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Abstract

In recent years, distributed denial of service (DDoS) attacks have become a major security threat to Internet services.
How to detect and defend against DDoS attacks is currently a hot topic in both industry and academia. In this paper, we
propose a novel framework to robustly and efficiently detect DDoS attacks and identify attack packets. The key idea of
our framework is to exploit spatial and temporal correlation of DDoS attack traffic. In this framework, we design a perim-
eter-based anti-DDoS system, in which traffic is analyzed only at the edge routers of an internet service provider (ISP) net-
work. Our framework is able to detect any source-address-spoofed DDoS attack, no matter whether it is a low-volume
attack or a high-volume attack. The novelties of our framework are (1) temporal-correlation based feature extraction
and (2) spatial-correlation based detection. With these techniques, our scheme can accurately detect DDoS attacks and
identify attack packets without modifying existing IP forwarding mechanisms at routers. Our simulation results show that
the proposed framework can detect DDoS attacks even if the volume of attack traffic on each link is extremely small. Espe-
cially, for the same false alarm probability, our scheme has a detection probability of 0.97, while the existing scheme has a
detection probability of 0.17, which demonstrates the superior performance of our scheme.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, distributed denial of service

(DDoS) attacks have become a major security threat
to Internet services. DDoS attacks can consume lots
of resources of a server, making legitimate users
unable to access the server. With the exponential
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increase of Internet-based e-business and e-com-
mence, the damage caused by DDoS attacks is more
severe than ever before. Therefore, how to defend
against DDoS attacks and protect the access of legit-
imate users has attracted attention from both indus-
try and academia. However, achieving this objective
is not an easy task due to the difficulty in distinguish-
ing attack traffic from normal traffic.

To address this problem, two types of anti-DDoS
systems, i.e., host-based systems and network-based
systems [1,2], have been developed. Host-based sys-
tems are deployed on end-hosts. These systems typ-
ically use firewall and intrusion detection systems
(IDS), and/or balance the load among multiple
(geographically dispersed) servers to defend against
DDoS attacks. The host-based approach can help
protect the server system; but it may not be able
to protect legitimate access to the server, because
high-volume attack traffic may congest the incom-
ing link to the server.

On the other hand, network-based anti-DDoS
systems are deployed inside networks, e.g., on rou-
ters. Network-based anti-DDoS techniques can be
classified into two categories: (1) detection/identifi-
cation, and (2) defense. A detection/identification
mechanism is responsible for detecting DDoS
attacks and identifying attack packets or attack
sources. To detect DDoS attacks, signal processing
techniques (e.g., wavelet [3], spectral analysis [4,5],
statistical methods [6–8]), and machine learning
techniques [9] can be used. To identify attack
sources, IP traceback [10] is typically used. The IP
traceback techniques can help contain the attack
sources; but it requires large-scale deployment of
the same IP traceback technique and needs modifi-
cation of existing IP forwarding mechanisms (e.g,
IP header processing).

To defend against DDoS attacks, traffic control
mechanisms such as ingress filtering [11], route-
based packet filtering [12], and rate limiting [13],
are usually used. Ingress filters or packet filters
[11,12] can drop packets with spoofed source IP
addresses that do not belong to the upstream net-
works; but their effectiveness depends on global
deployment of these filters in the Internet; with a
partial deployment, spoofing source IP addresses is
possible. Rate limiter [13] are deployed at each link
of certain designated routers; they indistinguishably
drop some of the packets destined to a victim, when
the victim is overwhelmed by (possible attack) traf-
fic. In this way, the volume of attack traffic can be
limited. Rate limiting is suitable for mitigating

attacks having high-data-rate on a link; but it is
not suitable for mitigating attacks having low-
data-rate on a link, since attacks with low-data-rate
on a link will not trigger rate limiting operation.

In this paper, we take a network-based approach
and propose a novel framework to detect and iden-
tify DDoS attacks. Our proposed approach is able
to detect any type of DDoS attacks such as TCP
SYN flood, TCP RST flood, UDP flood, ICMP
flood, and DNS flood, as long as they use spoofed
source IP addresses. The key idea of our framework
is to exploit spatial and temporal correlation of
DDoS attack traffic. In this framework, we design
a perimeter-based anti-DDoS system, in which traf-
fic is analyzed only at the edge routers of an Internet
service provider (ISP) network. The anti-DDoS sys-
tem consists of two major components: (1) feature
extraction and (2) detection. Our feature extraction
scheme exploits temporal correlation between the
outgoing traffic and the incoming traffic on a link,
which makes distinct features between normal and
attack traffic; we call these features 2D matching fea-

tures, which will be defined in Section 4.1.2. The 2D
matching features are used by the detection module.
In detection, our machine learning algorithm is able
to utilize the spatial correlation of DDoS attack
traffic at different routers. Our system has the fol-
lowing advantages.

• Different from the existing network-based traffic
control systems, our system is able to accurately

detect attacks having low-data-rate on a link
and accurately identify legitimate flows. Accu-
rately detecting attacks having low-data-rate on
a link is important because DDoS attackers are
getting smarter and trying to hide their presence
by launching attacks from (geographically dis-
persed) thousands of compromised machines,
each of which generates low-rate attack traffic.
Accurately identifying legitimate flows is criti-
cal in defense since it can help filter out attack
traffic.

• Compared to IP traceback and egress filtering,
our scheme can effectively detect attacks and
identify attack packets without modifying exist-
ing IP forwarding mechanisms and without a
large-scale upgrade to backbone routers.

• Our network-based system has an advantage
over a host-based system, in that designated
routers can throttle the attack traffic by forward-
ing packets from the identified legitimate flows
only.
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Simulation results show that the proposed frame-
work can detect DDoS attacks even if the volume of
attack traffic on each link is extremely small. Espe-
cially, for the same false alarm probability, our
scheme has a detection probability of 0.97, while
the existing scheme has a detection probability of
0.17, which demonstrates the superior performance
of our scheme. Note that, although we use TCP
SYN flood attacks during the experiments, our
method can actually detect any source-address-
spoofed DDoS attack.

The rest of the paper is organized as follows. In
Section 2, we briefly overview the related work. Sec-
tion 3 presents our framework for detecting DDoS
attacks. In Section 4, we describe our feature extrac-
tion method. Section 5 presents our machine learn-
ing algorithm for DDoS attack detection. In Section
6, we discuss some important issues related to detec-
tion algorithms. Section 7 shows our simulation
results and Section 8 concludes the paper.

2. Related work

In this section, we scan related work on feature
extraction and detection.

2.1. Feature extraction

In [6], Wang et al. proposed to detect TCP SYN
flood by using the ratio of the number of TCP SYN
packets to the number of TCP FIN and RST pack-
ets. Ideally, if there are no SYN flood attacks, this
ratio will be close to 1 for a period that is sufficiently
long, since most TCP sessions begin with an SYN
packet and end with an FIN packet. However,
one of the main difficulties of this scheme is that
the duration of some TCP sessions can be very
large, which means that the ratio may not be close
to 1 for a short period. To overcome this problem,
Wang et al. proposed to use the ratio of the number
of SYN packets (on the incoming direction of a
link) to the number of SYN/ACK packets on the
outgoing direction of the link [14], since the time
between the arrival of an SYN and the arrival of
the corresponding SYN/ACK packet is related to
the round-trip time of the connection, which has
much less variation compared to the life-time of
TCP sessions. Nevertheless, this ratio of SYN to
SYN/ACK does not make distinct features between
normal and attack traffic since DDoS attackers can
fool the system by generating attack traffic that
makes the ratio of SYN to SYN/ACK close to 1,

just like normal traffic. This results in poor perfor-
mance on detecting DDoS attacks.

It is well known that most DDoS attacks use
spoofed source IP addresses. Moreover, the num-
ber of packets from the same spoofed source IP
address is relatively small, compared to the number
of packets of a real session. Consequently, to gen-
erate a huge amount of attack traffic, a large num-
ber of spoofed source IP addresses need to be
created. Based on this assumption, Peng et al.
[7,15] proposed to use the ratio of the number of
new IP address to the total number of IP addresses
to detect attacks with spoofed source IP addresses.
In their scheme, a database is required to store the
information of all IP addresses that appeared in a
certain period, which means that the required
memory size is very large for large-scale Internet.
Hence, their scheme is not suitable for large-scale
ISP networks.

Different from Ref. [7,15] that only consider new
IP addresses, Ref. [16] uses entropy of the IP
address distribution as a feature for detection; but
the complexity of calculating entropy for large-scale
Internet can be extremely high.

To summarize, the ratio of SYN to SYN/ACK
[14], the percentage of new IP addresses [7,15],
and entropy of the IP address distribution [16] have
been used as features for detecting DDoS attacks.
Features are important since they significantly affect
the performance of detectors. The aforementioned
existing features either do not lead to good perfor-
mance of detectors, or require high storage/time
complexity. To address these deficiencies, this paper
proposes a hash-table/Bloom-filter based feature
extraction scheme to efficiently extract so-called
2D matching features, which makes distinct features
between normal and attack traffic, thereby improv-
ing accuracy of detecting attacks.

2.2. Detection

Once features are extracted from the measure-
ment data (obtained by traffic measurement
devices), the features can be used in detecting DDoS
attacks. To detect DDoS attacks, signal processing
techniques (e.g., wavelet [3], spectral analysis [4,5],
statistical methods [6–8]), and machine learning
techniques [9] can be used.

In [3], Kim et al. proposed to use wavelet to ana-
lyze traffic but it is not clear whether their scheme
can detect attacks having low-data-rate on a link.
In [4,5], spectral analysis was used to detect DDoS
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attacks; it is assumed that high-volume attack traffic
causes significant changes in the power spectral den-
sity of traffic; but the technique was not designed to
detect attacks having low-data-rate on a link, since
attacks having low-data-rate may not cause large
changes in the power spectral density of traffic. In
this paper, we design a detection technique that
addresses both high rate and low rate attacks.

A statistical method called change-point method
was used to detect DDoS attacks [6–8]. Specifically,
the change-point method is used to detect attack-
induced abrupt changes in statistical patterns of
traffic, compared to the ‘‘normal traffic pattern’’.
However, the parameters of the existing change-
point algorithms [6–8] are constant and preset a pri-

ori for a given traffic pattern; it is not clear how to
dynamically adapt the values of these parameters
when the traffic pattern changes. To address this
problem, in this paper, we use machine learning
techniques to make our scheme robust against
time-varying traffic patterns, which are inherent in
real Internet.

In [9], Mukkamala and Sung employed a
machine learning technique called support vector
machine to detect DoS attacks; but their algorithm
was not tested for networks with a large IP address
space, which may significantly increase the time/
storage complexity of detection algorithms. In this
paper, we will test our machine learning algorithm
for networks with a large IP address space.

A simple method, known as egress filtering, can
be used to defend source-address-spoofed DDoS
attacks by filtering unknown source IP addresses
of all packets at edge routers. A more advanced
method, called StackPi [17], inserts digital signature
to IP packets to prevent source address spoofing.
Unfortunately, both methods need to be deployed
to the whole Internet to be effective. Any ISP not
supporting these two methods will not be able to fil-
ter out potential attack packets. In addition, the
high complexity incurred by these two methods
may be unacceptable as they need to modify each
IP packet at a router with these methods deployed.
These limitations make these two methods impracti-
cal, if not impossible.

3. Framework for detecting DDoS attacks

In this section, we present our framework for
detecting DDoS attacks.

Fig. 1 shows an ISP network architecture under
our study, which consists of two types of IP routers,

namely, core routers and edge routers. Core routers
interconnect with one another to form a high-speed
core network. In contrast, edge routers are respon-
sible for connecting subnets (i.e., customer networks
or other ISP networks) with the core network. In
this paper, a subnet can be either a customer net-
work or an ISP network.

Given the ISP network architecture, we design a
framework for detecting DDoS attacks. As shown
in Fig. 2, our framework consists of three types of
components: (1) traffic monitors, (2) local analyzers,
and (3) a global analyzer, which are described as
below.

3.1. Traffic monitor

A traffic monitor (represented by a filled oval in
Fig. 2) is responsible for:

• scanning partial or all packets of a single unidi-
rectional link;

• summarizing traffic characteristics;
• extracting simple features from the traffic

characteristic;
• detect DDoS attacks based on simple online

detection algorithm; and

Fig. 1. An ISP network architecture.

Fig. 2. Framework for detecting DDoS attacks.
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• submit the summary of traffic information, sim-
ple feature data, and detection results to a local
analyzer.

3.2. Local analyzer

A local analyzer is responsible for:

• extracting complicated features from traffic infor-
mation obtained at a single edge router, and/or a
few edge routers if they are co-located;

• detecting attacks with local information;
• submit the detection results, feature data, and

traffic information (if necessary) to a global
analyzer.

The local analyzer can utilize temporal correla-
tion of traffic to generate feature data. Although a
local analyzer may also have spatial correlated traf-
fic information, for example, the local analyzer on
top of Fig. 2, it is more appropriate to forward
those information to a global analyzer because the
global analyzer has the whole view of the network.

3.3. Global analyzer

A global analyzer is responsible for:

• extracting complicated features that requires glo-
bal information, such as routing information,
from traffic;

• analyzing feature data obtained from multiple
local analyzers; and

• detecting anomalies with global information
obtained from multiple edge routers.

The global analyzer utilizes both temporal corre-
lation and spatial correlation of traffic. Here it is
important to note that, some feature data must be
obtained at the global analyzer if global information
is required. For example, in Fig. 3, if the traffic from
subnet A to server B passes through edge router X,
and the traffic from server B to subnet A passes
through edge router Y, then the 2D matching fea-
tures between subnet A and server B shall be
obtained at the global analyzer, which has the rout-
ing information of the ISP network.

Compared to existing network-based anti-DDoS
systems, our framework does not require the
upgrade of any router in the network.

Next, we describe feature extraction and detec-
tion algorithms in Sections 4 and 5, respectively.

4. Feature generation

To efficiently extract features from traffic, we
design a three-level hierarchical structure shown in
Fig. 4, where incoming packets are processed by
level-one filters, then by level-two filters, and finally
by (level-three) feature extraction modules. Level-
one filters and level-two filters are placed in traffic
monitors. A feature extraction module can be
placed in either a traffic monitor or a local analyzer,
depending on the type of the feature.

Level-one filters select a packet based on its
source–destination pair, which is defined by the
source IP address, the source network mask, the
destination IP address, the destination network
mask. For example, if we are interested in packets
from 172.10.5.28 to 210.33.68.102, we can use
255.255.255.255 as both the source network mask
and the destination network mask; if we are inter-
ested in packets from 172.10.x.x to 208.33.1.x, we
can use 255.255.0.0 as the source network mask
and 255.255.255.0 as the destination network mask.
In this way, we can monitor an end-host or a sub-
net, giving much flexibility in configuring our detec-
tion framework. The output of a level-one filter is
packets with the same source–destination pair,
which are conveyed to level-two filters.

A level-two filter classifies the packets coming
from level-one filters, based on the upper layer1 data
fields, e.g., TCP SYN or FIN. The packets of our
interest will be forwarded to one or multiple feature
extraction modules. For example, the number of
TCP SYN packets can be used to generate both

Fig. 3. An example of the asymmetric traffic.

1 Here, the upper layer can be either Layer 4 or Layer 7.
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the TCP SYN rate feature and the TCP SYN/
FIN(RST) ratio feature; hence, TCP SYN packets
are conveyed to both the TCP SYN rate module
and the TCP SYN/FIN(RST) ratio module, as
shown in Fig. 4. On the other hand, a feature mod-
ule may need packets from multiple level-two filters.
For example, the SYN/FIN(RST) ratio feature
extraction requires packets from three filters, as
shown in Fig. 4.

Compared to the packet classification schemes in
[6,7], our hierarchical structure for feature extrac-
tion is more general and efficient.

Next, we describe (level-three) feature extraction
modules and their implementations in Sections 4.1
and 4.2, respectively.

4.1. Feature extraction module

Similar to previous studies [6,7], we generate fea-
tures in a discrete manner, i.e., our feature extrac-
tion module will generate a (feature) value or a
vector at the end of each time slot. Here we define
the duration of a time slot by Ts, which may vary
for different features. Intuitively, a shorter Ts may
reduce the detection delay, which is defined as the
interval from the epoch when the attack starts to
the epoch when the attack is detected; but a smaller
Ts may increase the computational complexity,
since the detection algorithm needs to analyze more
feature data for the same time interval. On the other
hand, if a feature is represented by a ratio, Ts must
be sufficiently large to avoid division by zero. For
example, if we want to use the SYN/FIN(RST)
ratio as in [6] to detect TCP SYN flood, then Ts can-
not be too small, because the number of FIN pack-
ets in a short period can be 0, which will result in a
false alarm even if the number of SYN packets is
not large.

Feature extraction can be done in a traffic moni-
tor, a local analyzer, and a global analyzer, which
we describe in Sections 4.1.1–4.1.3, respectively.

4.1.1. Feature extraction in a traffic monitor
As we mentioned earlier, some features are gener-

ated within a traffic monitor. These features are typ-
ically simple and can be extracted from the traffic on
a single unidirectional link.

In our framework, a traffic monitor can generate
the following features:

• Packet rate: defined by the number of packet
arrivals in one time slot. This feature is simple
but useful for detecting high-volume DoS and
DDoS attacks. But it can hardly help detect
low-volume attacks.

• Data rate: defined by the total number of bits of
all packets that arrive in one time slot.

• SYN/FIN(RST) ratio2: defined by the ratio of
the number of TCP SYN packets in one time slot
to the number of FIN (and a portion of RST)
packets in the same time slot.

4.1.2. Feature extraction in a local analyzer

Although a traffic monitor can generate simple
features efficiently, these features may not be suffi-
cient to detect attacks. In particular, the packet rate
and data rate features may only be useful for detect-
ing high-volume attacks; and SYN/FIN(RST) ratio
has a large variation even for normal traffic and
hence cannot help accurately distinguish normal
network conditions from network anomalies. To
improve detection accuracy, one can use a local ana-
lyzer to generate more sophisticated features, for

Fig. 4. Hierarchical structure for feature extraction.

2 How to obtain this ratio can be found in [14].

K. Lu et al. / Computer Networks 51 (2007) 5036–5056 5041



Author's personal copy

example, the SYN/SYN-ACK ratio proposed in
[14] and the percentage of new IP addresses pro-
posed in [7].

However, as discussed in Section 2.1, the existing
features such as the SYN/SYN-ACK ratio [14] and
the percentage of new IP addresses [7] either do not
lead to good performance of detectors, or require
high storage/time complexity. To address these defi-
ciencies, we propose a new type of feature called 2D

matching features, which can make distinct features
between normal and attack traffic, thereby improv-
ing accuracy of detecting attacks.

The motivation of proposing 2D matching fea-
tures is the following. For most Internet applica-
tions, packets are generated from both hosts that
are engaged in communication. Therefore, some
information carried by packets on one direction
shall match the corresponding information carried
by packets on the other direction. For example, if
station A communicates with station B through
TCP, then we can observe packets with source A
and destination B on one direction, and we can also
observe packet with source B and destination A on
the opposite direction. On the other hand, if a
DDoS attacker generates source A on one direction,
the response packet may not reach the link on the
reverse direction (where a traffic monitor is placed)
if the attacker spoofs its source IP address. There-
fore, we can utilize this feature to detect DDoS
attacks.

To facilitate the discussion, we need to specify
‘keys’ that contain the information that shall appear
on both directions of a link. For instance, the key
for TCP SYN packets on one direction can be
defined by

hsrcIP ; dstIP ; srcPort; dstPort; Seq#i

and the corresponding key for SYN-ACK packets
on the opposite direction can be defined by

hdstIP ; srcIP ; dstPort; srcPort;Ack#� 1i:

Intuitively, by examining whether a key matches the
corresponding key on the opposite direction, we can
detect the SYN flood or SYN-ACK flood attacks.
Since the proposed feature is generated by matching
the keys on two directions of a link, we call it 2D

matching feature.

4.1.3. Feature extraction in a global analyzer

From the discussion above, we can observe that
the 2D matching features can be extracted by a local
analyzer if

1. the traffic is symmetric on a bi-directional link,
i.e., if packets from host A to host B go through
a link on one direction, then packets from host B
to host A must go through the link on the oppo-
site direction; or

2. the traffic is asymmetric but the local analyzer
have all the traffic information from different
links, which are necessary for the 2D matching
feature.

In practice, if the above conditions do not exist in
some scenarios (for example, in the scenario illus-
trated in Fig. 3), then the local analyzer can be set
to forward the traffic information to a global ana-
lyzer. Consequently, the global analyzer will be
responsible for extract the 2D matching features.

Next, we discuss how to implement feature
extraction modules to extract the 2D matching
features.

4.2. Implementation of 2D matching feature

extraction

In this section, we describe the implementation at
a traffic monitor and at a local analyzer in Sections
4.2.1 and 4.2.2, respectively. To simplify the discus-
sion, we assume that the traffic is symmetric
hereafter.

4.2.1. Implementation at a traffic monitor

To perform matching of the keys on two direc-
tions, traffic monitors on two directions of a link
need to record some traffic information. To deal
with high-speed data rates and a large number of
source–destination pairs in large-scale networks,
efficient traffic recording must be in place. To
achieve this, we use a hash table to store the needed
information.

To update an (Pempty or non-empty) hash table,
the following procedure is conducted.

• For each packet that passes through a level-two
filter, a hash function will be called to locate
the corresponding record in the hash table. If
the corresponding record is empty, then a key
extracted from the packet will be stored in the
record, and the counter of the record will be set
to one; if the record is not empty and the key
of the packet and the key of the record are iden-
tical, then the counter will be increased by one; if
the record is not empty and the keys are different,
then a collision occurs. The collision can be either
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resolved by some avoidance techniques such as
linear probing and rehashing, or can be simply
ignored, which means that the key of the incom-
ing packet will not be saved.

• At the end of each time slot, a traffic monitor
sends all non-empty records to the corresponding
local analyzer.

The performance of this implementation depends
on three major factors:

• Memory requirement: Denote Nht the maximum
number of records that could be stored in a hash
table; denote Lk the length (in bytes) of each
record. Then the total memory requirement is
Nht · Lk (in bytes). Here Lk depends on the
length of a key. For example, for the key of
SYN packets, we need 16 bytes of memory to
store the key and 4 bytes of memory to store
the status information and the counter. There-
fore, Lk = 20 bytes.

• Processing speed: The main time complexity is
due to the calculation of the hash function and
key comparing, both of which can be imple-
mented efficiently in software or hardware (if
necessary).

• Data rate required for communication: At the end
of each slot, the record information needs to be
transmitted from the traffic monitor to the local
analyzer. In the worst case, the data rate require-
ment for the communication is

8� Nht � Lk

T s
ðb=sÞ:

4.2.2. Implementation at a local analyzer

The major features to be extracted at a local ana-
lyzer are the number of unmatched keys and the
percentage of unmatched keys. Other features,
including the packet rate, can also be extracted at
a local analyzer.

To achieve the functionality of key matching, we
build two key databases: one for the incoming traffic
and the other for the outgoing traffic. Both the
incoming key database and the outgoing key data-
base use a sliding window mechanism to update
the database. Specifically, the incoming key data-
base always stores the latest Rf + 1 slots of key
records; e.g., if slot n is the current slot, the incom-
ing key database stores key records from slot n � Rf

to slot n. The outgoing key database always stores
the latest Rb + Rf + 1 slots of key records. For each

slot, both the incoming key database and the
outgoing key database can store at most Nht key
records.

Now, we describe how to update the two key dat-
abases. As mentioned in Section 4.2.1, a traffic mon-
itor sends all non-empty records to the
corresponding local analyzer, at the end of each
time slot. At the end of slot n, upon receiving an
array of key records from the incoming traffic mon-
itor, a local analyzer updates the incoming key data-
base by replacing the array of key records in slot
n � Rf � 1 by the array of key records in slot n.
For the outgoing key database, we use the data
structure of the celebrated Bloom filter [18] for effi-
cient key matching. A Bloom filter consists of (1) a
bit-map for key records, and (2) multiple hash func-
tions for storing key records in the bit-map and key
searching (i.e., membership query) [18]. So, at the
end of slot n, upon receiving an array of key records
from the outgoing traffic monitor, the local analyzer
updates the outgoing key database by Bloom filter’s
storing operation for the bit-map of slot n and
replacing the bit-map of slot n � Rb � Rf � 1 by
the bit-map of slot n.

Given the two key databases, we can do key
matching. To check whether a key is matched or
not, we need to consider the temporal correlation
of packets. For example, in a normal procedure, a
TCP SYN packet must be followed (in time) by a
TCP SYN-ACK packet with the same key on the
opposite direction of the link. Therefore, if we want
to determine whether a TCP SYN is matched, we
need to search for the corresponding TCP SYN-
ACK in the later slots on the opposite direction of
the link. On the other hand, if we want to determine
whether a TCP SYN-ACK is matched, we need to
search for the corresponding TCP SYN in the previ-
ous slots on the opposite direction of the link.
Under this philosophy, we design three mechanisms
for key matching as below.

Assume that the current slot is slot n + Rf and we
are searching for a key in the outgoing key database
to match one intended key of slot n in the incoming
key database. Then our three key matching mecha-
nisms are

• Forward matching: search all the slots m

(n 6 m 6 n + Rf) in the outgoing key database
for the matching key. E.g., if the key in the
incoming key database is TCP SYN, then we
need to use forward matching to search for the
corresponding TCP SYN-ACK.
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• Backward matching: search all the slots m

(n � Rb 6 m 6 n) in the outgoing key database
for the matching key. E.g., if the key in the
incoming key database is TCP SYN-ACK, then
we need to use backward matching to search
for the corresponding TCP SYN.

• Forward and backward matching: search all the
slots m (n � Rb 6 m 6 n + Rf) in the outgoing
key database for the matching key. E.g., if we
want to check whether a source IP address
appears as a destination IP address in the oppo-
site direction of the link, then we use forward &
backward matching to search for the matching
destination IP address.

The search in the above matching mechanisms is
efficient due to the use of Bloom filter. When there is
an unmatch, some counters will be updated; e.g.,
when a TCP SYN is unmatched, the counter for
unmatched TCP SYN packets will be increased
appropriately.

The memory requirement for a local analyzer is
as below:

• Memory size for an outgoing key database is
ðRb þ Rf þ 1Þ � ð2ðLbf�3ÞÞ bytes, where Lbf is the
length (in bits) of the index, which is the output
of Bloom filter’s hash functions.

• Memory size for an incoming key database is
(Rf + 1) * Nht * Lk bytes.

The minimum detection delay is upper bounded
by (Rf + 1) · Ts.

Next, we present our machine learning algorithm
for detecting DDoS attacks.

5. Machine learning algorithm for detection

In this section, we present our machine learning
algorithm for detecting DDoS attacks. We organize
this section as follows. Section 5.1 outlines our
detection approach. In Section 5.2, we formulate
the detection problem. Section 5.3 describes our
machine learning algorithm.

5.1. Outline of our detection approach

To facilitate the discussion, we use the notion of
network state. Specifically, the network is in the
state of ‘attack’ when there are DDoS attacks, and
in the state of ‘normal’ when there is no DDoS
attack. In our approach, we assume that different

network states have different statistics for some fea-
tures. For example, the average number of TCP
SYN packets destined to the victim in the case of
TCP SYN flooding attacks differs from that in the
normal network state.

Denote X the network state, and Y the traffic
observed by traffic monitors. Since different net-
work state induces different stochastic process of
traffic, we employ the widely used graphic model
representation [19] to depict this cause-effect rela-
tionship in Fig. 5.

We represent features of multiple source–destina-
tion pairs by a high-dimensional matrix F. An entry
f in the mth row and nth column of this matrix rep-
resents a feature vector that characterizes the traffic
from source edge router m to destination edge rou-
ter n. The details on feature extraction have been
explained in Section 4. Most importantly, in selec-
tion of the optimal features, we seek for the most
discriminative statistical properties of the corre-
sponding origin–destination traffic. Since features
are extracted from traffic data Y, we extend the
above model as illustrated in Fig. 6.

Our goal is to estimate X given Y and F, that is,
to estimate state xi of each source–destination pair i,
characterized by the ith entry fi in the traffic matrix
F. Possible values that xi can take, in our two-class
classification problem, are {0,1}, where ‘0’ means
‘normal’ and ‘1’ means ‘attack’.

Since DDOS attacks are distributed, where
numerous compromised computers (zombies) run
similar (or even the same) programs during the same
attack period, we hypothesize that the traffic of sev-
eral origin–destination pairs is characterized by the
same statistical properties. Therefore, it seems rea-
sonable to account for correlation among traffic
pairs. Therein lies the novelty of our approach, as
we augment the model in Fig. 5 with yet another
set of random variables, Z, that encode this correla-

Fig. 5. Graphical representation of the generative process, in
which the state of traffic generates the stochastic process of traffic.

Fig. 6. The extended generative model including traffic-feature
vectors.
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tion, as depicted in Fig. 7. We anticipate that the
introduction of Z may lead to an improved estima-
tion of X.

5.2. Formulation of the detection problem

Once F is extracted, we assume that F represents
well data Y, such that we can operate only over
lower-dimensional F, and in this manner reduce
computational load. Now, we formulate the net-
work-state estimation as a machine learning prob-
lem, where to each f we assign label x, which takes
vales in the predefined set of classes x 2 {0,1}.
The graphical representation of the outlined gener-
ative model is depicted in Fig. 8. In the graph, nodes
represent random variables (vectors), and the con-
nections represent statistical dependencies among
random variables. Since feature vectors are measur-
able, we call them observable random vectors, and
depict them as rectangular-shaped nodes. The states
of observable vectors need to be estimated; there-
fore, we call them hidden variables, and depict them
as round-shaped nodes. The model in Fig. 8 is in
fact the simplest possible generative model, since
there are no lateral interdependencies among nodes.
Consequently, the joint probability of the model
reads

P ðF ;X Þ ¼
Y

i

P ðfijxiÞP ðxiÞ: ð1Þ

From Eq. (1), we observe that the network-state
estimation can be conducted for each traffic fi inde-
pendently, by using the Maximum A Posteriori

(MAP) criterion given by

x�i ¼ arg max
xi2f0;1g

P ðfijxiÞPðxiÞ: ð2Þ

To this end, it is necessary to learn likelihood
P(fijxi) and prior P(xi) in the training process off-
line.

We extract yet another network feature—the cor-
relation, nmn, between given traffic m and n over a
predefined time interval. Consequently, in addition
to matrix F, we have the correlation matrix, N, as
network features.

The reason for computing N stems from our goal
to account for interdependencies among traffic pairs
in the network. We speculate that this auxiliary
information may lead to a more accurate estima-
tion. However, if we introduced additional connec-
tions in the previous model, representing statistical
dependencies among all the nodes, we would arrive
at computationally intractable model in Fig. 9.
Here, in order to perform MAP estimation, we
would need to marginalize a very complex prior dis-
tribution over network states X as

x�i ¼ arg max
xi2f0;1g

P ðfijxiÞ
X

j
j6¼i

X
xj

P ðx1; x2; . . . ; xi; . . . xNÞ:

ð3Þ

Since the marginalization has to be done for every
node, such a model for a large network would not
be suitable.

Therefore, the most challenging task in network-
state estimation lies in choosing a suitable statistical
model for specifying the joint probability distribu-
tion over hidden and observable random variables,
since this choice conditions the MAP estimation.
Our goal is to preserve one-step connections, also
known as Markovian dependencies, since they pro-
vide for a tractable MAP estimation. But, at the
same time, we would like to account for dependen-
cies among as many nodes as possible. To balance
these two opposing goals, we propose to use a

Fig. 7. The complete generative model including traffic data,
traffic states, and correlation among traffic states.

Fig. 8. The generative model that describes dependencies among
traffic states and traffic-feature vectors.

Fig. 9. Complex generative model, where the MAP estimation is
intractable.
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multiscale tree model, an example of which is
depicted in Fig. 10. In the tree, the initial set of traffic
states X is augmented with so-called parents, grand-
parents and further up until the root node. That is,
hidden variables are organized in levels, where nodes
at the finest scale represent states of each source–des-
tination traffic, while nodes at higher levels represent
the state of a group of traffic-feature vectors. We
assume that hidden variables at higher levels can
also take values in {0,1}. Connections are allowed
only between nodes that belong to adjacent levels
in the model. As such, we do not account explicitly
for all possible dependencies among traffic states,
but implicitly through parent nodes. In this manner,
we preserve Markovian dependencies, while corre-
lating all the nodes.

The next question is how to determine which par-
ent–child pairs should be connected. One possibility
is to choose the fixed-structure tree, where, for
example, each parent has exactly four children. This
model is the well-known Hidden Markov Tree
(a.k.a. quad-tree) used for image modeling. How-
ever, it has been reported that due to the fixed
structure, quad-trees yield ‘‘blocky’’ estimates.
Therefore, we propose to use irregular-structure tree
(or short irregular tree), where connections between
parent and children nodes are not fixed, but rather
estimated on a given data.

The novelty of our approach to multiscale statis-
tical modeling is that we introduce connectivity
variables, zij, which regulate if there is a connection
between child i and parent j. The connectivity vari-
ables, Z, are hidden, and need to be estimated,
based on the correlation matrix N. In Fig. 7, we
graphically illustrate the dependencies between sets
of variables F, X, and Z in the proposed multiscale

model. From Fig. 7, the joint probability of the
irregular tree is given by

P ðF ;X ; Z;NÞ ¼ P ðF jX ÞP ðX jZÞP ðZjNÞPðNÞ: ð4Þ
From Eq. (4), we observe that the irregular tree de-
fines the distribution over connections between
nodes, and the distribution over node classes (i.e.,
traffic states). Thus, for a given network data, we
need to estimate these two distributions simulta-
neously. The problem of estimating the optimal
model’s topology and its distributions is known to
be NP-hard. We propose to solve the problem by
using the Expectation–Maximization (EM) algo-
rithm [19], which is a stage-wise optimization algo-
rithm, guaranteed to increase the likelihood of the
model in each iteration step. Because of the Mar-
kovian connections through scales, irregular trees
are characterized by very fast inference algorithms,
which makes them attractive tools for applications
with stringent real-time constraints. The inference
of model structure and distributions from the given
data produces a hierarchical model depicted in
Fig. 11. From the figure, we observe that the model
structure adapts to encode underlying statistical
processes in the data. It consists of a forest of sub-
trees, since there is no requirement that there be
only one root as in quad-trees.

For the Bayesian approach that we propose, it is
necessary to learn the parameters of the model
through training. To this end, it is necessary to pre-
pare representative examples of the network data
containing ‘attack’ and ‘normal’ states. Once the
parameters of the irregular tree are learned, we are
in a position to estimate the state of a given unseen
traffic, by computing the posterior distribution of
each node state. The probabilistic approach that
we propose allows us to easily obtain the ROC
curve of our classifier, that is, to test false alarm
and detection rate in a principled manner.

Fig. 10. The quad-tree model for one-dimensional data, where
each parent has exactly two children; pa(i) denotes the parent of
node i.

Fig. 11. The irregular tree consists of a forest of subtrees, each
marked by distinct shading; round- and square-shaped nodes
indicate hidden and observable variables, respectively; triangles
indicate roots.
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5.3. Machine learning algorithm for network-state

estimation

5.3.1. Irregular tree
In this section we explain in greater detail the

irregular-tree model for estimating the network
states, given traffic data. In order to fully character-
ize the irregular tree (and any graphical model, for
that matter), it is necessary to learn both the graph
topology (structure) and the parameters of transi-
tion probabilities between connected nodes from
training data. Usually, for this purpose, one maxi-
mizes the likelihood of the model over training data,
while at the same time minimizing the complexity of
model structure. Current methods are successful at
learning both the structure and parameters from
complete data. Unfortunately, when the data is
incomplete (i.e., some random variables are hidden),
optimizing both the structure and parameters
becomes NP-hard.

One of the major tasks of this paper is a solution
to the NP-hard problem of model-structure estima-
tion. In our approach, we use a variant of the
Expectation–Maximization (EM) algorithm, to
facilitate efficient search over large number of candi-
date structures. In particular, the EM procedure
iteratively improves its current choice of parameters
by using the following two steps. In Expectation
step, current parameters are used for computing
the expected value of all the statistics needed to eval-
uate the current structure. That is, the missing data
(hidden variables) are completed by their mean val-
ues. In Maximization step, we replace current
parameters with those that maximize the likelihood
over the complete data. This second step is essen-
tially equivalent to learning model structure and
parameters from complete data, and, hence, can
be done efficiently by using the Belief Propagation

algorithm [19], which is well known in the machine
learning community.

An irregular tree is a directed acyclic graph with
V nodes, organized in hierarchical levels, V‘,
‘ = {0,1, . . . ,L}, where V0 denotes the leaf level.
The layout of nodes is identical to that of the
quad-tree, such that the number of nodes at level ‘
can be computed as jV‘j = jV‘�1j/4 = � � � = jV0j/4‘.
Connections are established under the constraint
that a node at level ‘ can become a root or it can
connect only to the nodes at the next ‘+1 level.
The network connectivity is represented by a ran-
dom matrix, Z, where entry zij is an indicator ran-
dom variable, such that zij = 1 if i 2 V‘ and

j 2 V‘+1 are connected. Z contains an additional
zero (‘‘root’’) column, where entries zi0 = 1 if i is a
root node.

Each node i is characterized by a network-state
random variable, xi, which can take values in a finite
set C. In our case, C = {0,1}. For the given Z, the
label xi of node i is conditioned on xj of its parent
j, and is given by conditional probability tables
P(xijxj,zij = 1). For roots i, we have P(xijx0,
zi0 = 1) , P(xi). The joint probability of all net-
work-state variables X = {xi}, "i 2 V, is given by

P ðX jZÞ ¼
YL

‘¼0

Y
i2V ‘

P ðxijxj; zij ¼ 1Þ: ð5Þ

Next, leaf nodes are characterized by observable
random variables F = {fi}, "i 2 V0. We assume that
observable variables fi are conditionally indepen-
dent given the corresponding xi:

P ðF jX Þ ¼
Y
i2V 0

P ðfijxiÞ; ð6Þ

P ðfijxi ¼ cÞ ¼
XG

g¼1

pcðgÞNðfi; lcðgÞ;RcðgÞÞ; ð7Þ

where P(fijxi = c), c 2 C, is modeled as a mixture of
Gaussians. The Gaussian-mixture parameters can
be grouped in h = {pc(g),lc(g),Rc(g),Gc}, "c 2 C.

Finally, we specify the connectivity distribution
as

P ðZjNÞ ¼
Y
i;j2V

Pðzij ¼ 1jnijÞ ¼
Y
i;j2V

Nðnij; m;HÞ; ð8Þ

where nij is the observable correlation between child
i and parent j, and m and H are the mean and var-
iance of zij. Note that a higher-level node represents
network data at the corresponding coarse scale.
Therefore, nij should be suitably extracted as a net-
work feature to represent correlation between traffic
of different source–destination pairs.

The irregular tree is fully characterized by the
joint prior P(F,X,ZjN) = P(FjX)P(XjZ)P(ZjN).
The introduced parameters of the model can be
grouped in the parameter set X. In the next section
we explain how to infer the ‘‘best’’ configuration of
Z and X from the observed data F and N.

5.3.2. Inference of the irregular tree

The standard Bayesian formulation of the infer-
ence problem consists in minimizing the expectation
of some cost function R, given the data
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ðbZ ; bX Þ ¼ arg min
Z;X

EfRððZ;X Þ; ðZ 0;X 0ÞÞjF ;N;Xg;

ð9Þ

where R penalizes the discrepancy between the esti-
mated configuration (Z,X) and the true one (Z 0,X 0).
We propose the following cost function:

RððZ;X Þ;ðZ 0;X 0ÞÞ¼RðX ;X 0ÞþRðZ;Z 0Þ

¼
XL

‘¼0

X
i2V ‘

½1�dðxi�xi0Þ�

þ
XL�1

‘¼0

X
ði;jÞ2V ‘�f0;V ‘þ1g

½1�dðzij� z0ijÞ�;

ð10Þ

where 0 stands for true values, and d(Æ) is the Kro-
necker delta function. From Eq. (10), the resulting
Bayesian estimator of X is

8i 2 V ; x̂i ¼ arg max
xi2C

P ðxijZ; F ;NÞ: ð11Þ

Next, given the constraints on connections in the
irregular tree, discussed in Section 5.3.1, we derive

that minimizing EfRðZ; Z 0ÞjF ;N;Xg is equivalent
to finding a set of optimal parents ĵ such that

ð8‘Þ ð8i 2 V ‘Þ ðzi 6¼ 0Þ ĵ¼ arg max
j2f0;V ‘þ1g

P ðzij ¼ 1jnijÞ;

ð12Þ

where zi,
P

k2V ‘�1 zki, and zi 5 0 represents the event
‘‘node i has children’’, that is, ‘‘node i is included in
the irregular-tree structure’’. The global solution to
Eq. (12) is an open problem in many research areas.
We propose a stage-wise optimization, where, as we
move upwards, starting from the leaf level
‘ = {0,1, . . . ,L}, we include in the tree structure
optimal parents at V‘+1 according to

ð8i 2 V ‘Þ ðẑi 6¼ 0Þ ĵ ¼ arg max
j2f0;V ‘þ1g

P ðzij ¼ 1jnijÞ;

ð13Þ

where ẑi 6¼ 0 denotes an estimate that i has already
been included in the tree structure when optimizing
the previous level V‘.

Eqs. (11) and (13) suggest that it is possible to
solve for ðbZ ; bX Þ in a recursive procedure until some

Fig. 12. Inference of the irregular tree.
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convergence criterion is met. Thus, in a recursive
step t, we first assume that estimate Z(t � 1) of the
previous step t � 1 is known and then derive esti-
mate X(t) using Eq. (11); then, substituting X(t) in
Eq. (13) we derive estimate Z(t). We consider the
algorithm converged if P(F,XjZ) does not vary
more than some threshold e for N consecutive itera-
tion steps t, where e and N are subject to specific
application requirements. Although, the optimiza-
tion given by Eqs. (11) and (13) requires simulta-
neous optimization of bX and bZ , note that we infer
the irregular tree stage-wise, which may yield sub-
optimal solutions. From our experience, though,
the algorithm recovers from stationary points for
sufficiently large N. The overall inference algorithm
is summarized in Fig. 12.

Steps 2 and 7 in the algorithm can be interpreted
as inference of bX given F for a fixed-structure tree.
In particular, for step 2, where the initial structure
is the quad-tree, we can use the standard inference
on quad-trees, where, essentially, belief messages
are propagated in only two sweeps up and down
the tree. For step 7, the irregular tree represents a
forest of subtrees, which also have fixed, though
irregular, structure; therefore, we can use the very
same tree-inference algorithm for each of the sub-
trees. This algorithm is called Belief Propagation,
which we present in Fig. 13. In the figure, we sim-
plify notation as P(xijZ,F,N)! P(xijF) and
P(xijxj,Z)! P(xijxj). Also, we denote with c(i) chil-
dren of i, and with d(i) the set of all the descendants
down the tree of node i including i itself. Thus, Fd(i)

Fig. 13. Steps 2 and 7 in Fig. 12: Belief Propagation for the tree.
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denotes a set of all observables down the subtree
whose root is i. Also, for computing P(xijFd(i)), in
the bottom-up pass, / means that equality holds
up to a multiplicative constant that does not depend
on xi.

6. Discussion on detection algorithms

The aforementioned machine learning algorithm
is used in a global analyzer to exploit both spatial
and temporal correlation of traffic. In a local ana-
lyzer, if detection of DDoS attacks must be con-
ducted, one can employ (1) the threshold-based
algorithm (to be defined in Sections 6.2) and 2 the
change-point algorithm [6–8]. Both algorithms can
use the feature data provided by the feature extrac-
tion modules in our framework. However, we note
that an important issue has largely been ignored in
the literature, that is, how to set the parameters of
these algorithms.

We organize this section as below. Section 6.1
presents the performance metrics for detection algo-
rithms. We describe how to set the parameters of the
threshold-based algorithm and the change-point
algorithm in Sections 6.2 and 6.3, respectively.

6.1. Performance metrics

A typical method to quantify the performance of
detection algorithms is to use so-called Receiver

Operating Characteristics (ROC) curve [20, p. 107].
To obtain an ROC curve, we need the following

quantities

• Nf: the number of false alarms, i.e., the number
of slots in which the detection algorithm declares
‘attack’ given that no attack actually happens in
these slots;

• Nn: the number of slots in which no attack
happens;

• Nd: the number of slots in which the detection
algorithm declares ‘attack’ given that attacks
actually happen in these slots;

• Na: the number of slots in which attacks happen.

The false alarm probability and the detection
probability of the detection algorithm can be esti-
mated by Nf/Nn and Nd/Na, respectively. By varying
the detection threshold, we can obtain different
pairs of false alarm probability and detection prob-
ability, which give the ROC curve [20, p. 107]. In

this paper, we will use the ROC curve to compare
the performance of different detection algorithms.

6.2. Threshold-based algorithm

The idea of the threshold-based algorithm is that
if the feature value exceeds a preset threshold,
declare ‘attack’; otherwise, declare ‘normal’. Note
that the detection operation is conducted in each
slot. By varying the threshold for the feature value,
we can obtain different pairs of false alarm probabil-
ity and detection probability, resulting in the ROC
curve. Given the ROC curve and the desired false
alarm probability, one can determine the value of
the threshold for detection operation. This is the
method to set the parameter of the threshold-based
algorithm.

6.3. Change-point algorithm

In the literature, a simple change-point algo-
rithm—non-parametric Cumulative Summation

(CUSUM) algorithm—has been widely used [6–
8,14]. However, existing works have not provided
a comprehensive study on how to set the parameters
of CUSUM. Furthermore, these studies only con-
sider the change from normal state to abnormal
state, which means that the number of false alarms
can be very large after attacks end. To facilitate the
discussion, we define the following parameters used
in CUSUM:

• Xn denotes the observed traffic variable at the end
of slot n.

• X n denotes the expectation of Xn in normal
states.

• X a denotes the expectation of Xn in abnormal
states. Without losing generality, here we assume
that X n < X a.

• Yn denotes the adjusted variable, which is defined
as

Y n ¼ X n � a;

where a is a parameter such that X n < a < X a.

Now define variable Sn by

Sn ¼ 0 n ¼ 0;

Sn ¼ maxð0; Sn�1 þ Y nÞ n > 0:

�
ð14Þ

In the CUSUM algorithm, if Sn is smaller than a
threshold H, declare that the network state is nor-
mal; otherwise, declare that the state is abnormal.
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From the discussion above, we note that two
parameters, i.e., a and H, need to be determined.
However, we cannot uniquely determine these two
parameters. To overcome this problem, we shall
introduce another parameter, i.e., the detection
delay, denoted as D. According to the change-point
theory, we have

D
H
! 1

ðX a � X nÞ � jX n � aj
¼ 1

X a � a
: ð15Þ

From Eq. (15), we can obtain

H ¼ D� ðX a � aÞ: ð16Þ

Hence, once D and a are given, we can determine H

through Eq. (16).3 Given a and H, we can use the
CUSUM algorithm to detect network anomaly.

We notice that the existing CUSUM algorithms
[6–8] only consider one change, i.e., from the nor-
mal state to the abnormal state. In practice, this
approach may lead to a large number of false
alarms after the end of attacks. To mitigate the false
alarm problem of the existing algorithms, which we
call single-CUSUM algorithms, we develop a dual-
CUSUM algorithm. In this algorithm, one CUSUM
will be used to detect the change from the normal to
the abnormal state, while another CUSUM is
responsible for detecting the change from the abnor-
mal to the normal state. The method of setting
parameters for dual-CUSUM is similar to the
method described in this section.

7. Simulation results

In this section, we evaluate the performance of
the proposed schemes through simulation. Due to
the space limit, in this paper, we only consider
TCP SYN attacks with spoofed source IP addresses.

7.1. Experiment setting

In our study, we develop a testbed to (1) extract
various feature information, and (2) analyze feature
data by our machine learning algorithm and
CUSUM algorithms. Next, we describe the setting
for networks, traffic traces, and feature extraction
used in our experiments.

7.1.1. Network

In our experiment, we assume that the ISP net-
work consists of a core network, a victim network,
and 16 edge routers that connect to 16 subnets, as
illustrated in Fig. 14. At each edge router, two mon-
itors are placed to measure the inbound and out-
bound traffic between a subnet and the victim
network, respectively. To simplify the notation, we
denote link i (i = 1,2, . . . , 16) as the virtual connec-
tion between subnet i and the victim network.
Moreover, we define the inbound direction of link
i as the direction from subnet i to the victim net-
work; and the outbound direction of link i as the
direction from the victim network to subnet i.

7.1.2. Traffic

A link may carry traffic with no attack (called
background traffic) or traffic with TCP SYN
attacks.

For the background traffic, we use the trace data
provided by Auckland University [21]. This data set
contains packet header information of the real traf-
fic between the Internet and Auckland University.
The connection is OC-3 (155 Mb/s) for both direc-
tions. Since we do not have real data traces obtained
from 16 different links, we use the real traffic trace
measured on one link (between the Internet and
Auckland University) to create traffic traces for 16
different links. Specifically, we use traffic traces of
different days to represent traffic traces of different
links. So we use a traffic trace of 16 days to repre-
sent traffic traces of 16 different links. That is, the
traffic from the Internet to Auckland University in
day i (i = 1,2, . . . , 16) corresponds to the inbound
traffic of link i; the traffic from Auckland University
to the Internet in day i corresponds to the outbound
traffic of link i.

3 In [6,7], a ¼ ðX a � X nÞ=2; thus only the detection delay is
needed. Fig. 14. Experiment network.
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To simulate TCP SYN attacks, we first generate
a random number Nlink; then we randomly select
Nlink links from the 16 links; for each of the selected
Nlink links, we randomly add TCP SYN packets
with spoofed source IP addresses into the back-
ground traffic of that link. The average packet rate
of TCP SYN attack traffic on each of the selected
Nlink links, is 1% of the total packet rate on the link.
The attacks on each of the selected Nlink links are
launched in almost the same period so that we have
synchronized DDoS attacks across the selected Nlink

links. Since the attack traffic on each link is low (just
1%), we effectively simulate low-volume attack traf-
fic. Note that, in this paper, we use TCP SYN flood
attack as an example to demonstrate the perfor-
mance of our DDoS detection method. Actually, it
is able to detect any type of DDoS attacks, as long
as it uses spoofed source IP addresses.

7.1.3. Feature
To detect distributed TCP SYN attacks, we use

the 2D features described in Section 4.1.2, i.e., the
number of unmatched SYN packets in one time
slot. Note that the number of SYN packets toward
the victim subnet can also be reported by our fea-
ture extraction modules. So, both the number of
SYN packets and the number of unmatched SYN
packets can be used in our analysis. The parameter
setting of our feature extraction module is listed in
Table 1.

Given the parameters in Table 1, we can derive
that the memory requirement for each traffic moni-
tor is

Nht � Lk ¼ 320 Kbyte;

the memory requirement for each local analyzer is

ðRb þ Rf þ 1Þ � 2Lbf�3 þ ðRf þ 1Þ � N ht � Lk

¼ 3:28 Mbytes;

and the minimum detection delay is upper bounded
by

ðRf þ 1Þ � T s ¼ 100 s:

Fig. 15 shows the features of two links, specifically,
the number of SYN packet arrivals and the number
of unmatched SYN packet arrivals during a slot,
where the duration of a slot is 10 seconds. For these
two links, we launch (synchronized) attacks on both
link 1 and link 2, during two periods, i.e., Slot 1400–
1600 and Slot 2800–3200. In addition, asynchro-
nous attacks are launched during Slot 5000–5200
on link 1 and during Slot 5700–5900 on link 2.

From Fig. 15, it can be observed that the features
are rather noisy, especially for the feature of the
number of SYN packets. From Fig. 15a and c, we
can hardly distinguish the slots under the low-vol-
ume synchronized attacks from the slots without
attacks (by visual inspection). In comparison, it is
much easier to identify the slots under the synchro-
nized attacks (by visual inspection) when the num-
ber of unmatched SYN packets is used as the
feature (see Slot 1400–1600 and Slot 2800–3200 in
Fig. 15b and d).

7.2. Performance comparison

Table 2 compares the performance of different
schemes, where the benchmark is the scheme in
[6], i.e., the CUSUM scheme with SYN/FIN ratio
as the feature; for the benchmark scheme, we use
the same parameter setting as that in [6]; we com-
pare the benchmark with CUSUM and our machine
learning algorithm under different features. To
make fair comparison, we make the false alarm
probability of each scheme almost the same and
compare the detection probability. From Table 2,
it can be seen that, the benchmark scheme (‘SYN/
FIN ratio’ + CUSUM) performs very poorly in
detecting low-volume DDoS attacks. In contrast, a
CUSUM algorithm with the number of SYN pack-
ets or the number of unmatched SYN packets as the
feature can achieve much higher detection probabil-
ity. More importantly, our machine learning algo-
rithm can significantly outperform CUSUM, given
the same feature data, no matter whether the feature
is the number of SYN packets or the number of
unmatched SYN packets.

Fig. 16 compares the receiver operating charac-
teristics (ROC) curve of the threshold-based scheme
described in Section 6.2 and our machine learning
algorithm under two different features, i.e., the
number of SYN packets (denoted by ‘SYN’) and
the number of unmatched SYN packets (denoted

Table 1
Parameter setting for feature extraction

Parameter Setting

Ts 10 s
Rf 9
Rb 0
Nht 214 = 16K

Lbf 16
Lk 20 bytes
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by ‘UM-SYN’). We observe that, for the same
detection algorithm, using the number of
unmatched SYN packets can significantly improve
the ROC performance, compared to using the num-
ber of SYN packets. In other words, given the same
false alarm probability, the detection probability is
much higher when using the number of unmatched
SYN as feature.

Another important observation from Fig. 16 is
that given the same feature data, our machine learn-

ing algorithm can (significantly) improve the ROC,
compared to the threshold-based scheme; e.g., for
the same false alarm probability of 0.05, our
machine learning algorithm achieves a detection
probability of 0.93, while the threshold-based
scheme only achieves a detection probability of
0.72. This is due to the fact that our machine learn-
ing algorithm exploits the spatial correlation among
traffic on multiple links, while the threshold-based
scheme only uses the traffic on one link.

Table 2
Performance of different schemes

Feature Detection algorithm Detection probability False alarm probability

SYN/FIN ratio [6] CUSUM 0.174 0.129
SYN CUSUM 0.52 0.129
SYN Machine learning 0.6563 0.1228
Unmatched SYN CUSUM 0.69 0.130
Unmatched SYN Machine learning 0.9726 0.1146
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In Fig. 17, we compare the ROC performance of
four detection algorithms (the threshold-based, the
single-CUSUM, the dual-CUSUM described in Sec-
tion 6.3, and our machine learning algorithm) under
the same feature, i.e., the number of unmatched
SYN packets. For the single-CUSUM and the
dual-CUSUM algorithm, the detection delay D is
chosen from 1 to 10 and the parameter ai of link i

is determined by

ai ¼ ðAattack � AnormalÞ �
i

17
81 6 i 6 16;

where Aattack and Anormal are the average number of
unmatched SYN packets in attack and normal con-
ditions, respectively.

As shown in Fig. 17, the ROC performance of
our machine learning algorithm is the best among
all the algorithms. We also see that the dual-
CUSUM out-performs the simple threshold-based

algorithm and the single-CUSUM algorithm has
the worst ROC performance.

7.3. Discussion

We would like to point out that, besides detecting
low-volume attacks, our machine learning algo-
rithm is also able to detect high volume attacks,
the results of which are not shown here due to the
space limit. The machine learning algorithm is
shown to be robust under realistic time-varying traf-
fic patterns such as the Auckland data traffic [21].
We tested our machine learning algorithms for a
large IP address space, i.e., the IP address space
can be the whole IP address space for the Internet.

8. Conclusion

In this paper, we propose a novel framework to
robustly and efficiently detect DDoS attacks and
identify attack packets. The key idea of our frame-
work is to exploit spatial and temporal correlation
of DDoS attack traffic. In this framework, we
design a perimeter-based anti-DDoS system, in
which traffic is analyzed only at the edge routers
of an ISP network. The originalities of our frame-
work are temporal-correlation based feature extrac-
tion and spatial-correlation based detection. Our
feature extraction is novel in two aspects, i.e., (1)
unique 2D matching features that make distinct fea-
tures between normal and attack traffic, thereby
improving accuracy of detecting attacks, and (2)
efficient implementation based on hash-table/
Bloom-filter. Our detection scheme has the follow-
ing nice properties:

• In addition to detecting attacks having high-
data-rate on a link, our scheme is also capable
of accurately detecting attacks having low-data-
rate on a link. This is due to exploitation of spa-
tial correlation of DDoS attack traffic.

• Our scheme is robust against time-varying traffic
patterns, owing to powerful machine learning
techniques.

• Our scheme can be deployed in large-scale high-
speed networks, thanks to use of hash-table and
Bloom-filter.

With the proposed techniques, our scheme can
effectively detect DDoS attacks and identify attack
packets without modifying existing IP forwarding
mechanisms at routers. Our simulation results show
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that the proposed framework can detect DDoS
attacks even if the volume of attack traffic on each
link is extremely small. Especially, for the same false
alarm probability, our scheme has a detection prob-
ability of 0.97, while the existing scheme has a detec-
tion probability of 0.17, which demonstrates the
superior performance of our scheme.

Our future work will focus on designing defense
mechanisms against DDoS attacks. The detection
framework proposed in this paper can facilitate
defense against DDoS attacks in the following
way. Since our framework can identify (1) matched
IP addresses/flows, and (2) unmatched IP addresses/
flows. If a DDoS attack is detected, the defense
mechanism (a simple packet filter based on IP
addresses) only allows matched flows to pass while
blocking unmatched flows. During a DDoS attack
period, new legitimate users will not be allowed,
i.e., packets from new legitimate users will be
dropped, which is a limitation of this defense mech-
anism. But such a defense mechanism can protect
frequent (old) users, which are, from the business
perspective, typically more important than new
users.
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