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Flatten a Curved Space by Kernel

D
ue to the recent explosion 
of data from all fields of sci-
ence, there is an increasing 
need for pattern analysis 
tools, which are capable 

of analyzing data patterns in a non-
Euclidean (curved) space. Because linear 
approaches are not directly applicable to 
handle data in a curved space, nonlinear 
approaches are to be used. Early-day 
nonlinear approaches were usually based 
on gradient descent or greedy heuristics, 
and these approaches suffered from local 
minima and overfitting [1]. In contrast, 
kernel methods provide a powerful 
means for transforming data in a non-
Euclidean curved space into points in a 
high-dimensional Euclidean flat space, 
so that linear approaches can be applied 
to the transformed points in the high-
dimensional Euclidean space. With this 
flattening capability, kernel methods 
combine the best features of linear 
approaches and nonlinear approaches, 
i.e., kernel methods are capable of deal-
ing with nonlinear structures while 
enjoying a low computational complex-
ity. In this column, we provide insights 
on and illustrate the power of kernel 
methods in two important pattern analy-
sis problems: feature extraction and 
clustering.

INSIGHT INTO KERNEL METHODS: 
A TRANSDUCTIVE PARADIGM
A linear pattern analysis method A  can 
be extended to a kernel method via the 
following procedure:

1)	Select a kernel suitable for a given 
nonlinear pattern analysis problem. A 
kernel is a function l that for all x 

and z in the data space X, satisfies 
( , ) ( ), ( ) ,k x z x zG Hz z=  where z is a 

mapping from X to a Hilbert space, 
and ,$ $G H is an inner product.
2)	Given a  t ra ining data  set 
{ : , , , },i N1 2xi g=  calculate the ker-
nel function ( , )k x x, ii j jl=  for each 
pair of xi and .x j  The resulting N N#  
matrix K with entries k ,i j is called the 
kernel matrix.
3)	Train the given linear pattern 
analysis method A  using the kernel 
matrix and the training data 
set, and obtain a pattern function 
( ) ( , ),f kx x xi ii

N

1
a=

=
/  w h e r e  ia  

( , , )i N1 g=  are obtained by training.
The term ( , )k x xi ii

N

1
a

=
/  is called the 

dual representation of ( )f x  [1], and ia  
( , , )i N1 g=  are called the dual vari-
ables. In essence, under dual representa-
tion, ( )f x  is a linear combination of 
kernel functions evaluated at each train-
ing data point and a given .x  Hence, a 
kernel method actually conducts trans-
duction, i.e., directly draws conclusions 
about new data from the training data, 
without constructing a model; in other 
words, transduction is a type of inference 
from observed, specific (training) cases 
to specific (test) cases (e.g., a given ) .x  
This is different from induction, which is 
a type of inference from specific (train-
ing) cases to a general rule/model. Under 
an inductive paradigm, once the general 
rule/model is obtained through learning, 
the training data will be discarded and 
will not explicitly be part of the general 
rule/model.

Why is a kernel method capable of 
resolving nonlinear structures at a low 
computational cost? First, the capabil-
ity of dealing with nonlinear structures 
is due to the use of ( ),xz  which flattens 
a curved space. Specifically, flattening 

is achieved by mapping Xx !  to ( )xz  in 
a high-dimensional feature space such 
that the nonlinear structure embedded 
in { }xi  becomes a linear structure in the 
feature space. For example, a nonlinear 
surface  in  X  becomes a  l inear 
hyperplane in the feature space after 
applying map ( )xz  (see Figure 1). 
Second, low computational complexity 
is due to the dual representation of 
pattern function ( ),f x  also known 
as the kernel tr ick ,  i .e. ,  kernel 

( , ) ( ), ( )k x x x xi iG Hz z=  can be evaluated 
without computing ( )xiz  and ( )xz . This 
is because a kernel can be directly 
given as a function of xi and x without 
explicitly defining ( ) .$z  Avoiding com-
puting ( )xiz  and ( )xz  significantly 
reduces the computational complexity.

For feature extraction problems, ( )f x  
is a feature vector in a feature space. For 
clustering problems, ( )f x  is a cluster 
index. For classification problems, ( )f x  is 
a class index. For regression problems, 

( )y f x=  is a regression function. For 
nonlinear system identification prob-
lems, ( ) ( ( ))t f t1x x+ =  is a system state 
equation that governs the dynamics of a 
given nonlinear system. We will describe 
the first two pattern functions in the fol-
lowing sections.

KERNEL-BASED FEATURE 
eXTRACTION
Transforming the input data x into a 
feature vector ( )xz  in a feature space is 
called feature extraction. The purpose 
of feature extraction is to extract rele-
vant information from the input data. 
Dimensionality reduction (i.e., remov-
ing irrelevant feature dimensions) is 
usually involved in feature extraction. 
In this section, we describe two known 
techniques in the literature: kernel 
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principle component analysis (KPCA) 
and a discriminant-learning-based ker-
nel feature extraction method.

KPCA [1] utilizes a dual represen-
tation of an eigenvector u j  of the 
covariance matrix of ,x  so that the 
projection P of ( )xz  onto the direc-
tion u j  in the feature space is given 
by ( ( )) ( , ) .kP x x x,i j ii

N

1u j z a=
=
/  This 

dual representation enables us to 
avoid computing ( ) .xz  KPCA is sum-
marized below.

Input: { : , , , , },i N1 2x x Ri i
L f! =  ker-

nel ( , ),k $ $  and k (the dimension of the 
output feature space).
1)	� Ca l cu la te  ( , )k x x,i j i jl=  f o r 

, , ,i N1 2 f=  and , , , ,j N1 2 f=  
and obtain the kernel matrix 

,K RN N! #  whose ith row and jth 
column is .k ,i j

2)	� Find the k largest eigenvalues 
{ : , , }j k1j fm =  and the corre-
s p o n d i n g  e i g e n v e c t o r s 
{ : , , , }R j k1v vj j

N f! =  o f 
matrix K.

3)	� Let /v, ,i j i j ja m=  ( , ,i N1 f=  
and , , ),j k1 f=  where v ,i j is the 
ith element of .v j

4)	� Compute ( , )x x x, ,j m i j i mi

N

1
a l=

=
u /  

( , ,m N1 f=  and  , , ),j k1 f=  
where x ,j mu  is the jth element of .xmu

O u t p u t :  t r a n s f o r m e d  d a t a 
{ : , , , } .i N1x x Ri i

k f! =u u

Kernel linear feature extraction 
(KLFE) [2] is a discriminant-learning-
based kernel feature extraction method 
for supervised learning. Discriminant-
learning-based feature extraction seeks 
a feature space that maximizes the 
difference between data of difference 
classes. Consider supervised learning 
for two classes and assume that the 
input  data  se t  D  cons i s t s  o f 
{( , ) : , , , },y i N1 2xi i g=  where x Ri

L!  
and the class label { , } .y 1 1i ! - +  LFE 
[3], [4] seeks a linear transformation 
matrix W that maximizes the difference 
between transformed data points Wx of 
different classes. This difference is 
called a margin, similar to that in a sup-
port vector machine (SVM) [1]. The 
margin ( )Wit  of xi  under W is defined 
b y  ( ) ,W m Wm h Whi i

T
i i

T
it = -  w h e r e 

m Wmi
T

i is the Mahalanobis distance 
between xi and its nearest neighbor in a 
different class, and h Whi

T
i is the Maha-

lanobis distance between xi and its 
nearest neighbor in the same class. Let 

( , ),NMm x x yi i i i_ -  where the nearest 
miss function ( , )NM $ $  is given by

	 ( , ) | | | | ,arg minNM yx x x px_ -ll � (1)
	 ( , ) ,ys.t. x D!l l 	�  (2)
	 ,y y!l 	�  (3)

where || | |x p  is l p  norm of .x  Let 
( , ),NH yh x xi i i i_ -  where the nearest 

hit function ( , )NH $ $  is given by

	 ( , ) | | | | ,arg minNH yx x x px_ -ll � (4)

	 ( , ) ,ys.t. x D!l l � (5)
	 .y y=l 	�  (6)

The margin-maximizing W can be 
found by solving the following optimiza-
tion problem:

	 ( ),

, ,

max

1 0s.t.

W

W W

i
i

N

F

1
2

W

< < $

t

=

=

/ 	�

(7)

where W F< <  is the Frobenius norm of 
.W  0W $  means that matrix W  has 

to be positive semidefinite. KLFE is 
a kernel extension of LFE. Using a 
nonlinear mapping ( )xz  that maps 
x RL!  to ( )x RL!z

r  ( ),L L2r  we can 
define ( ) ( ( , ))NM ym x xi i i i_ z z-r  and 

( ) ( ( , )) .NH yh x xi i i i_ z z-r  Under KLFE, 
the margin-maximizing W RL L! #r r r  can 
be found by solving

	
( ),

, .

max

1 0s.t.

m Wm h Wh

W W

i
T

i i
T

i
i

N

F

1
2

W

< < $

-

=

=

r r r r r r

r r

r
/

�
(8)

In [2], a KPCA-based method was pro-
posed to efficiently compute nonlinearly 
transformed points ( ) .x W xi iz=u r  KLFE 
can also achieve dimensionality 
reduction by choosing the dimensions 
with largest variance in the feature space.

To compare the performance of KLFE, 
LFE, and PCA, we use an experiment with 
synthetic data, a Swiss roll [Figure 1(a)]. 
To generate three-dimensional (3-D) 
sample points [ , , ] ( ,i 1x x x x( ) ( ) ( )

i i i i
T1 2 3

= =  
, )Ng  on a Swiss roll, we let x( )

i
1

#i=

( )cos i  and ( ),sinx( )
i
2

#i i=  where i is a 

10

5

0

x 2

x1
x3

–5

–10

–15
20

10

0

–10 0
0.5

1
1.5

2

(a) (b)

40

20

0

–20

–40

z(x)

10
5

0
–5

–10–10
–5

0
5

10

[FIG1]  Flatten a curved space by a nonlinear mapping ( )xz . (a) The nonlinear surface in the input data space. (b) A hyperplane in 
the feature space.
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random variable uniformly distributed in 
[ , ];0 4r  x( )

i
3  is a random variable uni-

formly distributed in [ , ];0 2  then the 3-D 
sample points xi ( , , )i N1 g=  are on a 
3-D helix surface (Swiss roll). To evaluate 
pattern classification performance under 
various feature extraction schemes, we 
label sample points generated by 

[ , ]0 2!i r  with y 1=-  and label sample 
points generated by ( , ]2 4!i r r  with 

.y 1=  The 3-D vector xi is further 
mapped to an L-dimensional vector zi by 
matrix ,R  i.e., ,z Rxi i=  where matrix R is 
randomly generated and has dimension 

.L 3#  The purpose of mapping xi to zi is 
to add some irrelevant features and test 
whether a feature extraction scheme is 
able to perform well under irrelevant fea-
tures. In this way, we obtain the input 
data set {( , ) : , , , }y i N1 2zD i i g= = , 
where z Ri

L!  and the class label 
{ , } .y 1 1i ! - +  For each feature extrac-

tion scheme, we use K-nearest-neighbor 
(K=1) as the classifier so that we can eval-
uate the performance of feature extrac-
tion in terms of classification error rate. 
The classification error rates are averaged 
over ten simulation runs, each with a dif-
ferent matrix .R  Figure 2 shows the clas-
sification error rate versus dimension L. 
We can see that KLFE and LFE achieve 
comparable performance, and both KLFE 
and LFE outperform PCA. When dimen-
sion ,L 1=  KLFE achieves better perfor-
mance than LFE. In addition, KLFE is 
robust against the change of dimension 
L, because KLFE has an explicit mecha-
nism to eliminate irrelevant features.

KERNEL-BASED 
CLUSTERING
Clustering partitions a 
set  of  objects  into 
groups (clusters) so that 
objects in the same clus-
ter are more similar (in 
some sense) to each 
other than to objects in 
other clusters. In this 
section, we describe 
three known clustering 
a lgor i thms :  kerne l 
K-means, spectral clus-
tering, and self-organiz-
ing-queue (SOQ)-based 
clustering [5].

The K-means algorithm is a widely 
used iterative clustering algorithm. In 
each iteration, the K-means algorithm 
computes a new centroid kn  for each 
cluster k and then updates the cluster 
members using the new centroids based 
on the nearest neighbor rule. (The cen-
troid of a cluster is the arithmetic mean 
position of all the points/members in the 
cluster.) Kernel K-means [6] is a kernel 
extension of K-means algorithm, which is 
summarized in the box below.

Spectral clustering techniques are 
widely used for graph clustering [7] or 
community detection [8], i.e., finding sets 

of “related” vertices (called communities) 
in a graph. Spectral clustering utilizes 
the spectrum of the Laplacian matrix L of 
a given graph for grouping the nodes, 
since the multiplicity K of the eigenvalue 
0 of Laplacian L equals the number of 
connected components in the graph 
(denote these connected components by 
( , , ),A AK1 g  and the eigenspace of eigen-
value 0 is spanned by the indicator vec-
tors , ,1 1A AK1 g  of those components, 
where the indicator vector ,1 RA

N
k !  the 

ith entry of which is 1 if Node i belongs to 
,Ak  and is 0 otherwise. Hence we can use 

the eigenvectors of eigenvalue 0 to obtain 
the indicator vectors , ,1 1A AK1 g , which is 
exactly a partition of the graph into K 
connected components. Spectral cluster-
ing techniques can be categorized into 
unnormalized and normalized tech-
niques. An unnormalized spectral clus-
tering algorithm leverages the spectrum 
of the unnormalized Laplacian matrix of 
a given graph, while a normalized spec-
tral clustering algorithm leverages the 
spectrum of the normalized Laplacian 
matrix. Spectral clustering can be 
regarded as a special type of weighted 
kernel K-means [6] since a weighted 
kernel K-means scheme can be reduced to 
an unnormalized/normalized spectral clus-
tering scheme by choosing appropriate 

[FIG2]  The classification error rate (y-axis) versus 
dimension L (x-axis) of Swiss roll data.
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Input: { : , , },i N1xi f=  kernel ( , ),$ $l  and the number of clusters K.
1)	� Initialize the K clusters and obtain { : , , },C k K1( )

k
0

f=  where C( )
k
t  denotes the set 

containing all the members of cluster k at Stage t.
2)	 Let .t 0=
3)	� For each xi  ( , , ),i N1 f=  update its new cluster index by ( )k x*

i = 
| | ( ) | | ,arg min xk i k 2

2z n-  where || ( ) | |xi k 2
2z n-  can be computed by

	 || ( ) | | | | ( )
| |

( ) | |
C
1x x x( )i k i
k
t

C

2
2

2
2

x ( )
k
t

z n z z- = -
!

/ � (9)

	 ( , )
| |

( , )
| |

( , ) .k k
C C

k2 1 zx x x x x( ) ( )i i

k
t i

C k
t

CC
2

x zx( ) ( )( )
k
t

k
t

k
t

= - +
! !!

/ // �(10)

Since we assume points { ( ) : , , }i N1xi fz =  form a linear geometric structure 
in the feature space due to flattening capability of ( ),$z  we use the Euclidean dis-
tance in (9) instead of a geodesic distance used in a curved space. Again, in (10), 
the kernel trick bypasses direct computation of ( ) .xz

4)	� Update the membership of each cluster k ( , , )k K1 f=  by { : ( )C kx x( ) *
k
t

i i
1
=

+  
, { , , }} .k i N1 f!=

5)	� If the termination criteria are not satisfied, let t t 1= +  and go to Step 3; other-
wise, stop.

Output: { : , , } .C k K1( )
k
t 1

f=
+
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weight matrix and letting kernel matrix 
,K S=  where S is an affinity matrix 

used in spectral clustering. An unnor-
malized spectral clustering algorithm 
is shown below.

The performance of existing spectral 
clustering techniques is not satisfactory 
for many applications. To improve the 
performance, the bioinspired approach, 
SOQ [5], was proposed for the graph 
clustering problem. The key idea of 
SOQ is to enable fictitious queues of 
intelligent nodes with self-organizing 
decision capability to choose a queue 
with most friends to join so that closely 
related nodes are grouped into the same 
cluster/queue. The SOQ clustering algo-
rithm is shown in the box at the top of 
the page.

The key features of SOQ are as 
follows:

1)	 self-organization, i.e., each node 
has the ability to decide where it 
wants to join
2)	 the similarity matrix S can be 
asymmetric, and the entries in S can 
take any real value, including negative 
values. 

Note that none of the existing spectral 
clustering algorithms allows asymmetric 

similarity matrix and similarity matrix 
with negative entries.

There are many variations of SOQ, 
depending on how Steps 1, 3, 4, 5, and 7 
are implemented. For example, in Step 3 
(WHO), we can choose the head of 
Current_Queue as Current_Person; in 
Step 4 (HOW), Current Person i can use 
the following criterion (called most 
friends) to choose Queue kt  as the Next 
Queue to join

	 | |

( )
arg maxk C

s s, ,

k k

i j j i
j Ck

=

+
!t
/

,� (11)

where s ,i j is the entry of S at row i 
and column j, and Ck is the set of indices 
of members in Queue k; in Step 5 
(WHERE), we can place Current_Person 
at the tail of Next_Queue. Due to the 
self-organizing decision capability, 
SOQ clustering scheme achieves better 
clustering performance than existing 
spectral clustering 
techniques and 
K-means a lgo-
rithm for many 
applications [5].

To  compare 
the performance 
of representative 
kernel-based clus-
tering schemes, 
i.e., unnormalized 
spectral cluster-
ing (USC) [6] , 
normalized cut 
(ncut) [6], and 
SOQ, as well as 
K-means, we con-
duct two experi-
m e n t s .  S i n c e 

unnormalized and normalized spectral 
clustering algorithms can be regarded 
as special types of weighted kernel 
K-means, we use spectral clustering to 
represent kernel K-means as well.

The first experiment uses synthetic 
data consisting of two-dimensional (2-D) 
Gaussian-distributed sample points. To 
simulate four clusters, we use four 2-D 
Gaussian distributions with the same 
standard deviation of 0.05 and mean 
(-0.3, 0), (0, 0), (0.3, 0), and (0.6, 0), 
respectively, and each 2-D Gaussian dis-
tribution corresponds to one cluster; the 
two dimensions of the 2-D Gaussian are 
independent and identically distributed. 
The number of samples for the four clus-
ters are 105, 15, 15, and 15, respectively, 
and the total number of points N is 150. 
Figure 3 shows the 2-D positions of the 

Input: a set of N nodes, affinity matrix S (where ),S RN N! #  and the number of 
clusters K.
1)	� Initialization: divide the set of N nodes into K queues; assign a queue to 

Current_Queue; Flag=1.
2)	 While (Flag)
3)	 �WHO: Choose who in Current_Queue as Current_Person.
4)	� HOW: (How to) select a queue as Next_Queue for Current_Person to join.
5)	� WHERE: (Where to) place Current_Person in Next_Queue.
6)	� Assign Next_Queue to Current_Queue.
7)	� WHEN: (When to) let Flag=0, i.e., stop the loop.
8)	 Endwhile
Output: the resulting K queues/clusters.

Input: Affinity matrix S (where 
),S RN N! #  and the number of clus

ters K.
1)	� Compute the unnormalized Lapla-

cian matrix ,L D S= -  where D is 
a diagonal matrix whose diagonal 
entries are row-sum of .S

2)	� Compute the K smallest eigenval-
ues and the corresponding eigen-
vectors , ,u uK1 f  of .L

3)	� Let U )(U RN K! #  be a matrix con-
taining vectors , ,u uK1 f  as 
columns.

4)	� For , , ,i N1 f=  let yi ( )y Ri
K!  be 

the vector corresponding to the 
ith row of U.

5)	� Use the K-means algorithm to par-
tition { : , , }i N1yi f=  into clus-
ters , , .C CK1 f

6)  �Let { : } ( , ..., ),A j C k K1yk j k!= =  
where Ak contains the indices of 
nodes that belong to Cluster k.

Output: { : , , } .A k K1k f=
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[FIG3]  The positions of the 2-D sample points in a 2-D plane; 
points with the same color belong to the same cluster (i.e., 
generated by the same distribution).

(continued on page 142)
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150 sample points. For spectral cluster-
ing algorithms, an affinity matrix is 
needed. Let the generated 2-D points be 

, , ...,p p pN1 2  w i t h  ( , )p x yn n n=  f o r 
.n N1 # #  We generate the affinity mea-

sure s ,i j between any two points pi and 
p j  by exps ,i j =  ( | | | | / ( )),2p pi j 2

2 2v- -  
where 1v =  in this experiment. In this 
way, we obtain an affinity matrix .S

We run the algorithms 20 times, each 
with a different randomly permuted input, 
to obtain 20 clustering results. By compar-
ing to the ground truth in Figure 3, we 
obtain the error rate for each experiment. 
For the 20 experiments, we calculate the 
mean clustering error rate and 95% confi-
dence interval, which are listed in the sec-
ond column of Table 1, where errorn  
denotes the mean clustering error rate 
and error !n o denotes upper/lower bound 
of the confidence interval, respectively. 
Table 1 demonstrates that SOQ signifi-
cantly outperforms K-means, USC, and 
Ncut for this synthetic data set.

The second experiment uses real-
world data, consisting of images of hand-
written digits, which are described in [9] 

and are download-
able from [10]. The 
ten digits data set is 
used in our experi-
ment. There are ten 
clusters in the data 
set, with 100 mem-

bers in each cluster. Again, we run the 
algorithms 20 times, each with different 
randomly permuted input. For the 20 
experiments, we calculate the mean 
clustering error rate and 95% confi-
dence interval, which are listed in the 
third column of Table 1. Table 1 demon-
strates that SOQ significantly outper-
forms K-means, USC, and ncut for this 
set of handwritten digits.

CONCLUSIONs
In this column, we have discussed ker-
nel methods as pattern analysis tools, 
and provided insights in two important 
pattern analysis problems: feature 
extraction and clustering.

Kernel methods have been widely 
applied to computer vision, image 
processing, information retrieval, text 
mining, handwriting recognition, geosta-
tistics, kriging, bioinformatics, chemoin-
formatics, and information extraction, 
among others. It is expected that kernel 
methods will provide valuable pattern 
analysis tools for emerging big data 
applications.
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[TABLE 1]  Error rate.

error !n o Synthetic Data Handwritten Digits
K-means . .0 3090 0 0865! . .0 2661 0 0349!

USC . .0 3483 0 0620! . .0 3704 0 0219!

ncut . .0 5020 0 0474! . .0 3228 0 0204!

SOQ 0 0! . .0 1603 0 0192!


