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Abstract

In the wireless video communication system, transmission distortion, caused by packet transmission

errors, is a non-linear time-variant function of video frame statistics, channel condition and system

parameters. By modeling the transmission distortion process as output of the random video sequence

and channel error processes, the system can be modeled as an equivalent non-linear time-variant system.

In this paper, for the first time, we identify the governing law that describes how the transmission

distortion process evolves over time, and analytically derive it as a closed-form function of frame statistics,

channel condition, and system parameters through a divide-and-conquer approach. Besides deriving

the transmission distortion formula, this paper also identifies two important properties of transmission

distortion for the first time. The first property is that the clipping noise, produced by non-linear clipping,

causes decay of propagated error. The second property is that the correlation between motion vector

concealment error and propagated error is negative, and has dominant impact on transmission distortion

among all other correlations. In this paper, we also identify the relationship between our result and

existing models, and specify the conditions, under which those models are accurate.
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I. INTRODUCTION

Both multimedia technology and mobile communications have experienced massive growth and com-

mercial success in recent years. As the two technologies converge, wireless video, such as video phone

and mobile TV in 3G/4G systems, is expected to achieve unprecedented growth and worldwide success.

However, different from the traditional video coding system, transmitting video over wireless with good

quality or low end-to-end distortion is particularly challenging since the received video is subject to not

only quantization error but also transmission error. In a wireless video communication system, end-to-end

distortion consists of two parts: quantization distortion and transmission distortion. Quantization distortion

is caused by quantization errors during the encoding process, and has been extensively studied in rate

distortion theory [1], [2]. Transmission distortion is caused by packet errors during the transmission of

a video sequence, and it is the major part of the end-to-end distortion in delay-sensitive wireless video

communication1 under high packet error probability (PEP), e.g., in a wireless fading channel.

The capability of predicting transmission distortion at the transmitter can assist in designing video

encoding and transmission schemes that achieve maximum video quality under resource constraints.

Specifically, transmission distortion prediction can be used in the following three applications in video

encoding and transmission: 1) mode selection, which is to find the best intra/inter-prediction mode for

encoding a macroblock (MB) with the minimum rate-distortion (R-D) cost given the instantaneous PEP,

2) cross-layer encoding rate control, which is to control the instantaneously encoded bit rate for a real-

time encoder to minimize the frame-level end-to-end distortion given the instantaneous PEP, e.g., in

video conferencing, 3) packet scheduling, which chooses a subset of packets of the pre-coded video to

transmit and intentionally discards the remaining packets to minimize the GOP-level (Group of Picture)

end-to-end distortion given the average PEP and average burst length, e.g., in streaming pre-coded video

over networks. All the three applications require a formula for predicting how transmission distortion

is affected by their respective control policy, in order to choose the optimal mode or encoding rate or

transmission schedule.

However, predicting transmission distortion poses a great challenge due to the spatio-temporal corre-

lation inside the input video sequence, the nonlinearity of both the encoder and the decoder, and varying

PEP in time-varying channels. In a typical video codec, the temporal correlation among consecutive

frames and the spatial correlation among the adjacent pixels of one frame are exploited to improve the

1Delay-sensitive wireless video communication usually does not allow retransmission to correct packet errors since

retransmission may cause long delay.
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coding efficiency. Nevertheless, such a coding scheme brings much difficulty in predicting transmission

distortion because a packet error will degrade not only the video quality of the current frame but also the

following frames due to error propagation. In addition, as we will see in Section IV, the nonlinearity of

both the encoder and the decoder makes the instantaneous transmission distortion not equal to the sum

of distortions caused by individual error events. Furthermore, in a wireless fading channel, the PEP is

time-varying, which makes the error process a non-stationary random process and hence, as a function

of the error process, the distortion process is also a non-stationary random process.

In this paper, we derived the transmission distortion formulae for wireless video communication

systems. With consideration of spatio-temporal correlation, nonlinear codec and time-varying channel,

our distortion prediction formulae provide, for the first time, the following capabilities: 1) support of

prediction at different levels (e.g., pixel/frame/GOP level), 2) support of prediction for multi-reference

motion compensation, 3) support of prediction under slice data partitioning, 4) support of prediction

under arbitrary slice-level packetization with Flexible Macroblock Ordering (FMO) mechanism, 5) being

applicable to time-varying channels, 6) one unified formula for both I-MB and P-MB, and 7) support

of prediction for both low motion and high motion video sequences. Besides deriving the transmission

distortion formulae, this paper also identified two important properties of transmission distortion for the

first time: 1) clipping noise, produced by non-linear clipping, causes decay of propagated error; 2) the

correlation between motion vector concealment error and propagated error is negative, and has dominant

impact on transmission distortion, among all the correlations between any two of the four components

in transmission error. We also discussed the relationship between our formula and existing models.

The rest of the paper is organized as follows. Section II reviews existing works for estimating distortion

caused by packet transmission error. Section III presents the preliminaries of our system model under

study to facilitate the derivations in the later sections, and illustrates the limitations of existing transmission

distortion models. In Section IV, we derive the transmission distortion formula as a function of frame

statistics, channel condition, and system parameters. Section V discusses the relationship between our

formula and the existing models. In Section VI, we extend formulae for PTD and FTD from single-

reference to multi-reference. Section VII concludes the paper.

II. RELATED WORKS

According to the aforementioned three applications, the existing algorithms for estimating transmission

distortion can be categorized into the following three classes: 1) pixel-level or block-level algorithms

(applied to mode selection), e.g., Recursive Optimal Per-pixel Estimate (ROPE) algorithm [3] and Law
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of Large Number (LLN) algorithm [4], [5]; 2) frame-level or packet-level or slice-level algorithms

(applied to cross-layer encoding rate control) [6], [7], [8], [9]; 3) GOP-level or sequence-level algorithms

(applied to packet scheduling) [10], [11], [12], [13], [14]. Although the existing distortion estimation

algorithms work at different levels, they share some common properties, which come from the inherent

characteristics of wireless video communication system, that is, spatio-temporal correlation, nonlinear

codec and time-varying channel. In this paper, we use the divide-and-conquer approach to decompose

complicated transmission distortion into four components, and analyze their effects on transmission

distortion individually. This divide-and-conquer approach enables us to identify the governing law that

describes how the transmission distortion process evolves over time.

Stuhlmuller et al. [6] observed that the distortion caused by the propagated error decays over time due to

spatial filtering and intra coding of MBs, and analytically derived a formula for estimating transmission

distortion under spatial filtering and intra coding. The effect of spatial filtering is analyzed under the

implicit assumption that MVs are always correctly received at the receiver, while the effect of intra

coding is modeled as a linear decay under another implicit assumption that the I-MBs are also always

correctly received at the receiver. However, these two assumptions are usually not valid in realistic delay-

sensitive wireless video communication. To address this, this paper derives the transmission distortion

formula under the condition that both I-MBs and MVs may be erroneous at the receiver. In addition,

we observe an interesting phenomenon that even without using the spatial filtering and intra coding, the

distortion caused by the propagated error still decays! We identify, for the first time, that this decay is

caused by non-linear clipping, which is used to clip those out-of-range2 reconstructed pixel after motion

compensation; this is the first of the two properties identified in this paper. While such out-of-range

values produced by the inverse transform of quantized transform coefficients is negligible at the encoder,

its counterpart produced by transmission error at the decoder has significant impact on transmission

distortion.

Some existing works [6], [7] estimate transmission distortion based on a linear time-invariant (LTI)

system model, which regards packet error as input and transmission distortion as output. The LTI model

simplifies the analysis of transmission distortion. However, it sacrifices accuracy in distortion estimation

since it neglects the effect of correlation between newly induced error and propagated error. Liang

et al. [14] studied the effect of correlation and observed that the LTI models [6], [7] underestimate

transmission distortion due to the positive correlation between two adjacent erroneous frames; however,

2A reconstructed pixel value may be out of the range of the original pixel value, e.g., [0, 255].
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they did not consider the effect of motion vector (MV) error on transmission distortion and their algorithm

was not tested with high motion videos. To address these issues and find the cause of the under-estimation,

this paper classifies the transmission reconstructed error into three individual random errors, namely,

Residual Concealment Error (RCE), MV Concealment Error (MVCE), and propagated error; the first two

types of error are called newly induced error. We identify, for the first time, that MVCE is negatively

correlated with propagated error and this correlation has dominant impact on transmission distortion,

among all the correlations between any two of the three error types, for high motion videos; this is the

second of the two properties identified in this paper. For this reason, as long as MV transmission errors

exist in high motion videos, the LTI model over-estimates transmission distortion. We also quantifies the

effect of individual error types and their correlations on transmission distortion in this paper. Thanks

to the analysis of correlation effect, our distortion formula is accurate for both low motion video and

high motion video as verified by experimental results. Another merit of considering the effect of MV

error on transmission distortion is the applicability of our results to video communication with slice data

partitioning, where the residual and MV could be transmitted under Unequal Error Protection (UEP).

Refs. [3], [4], [8], [9] proposed some models to estimate transmission distortion under the consideration

that both MV and I-MB may experience transmission errors. However, the parameters in the linear

models [8], [9] can only be acquired by experimentally curve-fitting over multiple frames, which forbids

the models from estimating instantaneous distortion. In addition, the linear models [8], [9] still assume

there is no correlation between the newly induced error and propagated error. In Ref. [3], the ROPE

algorithm considers the correlation between MV concealment error and propagated error by recursively

calculating the second moment of the reconstructed pixel value. However, ROPE neglects the non-

linear clipping function and therefore over-estimates the distortion. In addition, the extension of ROPE

algorithm [15] to support the averaging operations, such as interpolation and deblocking filtering in

H.264, requires intensive computation of correlation coefficients due to the high correlation between

reconstructed values of adjacent pixels, and thereby prohibiting it from applying to H.264. In H.264

reference code JM14.0 [16], the LLN algorithm [4] is adopted since it is capable of supporting both

clipping and averaging operations. However, in order to predict transmission distortion, all possible error

events for each pixel in all frames should be simulated at the encoder, which significantly increases the

complexity of the encoder. Different from Refs. [3], [4], the divide-and-conquer approach in this paper

enables our formula to provide not only more accurate prediction but also lower complexity and higher

degree of extensibility. The multiple reference picture motion compensated prediction extended from the

single reference is analyzed in Section VI, and, for the first time, the effect of multiple references on
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transmission distortion is quantified. In addition, the transmission distortion formula derived in this paper

is unified for both I-MBs and P-MBs, in contrast to two different formulae in Refs. [3], [8], [9].

Different from wired channels, wireless channels suffer from multipath fading, which can be regarded

as multiplicative random noise. Fading leads to time-varying PEP and burst errors in wireless video

communication. Ref. [6] uses a two-state stationary Markov chain to model burst errors. However, even

if the channel gain is stationary, packet error process is a non-stationary random process. Specifically,

since PEP is a function of the channel gain [17], which is not constant in a wireless fading channel,

instantaneous PEP is also not constant. This means the probability distribution of packet error state

is time-varying in wireless fading channels, that is, the packet error process is a non-stationary random

process. Hence the Markov chain in Ref. [6] is neither stationary, nor ergodic for wireless fading channel.

As a result, averaging the burst length and PEP as in Ref. [6] cannot accurately predict instantaneous

distortion. To address this, this paper derives the formula for Pixel-level Transmission Distortion (PTD) by

considering non-stationarity over time. Regarding the Frame-level Transmission Distortion (FTD), since

two adjacent MBs may be assigned to two different packets, under the slice-level packetization and FMO

mechanism in H.264 [18], [19], their error probability could be different. However, existing frame-level

distortion models [6], [7], [8], [9] assume all pixels in the same frame experience the same channel

condition. As a result, the applicable scope of those models are limited to video with small resolution.

In contrast, this paper derives the formula for FTD by considering non-stationarity over space. Due to

consideration of non-stationarity over time and over space, our formula provides an accurate prediction

of transmission distortion in a time-varying channel.

III. SYSTEM DESCRIPTION

A. Structure of a Wireless Video Communication System

Fig. 1 shows the structure of a typical wireless video communication system. It consists of an encoder,

two channels and a decoder where residual packets and MV packets are transmitted over their respective

channels. If residual packets or MV packets are erroneous, the error concealment module will be activated.

In typical video encoders such as H.263/264 and MPEG-2/4 encoders, the functional blocks can be divided

into two classes: 1) basic parts, such as predictive coding, transform, quantization, entropy coding, motion

compensation, and clipping; and 2) performance-enhanced parts, such as interpolation filtering, deblocking

filtering, B-frame, multi-reference prediction, etc. Although the up-to-date video encoder includes more

and more performance-enhanced parts, the basic parts do not change. In this paper, we use the structure

in Fig. 1 for transmission distortion analysis.
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Fig. 1. System structure, where T, Q, Q−1, and T−1 denote transform, quantization, inverse quantization, and inverse transform,

respectively.

Note that in this system, both residual channel and MV channel are application-layer channels; specif-

ically, both channels consist of entropy coding and entropy decoding, networking layers3, and physical

layer (including channel encoding, modulation, wireless fading channel, demodulation, channel decoding).

Although the residual channel and MV channel usually share the same physical-layer channel, the two

application-layer channels may have different parameter settings (e.g., different channel code-rate) for

the slice data partitioning under UEP. For this reason, our formula obtained from the structure in Fig. 1

can be used to estimate transmission distortion for an encoder with slice data partitioning.

B. Clipping Noise

In this subsection, we examine the effect of clipping noise on the reconstruction pixel value along

each pixel trajectory over time (frames). All pixel positions in a video sequence form a three-dimensional

spatio-temporal domain, i.e., two dimensions in spatial domain and one dimension in temporal domain.

Each pixel can be uniquely represented by uk in this three-dimensional time-space, where k means the

k-th frame in temporal domain and u is a two-dimensional vector in spatial domain. The philosophy

3Here, networking layers can include any layers other than physical layer.
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behind inter-coding of a video sequence is to represent the video sequence by virtual motion of each

pixel, i.e., each pixel recursively moves from position vk−1 to position uk. The difference between these

two positions is a two-dimensional vector called MV of pixel uk, i.e., mvk
u = vk−1−uk. The difference

between the pixel values of these two positions is called residual of pixel uk, that is, ek
u = fk

u− f̂k−1
u+mvk

u

4.

Recursively, each pixel in the k-th frame has one and only one reference pixel trajectory backward towards

the latest I-frame.

At the encoder, after transform, quantization, inverse quantization, and inverse transform for the

residual, the reconstructed pixel value for uk may be out-of-range and should be clipped as

f̂k
u = Γ(f̂k−1

u+mvk
u

+ êk
u), (1)

where Γ(·) function is a clipping function defined by

Γ(x) =





γL, x < γL

x, γL ≤ x ≤ γH

γH , x > γH ,

(2)

where γL and γH are user-specified low threshold and high threshold, respectively. Usually, γL = 0 and

γH = 255.

The residual and MV at the decoder may be different from their counterparts at the encoder because

of channel impairments. Denote m̃vk
u and ẽk

u the MV and residual at the decoder, respectively. Then, the

reference pixel position for uk at the decoder is ṽk−1 = uk + m̃vk
u, and the reconstructed pixel value

for uk at the decoder is

f̃k
u = Γ(f̃k−1

u+gmvk
u

+ ẽk
u). (3)

In error-free channels, the reconstructed pixel value at the receiver is exactly the same as the recon-

structed pixel value at the transmitter, because there is no transmission error and hence no transmission

distortion. However, in error-prone channels, we know from (3) that f̃k
u is a function of three factors: the

received residual ẽk
u, the received MV m̃vk

u, and the propagated error f̃k−1
u+gmvk

u

. The received residual ẽk
u

depends on three factors, namely, 1) the transmitted residual êk
u, 2) the residual packet error state, which

depends on instantaneous residual channel condition, and 3) the residual error concealment algorithm if

the received residual packet is erroneous. Similarly, the received MV m̃vk
u depends on 1) the transmitted

mvk
u, 2) the MV packet error state, which depends on instantaneous MV channel condition, and 3) the

4For simplicity of notation, we move the superscript k of u to the superscript k of f whenever u is the subscript of f .
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TABLE I

NOTATIONS

uk : Three-dimensional vector that denotes a pixel position in an video sequence

fk
u : Value of the pixel uk

ek
u : Residual of the pixel uk

mvk
u : MV of the pixel uk

∆k
u : Clipping noise of the pixel uk

εk
u : Residual concealment error of the pixel uk

ξk
u : MV concealment error of the pixel uk

ζk
u : Transmission reconstructed error of the pixel uk

Sk
u : Error state of the pixel uk

P k
u : Error probability of the pixel uk

Dk
u : Transmission distortion of the pixel uk

Dk : Transmission distortion of the k-th frame

Vk : Set of all the pixels in the k-th frame

|V| : Number of elements in set V (cardinality of V)

αk : Propagation factor of the k-th frame

βk : Percentage of I-MBs in the k-th frame

λk : Correlation ratio of the k-th frame

wk(j): pixel percentage of using frame k − j as reference in the k-th frame

MV error concealment algorithm if the received MV packet is erroneous. The propagated error f̃k−1
u+gmvk

u

includes the error propagated from the reference frames, and therefore depends on all samples in the

previous frames indexed by i < k and their reception error states as well as concealment algorithms.

The non-linear clipping function within the pixel trajectory makes the distortion estimation more

challenging. However, it is interesting to observe that clipping actually reduces transmission distortion.

In Section IV, we will quantify the effect of clipping on transmission distortion.

Table I lists notations used in this paper. All vectors are in bold font. Note that the encoder needs

to reconstruct the compressed video for predictive coding; hence the encoder and the decoder have a

similar structure for pixel value reconstruction. To distinguish the variables in the reconstruction module

of the encoder from those in the reconstruction module of the decoder, we add ˆ onto the variables at

the encoder and add ˜ onto the variables at the decoder.
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C. Definition of Transmission Distortion

In this subsection, we define PTD and FTD to be derived in Section IV. To calculate FTD, we need

some notations from set theory. In a video sequence, all pixel positions in the k-th frame form a two-

dimensional vector set Vk, and we denote the number of elements in set Vk by |Vk|. So, for any pixel

at position u in the k-th frame, i.e., u ∈ Vk, its reference pixel position is chosen from set Vk−1 for

single-reference.

For a transmitter with feedback acknowledgement of whether a packet is correctly received at the

receiver (called acknowledgement feedback), f̃k
u at the decoder side can be perfectly reconstructed by

the transmitter, as long as the transmitter knows the error concealment algorithm used by the receiver.

Then, the transmission distortion for the k-th frame can be calculated by mean squared error (MSE) as

MSEk =
1
|Vk| ·

∑

u∈Vk

[(f̂k
u − f̃k

u)2]. (4)

For the encoder, every pixel intensity fk
u of the random input video sequence is a random variable. For

any encoder with hybrid coding (see Fig. 1), the residual êk
u, MV mvk

u, and reconstructed pixel value f̂k
u

are functions of fk
u; so they are also random variables before motion estimation5. Given the Probability

Mass Function (PMF) of f̂k
u and f̃k

u , we define the transmission distortion for pixel uk or PTD by

Dk
u , E[(f̂k

u − f̃k
u)2], (5)

and we define the transmission distortion for the k-th frame or FTD by

Dk , E[
1
|Vk| ·

∑

u∈Vk

(f̂k
u − f̃k

u)2]. (6)

It is easy to prove that the relationship between FTD and PTD is characterized by

Dk =
1
|Vk| ·

∑

u∈Vk

Dk
u. (7)

If the number of bits used to compress a frame is too large to be contained in one packet, the bits of the

frame are split into multiple packets. In a time-varying channel, different packet of the same frame may

experience different packet error probability (PEP). If pixel uk and pixel vk belong to different packets,

the PMF of f̃k
u may be different from the PMF of f̃k

v even if f̂k
u and f̂k

v are identically distributed. In other

words, Dk
u may be different from Dk

v even if pixel uk and pixel vk are in the neighboring MBs when

5In applications such as cross-layer encoding rate control, distortion estimation for rate-distortion optimized bit allocation is

required before motion estimation.
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FMO is activated. As a result, FTD Dk in (7) may be different from PTD Dk
u in (5). For this reason, we

will derive formulae for both PTD and FTD, respectively. Note that most existing frame-level distortion

models [6], [7], [8], [9] assume that all pixels in the same frame experience the same channel condition

and simply use (5) for FTD; however this assumption is not valid for high-resolution/high-quality video

transmission over a time-varying channel.

In fact, (7) is a general form for distortions of all levels. If |V| = 1, (7) reduces to (5). For slice/packet-

level distortion, V is the set of the pixels contained in a slice/packet. For GOP-level distortion, V is the

set of the pixels contained in a GOP. In this paper, we only show how to derive formulae for PTD and

FTD. Our methodology is also applicable to deriving formulae for slice/packet/GOP-level distortion by

using appropriate V .

D. Limitations of the Existing Transmission Distortion Models

In this subsection, we show that clipping noise has significant impact on transmission distortion, and

neglect of clipping noise in existing models results in inaccurate estimation of transmission distortion.

We define the clipping noise for pixel uk at the encoder as

∆̂k
u , (f̂k−1

u+mvk
u

+ êk
u)− Γ(f̂k−1

u+mvk
u

+ êk
u), (8)

and the clipping noise for pixel uk at the decoder as

∆̃k
u , (f̃k−1

u+gmvk
u

+ ẽk
u)− Γ(f̃k−1

u+gmvk
u

+ ẽk
u). (9)

Using (1), Eq. (8) becomes

f̂k
u = f̂k−1

u+mvk
u

+ êk
u − ∆̂k

u, (10)

and using (3), Eq. (9) becomes

f̃k
u = f̃k−1

u+gmvk
u

+ ẽk
u − ∆̃k

u, (11)

where ∆̂k
u only depends on the video content and encoder structure, e.g., motion estimation, quantization,

mode decision and clipping function; and ∆̃k
u depends on not only the video content and encoder structure,

but also channel conditions and decoder structure, e.g., error concealment and clipping function.

In most existing works, both ∆̂k
u and ∆̃k

u are neglected, i.e., these works assume f̂k
u = f̂k−1

u+mvk
u
+êk

u and

f̃k
u = f̃k−1

u+gmvk
u

+ ẽk
u. However, this assumption is only valid for stored video or error-free communication.

For error-prone communication, decoder clipping noise ∆̃k
u has a significant impact on transmission

distortion and hence should not be neglected. To illustrate this, Table II shows an example for the system

in Fig. 1, where only the residual packet in the (k − 1)-th frame is erroneous at the decoder (i.e.,
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TABLE II

AN EXAMPLE THAT SHOWS THE EFFECT OF CLIPPING NOISE ON TRANSMISSION DISTORTION.

Encoder Transmitted f̂k−2
w = 250 êk−1

v = −50 (erroneous) êk
u = 50

Reconstructed f̂k−2
w = 250 f̂k−1

v = Γ(f̂k−2
w + êk−1

v ) = 200 f̂k
u = Γ(f̂k−1

v + êk
u) = 250

Received efk−2
w = 250 eek−1

v = 0 (concealed) eek
u = 50

Decoder Reconstructed efk−2
w = 250 efk−1

v = Γ( efk−2
w + eek−1

v ) = 250 efk
u = Γ( efk−1

v + eek
u) = 255

Clipping noise e∆k−2
w = 0 e∆k−1

v = 0 e∆k
u = 45

Distortion Dk−2
w = (f̂k−2

w − efk−2
w )2 = 0 Dk−1

v = (f̂k−1
v − efk−1

v )2 = 2500 Dk
u = (f̂k

u − efk
u)2 = 25

Prediction Received efk−2
w = 250 eek−1

v = 0 (concealed) eek
u = 50

without Reconstructed efk−2
w = 250 efk−1

v = efk−2
w + eek−1

v = 250 efk
u = efk−1

v + eek
u = 300

clipping Distortion D̂k−2
w = (f̂k−2

w − efk−2
w )2 = 0 D̂k−1

v = (f̂k−1
v − efk−1

v )2 = 2500 D̂k
u = (f̂k

u − efk
u)2 = 2500

êk−1
v is erroneous), and all other residual packets and all the MV packets are error-free. Suppose the

trajectory of pixel uk in the (k − 1)-th frame and (k − 2)-th frame is specified by vk−1 = uk + mvk
u

and wk−2 = vk−1 + mvk−1
v . Since êk−1

v is erroneous, the decoder needs to conceal the error; a simple

concealment scheme is to let ẽk−1
v = 0. From this example, we see that neglect of clipping noise (e.g.,

∆̃k
u = 45) results in highly inaccurate estimate of distortion, e.g., the estimated distortion D̂k

u = 2500

(without considering clipping) is much larger than the true distortion Dk
u = 25. Note that if an MV

is erroneous at the decoder, the pixel trajectory at the decoder will be different from the trajectory at

the encoder; then the resulting clipping noise ∆̃k
u may be much larger than 45 as in this example, and

hence the distortion estimation of the existing models without considering clipping may be much more

inaccurate.

On the other hand, the encoder clipping noise ∆̂k
u has negligible effect on quantization distortion and

transmission distortion. This is due to two reasons: 1) the probability that ∆̂k
u = 0, is close to one, since

the probability that γL ≤ f̂k−1
u+mvk

u
+ êk

u ≤ γH , is close to one; 2) in case that ∆̂k
u 6= 0, ∆̂k

u usually

takes a value that is much smaller than the residuals. Since ∆̂k
u is negligible, the clipping function can

be removed at the encoder if only quantization distortion needs to be considered, e.g., for stored video

or error-free communication. Since ∆̂k
u is very likely to be a very small value, we would neglect it and

assume ∆̂k
u = 0 in deriving our formula for transmission distortion.
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IV. TRANSMISSION DISTORTION FORMULAE

In this section, we derive formulae for PTD and FTD. The section is organized as below. Section IV-A

presents an overview of our approach to analyzing PTD and FTD. Then we elaborate on the derivation

details in Section IV-B through Section IV-E. Specifically, Section IV-B quantifies the effect of RCE

on transmission distortion; Section IV-C quantifies the effect of MVCE on transmission distortion;

Section IV-D quantifies the effect of propagated error and clipping noise on transmission distortion;

Section IV-E quantifies the effect of correlations (between any two of the error sources) on transmission

distortion. Finally, Section IV-F summarizes the key results of this paper, i.e., the formulae for PTD and

FTD.

A. Overview of the Approach to Analyzing PTD and FTD

To analyze PTD and FTD, we take a divide-and-conquer approach. We first divide transmission

reconstructed error into four components: three random errors (RCE, MVCE and propagated error) due

to their different physical causes, and clipping noise, which is a non-linear function of these three random

errors. This error decomposition allows us to further decompose transmission distortion into four terms,

i.e., distortion caused by 1) RCE, 2) MVCE, 3) propagated error plus clipping noise, and 4) correlations

between any two of the error sources, respectively. This distortion decomposition facilitates the derivation

of a simple and accurate closed-form formula for each of the four distortion terms. Next, we elaborate

on error decomposition and distortion decomposition.

Define transmission reconstructed error for pixel uk by ζ̃k
u , f̂k

u − f̃k
u . From (10) and (11), we obtain

ζ̃k
u = (êk

u + f̂k−1
u+mvk

u
− ∆̂k

u)− (ẽk
u + f̃k−1

u+gmvk
u

− ∆̃k
u)

= (êk
u − ẽk

u) + (f̂k−1
u+mvk

u
− f̂k−1

u+gmvk
u

) + (f̂k−1
u+gmvk

u

− f̃k−1
u+gmvk

u

)− (∆̂k
u − ∆̃k

u).
(12)

Define RCE ε̃k
u by ε̃k

u , êk
u − ẽk

u, and define MVCE ξ̃k
u by ξ̃k

u , f̂k−1
u+mvk

u
− f̂k−1

u+gmvk
u

. Note that

f̂k−1
u+gmvk

u

− f̃k−1
u+gmvk

u

= ζ̃k−1
u+gmvk

u

, which is the transmission reconstructed error of the concealed reference

pixel in the reference frame; we call ζ̃k−1
u+gmvk

u

propagated error. As mentioned in Section III-D, we assume

∆̂k
u = 0. Therefore, (12) becomes

ζ̃k
u = ε̃k

u + ξ̃k
u + ζ̃k−1

u+gmvk
u

+ ∆̃k
u. (13)

(13) is our proposed error decomposition.
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Combining (5) and (13), we have

Dk
u = E[(ε̃k

u + ξ̃k
u + ζ̃k−1

u+gmvk
u

+ ∆̃k
u)2]

= E[(ε̃k
u)2] + E[(ξ̃k

u)2] + E[(ζ̃k−1
u+gmvk

u

+ ∆̃k
u)2]

+ 2E[ε̃k
u · ξ̃k

u] + 2E[ε̃k
u · (ζ̃k−1

u+gmvk
u

+ ∆̃k
u)] + 2E[ξ̃k

u · (ζ̃k−1
u+gmvk

u

+ ∆̃k
u)].

(14)

Denote Dk
u(r) , E[(ε̃k

u)2], Dk
u(m) , E[(ξ̃k

u)2], Dk
u(P ) , E[(ζ̃k−1

u+gmvk
u

+ ∆̃k
u)2] and Dk

u(c) , 2E[ε̃k
u ·

ξ̃k
u] + 2E[ε̃k

u · (ζ̃k−1
u+gmvk

u

+ ∆̃k
u)] + 2E[ξ̃k

u · (ζ̃k−1
u+gmvk

u

+ ∆̃k
u)]. Then, (14) becomes

Dk
u = Dk

u(r) + Dk
u(m) + Dk

u(P ) + Dk
u(c). (15)

(15) is our proposed distortion decomposition for PTD. The reason why we combine propagated error

and clipping noise into one term (called clipped propagated error) is because clipping noise is mainly

caused by propagated error and such decomposition will simplify the formulae.

There are three major reasons for our decompositions in (13) and (15). First, if we directly substitute

the terms in (5) by (10) and (11), it will produce 5 second moments and 10 cross-correlation terms

(assuming ∆̂k
u = 0); since there are 8 possible error events due to three individual random errors, there

are a total of 8× (5+10) = 120 terms for PTD, making the analysis highly complicated. In contrast, our

decompositions in (13) and (15) significantly simplify the analysis. Second, each term in (13) and (15)

has a clear physical meaning, which leads to accurate estimation algorithms with low complexity. Third,

such decompositions allow our formulae to be easily extended for supporting advanced video codec with

more performance-enhanced parts, e.g., multi-reference prediction and interpolation filtering.

To derive the formula for FTD, from (7) and (15), we obtain

Dk = Dk(r) + Dk(m) + Dk(P ) + Dk(c), (16)

where

Dk(r) =
1
|V| ·

∑

u∈V
Dk

u(r), (17)

Dk(m) =
1
|V| ·

∑

u∈V
Dk

u(m), (18)

Dk(P ) =
1
|V| ·

∑

u∈V
Dk

u(P ), (19)

Dk(c) =
1
|V| ·

∑

u∈V
Dk

u(c). (20)

(16) is our proposed distortion decomposition for FTD.
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Usually, the set Vk in a video sequence is the same for all frame k, i.e., V1 = · · · = Vk for all k > 1.

Hence, we remove the frame index k and denote the set of pixel positions of an arbitrary frame by V .

Note that in H.264, a reference pixel may be in a position out of picture boundary; however, the set of

reference pixels, which is larger than the input pixel set, is still the same for all frame k.

B. Analysis of Distortion Caused by RCE

In this subsection, we first derive the pixel-level residual caused distortion Dk
u(r). Then we derive the

frame-level residual caused distortion Dk(r).

1) Pixel-level Distortion Caused by RCE: We denote Sk
u as the state indicator of whether there is

transmission error for pixel uk after channel decoding. Note that as mentioned in Section III-A, both the

residual channel and the MV channel contain channel decoding; hence in this paper, the transmission

error in the residual channel or the MV channel is meant to be the error uncorrectable by the channel

decoding. To distinguish the residual error state and the MV error state, here we use Sk
u(r) to denote the

residual error state for pixel uk. That is, Sk
u(r) = 1 if êk

u is received with error, and Sk
u(r) = 0 if êk

u is

received without error. At the receiver, if there is no residual transmission error for pixel u, ẽk
u is equal

to êk
u. However, if the residual packets are received with error, we need to conceal the residual error at

the receiver. Denote ěk
u the concealed residual when Sk

u(r) = 1, and we have,

ẽk
u =





ěk
u, Sk

u(r) = 1

êk
u, Sk

u(r) = 0.
(21)

Note that ěk
u depends on êk

u and the residual concealment method, but does not depend on the channel

condition. From the definition of ε̃k
u and (21), we have

ε̃k
u = (êk

u − ěk
u) · Sk

u(r) + (êk
u − êk

u) · (1− Sk
u(r))

= (êk
u − ěk

u) · Sk
u(r).

(22)

êk
u depends on the input video sequence and the encoder structure, while Sk

u(r) depends on com-

munication system parameters such as delay bound, channel coding rate, transmission power, channel

gain of the wireless channel. Under our framework shown in Fig. 1, the input video sequence and the

encoder structure are independent of communication system parameters. Since êk
u and Sk

u(r) are solely

caused by independent sources, we assume êk
u and Sk

u(r) are independent. That is, we make the following

assumption.

Assumption 1: Sk
u(r) is independent of êk

u.
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Assumption 1 means that whether êk
u will be correctly received or not, does not depend on the value of

êk
u. Denote εk

u , êk
u− ěk

u; we have ε̃k
u = εk

u ·Sk
u(r). Denote P k

u(r) as the residual pixel error probability

(XEP) for pixel uk, that is, P k
u(r) , P{Sk

u(r) = 1}. Then, from (22) and Assumption 1, we have

Dk
u(r) = E[(ε̃k

u)2] = E[(εk
u)2] · E[(Sk

u(r))2] = E[(εk
u)2] · (1 · P k

u(r)) = E[(εk
u)2] · P k

u(r). (23)

Hence, our formula for the pixel-level residual caused distortion is

Dk
u(r) = E[(εk

u)2] · P k
u(r). (24)

2) Frame-level Distortion Caused by RCE: To derive the frame-level residual caused distortion, the

encoder needs to know the second moment of RCE for each pixel in that frame. However, if encoder knows

the characteristics of residual process and concealment method, the formulae will be much simplified. One

simple concealment method is to let ěk
u = 0 for all erroneous pixels. A more general concealment method

is to use the neighboring pixels to conceal an erroneous pixel. So we make the following assumption.

Assumption 2: The residual êk
u is stationary with respect to 2D variable u in the same frame. In

addition, ěk
u only depends on {êk

v : v ∈ Nu} where Nu is a fixed neighborhood of u.

In other words, Assumption 2 assumes that 1) êk
u is a 2D stationary stochastic process and the

distribution of êk
u is the same for all u ∈ V k, and 2) ěk

u is also a 2D stationary stochastic process

since it only depends on the neighboring êk
u. Hence, êk

u − ěk
u is also a 2D stationary stochastic process,

and its second moment E[(êk
u− ěk

u)2] = E[(εk
u)2] is the same for all u ∈ V k. Therefore, we can drop u

from the notation, and let E[(εk)2] = E[(εk
u)2] for all u ∈ V k.

Denote Nk
i (r) as the number of pixels contained in the i-th residual packet of the k-th frame; denote

P k
i (r) as PEP of the i-th residual packet of the k-th frame; denote Nk(r) as the total number of residual

packets of the k-th frame. Since for all pixels in the same packet, the residual XEP is equal to its PEP,

from (17) and (24), we have

Dk(r) =
1
|V|

∑

u∈Vk

E[(εk
u)2] · P k

u(r) (25)

=
1
|V|

∑

u∈Vk

E[(εk)2] · P k
u(r) (26)

(a)
=

E[(εk)2]
|V|

Nk(r)∑

i=1

(P k
i (r) ·Nk

i (r)) (27)

(b)
= E[(εk)2] · P̄ k(r). (28)
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where (a) is due to P k
u(r) = P k

i (r) for pixel u in the i-th residual packet; (b) is due to

P̄ k(r) , 1
|V|

Nk(r)∑

i=1

(P k
i (r) ·Nk

i (r)). (29)

P̄ k(r) is a weighted average over PEPs of all residual packets in the k-th frame, in which different

packets may contain different numbers of pixels. Hence, our formula for the frame-level residual caused

distortion is

Dk(r) = E[(εk)2] · P̄ k(r). (30)

C. Analysis of Distortion Caused by MVCE

Similar to the derivations in Section IV-B1, in this subsection, we derive the formula for the pixel-level

MV caused distortion Dk
u(m), and the frame-level MV caused distortion Dk(m).

1) Pixel-level Distortion Caused by MVCE: Denote the MV error state for pixel uk by Sk
u(m), and

denote the concealed MV by m̌vk
u when Sk

u(m) = 1. Therefore, we have

m̃vk
u =





m̌vk
u, Sk

u(m) = 1

mvk
u, Sk

u(m) = 0.

(31)

Here, we use the temporal error concealment [20] to conceal MV errors. Denote ξk
u , f̂k−1

u+mvk
u
− f̂k−1

u+m̌vk
u
,

where ξk
u depends on the accuracy of MV concealment, and the spatial correlation between reference

pixel and concealed reference pixel at the encoder. We also make the following assumption.

Assumption 3: Sk
u(m) is independent of ξk

u.

Denote P k
u(m) as the MV XEP for pixel uk, that is, P k

u(m) , P{Sk
u(m) = 1}, and following the

same derivation process in Section IV-B1, we can obtain

Dk
u(m) = E[(ξk

u)2] · P k
u(m). (32)

Also note that in H.264 specification, there is no slice data partitioning for an instantaneous decoding

refresh (IDR) frame [21]; so Sk
u(r) and Sk

u(m) are fully correlated in an IDR-frame, that is, Sk
u(r) =

Sk
u(m), and hence P k

u(r) = P k
u(m). This is also true for MB without slice data partitioning. For P-

MB with slice data partitioning in H.264, Sk
u(r) and Sk

u(m) are partially correlated. In other words,

if the MV packet is lost, the corresponding residual packet cannot be decoded even if it is correctly

received, since there is no slice header in the residual packet. Therefore, the residual channel and the

MV channel in Fig. 1 are actually correlated if the encoder follows H.264 specification. In this paper, we
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study transmission distortion in a more general case where Sk
u(r) and Sk

u(m) can be either independent

or correlated.6

2) Frame-level Distortion Caused by MVCE: To derive the frame-level MV caused distortion, we also

make the following assumption.

Assumption 4: The second moment of ξk
u is the same for all u ∈ V k.

Under Assumption 4, we can drop u from the notation, and let E[(ξk)2] = E[(ξk
u)2] for all u ∈ V k.

Denote Nk
i (m) as the number of pixels contained in the i-th MV packet of the k-th frame; denote P k

i (m)

as PEP of the i-th MV packet of the k-th frame; denote Nk(m) as the total number of MV packets of

the k-th frame. Following the same derivation process in Section IV-B2, we obtain the frame-level MV

caused distortion for the k-th frame as

Dk(m) = E[(ξk)2] · P̄ k(m), (33)

where P̄ k(m) , 1
|V|

∑Nk
m

i=1(P
k
i (m) · Nk

i (m)), a weighted average over PEPs of all MV packets in the

k-th frame, in which different packets may contain different numbers of pixels.

D. Analysis of Distortion Caused by Propagated Error Plus Clipping Noise

In this subsection, we derive the distortion caused by error propagation in a non-linear decoder with

clipping. We first derive the pixel-level propagation and clipping caused distortion Dk
u(P ). Then we

derive the frame-level propagation and clipping caused distortion Dk(P ).

1) Pixel-level Distortion Caused by Propagated Error Plus Clipping Noise: First, we analyze the

pixel-level propagation and clipping caused distortion Dk
u(P ) in P-MBs. From the definition, we know

Dk
u(P ) depends on propagated error and clipping noise; and clipping noise is a function of RCE, MVCE

and propagated error. Hence, Dk
u(P ) depends on RCE, MVCE and propagated error. Let r,m, p denote

the event of occurrence of RCE, MVCE and propagated error respectively, and let r̄, m̄, p̄ denote logical

NOT of r,m, p respectively (indicating no error). We use a triplet to denote the joint event of three types

of error; e.g., {r,m, p} denotes the event that all the three types of errors occur, and uk{r̄, m̄, p̄} denotes

the pixel uk experiencing none of the three types of errors.

When we analyze the condition that several error events may occur, the notation could be simplified by

the principle of formal logic. For example, ∆̃k
u{r̄, m̄} denotes the clipping noise under the condition that

6To achieve this, we change the H.264 reference code JM14.0 by allowing residual packets to be used for decoder without

the corresponding MV packets being correctly received, that is, êk
u can be used to reconstruct efk

u even if mvk
u is not correctly

received.
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there is neither RCE nor MVCE for pixel uk, while it is not certain whether the reference pixel has error.

Correspondingly, denote P k
u{r̄, m̄} as the probability of event {r̄, m̄}, that is, P k

u{r̄, m̄} = P{Sk
u(r) =

0 and Sk
u(m) = 0}. From the definition of P k

u(r), the marginal probability P k
u{r} = P k

u(r) and the

marginal probability P k
u{r̄} = 1− P k

u(r). The same, P k
u{m} = P k

u(m) and P k
u{m̄} = 1− P k

u(m).

Define Dk
u(p) , E[(ζ̃k−1

u+mvk
u

+ ∆̃k
u{r̄, m̄})2]; and define αk

u , Dk
u(p)

Dk−1
u+mvk

u

, which is called propagation

factor for pixel uk. The propagation factor αk
u defined in this paper is different from the propagation

factor [9], leakage [6], or attenuation factor [14], which are modeled as the effect of spatial filtering or

intra update; our propagation factor αk
u is also different from the fading factor [7], which is modeled as

the effect of using fraction of referenced pixels in the reference frame for motion prediction. Note that

Dk
u(p) is only a special case of Dk

u(P ) under the error event of {r̄, m̄} for pixel uk. However, most

existing models inappropriately use their propagation factor, obtained under the error event of {r̄, m̄}, to

replace Dk
u(P ) of all other error events directly.

To calculate E[(ζ̃k−1
u+gmvk

u

+ ∆̃k
u)2] in (14), we need to analyze ∆̃k

u in four different error events for

pixel uk: 1) both residual and MV are erroneous, denoted by uk{r,m}; 2) residual is erroneous but MV

is correct, denoted by uk{r, m̄}; 3) residual is correct but MV is erroneous, denoted by uk{r̄, m}; and

4) both residual and MV are correct, denoted by uk{r̄, m̄}. So,

Dk
u(P ) = P k

u{r,m} · E[(ζ̃k−1
u+m̌vk

u
+ ∆̃k

u{r,m})2] + P k
u{r, m̄} · E[(ζ̃k−1

u+mvk
u

+ ∆̃k
u{r, m̄})2]

+ P k
u{r̄, m} · E[(ζ̃k−1

u+m̌vk
u

+ ∆̃k
u{r̄, m})2] + P k

u{r̄, m̄} · E[(ζ̃k−1
u+mvk

u
+ ∆̃k

u{r̄, m̄})2].
(34)

Note that the concealed pixel value should be in the clipping function range, that is, Γ(f̃k−1
u+gmvk

u

+ ěk
u) =

f̃k−1
u+gmvk

u

+ ěk
u, so ∆̃k

u{r} = 0. Also note that if the MV channel is independent of the residual channel,

we have P k
u{r,m} = P k

u(r) · P k
u(m). However, as mentioned in Section IV-C1, in H.264 specification,

these two channels are correlated. In other words, P k
u{r̄, m} = 0 and P k

u{r̄, m̄} = P k
u{r̄} for P-MBs

with slice data partitioning in H.264. In such a case, (34) is simplified to

Dk
u(P ) = P k

u{r,m} ·Dk−1
u+m̌vk

u
+ P k

u{r, m̄} ·Dk−1
u+mvk

u
+ P k

u{r̄} ·Dk
u(p). (35)

In a more general case, where P k
u{r̄, m} 6= 0, Eq. (35) is still valid. This is because P k

u{r̄, m} 6= 0

only happens under slice data partitioning condition, where P k
u{r̄,m} ¿ P k

u{r̄, m̄} and E[(ζ̃k−1
u+mvk

u
+

∆̃k
u{r̄, m̄})2] ≈ E[(ζ̃k−1

u+m̌vk
u

+ ∆̃k
u{r̄, m})2] under UEP. Therefore, the last two terms in (34) is almost

equal to P k
u{r̄} ·Dk

u(p).

Note that for P-MB without slice data partitioning, we have P k
u{r, m̄} = P k

u{r̄,m} = 0, P k
u{r,m} =

P k
u{r} = P k

u{m} = P k
u , and P k

u{r̄, m̄} = P k
u{r̄} = P k

u{m̄} = 1 − P k
u . Therefore, (35) can be further
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simplified to

Dk
u(P ) = P k

u ·Dk−1
u+m̌vk

u
+ (1− P k

u) ·Dk
u(p). (36)

Also note that for I-MB, there will be no transmission distortion if it is correctly received, that is,

Dk
u(p) = 0. So (36) can be further simplified to

Dk
u(P ) = P k

u ·Dk−1
u+m̌vk

u
. (37)

Comparing (37) with (36), we see that I-MB is a special case of P-MB with Dk
u(p) = 0, that is, the

propagation factor αk
u = 0 according to the definition. It is important to note that Dk

u(P ) > 0 for I-MB.

In other words, I-MB also contains the distortion caused by propagation error since P k
u 6= 0. However,

existing LTI models [6], [7] assume that there is no distortion caused by propagation error for I-MB,

which under-estimates the transmission distortion.

In the following part of this subsection, we derive the propagation factor αk
u for P-MB and prove some

important properties of clipping noise. To derive αk
u, we first give Lemma 1 as below.

Lemma 1: Given the PMF of the random variable ζ̃k−1
u+mvk

u
and the value of f̂k

u , Dk
u(p) can be calculated

at the encoder by Dk
u(p) = E[Φ2(ζ̃k−1

u+mvk
u
, f̂k

u)], where Φ(x, y) is called error reduction function and

defined by

Φ(x, y) , y − Γ(y − x) =





y − γL, y − x < γL

x, γL ≤ y − x ≤ γH

y − γH , y − x > γH .

(38)

Lemma 1 is proved in Appendix A. In fact, we have found in our experiments that in any error

event, ζ̃k−1
u+mvk

u
approximately follows Laplacian distribution with zero mean. If we assume ζ̃k−1

u+mvk
u

follows Laplacian distribution with zero mean, the calculation for Dk
u(p) becomes simpler since the only

unknown parameter for PMF of ζ̃k−1
u+mvk

u
is its variance. Under this assumption, we have the following

proposition.

Proposition 1: The propagation factor α for propagated error with Laplacian distribution of zero-mean

and variance σ2 is given by

α = 1− 1
2
e−

y−γL
b (

y − γL

b
+ 1)− 1

2
e−

γH−y

b (
γH − y

b
+ 1), (39)

where y is the reconstructed pixel value, and b =
√

2
2 σ.

Proposition 1 is proved in Appendix B. In the zero-mean Laplacian case, αk
u will only be a function

of f̂k
u and the variance of ζ̃k−1

u+mvk
u
, which is equal to Dk−1

u+mvk
u

in this case. Since Dk−1
u+mvk

u
has already

August 11, 2010 DRAFT



21

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

Frame index

S
S

E
 d

is
to

rt
io

n

Only the third frame is received with error

 

 

Fig. 2. The effect of clipping noise on distortion propagation.

been calculated during the phase of predicting the (k−1)-th frame transmission distortion, Dk
u(p) can be

calculated by Dk
u(p) = αk

u ·Dk−1
u+mvk

u
via the definition of αk

u. Then we can recursively calculate Dk
u(P )

in (35) since both Dk−1
u+m̌vk

u
and Dk−1

u+mvk
u

have been calculated previously for the (k − 1)-th frame.

Next, we prove an important property of the non-linear clipping function in the following proposition.

Proposition 2: Clipping reduces propagated error, that is, Dk
u(p) ≤ Dk−1

u+mvk
u
, or αk

u ≤ 1.

Proof: First, from Lemma 4, which is presented and proved in Appendix F, we have Φ2(x, y) ≤ x2

for any γL ≤ y ≤ γH . In other words, the function Φ(x, y) reduces the energy of propagated error.

This is the reason why we call it error reduction function. With Lemma 1, it is straightforward to prove

that whatever the PMF of ζ̃k−1
u+mvk

u
is, E[Φ2(ζ̃k−1

u+mvk
u
, f̂k

u)] ≤ E[(ζ̃k−1
u+mvk

u
)2], that is, Dk

u(p) ≤ Dk−1
u+mvk

u
,

which is equivalent to αk
u ≤ 1.

Proposition 2 tells us that if there is no newly induced errors in the k-th frame, transmission distortion

decreases from the (k−1)-th frame to the k-th frame. Fig. 2 shows the experimental result of transmission

distortion propagation for ‘bus’ sequence in cif format, where transmission errors only occur in the third

frame.

In fact, if we consider the more general cases where there may be new error induced in the k-th frame,

we can still prove that E[(ζ̃k−1
u+gmvk

u

+ ∆̃k
u)2] ≤ E[(ζ̃k−1

u+gmvk
u

)2] using the proof for the following corollary.

Corollary 1: The correlation coefficient between ζ̃k−1
u+gmvk

u

and ∆̃k
u is non-positive. Specifically, they
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are negatively correlated under the condition {r̄, p}, and uncorrelated under other conditions.

Corollary 1 is proved in Appendix H. This property is very important for designing a low complexity

algorithm to estimate propagation and clipping caused distortion in PTD, which will be presented in the

sequel paper [22].

2) Frame-level Distortion Caused by Propagated Error Plus Clipping Noise: In (35), Dk−1
u+m̌vk

u
6=

Dk−1
u+mvk

u
due to the non-stationarity of the error process over space. However, both the sum of Dk−1

u+m̌vk
u

over all pixels in the (k−1)-th frame and the sum of Dk−1
u+mvk

u
over all pixels in the (k−1)-th frame will

converge to Dk−1 due to the randomness of MV. The formula for frame-level propagation and clipping

caused distortion is given in Lemma 2.

Lemma 2: The frame-level propagation and clipping caused distortion in the k-th frame is

Dk(P ) = Dk−1 · P̄ k(r) + Dk(p) · (1− P̄ k(r))(1− βk), (40)

where Dk(p) , 1
|V|

∑
u∈Vk Dk

u(p) and P̄ k(r) is defined in (29); βk is the percentage of I-MBs in the

k-th frame; Dk−1 is the transmission distortion in the (k − 1)-th frame.

Lemma 2 is proved in Appendix C. Define the propagation factor for the k-th frame αk , Dk(p)
Dk−1 ;

then we have αk =
P

u∈Vk αk
u·Dk−1

u+mvk
u

Dk−1 . Note that Dk−1
u+mvk

u
may be different for different pixels in the

(k − 1)-th frame due to the non-stationarity of error process over space. However, when the number

of pixels in the (k − 1)-th frame is sufficiently large, the sum of Dk−1
u+mvk

u
over all the pixels in the

(k−1)-th frame will converge to Dk−1. Therefore, we have αk =
P

u∈Vk αk
u·Dk−1

u+mvk
uP

u∈V Dk−1
u+mvk

u

, which is a weighted

average of αk
u with the weight being Dk−1

u+mvk
u
. As a result, Dk(p) ≤ Dk(P )7. However, most existing

works directly use Dk(P ) = Dk(p) in predicting transmission distortion. This is another reason why

LTI models [6], [7] under-estimate transmission distortion when there is no MV error. Details will be

discussed in Section V-B.

E. Analysis of Correlation Caused Distortion

In this subsection, we first derive the pixel-level correlation caused distortion Dk
u(c). Then we derive

the frame-level correlation caused distortion Dk(c).

7When the number of pixels in the (k − 1)-th frame is small,
P

u∈Vk αk
u ·Dk−1

u+mvk
u

may be larger than Dk−1 although its

probability is small as observed in our experiments.
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Fig. 3. Temporal correlation between the residuals in one trajectory.

1) Pixel-level Correlation Caused Distortion: We analyze the correlation caused distortion Dk
u(c) at

the decoder in four different cases: i) for uk{r̄, m̄}, both ε̃k
u = 0 and ξ̃k

u = 0, so Dk
u(c) = 0; ii)

for uk{r, m̄}, ξ̃k
u = 0 and Dk

u(c) = 2E[εk
u · (ζ̃k−1

u+mvk
u

+ ∆̃k
u{r, m̄})]; iii) for uk{r̄, m}, ε̃k

u = 0 and

Dk
u(c) = 2E[ξk

u · (ζ̃k−1
u+m̌vk

u
+ ∆̃k

u{r̄, m})]; iv) for uk{r,m}, Dk
u(c) = 2E[εk

u · ξk
u] + 2E[εk

u · (ζ̃k−1
u+m̌vk

u
+

∆̃k
u{r,m})]+2E[ξk

u · (ζ̃k−1
u+m̌vk

u
+∆̃k

u{r,m})]. From Section IV-D1, we know ∆̃k
u{r} = 0. So, we obtain

Dk
u(c) = P k

u{r, m̄} · 2E[εk
u · ζ̃k−1

u+mvk
u
] + P k

u{r̄, m} · 2E[ξk
u · (ζ̃k−1

u+m̌vk
u

+ ∆̃k
u{r̄,m})]

+ P k
u{r,m} · (2E[εk

u · ξk
u] + 2E[εk

u · ζ̃k−1
u+m̌vk

u
] + 2E[ξk

u · ζ̃k−1
u+m̌vk

u
]).

(41)

In our experiments, we find that in the trajectory of pixel uk, 1) the residual êk
u is approximately

uncorrelated with the residual in all other frames êi
v, where i 6= k, as shown in Fig. 3 for ‘foreman’

sequence in cif format8; and 2) the residual êk
u is approximately uncorrelated with the MVCE of the

corresponding pixel ξk
u and the MVCE in all previous frames ξi

v, where i < k, as shown in Fig. 4

for ‘foreman’ sequence in cif format. Based on the above observations, we further assume that for any

i < k, êk
u is uncorrelated with êi

v and ξi
v if vi is not in the trajectory of pixel uk, and make the following

assumption.

Assumption 5: êk
u is uncorrelated with ξk

u, and is uncorrelated with both êi
v and ξi

v for any i < k.

8All other sequences show the same statistics for Fig. 3, Fig. 4, Fig. 5 and Fig. 6.
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Fig. 4. Temporal correlation matrix between residual and MVCE in one trajectory.

Since ζ̃k−1
u+mvk

u
and ζ̃k−1

u+m̌vk
u

are the transmission reconstructed errors accumulated from all the frames

before the k-th frame, εk
u is uncorrelated with ζ̃k−1

u+mvk
u

and ζ̃k−1
u+m̌vk

u
due to Assumption 5. Thus, (41)

becomes

Dk
u(c) = 2P k

u{m} · E[ξk
u · ζ̃k−1

u+m̌vk
u
] + 2P k

u{r̄, m} · E[ξk
u · ∆̃k

u{r̄,m}]. (42)

However, we observe that in the trajectory of pixel uk, 1) the residual êk
u is correlated with the MVCE

ξi
v, where i > k, as seen in Fig. 4; and 2) the MVCE ξk

u is highly correlated with the MVCE ξi
v as

shown in Fig. 5 for ‘foreman’ sequence in cif format. This interesting phenomenon could be exploited

by an error concealment algorithm and is subject to our future study.

As mentioned in Section IV-D1, for P-MBs with slice data partitioning in H.264, P k
u{r̄,m} = 0. So,

(42) becomes

Dk
u(c) = 2P k

u{m} · E[ξk
u · (f̂k−1

u+m̌vk
u
− f̃k−1

u+m̌vk
u
)]. (43)

Note that in the more general case that P k
u{r̄, m} 6= 0, Eq. (43) is still valid since ξk

u is almost uncorrelated

with ∆̃k
u{r̄, m} as observed in the experiment.

For MBs without slice data partitioning, since P k
u{r, m̄} = P k

u{r̄,m} = 0 and P k
u{r,m} = P k

u{r} =

P k
u{m} = P k

u as mentioned in Section IV-D1, (41) can be simplified to

Dk
u(c) = 2P k

u · (2E[εk
u · ξk

u] + 2E[εk
u · ζ̃k−1

u+m̌vk
u
] + 2E[ξk

u · ζ̃k−1
u+m̌vk

u
]). (44)
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Fig. 5. Temporal correlation matrix between MVCEs in one trajectory.

Under Assumption 5, (44) reduces to (43).

Define λk
u ,

E[ξk
u·efk−1

u+m̌vk
u
]

E[ξk
u·f̂k−1

u+m̌vk
u
]
; λk

u is a correlation ratio, that is, the ratio of the correlation between MVCE

and concealed reference pixel value at the decoder, to the correlation between MVCE and concealed

reference pixel value at the encoder. λk
u quantifies the effect of the correlation between the MVCE and

propagated error on transmission distortion.

Note that although we do not know the exact value of λk
u at the encoder, its range is

k−1∏

i=1

P i
T(i){r̄, m̄} ≤ λk

u ≤ 1, (45)

where T(i) is the pixel position of the i-th frame in the trajectory, for example, T(k − 1) = uk + mvk
u

and T(k − 2) = vk−1 + mvk−1
v . The left inequality in (45) holds in the extreme case that any error in

the trajectory will cause ξk
u and f̃k−1

u+m̌vk
u

to be uncorrelated, which is usually true for high motion video.

The right inequality in (45) holds in another extreme case that all errors in the trajectory do not affect

the correlation between ξk
u and f̃k−1

u+m̌vk
u
, that is E[ξk

u · f̃k−1
u+m̌vk

u
] ≈ E[ξk

u · f̂k−1
u+m̌vk

u
] , which is usually true

for low motion video. The details on how to estimate λk
u will be presented in the sequel paper [22].

Using the definition of λk
u, we have the following proposition.

Proposition 3:

Dk
u(c) = (λk

u − 1) ·Dk
u(m). (46)
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Fig. 6. Comparison between measured and estimated correlation coefficients.

Proposition 3 is proved in Appendix D.

If we assume E[ξk
u] = 0, we may further derive the correlation coefficient between ξk

u and f̂k−1
u+m̌vk

u
.

Denote ρ as their correlation coefficient, we have ρ =
E[ξk

u·f̂k−1
u+m̌vk

u
]−E[ξk

u]·E[f̂k−1
u+m̌vk

u
]

σξk
u
·σf̂k

u

= − σξk
u

2σf̂k
u

; similarly, it

is easy to prove that the correlation coefficient between ξk
u and f̂k−1

u+mvk
u

is
σξk

u

2σf̂k
u

. This agrees well with

the experimental results shown in Fig. 6. Via the same derivation process, one can obtain the correlation

coefficient between êk
u and f̂k−1

u+mvk
u
, and between êk

u and f̂k
u . One possible application of these correlation

properties is error concealment with partial information available.

2) Frame-Level Correlation Caused Distortion: Denote V k
i (m) the set of pixels in the i-th MV packet

of the k-th frame. From (20), (77) and Assumption 4, we obtain

Dk(c) =
E[(ξk)2]
|V|

∑

u∈Vk

(λk
u − 1) · P k

u(m)

=
E[(ξk)2]
|V|

Nk(m)∑

i=1

{P k
i (m)

∑

u∈Vk
i (m)

(λk
u − 1)}.

(47)

Define λk , 1
|V|

∑
u∈V k λk

u; due to the randomness of mvk
u, 1

Nk
i (m)

∑
u∈Vk

i {m} λk
u will converge to λk

for any packet that contains a sufficiently large number of pixels. By rearranging (47), we obtain

Dk(c) =
E[(ξk)2]
|V|

Nk(m)∑

i=1

{P k
i (m) ·Nk

i (m) · (λk − 1)}

= (λk − 1) · E[(ξk)2] · P̄ k(m).

(48)
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From (33), we know that E[(ξk)2] · P̄ k(m) is exactly equal to Dk(m). Therefore, (48) is further

simplified to

Dk(c) = (λk − 1) ·Dk(m). (49)

F. Summary

In Section IV-A, we decomposed transmission distortion into four terms; we derived a formula for

each term in Sections IV-B through IV-E. In this section, we combine the formulae for the four terms

into a single formula.

1) Pixel-Level Transmission Distortion:

Theorem 1: Under single-reference prediction, the PTD of pixel uk is

Dk
u = Dk

u(r) + λk
u ·Dk

u(m) + P k
u{r,m} ·Dk−1

u+m̌vk
u

+ P k
u{r, m̄} ·Dk−1

u+mvk
u

+ P k
u{r̄} · αk

u ·Dk−1
u+mvk

u
.

(50)

Proof: (50) can be obtained by plugging (24), (32), (35), and (77) into (15).

Corollary 2: Under single-reference prediction and no slice data partitioning, (50) is simplified to

Dk
u = P k

u · (E[(εk
u)2] + λk

u · E[(ξk
u)2] + Dk−1

u+m̌vk
u
) + (1− P k

u) · αk
u ·Dk−1

u+mvk
u
. (51)

2) Frame-Level Transmission Distortion:

Theorem 2: Under single-reference prediction, the FTD of the k-th frame is

Dk = Dk(r) + λk ·Dk(m) + P̄ k(r) ·Dk−1 + (1− P̄ k(r)) ·Dk(p) · (1− βk). (52)

Proof: (52) can be obtained by plugging (30), (33), (40) and (49) into (16).

Corollary 3: Under single-reference prediction and no slice data partitioning, the FTD of the k-th

frame is simplified to

Dk = Dk(r) + λk ·Dk(m) + P̄ k ·Dk−1 + (1− P̄ k) ·Dk(p) · (1− βk). (53)

V. RELATIONSHIP BETWEEN THEOREM 2 AND EXISTING TRANSMISSION DISTORTION MODELS

In this section, we will identify the relationship between Theorem 2 and their models, and specify

the conditions, under which those models are accurate. Note that in order to demonstrate the effect of

non-linear clipping on transmission distortion propagation, we disable intra update, that is, βk = 0 for

all the following cases.
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A. Case 1: Only the (k−1)-th Frame Has Error, and the Subsequent Frames are All Correctly Received

In this case, the models proposed in Refs. [6], [9] state that when there is no intra coding and spatial

filtering, the propagation distortion will be the same for all the frames after the (k − 1)-th frame, i.e.,

Dn(p) = Dn−1 (∀ n ≥ k). However, this is not true as we proved in Proposition 2. Due to the clipping

function, we have αn ≤ 1 (∀ n ≥ k), i.e., Dn ≤ Dn−1 (∀ n ≥ k) in case the n-th frame is error-

free. Actually, from Appendix F, we know that the equality only holds under a very special case that

f̂k
u − γH ≤ ζ̃k−1

u+mvk
u
≤ f̂k

u − γL for all pixel u ∈ V k.

B. Case 2: Burst Errors in Consecutive Frames

In Ref. [14], authors observe that the transmission distortion caused by accumulated errors from consec-

utive frames is generally larger than the sum of those distortions caused by individual frame errors. This is

also observed in our experiment when there is no MV error. To explain this phenomenon, let us first look

at a simple case that residuals in the k-th frame are all erroneous, while the MVs in the k-th frame are all

correctly received. In this case, we obtain from (52) that Dk = Dk(r)+P̄ k(r)·Dk−1+(1−P̄ k(r))·Dk(p),

which is larger than the simple sum Dk(r) + Dk(p) as in the LTI model; the under-estimation caused

by the LTI model is due to Dk − (Dk(r) + Dk(p)) = (1− αk) · P̄ k(r) ·Dk−1.

However, when MV is erroneous, the experimental result is quite different from that claimed in Ref. [14]

especially for the high motion video. In other words, the LTI model now causes over-estimation for a burst

error channel. In this case, the predicted transmission distortion can be calculated via (52) in Theorem 2

as Dk
1 = Dk(r) + λk · Dk(m) + P̄ k(r) · Dk−1

1 + (1 − P̄ k(r)) · αk · Dk−1
1 , and by the LTI model as

Dk
2 = Dk(r)+Dk(m)+αk ·Dk−1

2 . So, the prediction difference between Theorem 2 and the LTI model

is

Dk
1 −Dk

2 = (1− αk) · P̄ k(r) ·Dk−1
1 − (1− λk) · P̄ k(m) · E[(ξk)2] + αk · (Dk−1

1 −Dk−1
2 ). (54)

At the beginning, D0
1 = D0

2 = 0, and Dk−1 << E[(ξk)2] when k is small. Therefore, the transmission

distortion caused by accumulated errors from consecutive frames will be smaller than the sum of the

distortions caused by individual frame errors, that is, Dk
1 < Dk

2 . We may see from (54) that, due to the

propagation of over-estimation Dk−1
1 −Dk−1

2 from the (k−1)-th frame to the k-th frame, the accumulated

difference between Dk
1 and Dk

2 will become larger and larger as k increases.
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C. Case 3: Modeling Transmission Distortion as an Output of an LTI System with PEP as input

In Ref. [7], authors propose an LTI transmission distortion model based on their observations from

experiments. This LTI model ignores the effects of correlation between the newly induced error and the

propagated error, that is, λk = 1. This is only valid for low motion video. From (52), we obtain

Dk = Dk(r) + Dk(m) + (P̄ k(r) + (1− P̄ k(r)) · αk) ·Dk−1. (55)

Let ηk = P̄ k(r)+(1− P̄ k(r)) ·αk. If 1) there is no slice data partitioning, i.e., P k(m) = P k(r) = P k,

and 2) P̄ k(r) = P k(r) (which means one frame is transmitted in one packet, or different packets

experience the same channel condition), then (55) becomes Dk = {E[(ξk)2]+E[(εk)2]}·P k +ηk ·Dk−1.

Let Ek , E[(ξk)2] + E[(εk)2]. Then the recursive formula results in

Dk =
k∑

l=k−L

[(
k∏

i=l+1

ηi) · (El · P l)], (56)

where L is the time interval between the k-th frame and the latest correctly received frame.

Denote the system by an operator H that maps the error input sequence {P k}, as a function of frame

index k, to the distortion output sequence {Dk}. Since generally Dk(p) is a nonlinear function of Dk−1,

as a ratio of Dk(p) and Dk−1, αk is still a function of Dk−1. As a result, ηk is a function of Dk−1.

That means the operator H is non-linear, i.e., the system is non-linear. In addition, since αk varies from

frame to frame as mentioned in Section IV-D2, the system is time-variant. In summary, H is generally

a non-linear time-variant system.

The LTI model assumes that 1) the operator H is linear, that is, H(a·P k
1 +b·P k

2 ) = a·H(P k
1 )+b·H(P k

2 ),

which is valid only when ηk does not depend on Dk−1; and 2) the operator H is time-invariant, that is,

Dk+δ = H(P k+δ), which is valid only when ηk is constant, i.e., both P k(r) and αk are constant. Under

these two assumptions, we have ηi = η, and we obtain
∏k

i=l+1 ηi = (η)k−l. Let h[k] = (η)k, where h[k]

is the impulse response of the LTI model; then we obtain

Dk =
k∑

l=k−L

[h[k − l] · (El · P l)]. (57)

From Proposition 2, it is easy to prove that 0 ≤ η ≤ 1; so h[k] is a decreasing function of time. We see

that (57) is a convolution between the error input sequence and the system impulse response. Actually, if

we let h[k] = e−γk, where γ = − log η, it is exactly the formula proposed in Ref. [7]. Note that (57) is a

very special case of (52) with the following limitations: 1) the video content has to be of low motion; 2)

there is no slice data partitioning or all pixels in the same frame experience the same channel condition;

3) ηk is a constant, that is, both P̄ k(r) and the propagation factor αk are constant, which requires the
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probability distributions of reconstructed pixel values in all frames should be the same. Note that the

physical meaning of ηk is not the actual propagation factor, but it is just a notation for simplifying the

formula.

VI. PTD AND FTD UNDER MULTI-REFERENCE PREDICTION

The PTD and FTD formulae in Section IV are for single-reference prediction. In this section, we

extend the formulae to multi-reference prediction.

A. Pixel-level Distortion under Multi-Reference Prediction

If multiple frames are allowed to be the references for motion estimation, the reconstructed pixel value

at the encoder in (1) becomes

f̂k
u = Γ(f̂k−j

u+mvk
u

+ êk
u). (58)

For the reconstructed pixel value at the decoder in (3), it is a bit different as below.

f̃k
u = Γ(f̃k−j′

u+gmvk
u

+ ẽk
u). (59)

If mvk
u is correctly received, m̃vk

u = mvk
u and f̃k−j′

u+gmvk
u

= f̃k−j
u+mvk

u
. However, if mvk

u is received with

error, the concealed MV has no difference from the single-reference case, that is, m̃vk
u = m̌vk

u and

f̃k−j′

u+gmvk
u

= f̃k−1
u+m̌vk

u
.

As a result, (12) becomes

ζ̃k
u = (êk

u + f̂k−j
u+mvk

u
− ∆̂k

u)− (ẽk
u + f̃k−j′

u+gmvk
u

− ∆̃k
u)

= (êk
u − ẽk

u) + (f̂k−j
u+mvk

u
− f̂k−j′

u+gmvk
u

) + (f̂k−j′

u+gmvk
u

− f̃k−j′

u+gmvk
u

)− (∆̂k
u − ∆̃k

u).
(60)

Following the same derivation process from Section IV-A to Section IV-E, the formulae for PTD under

multi-reference prediction are the same as those under single-reference prediction except the following

changes: 1) MVCE ξ̃k
u , f̂k−j

u+mvk
u
− f̂k−j′

u+gmvk
u

and clipping noise ∆̃k
u , (f̃k−j′

u+gmvk
u

+ ẽk
u)−Γ(f̃k−j′

u+gmvk
u

+ ẽk
u);

2) Dk
u(m) and Dk

u(c) are given by (32) and (46), respectively, with a new definition of ξk
u , f̂k−j

u+mvk
u
−

f̂k−1
u+m̌vk

u
; 3) Dk

u(p) , E[(ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄})2], αk
u , Dk

u(p)

Dk−j

u+mvk
u

and

Dk
u(P ) = P k

u{r,m} ·Dk−1
u+m̌vk

u
+ P k

u{r, m̄} ·Dk−j
u+mvk

u
+ P k

u{r̄} ·Dk
u(p), (61)

compared to (35). The generalization of PTD formulae to multi-reference prediction is straightforward

since the multi-reference prediction case just has a larger set of reference pixels than the single-reference

case. Following the same derivation process, we have the following general theorem for PTD.
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Theorem 3: Under multi-reference prediction, the PTD of pixel uk is

Dk
u = Dk

u(r) + λk
u ·Dk

u(m) + P k
u{r,m} ·Dk−1

u+m̌vk
u

+ P k
u{r, m̄} ·Dk−j

u+mvk
u

+ P k
u{r̄} · αk

u ·Dk−j
u+mvk

u
.

(62)

Corollary 4: Under multi-reference prediction and no slice data partitioning, (62) is simplified to

Dk
u = P k

u · (E[(εk
u)2] + λk

u · E[(ξk
u)2] + Dk−1

u+m̌vk
u
) + (1− P k

u) · αk
u ·Dk−j

u+mvk
u
. (63)

B. Frame-level Distortion under Multi-Reference Prediction

Under multi-reference prediction, each block typically is allowed to choose its reference block in-

dependently; hence, different pixels in the same frame may have different reference frames. Define

V k(j) , {uk : uk = vk−j −mvk
u}, where j ∈ {1, 2, ..., J} and J is the number of reference frames;

i.e., V k(j) is the set of the pixels in the k-th frame, whose reference pixels are in the (k − j)-th frame.

Obviously,
⋃J

j=1 V k(j) = V k and
⋂J

j=1 V k(j) = ∅. Define wk(j) , |Vk(j)|
|Vk| . Note that V k and V k(j)

have the similar physical meanings but only the different cardinalities.

Dk(m) and Dk(c) are given by (33) and (49), respectively, with a new definition of ξk(j) , {ξk
u :

ξk
u = f̂k−j

u+mvk
u
− f̂k−1

u+m̌vk
u
}. and ξk =

∑J
j=1 wk(j) · ξk(j). Define the propagation factor of V k(j) by

αk(j) ,
P

u∈V k(j) αk
u·Dk−j

u+mvk
uP

u∈V k(j) Dk−j

u+mvk
u

. The following lemma gives the formula for Dk(P ).

Lemma 3: The frame-level propagation and clipping caused distortion in the k-th frame for the multi-

reference case is

Dk(P ) = Dk−1 · P̄ k{r,m}+
J∑

j=1

(P̄ k(j){r, m̄} · wk(j) ·Dk−j)

+ (1− βk) ·
J∑

j=1

(P̄ k(j){r̄} · wk(j) · αk(j) ·Dk−j),

(64)

where βk is the percentage of I-MBs in the k-th frame; P̄ k(j){r, m̄} is the weighted average of joint

PEPs of event {r, m̄} for the j-th sub-frame in the k-th frame. P̄ k(j){r̄} is the weighted average of PEP

of event {r̄} for the j-th sub-frame in the k-th frame.

Lemma 3 is proved in Appendix E. With Lemma 3, we have the following general theorem for FTD.

Theorem 4: Under multi-reference prediction, the FTD of the k-th frame is

Dk = Dk(r) + λk ·Dk(m) + Dk−1 · P̄ k{r,m}+
J∑

j=1

(P̄ k(j){r, m̄} · wk(j) ·Dk−j)

+ (1− βk) ·
J∑

j=1

(P̄ k(j){r̄} · wk(j) · αk(j) ·Dk−j).

(65)
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Proof: (65) can be obtained by plugging (30), (33), (64) and (49) into (16).

It is easy to prove that (52) in Theorem 2 is a special case of (65) with J = 1 and wk(j) = 1. It is also

easy to prove that (62) in Theorem 3 is a special case of (65) with |V| = 1.

Corollary 5: Under multi-reference prediction and no slice data partitioning, (65) is simplified to

Dk = Dk(r) + λk ·Dk(m) + Dk−1 · P̄ k{r}+ (1− βk) ·
J∑

j=1

(P̄ k(j){r̄} · wk(j) · αk(j) ·Dk−j). (66)

VII. CONCLUSION

In this paper, we derived the transmission distortion formulae for wireless video communication

systems. With consideration of spatio-temporal correlation, nonlinear codec and time-varying channel,

our formulae provide, for the first time, the following capabilities: 1) support of distortion prediction

at different levels (e.g., pixel/frame/GOP level), 2) support of accurate multi-reference prediction, 3)

support of slice data partitioning, 4) support of arbitrary slice-level packetization with FMO mechanism,

5) being applicable to time-varying channels, 6) one unified formula for both I-MB and P-MB, and

7) support of both low motion and high motion video sequences. Besides deriving the transmission

distortion formulae, this paper also identified two important properties of transmission distortion for the

first time: 1) clipping noise, produced by non-linear clipping, causes decay of propagated error; 2) the

correlation between motion vector concealment error and propagated error is negative, and has dominant

impact on transmission distortion, among all the correlations between any two of the four components

in transmission error. We also discussed the relationship between our formula and existing models. In

the sequel paper [22], we use the formulae derived in this paper to design algorithms for estimating

pixel-level and frame-level transmission distortion and apply the algorithms to video codec design; we

also verify the accuracy of the formulae derived in this paper through experiments; the application of

these formulae shows superior performance over existing models.

ACKNOWLEDGMENTS

This work was supported in part by an Intel gift, the US National Science Foundation under grant

DBI-0529012 and CNS-0643731. The authors would like to thank Jun Xu and Qian Chen for many

fruitful discussions related to this work and suggestions that helped to improve the presentation of this

paper.

August 11, 2010 DRAFT



33

APPENDIX

A. Proof of Lemma 1

Proof: From (11) and (13), we obtain f̃k−1
u+gmvk

u

+ ẽk
u = f̂k

u − ξ̃k
u − ε̃k

u − ζ̃k−1
u+gmvk

u

,

Together with (9), we obtain

∆̃k
u = (f̂k

u − ξ̃k
u − ε̃k

u − ζ̃k−1
u+gmvk

u

)− Γ(f̂k
u − ξ̃k

u − ε̃k
u − ζ̃k−1

u+gmvk
u

). (67)

So, ζ̃k−1
u+gmvk

u

+ ∆̃k
u = (f̂k

u − ξ̃k
u − ε̃k

u)− Γ(f̂k
u − ξ̃k

u − ε̃k
u − ζ̃k−1

u+gmvk
u

), and

Dk
u(P ) = E[(ζ̃k−1

u+gmvk
u

+ ∆̃k
u)2] = E[Φ2(ζ̃k−1

u+gmvk
u

, f̂k
u − ξ̃k

u − ε̃k
u)]. (68)

We know from the definition that Dk
u(p) is a special case of Dk

u(P ) under the condition {r̄, m̄}, which

means ẽk
u = êk

u, i.e. ε̃k
u = 0, and m̃vk

u = mvk
u, i.e. ξ̃k

u = 0. Therefore, we obtain

Dk
u(p) = E[Φ2(ζ̃k−1

u+mvk
u
, f̂k

u)]. (69)

B. Proof of Proposition 1

Proof: The probability density function of the random variable having a Laplacian distribution is

f(x|µ, b) = 1
2b exp

(
− |x−µ|

b

)
. Since µ = 0, we have E[x2] = 2b2, and from (38), we obtain

E[x2]− E[Φ2(x, y)] =
∫ +∞

y−γL

(x2 − (y − γL)2)
1
2b

e−
x

b dx +
∫ y−γH

−∞
[x2 − (y − γH)2]

1
2b

e
x

b dx

= e−
y−γL

b ((y − γL) · b + b2) + e−
γH−y

b ((γH − y) · b + b2).

(70)

From the definition of propagation factor, we obtain α = E[Φ2(x, y)]
E[x2] = 1 − 1

2e−
y−γL

b (y−γL

b + 1) −
1
2e−

γH−y

b (γH−y
b + 1).

C. Proof of Lemma 2

Proof: For P-MBs with slice data partioning, from (19) and (35) we obtain

Dk(P ) =
1
|V|

∑

u∈Vk

(P k
u{r,m} ·Dk−1

u+m̌vk
u
) +

1
|V|

∑

u∈Vk

(P k
u{r, m̄} ·Dk−1

u+mvk
u
) +

1
|V|

∑

u∈Vk

(P k
u{r̄} ·Dk

u(p)).

(71)

Denote V k
i {r,m} the set of pixels in the k-th frame with the same XEP P k

i {r,m}; denote Nk
i {r,m}

the number of pixels in V k
i {r,m}; denote Nk{r,m} the number of sets with different XEP P k

i {r,m}
in the k-th frame.
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We have

1
|V|

∑

u∈Vk

(P k
u{r,m} ·Dk−1

u+m̌vk
u
) =

1
|V|

Nk{r,m}∑

i=1

(P k
i {r,m}

∑

u∈Vk
i {r,m}

Dk−1
u+m̌vk

u
). (72)

For large Nk
i {r,m}, we have 1

Nk
i {r,m}

∑
u∈Vk

i {r,m}Dk−1
u+m̌vk

u
converges to Dk−1, so the first term in the

right-hand side in (71) is Dk−1 · P̄ k{r,m}, where P̄ k{r,m} = 1
|V|

∑Nk{r,m}
i=1 (P k

i {r,m} ·Nk
i {r,m}).

Following the same process, we obtain the second term in the right-hand side in (71) as Dk−1·P̄ k{r, m̄},

where P̄ k{r, m̄} = 1
|V|

∑Nk{r,m̄}
i=1 (P k

i {r, m̄} ·Nk
i {r, m̄}); and

1
|V|

∑

u∈Vk

(P k
u{r̄} ·Dk

u(p)) =
1
|V|

Nk{r̄}∑

i=1

(P k
i {r̄}

∑

u∈Vk
i {r̄}

Dk
u(p)). (73)

For large Nk
i {r̄}, we have 1

Nk
i {r̄}

∑
u∈Vk

i {r̄}Dk
u(p) converges to Dk(p), so the third term in the right-hand

side in (71) is Dk(p) · (1− P̄ k(r)).

Note that P k
i {r,m}+ P k

i {r, m̄} = P k
i {r} and Nk

i {r,m} = Nk
i {r, m̄}. So, we obtain

Dk(P ) = Dk−1 · P̄ k(r) + Dk(p) · (1− P̄ k(r)). (74)

For P-MBs without slice data partitioning, it is straightforward to acquire (74) from (36). For I-MBs,

from (37), it is also easy to obtain Dk(P ) = Dk−1 · P̄ k(r). So, together with (74), we obtain (40).

D. Proof of Proposition 3

Proof: Using the definition of λk
u, (43) becomes

Dk
u(c) = 2P k

u{m} · (1− λk
u) · E[ξk

u · f̂k−1
u+m̌vk

u
]. (75)

Under the condition that the distance between mvk
u and m̌vk

u is small, for example, inside the same MB,

the statistics of f̂k−1
u+m̌vk

u
and f̂k−1

u+mvk
u

are almost the same. Therefore, we may assume E[(f̂k−1
u+m̌vk

u
)2] =

E[(f̂k−1
u+mvk

u
)2].

Since ξk
u = f̂k−1

u+mvk
u
− f̂k−1

u+m̌vk
u
, we have

E[(f̂k−1
u+m̌vk

u
)2] = E[(f̂k−1

u+mvk
u
)2]

= E[(ξk
u + f̂k−1

u+m̌vk
u
)2],

(76)

and therefore E[ξk
u · f̂k−1

u+m̌vk
u
] = −E[(ξk

u)2]
2

9.

9Note that following the same derivation process, we can prove E[ξk
u · f̂k−1

u+mvk
u
] =

E[(ξk
u)2]

2
.
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Therefore, (75) can be simplify as

Dk
u(c) = (λk

u − 1) · E[(ξk
u)2] · P k

u(m). (77)

From (32), we know that E[(ξk
u)2]·P k

u(m) is exactly equal to Dk
u(m). Therefore, (77) is further simplified

to (46).

E. Proof of Lemma 3

Proof: For P-MBs with slice data partioning, from (19) and (61) we obtain

Dk(P ) =
1
|V|

∑

u∈Vk

(P k
u{r,m} ·Dk−1

u+m̌vk
u
) +

1
|V|

∑

u∈Vk

(P k
u{r, m̄} ·Dk−j

u+mvk
u
) +

1
|V|

∑

u∈Vk

(P k
u{r̄} ·Dk

u(p)).

(78)

The first term in the right-hand side in (78) is exactly the same as the first term in the right-hand side

in (71), that is, it equal to Dk−1 · P̄ k{r,m}, where P̄ k{r,m} = 1
|V|

∑Nk{r,m}
i=1 (P k

i {r,m} ·Nk
i {r,m}).

Denote V k
i (j){r, m̄} the set of pixels using the same reference frame k− j in the k-th frame with the

same XEP P k
i (j){r, m̄}; denote Nk

i (j){r, m̄} the number of pixels in V k
i (j){r, m̄}; denote Nk(j){r, m̄}

the number of sets with different XEP P k
i (j){r, m̄} but the same reference frame k−j in the k-th frame.

We have

1
|V|

∑

u∈Vk

(P k
u{r, m̄} ·Dk−j

u+mvk
u
) =

1
|V|

Nk(j){r,m̄}∑

i=1

(P k
i (j){r, m̄}

J∑

j=1

∑

u∈Vk
i (j){r,m̄}

Dk−j
u+mvk

u
). (79)

For large Nk
i (j){r, m̄}, we have 1

Nk
i (j){r,m̄}

∑
u∈Vk

i (j){r,m̄}Dk−j
u+mvk

u
converges to Dk−j , so (79) becomes

1
|V|

∑

u∈Vk

(P k
u{r, m̄} ·Dk−j

u+mvk
u
) =

1
|V|

Nk(j){r,m̄}∑

i=1

(P k
i (j){r, m̄}

J∑

j=1

Nk
i (j){r, m̄} ·Dk−j). (80)

Similar to the definition in (29), we define the weighted average over joint PEPs, of event that residual

is received with error and MV is received without error, for the set of pixels using the same reference

frame k − j in the k-th frame as

P̄ k(j){r, m̄} , 1
|Vk(j)|

Nk(j){r,m̄}∑

i=1

(P k
i (j){r, m̄} ·Nk

i (j){r, m̄}). (81)

We have

1
|V|

∑

u∈Vk

(P k
u{r, m̄} ·Dk−j

u+mvk
u
) =

1
|V|

J∑

j=1

(P̄ k(j){r, m̄} · |Vk(j)| ·Dk−j)

=
J∑

j=1

(P̄ k(j){r, m̄} · wk(j) ·Dk−j).

(82)
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Following the same derivation process, we obtain

1
|V|

∑

u∈Vk

(P k
u{r̄} ·Dk

u(p)) =
J∑

j=1

(P̄ k(j){r̄} · wk(j) · αk(j) ·Dk−j), (83)

where

P̄ k(j){r̄} , 1
|Vk(j)|

Nk(j){r̄}∑

i=1

(P k
i (j){r̄} ·Nk

i (j){r̄}) (84)

is the weighted average over joint PEPs, of event that residual is received without error, for the set of

pixels using the same reference frame k − j in the k-th frame.

Therefore, we obtain

Dk(P ) = Dk−1 · P̄ k{r,m}+
J∑

j=1

(P̄ k(j){r, m̄} · wk(j) ·Dk−j) +
J∑

j=1

(P̄ k(j){r̄} · wk(j) · αk(j) ·Dk−j).

(85)

For P-MBs without slice data partitioning, P̄ k{r,m} = P̄ k{r} and P̄ k(j){r, m̄} = 0, therefore we have

Dk(P ) = Dk−1 · P̄ k{r}+
J∑

j=1

(P̄ k(j){r̄} · wk(j) · αk(j) ·Dk−j). (86)

For I-MBs, from (37), it is also easy to obtain Dk(P ) = Dk−1 · P̄ k(r). So, together with (85), we obtain

(64).

F. Lemma 4 and Its Proof

To prove Proposition 2, we need to use the following lemma.

Lemma 4: The error reduction function Φ(x, y) satisfies Φ2(x, y) ≤ x2 for any γL ≤ y ≤ γH .

Proof: From the definition in (38), we obtain

Φ2(x, y)− x2 =





(y − γL)2 − x2, x > y − γL

0, y − γH ≤ x ≤ y − γL

(y − γH)2 − x2, x < y − γH .

(87)

Since y ≥ γL, we obtain (y − γL)2 < x2 when x > y − γL. Similarly, since y ≤ γH , we obtain

(y − γH)2 < x2 when x < y − γH . Therefore Φ2(x, y) − x2 ≤ 0 for γL ≤ y ≤ γH . Fig. 7 shows a

pictorial example of the case that γH = 255, γL = 0 and y = 100.

August 11, 2010 DRAFT



37

−300 −200 −100 0 100 200 300
0

1

2

3

4

5

6

7

8

9
x 10

4

x

y=100, γ
H

=255, γ
L
=0

x2

Φ2(x, y)

Fig. 7. Comparison of Φ2(x, y) and x2.

G. Lemma 5 and Its Proof

Before presenting the proof, we first give the definition of Ideal Codec.

Definition 1: Ideal Codec: both the true MV and concealed MV are within the search range, and the

position pointed by the true MV, i.e., u + mvk
u, is the best reference pixel, under the MMSE criteria,

for f̂k
u within the whole search range Vk−1

SR , that is, v = arg min
v∈Vk−1

SR

{(f̂k
u − f̂k−1

v )2}.

To prove Corollary 1, we need to use the following lemma.

Lemma 5: In an ideal codec, ∆̃k
u{p̄} = 0, In other words, if there is no propagated error, the clipping

noise for the pixel uk at the decoder is always zero no matter what kind of error event occurs in the k-th

frame.

Proof: In an ideal codec, we have (êk
u)2 = (f̂k

u−f̂k−1
u+mvk

u
)2 ≤ (f̂k

u−f̂k−1
u+m̌vk

u
)2. Due to the spatial and

temporal continuity of the natural video, we can prove by contradiction that in an ideal codec f̂k
u−f̂k−1

u+mvk
u

and f̂k
u − f̂k−1

u+m̌vk
u

have the same sign, that is either

f̂k
u − f̂k−1

u+m̌vk
u
≥ êk

u ≥ 0, or f̂k
u − f̂k−1

u+m̌vk
u
≤ êk

u ≤ 0. (88)

If the sign of f̂k
u − f̂k−1

u+mvk
u

and f̂k
u − f̂k−1

u+m̌vk
u

is not the same, then due to the spatial and temporal

continuity of the input video, there exists a better position v ∈ Vk−1 between mvk
u and m̌vk

u, and
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therefore within the search range, so that (êk
u)2 ≥ (f̂k

u − f̂k−1
v )2. In this case, encoder will choose v as

the best reference pixel within the search range. This contradicts the assumption that the best reference

pixel is u + mvk
u within the search range.

Therefore, from (88), we obtain

f̂k
u ≥ f̂k−1

u+m̌vk
u

+ êk
u ≥ f̂k−1

u+m̌vk
u
, or f̂k

u ≤ f̂k−1
u+m̌vk

u
+ êk

u ≤ f̂k−1
u+m̌vk

u
. (89)

Since both f̂k
u and f̂k−1

u+m̌vk
u

are reconstructed pixel value, they are within the range γH ≥ f̂k
u, f̂k−1

u+m̌vk
u
≥

γL. From (89), we have γH ≥ f̂k−1
u+m̌vk

u
+ êk

u ≥ γL, and thus Γ(f̂k−1
u+m̌vk

u
+ êk

u) = f̂k−1
u+m̌vk

u
+ êk

u. As a

result, we obtain ∆̃k
u{r̄, m, p̄} = (f̂k−1

u+m̌vk
u

+ êk
u)− Γ(f̂k−1

u+m̌vk
u

+ êk
u) = 0.

Since ∆̃k
u{r̄, m̄, p̄} = ∆̂k

u = 0, and from Section IV-D1, we know that ∆̃k
u{r, p̄} = 0, hence we obtain

∆̃k
u{p̄} = 0.

Remark 1: Note that Lemma 5 is proved under the assumption of pixel-level motion estimation. In

a practical encoder, block-level motion estimation is adopted with the criterion of minimizing the MSE

of the whole block, e.g., in H.263, or minimizing the cost of residual bits and MV bits, e.g., in H.264.

Therefore, some reference pixels in the block may not be the best reference pixel within the search range.

On the other hand, Rate Distortion Optimization (RDO) as used in H.264 may also cause some reference

pixels not to be the best reference pixels. However, the experiment results for all the test video sequences

show that the probability of ∆̃k
u{r̄, m, p̄} 6= 0 is negligible.

H. Proof of Corollary 1

Proof: From (67), we obtain ∆̃k
u{p̄} = (f̂k

u − ξ̃k
u− ε̃k

u)−Γ(f̂k
u − ξ̃k

u− ε̃k
u). Together with Lemma 5,

which is presented and proved in Appendix G, we have γL ≤ f̂k
u − ξ̃k

u − ε̃k
u ≤ γH . From Lemma 4 in

Appendix F, we have Φ2(x, y) ≤ x2 for any γL ≤ y ≤ γH ; together with (68), it is straightforward to

prove that E[(ζ̃k−1
u+gmvk

u

+ ∆̃k
u)2] ≤ E[(ζ̃k−1

u+gmvk
u

)2]. By expanding E[(ζ̃k−1
u+gmvk

u

+ ∆̃k
u)2], we obtain

E[ζ̃k−1
u+gmvk

u

· ∆̃k
u] ≤ −1

2
E[(∆̃k

u)2] ≤ 0. (90)

The physical meaning of (90) is that ζ̃k−1
u+gmvk

u

and ∆̃k
u are negatively correlated if ∆̃k

u 6= 0. Since

∆̃k
u{r} = 0 as noted in Section IV-D1 and ∆̃k

u{p̄} = 0 as proved in Lemma 5, we know that ∆̃k
u 6= 0 is

valid only for the error events {r̄, m, p} and {r̄, m̄, p}, and ∆̃k
u = 0 for any other error event. In other

words, ζ̃k−1
u+gmvk

u

and ∆̃k
u are negatively correlated under the condition {r̄, p}, and they are uncorrelated

under other conditions.
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