂k−1

u+mvk
u
− f̂k−1

u+m̌vk
u
)2] for all u in

the k-th frame; mvk
u is the transmitted MV for pixel uk; and m̌vk

u is the concealed MV for
pixel uk at the decoder. E[(ξk)2] can be estimated from the finite samples of ξk

u in the k-th

frame, i.e., Ê[(ξk)2] = 1
|V|

∑
u∈Vk(f̂

k−1
u+mvk

u
− f̂k−1

u+̂̌mvk
u

)2, where ̂̌mvk
u is the estimate of m̌vk

u.

Similar to Section 3.1.1, P̄ k(m) = 1
|V|

∑Nk(m)
i=1 (P k

i (m) ·Nk
i (m)), where P k

i (m) is the PEP

of the i-th MV packet in the k-th frame; Nk
i (m) is the number of pixels contained in the i-th

MV packet of the k-th frame; Nk(m) is the number of MV packets in the k-th frame. P k
i (m)

can be estimated from channel state statistics. Denote the estimated PEP by P̂ k
i (m) for all

i ∈ {1, 2, ..., Nk(m)}; then P̄ k(r) can be estimated by P̂ k(m) = 1
|V|

∑Nk(m)
i=1 (P̂ k

i (m) ·Nk
i (m)).

As a result, Dk(m) can be estimated by

D̂k(m) = Ê[(ξk)2] · P̂ k(m) =
1

(|V|)2

Nk(m)∑
i=1

(P̂ k
i (m) ·Nk

i (m))
∑

u∈Vk

(f̂k−1
u+mvk

u
− f̂k−1

u+̂̌mvk
u

)2. (12)

Appendix C presents how to 1) conceal mvk
u at the decoder; 2) estimate m̌vk

u at the encoder;
and 3) estimate P k

i (m) at the encoder.

3.1.3. Estimation of Propagation and Clipping Caused Distortion

To estimate Dk(P ), we only need to estimate αk since P̄ k(r) has been estimated in
Section 3.1.1. In Ref. [1], we theoretically derive the propagation factor αk

u of pixel uk for
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propagated error with a zero-mean Laplacian distribution, i.e.,

α = 1− 1

2
e−

y−γL
b (

y − γL

b
+ 1)− 1

2
e−

γH−y

b (
(γH − y)

b
+ 1), (13)

where γL and γH are user-specified low threshold and high threshold, respectively; y is the
reconstructed pixel value; b =

√
2

2
σ; and σ is the standard deviation of the propagated error.

Here, we provide three methods to estimate the propagation factor αk as below.

Estimation of αk by αk
u: As defined in Ref. [1], αk =

P
u∈Vk αk

u·Dk−1

u+mvk
uP

u∈Vk Dk−1

u+mvk
u

. Therefore, we

may first estimate αk
u by (13) and then estimate αk by its definition. However, this method

requires to compute exponentiations and divisions in (13) for each pixel, and needs large
memory to store D̂k−1

u+mvk
u

for all pixels in all reference frames.

Estimate the average of a function by the function of an average: If we estimate
αk directly by the frame statistics instead of pixel values, both the computational complexity
and memory requirement will be decreased by a factor of NV k . If only D̂k−1 instead of

D̂k−1
u+mvk

u
is stored in memory, we may simplify estimating αk by α̂k =

P
u∈Vk α̂k

u·D̂k−1

P
u∈Vk D̂k−1

=

1
|V|

∑
u∈Vk α̂k

u. This is accurate if all packets in the same frame experience the same channel

condition. We see from (13) that αk
u is a function of the reconstructed pixel value f̂k

u and
the variance of propagated error σ2

f̂k−1

u+mvk
u

, which is equal to Dk−1 in this case. Denote

αk
u = g(f̂k

u, Dk−1); we have αk = 1
|V|

∑
u∈Vk g(f̂k

u, Dk−1). One simple and intuitive method

is to use the function of an average to estimate the average of a function, that is, α̂k =
g( 1
|V|

∑
u∈Vk f̂k

u, D̂k−1).

Improve estimation accuracy by using the property of (13): Although the above
method dramatically reduces the estimation complexity and memory requirement, that sim-
ple approximation is only accurate if αk

u is a linear function of f̂k
u. In other words, such

approximation causes underestimation for the convex function or overestimation for the
concave function [11]. Although (13) is neither a convex function nor a concave function,
it is interesting to see that 1) αk

u is symmetric about f̂k
u = γH+γL

2
; 2) αk

u is a monotonically

increasing function of f̂k
u when γL < f̂k

u < γH+γL

2
, and αk

u is a monotonically decreasing

function of f̂k
u when γH+γL

2
< f̂k

u < γH ; 3) both half sides are much more linear than the

whole function. So, we propose to use 1
|V|

∑
u∈Vk |f̂k

u− γH+γL

2
|+ γH+γL

2
instead of 1

|V|
∑

u∈Vk f̂k
u

to estimate αk. Since the symmetry property is exploited, such algorithm gives much more
accurate estimate α̂k.

From the analysis in Ref. [1], we have Dk(p) = αk ·Dk−1; so we can estimate Dk(p) by
D̂k(p) = D̂k−1 · α̂k. To compensate the accuracy loss of using frame statistics, we may use
the following algorithm to estimate Dk(p) without the exponentiation and division for each
pixel:

D̂k(p) = (D̂k−1 − D̂k−1(r)− D̂k−1(m)) · α̂k + Φ2(εk−1, f̂k) + Φ2(ξk−1, f̂k), (14)
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where D̂k−1(r) can be estimated by (11); D̂k−1(m) can be estimated by (12); α̂k can be esti-

mated by (13); Φ2(εk−1, f̂k) = 1
|V|

∑
u∈Vk Φ2(εk−1

u , f̂k
u) and Φ2(ξk−1, f̂k) = 1

|V|
∑

u∈Vk Φ2(ξk−1
u , f̂k

u),
while both of them can be easily calculated by

Φ(x, y) , y − Γ(y − x) =





y − γL, y − x < γL

x, γL ≤ y − x ≤ γH

y − γH , y − x > γH .

(15)

Our experimental results in Section 7 show that the proposed algorithm provides accurate
estimate. Finally, it is straightforward to estimate Dk(P ) by

D̂k(P ) = P̂ k(r) · D̂k−1 + (1− βk) · (1− P̂ k(r)) · D̂k(p). (16)

3.1.4. Estimation of Correlation-Caused Distortion

To estimate Dk(c), the only parameter needs to be estimated is λk since Dk(m) has been

estimated in Section 3.1.2. As defined in Ref. [1], λk = 1
|V|

∑
u∈Vk λk

u, where λk
u =

E[ξk
u· efk−1

u+m̌vk
u
]

E[ξk
u·f̂k−1

u+m̌vk
u
]
.

λk
u depends on the motion activity of the video content according to Ref. [1].

In our experiment, we find that λk is small when the average MV length over the set in
the k-th frame is larger than half of the block length, and λk ≈ 1 when the average MV length
in the k-th frame is smaller than half of the block length, or when the propagated error from
the reference frames is small. An intuitive explanation for this phenomenon is as below: 1) if
the average MV length is large and the MV packets are received with error, most concealed
reference pixels will be in some block different from the block where the corresponding true
reference pixels locate; 2) if the average MV length is small, most concealed reference pixels
and the corresponding true reference pixels will still be in the same block even if the MV
packet is received with error; 3) since the correlation between two pixels inside the same
block is much higher than the correlation between two pixels located in different blocks,
hence λk is small when the average MV length is large and vice versa; 4) if there is no
propagated error from the reference frames, according to the definition, it is easy to prove
that λk = 1.

Therefore, we propose a low complexity algorithm to estimate λk by frame statistics as
below

λ̂k =

{
(1− P̄ k−1(m))(1− P̄ k−1(r)), |mvk| > block size

2

1, otherwise,
(17)

where P̄ k−1(r) is defined in (4); P̄ k−1(m) is defined in (5); |mvk| = 1
|V|

∑
u∈Vk |mvk

u|, and

|mvk
u| is the length of mvk

u. As a result,

D̂k(c) = (λ̂k − 1) · D̂k(m). (18)
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3.1.5. Summary

Without feedback acknowledgement, the transmission distortion of the k-th frame can
be estimated by

D̂k = D̂k(r) + λ̂k · D̂k(m) + P̂ k(r) · D̂k−1 + (1− βk) · (1− P̂ k(r)) · D̂k(p), (19)

where D̂k(r) can be estimated by (11); D̂k(m) can be estimated by (12); D̂k(p) can be
estimated by (14); λ̂k can be estimated by (17); P̂ k(r) can be estimated by the estimated
PEP of all residual packets in the k-th frame as discussed in Section 3.1.1. We call the
resulting algorithm in (19) as RMPC-FTD algorithm.

3.2. FTD Estimation with Feedback Acknowledgement

In some wireless video communication systems, the receiver may send the transmitter a
notification about whether packets are correctly received. This feedback acknowledgement
mechanism can be utilized to improve FTD estimation accuracy as shown in Algorithm 1.

Algorithm 1. FTD estimation at the transmitter under feedback acknowledgement.

1) Input: P̂ k
i (r) and P̂ k

i (m) for all i ∈ {1, 2, ..., Nk}.
2) Initialization and update.

If k = 1, do initialization.
If k > 1, update with feedback information.

If there are acknowledgements for packets in the (k − 1)-th frame,
For j = 1 : Nk−1

if ACK for the j-th residual packet is received, update P̂ k−1
j (r) = 0.

if NACK for the j-th residual packet is received, update P̂ k−1
j (r) = 1.

if ACK for the j-th MV packet is received, update P̂ k−1
j (m) = 0.

if NACK for the j-th MV packet is received, update P̂ k−1
j (m) = 1.

End

Update D̂k−1.
Else (neither ACK nor NACK is received), go to 3).

3) Estimate Dk via

D̂k = D̂k(r) + λ̂k · D̂k(m) + P̂ k(r) · D̂k−1 + (1− βk) · (1− P̂ k(r)) · D̂k(p),
which is (19).

4) Output: D̂k.

Algorithm 1 has a low computational complexity since D̂k−1 is updated based on whether
packets in the (k − 1)-th frame are correctly received or not. In a more general case that
the encoder can tolerate a feedback delay of d frames, we could update D̂k−1 based on the
feedback acknowledgements for the (k−d)-th frame through the (k−1)-th frame. However,
this requires extra memory for the encoder to store all the system parameters from the
(k − d)-th frame to the (k − 1)-th frame in order to update D̂k−1.

9



4. Pixel-level Transmission Distortion Estimation Algorithm

The PTD estimation algorithm is similar to the FTD estimation algorithm presented in
Section 3. However, the values of some variables in the PTD formula derived in Ref. [1] may
be known at the encoder. Taking uk as an example, before the prediction mode is selected,
the best motion vector mvk

u of each prediction mode is known after motion estimation is
done; hence the residual êk

u and reconstructed pixel value f̂k
u of each mode are also known. In

such a case, these known values could be used to replace the statistics of the corresponding
random variables to simplify the PTD estimation. In this section, we discuss how to use the
known values to improve the estimation accuracy and reduce the algorithm complexity.

4.1. Estimation of PTD

In this section, we consider the case with no data partitioning; hence, P k
u = P k

u(r) =
P k

u(m). For the case with slice data partitioning, the derivation process is similar to that in
this section.

In (6)-(10), if the values for mvk
u, êk

u and f̂k
u are known, given the error concealment at

the encoder, the values for εk
u = êk

u − ěk
u and ξk

u = f̂k−1
u+mvk

u
− f̂k−1

u+m̌vk
u

are also known. Then,

Dk
u(r) = (εk

u)2 · P k
u , Dk

u(m) = (ξk
u)2 · P k

u , and Dk
u(c) = P k

u · (2εk
u · ξk

u + 2εk
u ·E[ζ̃k−1

u+m̌vk
u
] + 2ξk

u ·
E[ζ̃k−1

u+m̌vk
u
]). Hence, the formula for PTD can be simplified to

Dk
u = E[(ζ̃k

u)2] = P k
u · ((εk

u + ξk
u)2 + 2(εk

u + ξk
u) · E[ζ̃k−1

u+m̌vk
u
] + Dk−1

u+m̌vk
u
) + (1− P k

u) ·Dk
u(p).

(20)

Denote D̂(·) the estimate of D(·), and denote Ê(·) as the estimate of E(·). Therefore, Dk
u

can be estimated by D̂k
u = P̂ k

u ·((εk
u+ξk

u)2+2(εk
u+ξk

u)·Ê[ζ̃k−1
u+m̌vk

u
]+D̂k−1

u+m̌vk
u
)+(1−P̂ k

u)·D̂k
u(p),

where P̂ k
u can be obtained by the PEP estimation algorithm in Section 3. D̂k−1

u+m̌vk
u

is the

estimate in the (k − 1)-th frame and is stored for calculating Dk
u. Therefore, the only

unknowns are Ê[ζ̃k−1
u+m̌vk

u
] and D̂k

u(p), which can be calculated by the methods in Sections 4.2

and 4.3.

4.2. Calculation of Ê[ζ̃k
u]

Since Ê[ζ̃k−1
u+m̌vk

u
] from the (k − 1)-th frame is required for calculating D̂k

u, we should

estimate the first moment of ζ̃k
u and store it for the subsequent frame. From Ref. [1], we know

ζ̃k
u = ε̃k

u + ξ̃k
u + ζ̃k−j′

u+gmvk
u

+∆̃k
u. For P-MBs, when MV packet is correctly received, ε̃k

u = ξ̃k
u = 0

and ζ̃k−j′

u+gmvk
u

= ζ̃k−j
u+mvk

u
; when MV packet is received with error, ζ̃k−j′

u+gmvk
u

= ζ̃k−1
u+m̌vk

u
, and since

residual and MV are in the same packet, ∆̃k
u{r,m} = ∆̃k

u{r} = 0 as proved in Ref. [1].
Therefore, the first moment of ζk

u can be recursively calculated by

E[ζ̃k
u] = P k

u · (εk
u + ξk

u + E[ζ̃k−1
u+m̌vk

u
]) + (1− P k

u) · E[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}]. (21)
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Consequently, E[ζ̃k
u] can be estimated by Ê[ζ̃k

u] = P̂ k
u · (εk

u + ξk
u + Ê[ζ̃k−1

u+m̌vk
u
]) + (1 − P̂ k

u) ·
Ê[ζ̃k−j

u+mvk
u

+ ∆̃k
u{r̄, m̄}].

For I-MBs, when the packet is correctly received, ζ̃k
u = 0; when MV packet is received

with error, the result is the same as for P-MBs. Therefore, the first moment of ζk
u can be

recursively calculated by

E[ζ̃k
u] = P k

u · (εk
u + ξk

u + E[ζ̃k−1
u+m̌vk

u
]), (22)

and E[ζ̃k
u] can be estimated by Ê[ζ̃k

u] = P̂ k
u · (εk

u + ξk
u + Ê[ζ̃k−1

u+m̌vk
u
]).

4.3. Calculation of Ê[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}] and D̂k
u(p)

From Ref. [1], we know that for I-MBs, Dk
u(p) = 0; for P-MBs, Dk

u(p) = αk
u ·Dk−j

u+mvk
u

and

it can be estimated by D̂k
u(p) = α̂k

u · D̂k−j
u+mvk

u
, where α̂k

u is estimated by (13) with y = f̂k
u

and σ2 = D̂k−j
u+mvk

u
.

However, such complexity is too high to be used in prediction mode decision since every
pixel requires such a computation for each mode. To address this, we leverage the prop-
erty proved in Proposition 1 to design a low-complexity and high-accuracy algorithm to
recursively calculate Ê[ζ̃k−j

u+mvk
u

+ ∆̃k
u{r̄, m̄}] and D̂k

u(p) for P-MBs.

Proposition 1. Assume γH = 255 and γL = 0. The propagated error ζ̃k−j
u+mvk

u
and the

clipping noise ∆̃k
u{r̄, m̄} satisfy

ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄} =





f̂k
u − 255, ζ̃k−j

u+mvk
u

< f̂k
u − 255

f̂k
u , ζ̃k−j

u+mvk
u

> f̂k
u

ζ̃k−j
u+mvk

u
, otherwise.

(23)

Proposition 1 is proved in Appendix D. Using Proposition 1, Ê[ζ̃k−j
u+mvk

u
+∆̃k

u{r̄, m̄}] in (21)

and D̂k
u(p) in (20) can be estimated under the following three cases.

Case 1: If Ê[ζ̃k−j
u+mvk

u
] < f̂k

u − 255, we have Ê[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}] = f̂k
u − 255, and

D̂k
u(p) = Ê[(ζ̃k−j

u+mvk
u

+ ∆̃k
u{r̄, m̄})2] = (f̂k

u − 255)2.

Case 2: If Ê[ζ̃k−j
u+mvk

u
] > f̂k

u , we have Ê[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}] = f̂k
u, and D̂k

u(p) = (f̂k
u)2.

Case 3: If f̂k
u − 255 ≤ Ê[ζ̃k−j

u+mvk
u
] ≤ f̂k

u, we have Ê[ζ̃k−j
u+mvk

u
+∆̃k

u{r̄, m̄}] = Ê[ζ̃k−j
u+mvk

u
], and

D̂k
u(p) = Ê[(ζ̃k−j

u+mvk
u
)2].

4.4. Summary

PTD can be recursively estimated by (20) and (21) or (22); and Ê[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}]
and D̂k

u(p) can be calculated by the methods in Section 4.3. The resulting algorithm is called
RMPC-PTD algorithm.
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5. Pixel-level End-to-end Distortion Estimation Algorithm

The pixel-level end-to-end distortion (PEED) for each pixel u in the k-th frame is defined

by Dk
u,ETE , E[(fk

u − f̃k
u)2], where fk

u is the input pixel value at the encoder and f̃k
u is the

reconstructed pixel value at the decoder. Then we have

Dk
u,ETE = E[(fk

u − f̃k
u)2]

= E[(fk
u − f̂k

u + f̂k
u − f̃k

u)2]

= E[(fk
u − f̂k

u + ζ̃k
u)2]

= (fk
u − f̂k

u)2 + E[(ζ̃k
u)2] + 2(fk

u − f̂k
u) · E[ζ̃k

u]. (24)

We call fk
u − f̂k

u quantization error and ζ̃k
u transmission error. While fk

u − f̂k
u depends

only on the quantization parameter (QP), ζ̃k
u mainly depends on the PEP and the error

concealment scheme. If the value of f̂k
u is known, then the only unknowns in (24) are E[(ζ̃k

u)2]

and E[ζ̃k
u], which can be estimated by the methods in Section 4. We call the algorithm in

(24) as RPMC-PEED algorithm.
Compared to ROPE algorithm [8], which estimates the first moment and second moment

of the reconstructed pixel value f̃k
u, we have the following observations. First, RPMC-PEED

algorithm estimates the first moment and the second moment of reconstructed error ζ̃k
u;

therefore, RPMC-PEED algorithm is much easier to be enhanced to support the averaging
operations in H.264, such as interpolation filter. Second, estimating the first moment and
the second moment of ζ̃k

u in RMPC-PEED produces lower distortion estimation error than

estimating both moments of f̃k
u in ROPE. Third, our experimental results show that ROPE

may produce a negative value as the estimate for distortion, which violates the requirement
that (true) distortion must be non-negative; our experimental results also show that the
negative distortion estimate is caused by not considering clipping, which results in inaccurate
distortion estimation by ROPE.

Note that in Ref. [1], we assume the clipping noise at the encoder is zero, that is, ∆̂k
u = 0.

If we use f̂k−j
u+mvk

u
+ êk

u to replace f̂k
u in (24), we may calculate the quantization error by

fk
u − (f̂k−j

u+mvk
u

+ êk
u) and calculate the transmission error by

ζ̃k
u = (f̂k−j

u+mvk
u

+ êk
u)− f̃k

u

= (f̂k−j
u+mvk

u
+ êk

u)− (f̃k−1

u+gmvk
u

+ ẽk
u − ∆̃k

u)

= ε̃k
u + ξ̃k

u + ζ̃k−1

u+gmvk
u

+ ∆̃k
u,

(25)

which is exactly the formula for transmission error decomposition in Ref. [1]. Therefore,
∆̂k

u does not affect the end-to-end distortion Dk
u,ETE if we use f̂k−j

u+mvk
u

+ êk
u to replace f̂k

u in

calculating both the quantization error and the transmission error.
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6. Applying RMPC-PEED Algorithm to H.264 Prediction Mode Decision

6.1. Rate-distortion Optimized Prediction Mode Decision

In H.264 specification, there are two types of prediction modes, i.e., inter prediction and
intra prediction2. In inter prediction, there are 7 modes, i.e., modes for 16x16, 16x8, 8x16,
8x8, 8x4, 4x8, and 4x4 luma blocks. In intra prediction, there are 9 modes for 4x4 luma
blocks and 4 modes for 16x16 luma blocks. Hence, there are a total of 7 + 9 + 4 = 20 modes
to be selected in mode decision. For each MB, our proposed Error-Resilient Rate Distortion
Optimized (ERRDO) mode decision consists of two steps. First, R-D cost is calculated by

J(ωm) = Dk
ETE(ωm) + λ ·R(ωm), (26)

where Dk
ETE =

∑
u∈Vk

i
Dk

u,ETE; Vk
i is the set of pixels in the i-th MB (or sub-MB) of the k-th

frame; ωm is the prediction mode, and ωm (ωm ∈ {1, 2, · · · , 20}); R(ωm) is the encoded bit
rate for mode ωm; λ is the preset Lagrange multiplier. Then, the optimal prediction mode
that minimizes the rate-distortion (R-D) cost is found by

ω̂m = arg min
ωm

{J(ωm)}. (27)

If Dk
ETE(ωm) in (26) is replaced by source coding distortion or quantization distortion, we

call it Source-Coding Rate Distortion Optimized (SCRDO) mode decision.
Using (26) and (27), we design Algorithm 2 for ERRDO mode decision in H.264; Algo-

rithm 2 is called RMPC-MS algorithm.

Algorithm 2. ERRDO Mode decision for an MB in the k-th frame (k ≥ 1).

1) Input: QP, PEP.

2) Initialization of Ê[ζ̃0
u] and Ê[(ζ̃0

u)2] for all pixel u.
3) For mode = 1 : 20 (9+4 intra, 7 inter).

3a) If intra mode,

calculate Ê[ζ̃k
u] by (22) for all pixels in the MB,

go to 3b),

Else if Ê[ζ̃k−j
u+mvk

u
] < f̂k

u − 255,

Ê[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}] = f̂k
u − 255,

Ê[(ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄})2] = (f̂k
u − 255)2,

Else if Ê[ζ̃k−j
u+mvk

u
] > f̂k

u

Ê[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}] = f̂k
u,

Ê[(ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄})2] = (f̂k
u)2,

Else

2There are two other encoding modes for P-MB defined in H.264, i.e., skip mode and I PCM mode.
However, they are usually not involved in the PEED estimation process.
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Ê[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}] = Ê[ζ̃k−j
u+mvk

u
],

Ê[(ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄})2] = Ê[(ζ̃k−j
u+mvk

u
)2],

End

calculate Ê[ζ̃k
u] by (21) for all pixels in the MB,

3b) calculate D̂k
u by (20) for all pixels in the MB,

3c) estimate Dk
u,ETE by (24) for all pixels in the MB,

3d) calculate R-D cost via (26) for each mode,
End
Via (27), select the mode with minimum R-D cost as the optimal mode for the MB.
5) Output: the best mode for the MB.

Using Theorem 1, we can design another ERRDO mode decision algorithm that produces
the same solution as that of Algorithm 2, as Proposition 2 states.

Theorem 1. (Decomposition Theorem) If there is no slice data partitioning, end-to-end
distortion can be decomposed into a mode-dependent term and a mode-independent term,
i.e.,

Dk
u,ETE(ωm) = Dk

u,ETE
(ωm) + Ck

u. (28)

where Ck
u is independent of ωm and

Dk
u,ETE

(ωm) = (1− P k
u) · {(fk

u − f̂k
u)2 + Dk

u(p) + 2(fk
u − f̂k

u) · E[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}]}.
(29)

Theorem 1 is proved in Appendix E.
Using Theorem 1, we only need to change two places in Algorithm 2 to obtain a new

algorithm, which we call Algorithm A: first, replace Step 3c) in Algorithm 2 by “estimate
Dk

u,ETE
by (29) for all pixels in the MB”; second, replace 3d) in Algorithm 2 by “calculate

R-D cost via Dk
ETE

(ωm) + λ ·R(ωm) for each mode”, where Dk
ETE

=
∑

u∈Vk
i
Dk

u,ETE
.

Proposition 2. If there is no slice data partitioning, Algorithm A and Algorithm 2 produce
the same solution, i.e., ω̂m = arg minωm{D̂k

ETE(ωm) + λ ·R(ωm)} = arg minωm{D̂k
ETE

(ωm) +
λ ·R(ωm)}.

Proposition 2 is proved in Appendix F.
Note that Dk

ETE
in (29) is not exactly the end-to-end distortion; but the decomposition

in (28) can help reduce the complexity of some estimation algorithms, for example, LLN
algorithm [12].
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Table 1: Complexity Comparison
Algorithms computational complexity memory requirement

inter mode 9 ADDs, 8 MULs
RMPC-MS intra mode 7 ADDs, 6 MULs 25 bits/pixel

total complexity 154 ADDs, 134 MULs
inter mode 7 ADDs, 8 MULs

ROPE intra mode 4 ADDs, 7 MULs 24 bits/pixel
total complexity 101 ADDs, 147 MULs

inter mode 2Nd ADDs, Nd MULs
LLN intra mode Nd ADDs, Nd MULs 8Nd bits/pixel

total complexity 27Nd ADDs, 20Nd MULs

6.2. Complexity of RMPC-MS, ROPE, and LLN Algorithm

In this subsection, we compare the complexity of RMPC-MS algorithm with that of two
popular mode decision algorithms, namely, ROPE algorithm and LLN algorithm, which
are also based on pixel-level distortion estimation. To make a fair comparison, the same
conditions should be used for all the three algorithms. Assume all the three algorithms
use an error concealment scheme that conceals an erroneous pixel by the pixel in the same
position of the previous frame; then, ěk

u = 0 and m̌vk
u = 0; hence, εk

u + ξk
u = fk

u − f̂k−1
u .

Here, the complexity is quantified by the number of additions (ADDs) and multiplications
(MULs)3. If a subroutine (or the same set of operations) is invoked multiple times, it is
counted only once since the temporary result is saved in the memory; for example, εk

u + ξk
u

in (20) and (21) is counted as one ADD. A substraction is counted as an addition. We
only consider pixel-level operations; block-level operations, for example MV addition, are
neglected. We ignore the complexity of those basic operations since their complexity is the
same for all the three algorithms, such as motion compensation.

Table 1 shows the complexity of the three algorithms. Appendix G presents the details
on how to calculate the computational complexity and memory requirement.

7. Experimental Results

In Section 7.1, we compare the estimation accuracy of RMPC-FTD algorithm to that
of the existing models under different channel conditions; we also compare their robustness
against imperfect estimate of PEP. Since the number of pixels in a frame is too large to
plot the the estimation accuracy for each of them, in Section 7.2, we only compare the R-D
performance of RMPC-MS to that of mode decision by existing PEED algorithms for H.264;
we also compare them under interpolation filter and deblocking filter.

To analyze the statistics and verify our algorithm, our lab has developed a software tool,
called Video Distortion Analysis Tool (VDAT), which provides a friendly Graphical User
Interface (GUI). VDAT implements 1) channel simulator, 2) supports different video codec,

3Those minor operations, such as memory copy, shift, and conditional statement, are neglected for all
algorithms.
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3) computes the video statistics, e.g. the joint pdf of MV concealment error and propagated
error, and 4) supports several distortion estimation algorithms, 5) compare R-D performance
of different algorithms4. VDAT is used in all the experiments in this section.

7.1. Estimation Accuracy and Robustness

In this section, we use Algorithm 1 to estimate FTD and compare it with Stuhlmuller’s
model [2] and Dani’s model [3]. To evaluate estimation accuracy, we compare the estimated
distortion of different algorithms with true distortion for 50 frames under the case of no
acknowledgement feedback.

7.1.1. Experiment Setup

To implement the estimation algorithms, all transmission distortion related statistics
should be collected for all random variables, such as residual, motion vector, reconstructed
pixel value, residual concealment error, MV concealment error, propagated error, clipping
noise. All such statistics are collected from video codec JM14.0 [7]. All tested video se-
quences [13] are in CIF format, and each frame is divided into three slices. To support the
slice data partitioning, we use the extended profile as defined in H.264 specification Annex
A [14]. To provide unequal error protection (UEP), we let MV packets experience lower PEP
than residual packets. The first frame of each coded video sequence is an I-frame, and the
subsequent frames are all P-frames. In the experiment, we let the first I-frame be correctly
received, and all the following P-frames go through an error-prone channel with controllable
PEP. We set QP=28 for all the frames.

Each video sequence is tested under several channel conditions with UEP. Due to the
space limit, we only present the experimental results for video sequences ‘stefan’ and ‘fore-
man’ in this paper5. For each sequence, two wireless channel conditions are tested: for good
channel condition, residual PEP is 2% and MV PEP is 1%; for poor channel condition,
residual PEP is 10% and MV PEP is 5%. Note that the packet error state is a two-value
random variable, that is, it is a Bernoulli distributed with success probability p = PEP .
For each PEP setting of each frame, we do 600 simulations and take the average to mitigate
the effect of randomness of simulated channels on instantaneous distortion.

7.1.2. Estimation Accuracy of Different Estimation Algorithms

Fig. 2 shows the estimation accuracy of RMPC-FTD algorithm, Stuhlmuller’s model in
Ref. [2] and Dani’s model in Ref. [3] for sequence ‘stefan’. Fig. 3 shows their estimation
accuracy for sequence ‘foreman’. We can see that RMPC-FTD algorithm achieves the most
accurate estimate.

Since the superposition algorithm in Stuhlmuller’s model neglects the effect of clipping
noise and negative correlation between MV concealment error and propagated error, it over-
estimates transmission distortion as shown in Fig. 2. However, since the clipping effect and

4Please refer to http://www.mcn.ece.ufl.edu/public/zhifeng/project/VDAT for more detail information.
5Experimental results for other video sequences can be found at

http://www.mcn.ece.ufl.edu/public/zhifeng/project/VDAT/journal.
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the correlation caused distortion is small for low motion sequence under low PEP as proved
in Ref. [1], linear model is quite accurate as shown in Fig. 3(a). Notice that in foreman
sequence under good channel, the estimated distortion different from ground truth is only
about MSE = 12 after accumulated with 50 frames without feedback.

In Ref. [3], authors claim that the larger the fraction of pixels in the reference frame to
be used as reference pixels, the larger the transmission errors propagated from the reference
frame. However, due to randomness of motion vectors, the probability that a pixel with
error is used as reference is the same as the probability that a pixel without error is used
as reference. Therefore, the number of pixels in the reference frame being used for motion
prediction has nothing to do with the fading factor. As a result, the algorithm in Ref. [3]
under-estimates transmission distortion as shown in Fig. 2 and Fig. 3.
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Figure 2: Transmission distortion Dk vs. frame index k for ‘stefan’: (a) good channel, (b) poor channel.
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Figure 3: Transmission distortion Dk vs. frame index k for ‘foreman’: (a) good channel, (b) poor channel.
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Figure 4: Transmission distortion Dk vs. PEP for ‘stefan’.
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Figure 5: Transmission distortion Dk vs. PEP for ‘foreman’.

In our experiment, we observe that 1) the higher the propagated distortion, the smaller
the propagation factor; and 2) the higher percentage of reconstructed pixel values near 0
or 255, the smaller the propagation factor. These two phenomena once more verify that
the propagation factor is a function of all samples of reconstructed pixel value and sample
variance of propagated error as proved in Ref. [1]. These phenomena could be explained
by (13) in that 1) α is a decreasing function of b for b > 0; 2) α is an increasing function
of y for 0 ≤ y ≤ 127 and a decreasing function of y for 128 ≤ y ≤ 255. We also note
that a larger sample variance of propagated error causes α to be less sensitive to the change
of reconstructed pixel value, while a larger deviation of reconstructed pixel value from 128
causes α to be less sensitive to the change of sample variance of propagated error.

To further study estimation accuracy, we test the estimation algorithms under many
different channel conditions. Fig. 4 and Fig. 5 show the estimation accuracy under PEP
varying from 1% to 10%. In both figures, RMPC-FTD algorithm achieves the most accurate
distortion estimation under all channel conditions.
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7.1.3. Robustness of Different Estimation Algorithms

In Section 7.1.2, we assume PEP is perfectly known at the encoder. However, in a real
wireless video communication system, PEP is usually not perfectly known at the encoder;
i.e., there is a random estimation error between the true PEP and the estimated PEP.
Hence, it is important to evaluate the robustness of the estimation algorithms against PEP
estimation error. To simulate imperfect PEP estimation, for a given true PEP denoted by
Ptrue, we assume the estimated PEP is a random variable and is uniformly distributed in
[0, 2× Ptrue]; e.g., if Ptrue = 10%, the estimated PEP is uniformly distributed in [0, 20%].

Figs. 6 and 7 show the estimation accuracy of the three algorithms for ‘stefan’ and ‘fore-
man’, respectively, under imperfect knowledge of PEP at the encoder. From the two figures,
it is observed that compared to the case under perfect knowledge of PEP at the encoder,
for both Stuhlmuller’s model and Dani’s model, imperfect knowledge of PEP may cause
increase or decrease of the gap between the estimated distortion and the true distortion.
Specifically, for Stuhlmuller’s model, if the PEP is under-estimated, the gap between the
estimated distortion and the true distortion decreases, compared to the case under perfect
knowledge of PEP; for Dani’s model, if the PEP is over-estimated, the gap between the
estimated distortion and the true distortion decreases, compared to the case under perfect
knowledge of PEP. In contrast, RMPC-FTD algorithm is more robust against PEP estima-
tion error, and provides more accurate distortion estimate than Stuhlmuller’s model and
Dani’s model.
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Figure 6: Transmission distortion Dk vs. frame index k for ‘stefan’ under imperfect knowledge of PEP: (a)
good channel, (b) poor channel.

7.2. R-D Performance of Mode Decision Algorithms

In this subsection, we compare the R-D performance of Algorithm 2 with that of ROPE
and LLN algorithms for mode decision in H.264. To compare all algorithms under the
multi-reference picture motion compensated prediction, we also enhance the original ROPE
algorithm [8] with multi-reference capability.
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Figure 7: Transmission distortion Dk vs. frame index k for ‘foreman’ under imperfect knowledge of PEP:
(a) good channel, (b) poor channel.

7.2.1. Experiment Setup

All three algorithms are integrated into JM16.0 [15] encoder. To support more advanced
techniques in H.264, we implement them in the high profile defined in H.264 specification
Annex A [14]. We then conduct experiments for five schemes, that is, three ERRDO schemes
(RMPC-MS, LLN, ROPE), random intra update, and default SCRDO scheme with no
transmission distortion estimation. All the tested video sequences are in CIF resolution
with 30fps. Each coded video sequence is tested under a variety of PEP settings from 0.5%
to 5%. Each video sequence is coded for its first 100 frames with 3 slices per frame. The
error concealment method used in the experiment is to copy the pixel value in the same
position of the previous frame. For all algorithms, the first frame is assumed to be correctly
received.

The encoder setting is given as below. No slice data partitioning is used; constrained
intra prediction is enabled; the number of reference frames is 3; B-MBs are not included;
only 4x4 transform is used; CABAC is enabled for entropy coding; in LLN algorithm, the
number of simulated decoders is 30.

7.2.2. R-D performance under no interpolation filter and no deblocking filter

In the experiments of this subsection, both the deblocking filter and the interpolation
filter with fractional MV in H.264 are disabled. Due to the space limit, we only show the
plot of PSNR vs. bit rate for video sequences ‘foreman’ and ‘football’ under PEP = 2% and
PEP = 5%, with rate control enabled. Figs. 8 and 9 show PSNR vs. bit rate for ‘foreman’
and ‘football’, respectively. The experimental results show that RMPC-MS achieves the
best R-D performance; LLN and ROPE achieves similar performance and the second best
R-D performance; the random intra update scheme (denoted by ‘RANDOM’) achieves the
third best R-D performance; the SCRDO scheme (denoted by ‘NO EST’) achieves the worst
R-D performance.

20



200 400 600 800 1000 1200 1400 1600 1800 2000
27

28

29

30

31

32

33

34

35

36

Bit rate (kb/s)

P
S

N
R

 (
dB

)

NO_EST
RANDOM
RMPC
ROPE
LLN

200 400 600 800 1000 1200 1400 1600 1800 2000
24

25

26

27

28

29

30

31

32

33

34

Bit rate (kb/s)

P
S

N
R

 (
dB

)

NO_EST
RANDOM
RMPC
ROPE
LLN

(a) (b)

Figure 8: PSNR vs. bit rate for ‘foreman’, with no interpolation filter and no deblocking filter: (a) PEP=2%,
(b) PEP=5%.

LLN has poorer R-D performance than RMPC-MS; this may be because 30 simulated
decoders are still not enough to achieve reliable distortion estimate although LLN with 30
simulated decoders already incurs much higher complexity than RMPC-MS. The reason
why RMPC-MS achieves better R-D performance than ROPE, is due to the consideration
of clipping noise in RMPC-MS. Debug messages show that, without considering the clipping
noise, ROPE over-estimates the end-to-end distortion for inter modes; hence ROPE tends
to select intra modes more often than RMPC-MS and LLN, which leads to higher encoding
bit rate in ROPE; as a result, the PSNR gain achieved by ROPE is compromised by its
higher bit rate. To verify this conjecture, we test all sequences under the same Quantization
Parameter (QP) settings and without rate control. we observe that ROPE algorithm always
produces higher bit rate than other schemes.

Table 2 shows the average PSNR gain (in dB) of RMPC-MS over ROPE and LLN for
different video sequences and different PEP. The average PSNR gain is obtained by the
method in Ref. [16], which measures average distance (in PSNR) between two R-D curves.
From Table 2, we see that RMPC-MS achieves an average PSNR gain of 1.44dB over ROPE
for ‘foreman’ under PER = 5%; and it achieves an average PSNR gain of 0.89dB over LLN
for ‘foreman’ sequence under PEP = 1%.

Table 2: Average PSNR gain (in dB) of RMPC-MS over ROPE and LLN
Sequence coastguard football foreman mobile

PEP 5% 2% 1% 0.5% 5% 2% 1% 0.5% 5% 2% 1% 0.5% 5% 2% 1% 0.5%
RMPC vs. ROPE 0.75 0.26 0.15 0.16 0.88 0.26 0.19 0.22 1.44 0.74 0.61 0.30 0.51 0.14 0.15 0.10
RMPC vs. LLN 0.04 0.23 0.20 0.17 0.42 0.22 0.28 0.15 0.28 0.53 0.89 0.65 0.29 0.23 0.28 0.19

7.2.3. R-D performance with interpolation filter and deblocking filter

In H.264, interpolation filter provides notable objective (PSNR) gain and deblocking
filter provides notable subjective gain. To support the interpolation filter with fractional
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Figure 9: PSNR vs. bit rate for ‘football’, with no interpolation filter and no deblocking filter: (a) PEP=2%,
(b) PEP=5%.

MV in H.264 [17], we extend Algorithm 2 by using the nearest neighbor to approximate the
reference pixel pointed by a fractional MV. In addition, deblocking filter is also enabled in
JM16.0 to compare RMPC-MS, ROPE and LLN algorithms.

Note that both RMPC-MS and ROPE are derived without considering filtering oper-
ations. Due to high spatial correlation between adjacent pixels, the averaging operation
induced by a filter will produce many cross-correlation terms for estimating distortion in a
subpixel position. Yang et al. [18] enhance the original ROPE algorithm with interpolation
filter in H.264. However, their algorithm requires 1 square root operation, 1 exponentia-
tion operation, and 2 multiplication operations for calculating each cross-correlation term.
Since a six-tap interpolation filter is used in H.264 for subpixel accuracy of motion vector,
there are 15 cross-correlation terms for calculating each subpixel distortion. Therefore, the
complexity of their algorithm is very high and may not be suitable for real-time encoding.
In this subsection, we use a very simple but R-D efficient method to estimate subpixel dis-
tortion. Specifically, we choose the nearest integer pixel around the subpixel, and use the
distortion of the nearest integer pixel as the estimated distortion for the subpixel. Note that
this simple method is not aimed at extending RMPC-MS and ROPE algorithms, but just
to compare the R-D performances of these two algorithms for H.264 with fractional MV for
motion compensation.

We first show the experiment results with interpolation filter but with no deblocking
filter as in Figs. 10 and 11. From Figs. 10 and 11, we observe the same result as shown in
Section 7.2.2: RMPC-MS achieves better R-D performance than LLN and ROPE algorithms.
From Figs. 10 and 11, we also can see that each of the five algorithms achieves higher PSNR
than its corresponding scheme with no interpolation filter; this means the simple method is
valid. We also observe from Table 3 that in this case, RMPC-MS achieves an average PSNR
gain of 2.97dB over ROPE for sequence ‘mobile’ under PEP = 0.5%; and it achieves an
average PSNR gain of 1.13dB over LLN for ‘foreman’ under PEP = 1%.
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Figure 10: PSNR vs. bit rate for ‘foreman’, with interpolation and no deblocking: (a) PEP=2%, (b)
PEP=5%.

Table 3: Average PSNR gain (in dB) of RMPC-MS over ROPE and LLN under interpolation filtering
Sequence coastguard football foreman mobile

PEP 5% 2% 1% 0.5% 5% 2% 1% 0.5% 5% 2% 1% 0.5% 5% 2% 1% 0.5%
RMPC vs. ROPE 0.49 0.38 0.43 0.56 0.45 0.24 0.25 0.30 1.51 1.25 1.20 1.25 0.92 1.64 2.58 2.97
RMPC vs. LLN 0.23 0.28 0.38 0.31 0.27 0.38 0.35 0.23 0.56 0.95 1.13 1.07 0.30 0.57 0.35 0.33

We also show the experiment results with both interpolation filter and deblocking filter
as shown in Figs. 12 and 13. It is interesting to see that each of the five algorithms with
interpolation filter and deblocking filter achieves poorer R-D performance than the corre-
sponding one with interpolation filter and no deblocking filter. That is, adding deblocking
filter degrades the R-D performance of each algorithm since their estimated distortions be-
come less accurate. In this case, ROPE sometimes performs better than RMPC-MS; this
can be seen in Fig. 13, which is also the only case we have observed that ROPE performs
better than RMPC-MS. This may be because RMPC-MS has a higher percentage of inter
modes than ROPE. Since the deblocking operation is executed after the error concealment
as in JM16.0, for intra prediction, deblocking filter only affects the estimated distortion if the
packet is lost; for inter prediction, deblocking filter always impacts the estimated distortion.
Therefore, the estimation accuracy for inter prediction suffers from deblocking filter more
than that for intra prediction. Thus, it is likely that more inter modes in RMPC-MS cause
higher PSNR drop in Fig. 13.

8. Conclusion

In this paper, we designed RMPC-FTD, RMPC-PTD, RMPC-PEED algorithms based
on the analysis in Part I [1]. By virtue of considering the non-linear clipping noise and the
negative correlation between the MV concealment error and the propagated error, RMPC-
FTD algorithm provides more accurate FTD estimation than existing models as verified by
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Figure 11: PSNR vs. bit rate for ‘football’, with interpolation and no deblocking: (a) PEP=2%, (b)
PEP=5%.

experimental results. In addition, experimental results also show that RMPC-FTD algo-
rithm is more robust against inaccurate estimation of PEP than existing models. We also
designed RMPC-MS algorithm for mode decision in H.264 and enhance it with support of
interpolation filter and deblocking filter. Experimental results show that our RMPC-MS
algorithm achieves an average PSNR gain of 1.44dB over ROPE algorithm for ‘foreman’
sequence under PEP = 5%; and it achieves an average PSNR gain of 0.89dB over LLN
algorithm for ‘foreman’ sequence under PEP = 1%.

There are three directions for our future work. First, in Section 7.2.3, we enhanced
RMPC-MS algorithm with support of interpolation filter by a simple method. The method
is just an approximation by the nearest neighbor integer pixel. Therefore, the resulting
R-D performance is not optimal although it is still better than LLN and ROPE algorithm.
To further improve the R-D performance of RMPC-MS, we will theoretically derive a new
distortion estimation algorithm based on RMPC-MS algorithm to support averaging oper-
ations, such as interpolation, deblocking, and B-MB.

Second, we will continue our work on the ERRDO problem. Current ERRDO mode
decision in JM16.0 still uses the same Lagrange multiplier λ as that for source coding RDO.
However, in an error-prone channel, λ is a function of video content, MV, mode, QP, PEP,
error concealment scheme, and constrained bit rate. Our future research topic is to ana-
lytically derive the optimal λ for wireless video transmission, and then design an ERRDO
scheme for joint MV, mode, QP selection.

Third, we will extend our current work to cross layer rate control. The rate control
algorithms in existing video standards, for example, H.263 [19] and H.264 [20, 21] only focus
on source-coding rate control but not cross layer rate control. Specifically, existing rate
control algorithms only optimize R-D cost over QP, which determines the source-coding bit
rate. However, as we see in this paper, PEP is another important parameter that affects
the end-to-end distortion; and PEP determines the number of redundant bits resulted from
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Figure 12: PSNR vs. bit rate for ‘foreman’, with interpolation and deblocking: (a) PEP=2%, (b) PEP=5%.

channel coding. In our future work, we will study optimal bit allocation for source coding
and channel coding that minimizes the end-to-end distortion; the tuning parameters include
QP and physical layer parameters such as channel coding rate and power.
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Appendix A. Derivation of Transmission Distortion Formulae

Appendix A.1. Definitions

The reconstructed pixel value for uk at the encoder is

f̂k
u = Γ(f̂k−1

u+mvk
u

+ êk
u), (A.1)

where Γ(·) function is a clipping function defined by

Γ(x) =





γL, x < γL

x, γL ≤ x ≤ γH

γH , x > γH ,

(A.2)

where γL and γH are user-specified low threshold and high threshold, respectively. Usually,
γL = 0 and γH = 255.

The reconstructed pixel value for uk at the decoder is

f̃k
u = Γ(f̃k−1

u+gmvk
u

+ ẽk
u). (A.3)
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Figure 13: PSNR vs. bit rate for ‘football’, with interpolation and deblocking: (a) PEP=2%, (b) PEP=5%.

We define the transmission distortion for pixel uk or PTD by

Dk
u , E[(f̂k

u − f̃k
u)2], (A.4)

and we define the transmission distortion for the k-th frame or FTD by

Dk , E[
1

|V| ·
∑
u∈V

(f̂k
u − f̃k

u)2]. (A.5)

It is easy to prove that the relationship between FTD and PTD is characterized by

Dk =
1

|V| ·
∑
u∈V

Dk
u. (A.6)

We define the clipping noise for pixel uk at the encoder as

∆̂k
u , (f̂k−1

u+mvk
u

+ êk
u)− Γ(f̂k−1

u+mvk
u

+ êk
u), (A.7)

and the clipping noise for pixel uk at the decoder as

∆̃k
u , (f̃k−1

u+gmvk
u

+ ẽk
u)− Γ(f̃k−1

u+gmvk
u

+ ẽk
u). (A.8)

Using (A.1), Eq. (A.7) becomes

f̂k
u = f̂k−1

u+mvk
u

+ êk
u − ∆̂k

u, (A.9)

and using (A.3), Eq. (A.8) becomes

f̃k
u = f̃k−1

u+gmvk
u

+ ẽk
u − ∆̃k

u, (A.10)
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Appendix A.2. Overview of the Approach to Analyzing PTD and FTD

To analyze PTD and FTD, we take a divide-and-conquer approach. We first divide
transmission reconstructed error into four components: three random errors (RCE, MVCE
and propagated error) due to their different physical causes, and clipping noise, which is
a non-linear function of these three random errors. This error decomposition allows us to
further decompose transmission distortion into four terms, i.e., distortion caused by 1) RCE,
2) MVCE, 3) propagated error plus clipping noise, and 4) correlations between any two of
the error sources, respectively. This distortion decomposition facilitates the derivation of
a simple and accurate closed-form formula for each of the four distortion terms. Next, we
elaborate on error decomposition and distortion decomposition.

Define transmission reconstructed error for pixel uk by ζ̃k
u , f̂k

u − f̃k
u. From (A.9) and

(A.10), we obtain

ζ̃k
u = (êk

u + f̂k−1
u+mvk

u
− ∆̂k

u)− (ẽk
u + f̃k−1

u+gmvk
u

− ∆̃k
u)

= (êk
u − ẽk

u) + (f̂k−1
u+mvk

u
− f̂k−1

u+gmvk
u

) + (f̂k−1

u+gmvk
u

− f̃k−1

u+gmvk
u

)− (∆̂k
u − ∆̃k

u).
(A.11)

Define RCE ε̃k
u by ε̃k

u , êk
u−ẽk

u, and define MVCE ξ̃k
u by ξ̃k

u , f̂k−1
u+mvk

u
−f̂k−1

u+gmvk
u

. Note that

f̂k−1

u+gmvk
u

− f̃k−1

u+gmvk
u

= ζ̃k−1

u+gmvk
u

, which is the transmission reconstructed error of the concealed

reference pixel in the reference frame; we call ζ̃k−1

u+gmvk
u

propagated error. As mentioned in

Ref. [1], we assume ∆̂k
u = 0. Therefore, (A.11) becomes

ζ̃k
u = ε̃k

u + ξ̃k
u + ζ̃k−1

u+gmvk
u

+ ∆̃k
u. (A.12)

(A.12) is our proposed error decomposition.
Combining (A.4) and (A.12), we have

Dk
u = E[(ε̃k

u + ξ̃k
u + ζ̃k−1

u+gmvk
u

+ ∆̃k
u)2]

= E[(ε̃k
u)2] + E[(ξ̃k

u)2] + E[(ζ̃k−1

u+gmvk
u

+ ∆̃k
u)2]

+ 2E[ε̃k
u · ξ̃k

u] + 2E[ε̃k
u · (ζ̃k−1

u+gmvk
u

+ ∆̃k
u)] + 2E[ξ̃k

u · (ζ̃k−1

u+gmvk
u

+ ∆̃k
u)].

(A.13)

Denote Dk
u(r) , E[(ε̃k

u)2], Dk
u(m) , E[(ξ̃k

u)2], Dk
u(P ) , E[(ζ̃k−1

u+gmvk
u

+ ∆̃k
u)2] and Dk

u(c) ,
2E[ε̃k

u · ξ̃k
u] + 2E[ε̃k

u · (ζ̃k−1

u+gmvk
u

+ ∆̃k
u)] + 2E[ξ̃k

u · (ζ̃k−1

u+gmvk
u

+ ∆̃k
u)]. Then, (A.13) becomes (6),

which is our proposed distortion decomposition for PTD. The reason why we combine
propagated error and clipping noise into one term (called clipped propagated error) is because
clipping noise is mainly caused by propagated error and such decomposition will simplify
the formulae.

To derive the formula for FTD, from (A.6) and (6), we obtain (1), where

Dk(r) =
1

|V| ·
∑
u∈V

Dk
u(r), (A.14)
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Dk(m) =
1

|V| ·
∑
u∈V

Dk
u(m), (A.15)

Dk(P ) =
1

|V| ·
∑
u∈V

Dk
u(P ), (A.16)

Dk(c) =
1

|V| ·
∑
u∈V

Dk
u(c), (A.17)

which is our proposed distortion decomposition for FTD.
Following the detailed derivation process in Ref. [1], we have (1)-(10).

Appendix B. Variables for the Estimation of Residual Caused Distortion

Concealment of êk
u at the decoder: At the decoder, if êk

u is received with error and its
neighboring pixels are correctly received, its neighboring pixels could be utilized to conceal
êk
u. However, this is possible only if the pixel uk is at the slice boundary and the pixels at

the other side of this slice boundary is correctly received. In H.264, most pixels in a slice do
not locate at the slice boundary. Therefore, if one slice is lost, most of pixels in that slice
will be concealed without the information from neighboring pixels. If the same method is
used to conceal ěk

u of all pixels, it is not difficult to prove that the minimum of E[(εk)2] is
achieved when ěk

u = E[êk
u].

Note that when ěk
u is concealed by E[êk

u] at the decoder, E[(εk)2] is the variance of êk
u,

that is, E[(εk)2] = σ2
êk
u
. In our experiment, we find that the histogram of êk in each frame

approximately follows a Laplacian distribution with zero mean. As proved in Ref. [22], the
variance of ek depends on the spatio-temporal correlation of the input video sequence and
the accuracy of motion estimation. Since êk is a function of ek, E[(εk)2] also depends on
the accuracy of motion estimation. So, for a given video sequence, more accurate residual
concealment and more accurate motion estimation produce a smaller Dk(r). This could be
used as a criterion for the design of the encoding algorithm at the encoder and residual
concealment method at the decoder.

Estimation of ěk
u at the encoder: If the encoder has knowledge of the concealment

method used by the decoder as well as the feedback acknowledgement of some packets, ěk
u can

be estimated by the same concealed methods used by the decoder. That means the methods
to estimate ěk

u of pixels at the slice boundary are different from other pixels. However, if no
feedback acknowledgement of which packets are correctly received, the same method may be

used to estimate ěk
u of all pixels, that is, ̂̌ek

u = 1
|V|

∑
u∈Vk êk

u. Note that even if the feedback
acknowledgement of some packets are correctly received before the estimation, the estimate
obtained by this method at the encoder is still quite accurate since most pixels in a slice do
not locate at the slice boundary.

In most cases, for a standard hybrid codec such as H.264, 1
|V|

∑
u∈Vk êk

u approximately

equals zero6 for P-MBs and B-MBs. Therefore, one simple concealment method is to let

6This is actually an objective of predictive coding.
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̂̌ek
u = 0 as in most transmission distortion models. In this paper, we still use ̂̌ek

u in case
1
|V|

∑
u∈Vk êk

u 6= 0 due to the imperfect predictive coding, or in the general case, that is, some
feedback acknowledgements may have been received before the estimation. Note that when
̂̌ek
u = 1

|V|
∑

u∈Vk êk
u at the encoder, Ê[(εk)2] is the sample variance of êk

u and in fact a biased

estimator of σ2
êk
u

[23]. In other words, Ê[(εk)2] is a sufficient statistic of all individual samples

êk
u. If the sufficient statistic Ê[(εk)2] is known, the FTD estimator does not need the values

of êk
u of all pixels. Therefore, such an FTD estimator incurs much lower complexity than

using the values of êk
u of all pixels.

Estimation of P k
i (r): In wired communication, application layer PEP is usually esti-

mated by Packet Error Rate (PER), which is the ratio of the number of incorrectly received
packets to the number of transmitted packets, that is, P̂ k

i (r) = PERk
i (r). In a wireless

fading channel, instantaneous physical layer PEP is a function of the instantaneous channel
gain g(t) at time t [24], which is denoted by p(g(t)). At an encoder, there are two cases:
1) the transmitter has perfect knowledge of g(t), and 2) the transmitter has no knowledge
of g(t) but knows the probability density function (pdf) of g(t). For Case 1, the estimated
PEP P̂ k

i (r) = p(g(t)) since g(t) is known. Note that since the channel gain is time varying,
the estimated instantaneous PEP is also time varying.7 For Case 2, p(g(t)) is a random
variable since only pdf of g(t) is known. Hence, we should use the expected value of p(g(t))
to estimate P k

i (r), that is, P̂ k
i (r) = E[p(g(t))], where the expectation is taken over the pdf

of g(t).

Appendix C. Variables for the Estimation of MV Caused Distortion

Concealment of mvk
u at the decoder: Different from residual, MV are highly corre-

lated in both temporal and spatial domains. Hence, the decoder may conceal the MV by
temporally neighboring block if its spatially neighboring blocks are not available. Depending
on whether the neighboring blocks are correctly received or not, there may be several options
of MV error concealment methods for each block, or each pixel to make it more general.
If the neighboring blocks are correctly received, m̌vk

u can be concealed by the median or
average of those neighboring blocks. Interested readers may refer to Refs. [25, 26, 27] for
discussions on different MV concealment methods. In our experiment, we also observe that
the histogram of ξk in one frame approximately follows a Laplacian distribution with zero
mean. For different concealment methods, the variance of ξk will be different. Therefore,
the more accurate concealed motion estimation, the smaller Dk(m).

Estimation of m̌vk
u at the encoder: If the encoder knows the concealment methods of

current block and the PEP of neighboring blocks, we can estimate the MV caused distortion
by assigning different concealment methods with different probabilities at the encoder as in
Ref. [8]. However, if the encoder does not know what concealment methods are used by the
decoder or no neighboring blocks can be utilized for error concealment (e.g., both temporal
and spatial neighboring blocks are in error), a simple estimation algorithm [3], [4] is to let

7This implies that the pixel error process is non-stationary over both time and space [1].
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̂̌mvk
u = 0, that is, using the pixel value from the same position of the previous frame. In this

paper, we still use ̂̌mvk
u to denote the estimate of concealed motion vector for the general

case.
Estimation of P k

i (m): The estimation of P k
i (m) is similar to the estimation of P k

i (r).
Note that in H.264 specification, there is no slice data partitioning for an instantaneous
decoding refresh (IDR) frame [14], so P k

i (r) = P k
i (m) for all pixels in an IDR-frame. This

is also true for I-MB, and P-MB without slice data partitioning. For P-MB with slice data
partitioning in H.264, the error state of residual and the error state of MV of the same pixel
are partially correlated. To be more specific, if the MV packet is lost, the corresponding
residual packet cannot be decoded even if it is correctly received, since there is no slice
header in the residual packet. As a result, P k

i (rH.264) = P k
i (r) + (1− P k

i (r))P k
i (m).

Appendix D. Proof of Proposition 1

Proof 1. From Ref. [1], we know that ∆̃k
u , (f̃k−j′

u+gmvk
u

+ ẽk
u)−Γ(f̃k−j′

u+gmvk
u

+ ẽk
u). If there is no

newly induced error, that is, ẽk
u = êk

u and m̃vk
u = mvk

u, we have f̃k−j′

u+gmvk
u

+ẽk
u = f̃k−j

u+mvk
u
+êk

u =

f̂k−j
u+mvk

u
− ζ̃k−j

u+mvk
u

+ êk
u = f̂k

u − ζ̃k−j
u+mvk

u
. Therefore, we have

∆̃k
u{r̄, m̄} =





f̂k
u − ζ̃k−j

u+mvk
u
− 255, f̂k

u − ζ̃k−j
u+mvk

u
> 255

f̂k
u − ζ̃k−j

u+mvk
u
, f̂k

u − ζ̃k−j
u+mvk

u
< 0

0, otherwise.

(D.1)

Adding ζ̃k−j
u+mvk

u
to the left-hand side and right-hand side in (D.1), we obtain (23).

Appendix E. Proof of Theorem 1

Proof 2. Since there is no slice data partitioning, Dk
u,ETE = (1−P k

u) ·Dk
u,ETE{r̄, m̄}+ P k

u ·
Dk

u,ETE{r,m}.
First, if the packet is lost, from (20) we obtain

Dk
u{r,m} = (εk

u + ξk
u)2 + 2(εk

u + ξk
u) · E[ζ̃k−1

u+m̌vk
u
] + Dk−1

u+m̌vk
u

= (εk
u + ξk

u + E[ζ̃k−1
u+m̌vk

u
])2 + σ2

eζk−1

u+m̌vk
u

,
(E.1)

and from (21) we obtain

E[ζ̃k
u]{r,m} = εk

u + ξk
u + E[ζ̃k−1

u+m̌vk
u
]. (E.2)

Together with (E.1), (E.2) and (24), we obtain the end-to-end distortion for the case where
the packet is lost as below

Dk
u,ETE{r,m} = (fk

u − f̂k
u + εk

u + ξk
u + E[ζ̃k−1

u+m̌vk
u
])2 + σ2

eζk−1

u+m̌vk
u

. (E.3)
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By definition, we have εk
u = êk

u− ěk
u and ξk

u = f̂k−j
u+mvk

u
− f̂k−1

u+m̌vk
u
. So, we obtain εk

u + ξk
u =

f̂k
u − f̂k−1

u+m̌vk
u
− ěk

u, and

Dk
u,ETE{r,m} = (fk

u − f̂k−1
u+m̌vk

u
− ěk

u + E[ζ̃k−1
u+m̌vk

u
])2 + σ2

eζk−1

u+m̌vk
u

. (E.4)

Note that if the error concealment scheme is to copy the reconstructed pixel value from the
previous frame, we have εk

u + ξk
u = f̂k

u − f̂k−1
u .

Note that the error concealment method is the same for intra mode and inter mode since
there is no mode information for decoder if the packet is received in error; hence m̌vk

u and ěk
u

in (E.4) are the same for both intra mode and inter mode. On the other hand, the value of
fk
u is known before the mode decision and all other variables in (E.4) come from the previous

frame. Therefore, the resulting end-to-end distortion in this case, i.e., Dk
u,ETE{r,m} will

also be the same for both intra mode and inter mode.
Second, if the packet is correctly received, from (20) we obtain Dk

u{r̄, m̄} = Dk
u(p) and

from (21) we obtain E[ζ̃k
u]{r,m} = E[ζ̃k−j

u+mvk
u

+ ∆̃k
u{r̄, m̄}]. From (24), we obtain the end-

to-end distortion as

Dk
u,ETE{r̄, m̄} = (fk

u − f̂k
u)2 + Dk

u(p) + 2(fk
u − f̂k

u) · E[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}]. (E.5)

Since both P k
u and Dk

u,ETE{r,m} are the same for all modes, we can denote P k
u ·Dk

u,ETE{r,m}
by Ck

u, which is independent of all modes. Let Dk
u,ETE

= (1 − P k
u) ·Dk

u,ETE{r̄, m̄}; then we

have

Dk
u,ETE(ωm) = Dk

u,ETE
(ωm) + Ck

u, (E.6)

where

Dk
u,ETE

(ωm) = (1− P k
u) ·Dk

u,ETE{r̄, m̄} (E.7)

= (1− P k
u) · {(fk

u − f̂k
u)2 + Dk

u(p) + 2(fk
u − f̂k

u) · E[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}]}.(E.8)

Appendix F. Proof of Proposition 2

Proof 3. From (28), we have

arg min
ωm

{D̂k
ETE(ωm) + λ ·R(ωm)} = arg min

ωm

{
∑

u∈Vk
i

[Dk
u,ETE

(ωm) + Ck
u] + λ ·R(ωm)}

= arg min
ωm

{
∑

u∈Vk
i

Dk
u,ETE

(ωm) +
∑

u∈Vk
i

Ck
u + λ ·R(ωm)}

= arg min
ωm

{D̂k
ETE

(ωm) + λ ·R(ωm)}
= ω̂m.

(F.1)

That is, Algorithm A and Algorithm 2 produce the same solution.

31



Appendix G. Details of Complexity Comparison

Appendix G.1. RMPC-MS Algorithm

Let us first consider the complexity of RMPC-MS algorithm, i.e., Algorithm 2, for inter
modes. In Algorithm 2, the worst case is Ê[ζ̃k−j

u+mvk
u
] < f̂k

u − 255. Under this case, there are

one ADD and one square, i.e., MUL. The other two cases require only two copy operations,
and so are neglected. Note that f̂k

u − Ê[ζ̃k−j
u+mvk

u
] ≤ 255 with high probability, that is,

Ê[ζ̃k−j
u+mvk

u
] < f̂k

u − 255 is relatively rare. Therefore, in most cases, there are only two copy

operations in the loop. Calculating the second moment of ζ̃k
u needs 4 ADDs and 4 MULs

as in (20). Similarly, calculating the first moment of ζ̃k
u needs 2 ADDs and 2 MULs as in

(21). Finally, calculating the end-to-end distortion needs 3 ADDs and 2 MULs as in (24).
Hence, the worst case of calculating the end-to-end distortion for each pixel is 10 ADDs and
9 MULs. Note that in most cases, the complexity is 9 ADDs and 8 MULs for inter mode as
shown in Table 1.

Note that since P k
u is the same for all pixels in one MB, we do not need to calculate

1 − P k
u for each pixel. Multiplying by 2 can be achieved by a shift operation; so it is not

counted as one MUL.
For Intra modes, we know that ζ̃k−j

u+mvk
u

+ ∆̃k
u{r̄, m̄} = 0 from Ref. [1]. Therefore, the

complexity of intra mode is reduced to 3 ADDs and 3 MULs in (20), 1 ADDs and 1 MULs
in (22). As a result, the end-to-end distortion for each pixel is 7 ADDs and 6 MULs for each
intra mode.

In H.264, there are 7 inter modes and 13 intra modes; therefore there are a total of 154
ADDs and 134 MULs for each pixel in most cases. In the worst case, there are a total of
161 additions and 141 MULs for each pixel, where the additional computation comes from
the consideration of clipping effect.

Memory Requirement Analysis: To estimate the end-to-end distortion by Algorithm 2,
the first moment and the second moment of the reconstructed error of the best mode
should be stored after the mode decision. Therefore, 2 units of memory are required
to store those two moments for each pixel. Note that the first moment takes values in
{−255,−254, · · · , 255}, i.e., 8 bits plus 1 sign bit per pixel, and the second moment takes
values in {0, 1, · · · , 2552}, i.e., 16 bits per pixel8.

Appendix G.2. ROPE Algorithm

In ROPE algorithm, the moment estimation formulae for inter prediction and intra
prediction are different. For inter mode, calculating the first moment needs 2 ADDs and 2
MULs; calculating the second moment needs 3 ADDs and 4 MULs; calculating the end-to-
end distortion needs 2 ADDs and 2 MULs. For intra mode, calculating the first moment
needs 1 ADD and 2 MULs; calculating the second moment needs 1 ADD and 3 MULs.

8The definitions of these variables have been released in JM17.0 [28]. However, some related algorithms
are still under the patent filing process.
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Hence, an inter mode needs 7 ADDs and 8 MULs; an intra mode needs 4 ADDs and 7
MULs. For H.264, the total complexity for each pixel is 101 ADDs and 147 MULs.

Note that when we implement ROPE in JM16.0 [15], we find that ROPE algorithm causes
out-of-range values for both the first moment and the second moment due to the neglect
of clipping noise. Experimental results show that ROPE may produce a negative value as
the estimate for distortion, which violates the requirement that (true) distortion must be
non-negative. Hence, in a practical system, the estimate obtained by ROPE algorithm needs
to be clipped into a legitimate value; this will incur a higher complexity.

Memory Requirement Analysis: To estimate the end-to-end distortion by ROPE algo-
rithm, the first moment and the second moment of the reconstructed pixel value of the best
mode should be stored after the mode decision. Therefore, 2 units of memory are required
to store the two moments for each pixel. The first moment takes values in {0, 1, · · · , 255},
i.e., 8 bits per pixel; the second moment takes values in {0, 1, · · · , 2552}, i.e., 16 bits per
pixel. Note that in the original ROPE algorithm [8], the values of the two moments are not
bounded since the propagated errors are never clipped.

Appendix G.3. LLN Algorithm

In JM16.0 [15], LLN algorithm uses the same decomposition method as Theorem 1 for
mode decision [12]. In such a case, for inter modes, reconstructing the pixel value in one
simulated decoder needs 1 ADD; calculating the end-to-end distortion needs 1 ADD and one
MUL. For intra modes, there is no additional reconstruction for all simulated decoders since
the newly induced errors are not considered; therefore, calculating the end-to-end distortion
needs 1 ADD and 1 MUL. Suppose the number of simulated decoders at the encoder is Nd,
the complexity for LLN algorithm is 27Nd ADDs and 20Nd MULs. The default number
of simulated decoders in JM16.0 is 30, which means the complexity for LLN algorithm is
810 ADDs and 600 MULs. Thirty simulated decoders is suggested in Ref. [29]. In our
experiment, we find that if the number of simulated decoders is less than 30, the estimated
distortion exhibits high degree of randomness (i.e., having a large variance); however, if the
number of simulated decoders is larger than 50, the estimated distortion is quite stable (i.e.,
having a small variance).

Note that the error concealment operations in LLN algorithm are required but not
counted in the complexity since it is done after the mode decision. However, even with-
out considering the extra error concealment operations, the complexity of LLN algorithm
is still much higher than RMPC-MS and ROPE. Increasing the number of simulated de-
coders at the encoder can improve estimation accuracy but at the cost of linear increase of
computational complexity.

Memory Requirement Analysis: To estimate the end-to-end distortion by LLN algorithm,
for each simulated decoder, each reconstructed pixel value of the best mode should be stored
after the mode decision. Therefore, the encoder needs Nd units of memory to store the
reconstructed pixel value. A reconstructed pixel takes values in {0, 1, · · · , 255}, i.e., 8Nd

bits per pixel.
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