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Summary

Secure transmission of information over hostile wireless environments is desired by both military and civilian
parties. Direct-sequence spread spectrum (DS-SS) is such a covert technique resistant to interference, interception
and multipath fading. Identifying spread-spectrum signals or cracking DS-SS systems by an unintended receiver
(or eavesdropper) without a priori knowledge is a challenging problem. To address this problem, we first search
for the start position of data symbols in the spread signal (for symbol synchronization); our method is based on
maximizing the spectral norm of a sample covariance matrix, which achieves smaller estimation error than the
existing method of maximizing the Frobenius norm. After synchronization, we remove a spread sequence by a
cross-correlation based method, and identify the spread sequence by a matched filter. The proposed identification
method is less expensive and more accurate than the existing methods. We also propose a zigzag searching method
to identify a generator polynomial that reduces memory requirement and is capable of correcting polarity errors
existing in the previous methods. In addition, we analyze the bit error performance of our proposed method.
The simulation results agree well with our analytical results, indicating the accuracy of our analysis in additive
white Gaussian noise (AWGN) channel. By simulation, we also demonstrate the performance improvement of our
proposed schemes over the existing methods. Copyright c© 2008 John Wiley & Sons, Ltd.
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1. Introduction

In this paper, we consider the problem of eavesdrop-
ping on the adversary’s communication, which uses
Direct-Sequence Spread-Spectrum (DS-SS). The DS-
SS is a covert communication technique; the informa-
tion symbols are modulated by a pseudorandom noise
(PN) sequence prior to transmission. This results in
a wideband signal, which is resistant to interference,
jamming, interception and multipath fading [1, 2, 3].

To eavesdrop on the adversary’s communication,
one needs to (a) identify the start position of data
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symbols in the intercepted spread signal for the
purpose of symbol synchronization, (b) estimate data
symbols, (c) estimate the PN sequence, and (d)
estimate the code generator polynomial of the PN
sequence.

To identify the start position of data symbols,
we present a method based on the spectral norm
which achieves smaller estimation error in Section 4.
After the symbol synchronization, we remove a PN
sequence from the intercepted signals by a correlation
method to estimate data symbols without a priori
knowledge about that PN sequence in Section 5.
Identification of a PN sequence is processed by a
matched filter between the intercepted signal and the
estimated data symbols in Section 6.

One of the harder problems in eavesdropping
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on DS-SS signals is the polarity ambiguity of
the estimated spread sequence and data symbols:
Erroneous reversal of polarity of each chip in the
estimated PN sequence compared to the true PN
sequence is a major source of the performance
degradation of an eavesdropper. Therefore, we need
to estimate a code generator polynomial to mitigate
this polarity problem. We propose a searching method
to identify the code generator polynomial in order to
correct polarity errors as well as to reduce memory
requirement of an eavesdropper in Section 7. Saving
hundreds or thousands of sequence bits in the memory
of an eavesdropper is very expensive.

The probability of error performance of an
eavesdropper is a function of signal-to-noise ratio
(SNR), the number of data symbols, and the length
of the spread sequence of the intercepted signal.
Therefore, we need to study the analytical probability
of error performance of the eavesdropper with respect
to these parameters. By doing so, we can efficiently
predict the performance of the eavesdropper.

First, we use a Gaussian approximation method in
Ref. [4] in order to find a marginal probability density
function of the symbol estimator in Section 5 and the
sequence estimator in Section 6, respectively. Second,
we find the probability of error of the symbol detector
without the proposed code generator estimator as a
sum of products of error functions and frequencies of
the number of errors in the estimated spread sequence.
Finally, we compare the probability of error with and
without the proposed generator polynomial estimator
in Section 7.

The contributions of this paper are: (i) a generator
polynomial estimator which can identify a code gener-
ator polynomial and can correct polarity errors in the
estimated PN sequence and estimated data symbols,
(ii) a theoretical verification of the probability of error
of a code generator estimator with respect to signal-to-
noise ratio (SNR), the number of data symbols, and the
length of the spread sequence of the intercepted signal,
and (iii) the accuracy of performance prediction of an
eavesdropper.

The remainder of this paper is organized as follows:
Related works are discussed in Section 2. Section
3 describes the signal model. Section 4 introduces
our method of identifying the start position of a data
symbol in the spread signal. Section 5 presents how
to remove data symbols from the intercepted signal.
Then, estimation of a spread sequence is presented
in Section 6. Section 7 discusses how to identify a
PN code generator polynomial and how to correct
polarity errors. Section 8 presents simulation results

to show the effectiveness and to validate the analytical
probability of error of our approaches. Section 9
concludes this paper.

2. Related Works

Wireless communications are very common both for
military and commercial parties. The ability to use
communication while mobile has great benefits for
both parties. However, wireless communication has
many security issues, since communication takes place
over a wireless channel while the users are usually
mobile. Such a wireless channel suffers from a number
of vulnerabilities: (i) The channel is vulnerable to
eavesdropping. (ii) The data can be altered. (iii) The
absence of wired link makes it much easier to cheat
on identities. (iv) The channel can be overused. (v)
Finally, the channel can be jammed, notably in order
to perpetrate a denial-of-service (DoS) attack [5, 6].

To eavesdrop on the adversary’s communication
which uses DS-SS, the estimation of the spread
sequence from the intercepted signal is a key to crack
on these DS-SS systems and is a challenging problem.
The literature on this subject is not rich. We briefly
discuss some related works which have studied this
problem.

First, an eavesdropper needs to detect any
transmission of DS-SS signals in order to crack
a secure DS-SS signal. A method based on the
fluctuation of an autocorrelation estimator, instead of
on the autocorrelation itself, was proposed in [7].
The fluctuation of the autocorrelation estimator was
used to estimate an accurate spread code period.
Since the intercepted signal may experience delay,
the interceptor must find the start position of a data
symbol in the spread signal. To identify the start
position of a data symbol in the spread signal, Ref. [8]
proposed a correlation-based method. A method of
maximizing the Frobenius norm of a covariance of
the intercepted signal was proposed in [9]. However,
the Frobenius norm may result in the increase of
estimation error as the period of the PN sequence
increases; hence, their method does not work well for
the PN sequence of a long period. To address this
limitation, a method based on the spectral norm which
achieves smaller estimation error than the Frobenius
norm based method is proposed in Section 4.

Second, to identify the PN sequence, several
methods were proposed in the literature [8, 10, 11,
12]. In Ref. [10], a method based on a multichannel
identification technique was proposed to recover
the convolution between the PN sequence and the
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ON CRACKING DIRECT-SEQUENCE SPREAD-SPECTRUM (DS-SS) SYSTEMS 3

channel response for blind channel estimation; the
limitation of this method is high computational
complexity. In Ref. [12], a method based on principal
component analysis (PCA) was used to estimate
the PN sequence from eigenvectors corresponding
to the first and the second largest eigenvalues
of the sample covariance matrix; however, the
computational complexity required by PCA is high.
Ref. [8] suggested the use of chip-by-chip detection
to estimate the PN sequence and to use a parallel
processing to combat the polarity ambiguity in
successive demodulation and decoding. However,
their parallel processing approach has a limitation: It
increases memory requirement and does not mitigate
the polarity error. Ref. [11] proposed a multiple
subsection cross-correlation averaging method to
estimate the PN sequence; however, the method used
only half of the captured symbols. It is known that
the more data symbols used, the more accurate the
estimation is. In Section 6, we propose a cross-
correlation based method that uses all captured
symbols and achieves higher estimation accuracy.

Third, to correct the polarity ambiguity in the
estimated spread sequence and data symbols, an
eavesdropper needs to estimate a code generator
polynomial. The estimators used in Refs. [11, 12]
did not consider the problem of polarity errors in
the estimated PN sequence, i.e., erroneous reversal of
polarity of each chip in the estimated PN sequence
(compared to the true PN sequence). Therefore, the
probability of correct estimation of the PN sequence,
using their estimators, may be less than 50%. This
leads to significant performance degradation in terms
of bit error rate (BER) or symbol error rate (SER).
We solve this problem by identifying the PN code
generator polynomial in Section 7. Not only is it
important to estimate the PN sequence, but we also
need to identify the PN code generator. Identifying the
PN code generator polynomial improves the accuracy
of estimating the PN sequence and data symbols by a
factor of two, over the methods proposed in Refs. [11,
12].

In [8], the probability of error of their sequence
estimator was analyzed for each chip of a spread
sequence. They found a marginal probability density
function of that sequence estimator by a numerical
integration. However, they did not consider the polar-
ity ambiguity in their correct estimation probability
analysis. Therefore, their analysis had a limitation.
In Section 7, we consider the polarity ambiguity in
the analysis of the probability of error of a sequence
estimator and a symbol detector. We also provide a

complete expression for the probability of error of a
symbol detector in Section 7.

3. Signal Model

A baseband representation of a DS-SS signal is given
by [10, 12]:

y(t) =
+∞∑

l=−∞
alh(t− kTs) + n(t) (1)

h(t) =
P−1∑

k=0

ckp(t− kTc) (2)

where Ts is the symbol duration, and al is a QPSK or
BPSK modulated symbol transmitted at time kTs

†. We
assume the symbols al are centered and uncorrelated.
Let n(t) denote the noise at the output of the received
filter and the noise is additive white Gaussian noise
(AWGN) and uncorrelated with the information signal
al. The effect of the transmitter filter, the reception
filter, the channel response and the pseudo-random
sequence ck is represented by h(t). Let p(t) denote the
convolution of all filters of the transmission chain. Tc

is the chip duration and {ck}k=0,··· ,P−1 is the pseudo-
random sequence of length P where P = Ts/Tc. In
this paper, we assume the symbol duration Ts can be
estimated by the method in Ref. [7] for simplicity.
Note that we consider the AWGN channel only in
this paper. Our study can be extended to multipath
environments if we use a blind channel estimation
method proposed in Ref. [10]. However, in the current
work, we limit ourselves to the AWGN channel for
simplicity. Table I lists the notations used in this paper.

4. Symbol Synchronization

The captured signal y(t) in (1) is sampled and
divided into non-overlapping windows with the
eavesdropper’s sampling duration Tev . We assume
the sampling duration of an eavesdropper is the
chip duration for simplicity, however this is not a
requirement of our method. Therefore, P · (L + 1)
samples are available by sampling (L + 1) · Ts long
signal with the sample duration Tc. Rewriting P ·

†For reasons of simplicity and clarity of presentation, we only
focus on the QPSK/BPSK modulation. If we adopt a blind
modulation detection method, our work can be applied to higher
order modulation like 64-QAM with little modification.
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4 Y. JO AND D. WU

Table I. List of Notations.

Pr(·) probability of (·) Pb probability of error
(·)H conjugate transpose of (·) (·)T transpose of (·)
Re(·) real part of (·) Im(·) imaginary part of (·)
GF Galois field or finite field F Field
E(·) expectation of matrix (·) sgn(x) sign of x
a a vector (or set) of sequence (symbol) a∗ − sgn(a)
b·c the nearest integer less than equal (·) â estimation of a

< x,y > inner product of x and y erfc(·) complementary error function of (·)
‖ · ‖2 spectral norm of (·) ‖ · ‖F Frobenius norm of (·)
N normal distribution B binomial distribution
λ eigenvalue ai,j the (i, j)th entry of a matrix A
L the number of synchronized data symbols P the length of the spread sequence

(L + 1) samples as a matrix yk with dimension P ×
(L + 1), we have:

yk =
[

yk
−1 · · · yk

l−1 yk
l · · · yk

L−1

]
(3)

where the superscript k represents the kTc time-
delayed desynchronized signal of (1) for k =
0, · · · , P − 1. Let yk

l denote a column of the
desynchronized yk. We may write yk

l as follows:

yk
l =

[
yl,k · · · yl,P−1 yl+1,0 · · · yl+1,k−1

]T

=




alhl,k + nk

...
alhl,P−1 + nP−1

al+1hl+1,0 + n0

...
al+1hl+1,k−1 + nk−1




(4)

where [·]T denotes the transpose, yl,k is the kth entry
of a column yk

l and hl,k is the spreading sequence of
yl,k. Now, we can modify (4) as follows:

yk
l =




hl,k 0
...

...
hl,P−1 0

0 hl+1,0

...
...

0 hl+1,k−1




[
al

al+1

]
+




nk

...
nP−1

n0

...
nk−1




=
[
he

l hb
l+1

]
ak

l + nk

= hk
l ak

l + nk

(5)

where he
l denotes a vector containing the end of

the spreading waveform for a duration of Ts − kTc

followed by zeroes for a duration kTc; hb
l+1 is a vector

containing zeroes for a duration Ts − kTc followed
by the beginning of the spreading waveform for a
duration kTc; ak

l denotes a vector containing two
desynchronized symbols al and al+1; nk stands for
the noise. Therefore, it is necessary to make a column
yk

l have only one data symbol al. That is:

y0
l =

[
yl,0 · · · yl,k−1 yl,k · · · yl,P−1

]T

= h0
l al + n0

(6)

and (3) becomes:

y0 =
[
y0

0 · · · y0
l−1 y0

l · · · y0
L−1

]
(7)

Note that samples which belong to a−1 and aL in (3)
are truncated in the synchronized intercepted signal
(7). Let R denote the covariance matrix of (5).

R = E[yk
l y

k
l

H
]

= hk
l E

[
ak

l a
k
l

H
]
hk

l

H
+ σ2

nIP (8)

where [·]H is the conjugate transpose, IP represents a
P × P identity matrix, E[·] denotes expectation, and
σ2

n is the noise variance.
To place the starting spread sequence hl,0 in the

proper position in (4), we search for a maximum of the
spectral norm of the sample covariance matrix of (8).
The spectral norm of a matrix is the square root of the
largest eigenvalue of R in Ref. [13]. Let ‖y‖2 denote
the spectral norm of the square covariance matrix.

‖y‖2 =
√

λmax(R) (9)
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ON CRACKING DIRECT-SEQUENCE SPREAD-SPECTRUM (DS-SS) SYSTEMS 5

where λmax(R) stands for the largest eigenvalue of the
covariance matrix. Then, the spectral norm of (7) is:

‖y0
l ‖2 = ‖h0

l ‖
2
E

[|al|2
]
+ σ2

n (10)

However, the spectral norm of (5) is:

‖yk
l ‖2 =

{
‖he

l ‖2E
[|al|2

]
+ σ2

n if kTc ≤ Ts

2

‖hb
l+1‖

2
E

[|al+1|2
]
+ σ2

n if kTc > Ts

2

(11)
if the singular values are expressed in decreasing
order. Since ‖h0

l ‖
2 ≥ ‖he

l ‖2 or ‖h0
l ‖

2 ≥ ‖hb
l+1‖

2, we
can determine the synchronized version of (3) by
maximizing the spectral norm in (9) with respect to
k = 0, · · · , P − 1 as follows:

ŷ0 = argmax
k∈[0,P−1]

‖yk‖2

= argmax
k∈[0,P−1]

√
λmax (R)

= argmax
k∈[0,P−1]

√
λmax

(
E

[
ykykH

])
(12)

In Ref. [9], the Frobenius norm was used to search
for the start position of a data symbol. Note that
the square of the Frobenius norm ‖y‖2F is the sum
of squares of the singular values of y. There are
errors in the eigenvalue decomposition of the sample
covariance R̂ due to the noise according to matrix
perturbation theory [13]. The expected value of the
perturbation error of the Frobenius norm is P 2 · σ2

n,
while that of the spectral norm is σ2

n [13]. The
Frobenius norm has a tendency to increase the mean
square error (MSE) as the spread sequence length
increases. Thus, their method does not perform well
for long length sequences. To mitigate this limitation,
we use the spectral norm in (12).

Fig. 1 shows the theoretical and simulated squared
spectral norm ‖yk‖2 in (12). For the calculation,
10,000 trials are carried out and averaged together. In
the simulation, we use QPSK. The PN sequence is an
m-sequence [1, 14, 15] with the length P = 31 and
with a generator polynomial f(x) = 1 + x2 + x5. The
SNR is -5dB. When k = 0, the spectral norm has a
peak. Note that the more samples, the more accurate
estimation of ŷ0 in (12) can be achieved.

We also compare the MSEs in the estimation of
the time-delay kTc, E[(k̂ − k)2], between the spectral
norm and the Frobenius norm. The same simulation
parameters are used in Fig. 1, except that SNR is
varied from -20dB to 5dB. Fig. 2(a) shows that the
spectral norm has smaller MSEs than the Frobenius
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Fig. 1. Theoretical and simulated spectral norm, ‖yk‖2, in
(12) with P = 31 and SNR=-5dB
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Fig. 2. Comparison of MSE, E[(k̂ − k)2], by the spectral
norm vs. Frobenius norm

norm, when the sequence length P = 31 is fixed and
the number of symbols L is 128, 256 and 512. We can
synchronize the captured signal with fewer symbols
by the spectral norm. Fig. 2(b) shows the case with the
fixed number of symbols L = 128 and with the varied
length of spread sequence P =15, 31, and 63. As the
length P increases, the MSE is increased by a factor
of P 2; that is, the MSE, normalized by the squares of
the sequence length P 2, is almost the same.
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6 Y. JO AND D. WU

5. Symbol Estimation

After symbol synchronization, we need to remove the
spread sequence in (6) to estimate the information
symbol al from the synchronized signal y0

l in (7).
With the property of strong self-correlation and weak
cross-correlation of spread spectrum, we use a method
based on a cross-correlation between a test column,
say y0

t , and a column of a data symbol al, say y0
l , of

the synchronized signal in (7). Then, we have:

Cy0
t y

0
l
(τ)=y0

t y
0
l
H

(τ) (13)

If the spread sequence is an m-sequence [1, 14, 15],
Cy0

t y
0
l
(τ = 0) ≥ Cy0

t y
0
l
(τ 6= 0). Then,

Cy0
t y

0
l
(0)=

P−1∑

k=0

yt,ky∗l,k (14)

Now we can estimate the symbol al from (14) as
follows:

âl = sgn
[
Re

(
Cy0

t y
0
l
(0)

)]

+ j · sgn
[
Im

(
Cy0

t y
0
l
(0)

)] (15)

where Re(·) takes the real part and Im(·) takes the
imaginary part of a complex. sgn(x) is the sign
function with value 1, if x > 0, and -1 otherwise. Note
that the estimated symbol âl in (15) is estimated up
to an unknown multiplicative factor. Therefore, the
sign of the symbol in (15) can be reversed by this
multiplicative factor. This problem was not considered
in Refs. [11, 12]. We will solve this problem by
estimating a code generator polynomial in Section 7.

In order to analyze the performance of the symbol
estimator in (14), we use a Gaussian approximation of
the sum of products of two random variables in order
to find a marginal probability density function of the
symbol estimator in (14). Let ql,k = yt,ky∗l,k, at = a0,
and h0,k = hl,k = ck in (14) for simplicity.

ql,k = (a0ck + n0,k) (alck + nl,k)∗

= ck

(
a0 +

n0,k

ck

)
c∗k

(
a∗l +

n∗l,k
c∗k

)

= |ck|2
(

a0 +
n0,k

ck

) (
a∗l +

n∗l,k
c∗k

) (16)

Assume a0 = 1 and al = 1 for generality. Then,

ql,k = ε (1 + σn̄0,k)
(
1 + σn̄∗l,k

)
(17)

where ε = |ck|2, σ2 = σ2
n/ε, and n̄l,k is a Gaussian

random process with zero mean and a unit variance,
i.e., n̄l,k ∼ N (0, 1). From the above definitions, we
have the SNR ρ = ε/σ2

n = 1/σ2.
Let α+ = 1 + σn̄0,k, β+ = 1 + σn̄l,k, and γ+ =

α+β+. Since n̄l,k ∼ N (0, 1), α+ ∼ N (1, σ2) and
β+ ∼ N (1, σ2). We want to find the marginal
probability density f(γ+) which is a product of two
normal distributions. To find the marginal density
f(γ+), we need to integrate the product of a
conditional distribution f(γ+|β+) and a marginal
distribution f(β+) with respect to β+.

f(γ+) =
∫ ∞

−∞
f(γ+|β+)f(β+)dβ+

=
1

2πσ2

∫ ∞

−∞

1
|β+| exp

[
− 1

2σ2

(
γ+ − β+

β+

)2
]

dβ+

+
1

2πσ2

∫ ∞

−∞

1
|β+| exp

[
− 1

2σ2

(
β+ − 1

)2
]

dβ+

(18)

The integration in (18) can be obtained using a
numerical integration, a Monte Carlo, or a Gaussian
approximation with a given ρ [4]. Among these three
methods, we use an approximation of products of two
normal distributions. Let µγ+ denote the mean and
σ2

γ+ denote the variance of γ+. Since α+ and β+ are
independent of each other, the mean and variance of
γ+ are:

µγ+ = E[α+β+]

= E[α+]E[β+] = µα+µβ+ = 1
(19)

σ2
γ+ =E[(α+β+)2]− (E[α+β+])2

=E[(α+)2]E[(β+)2]− µ2
α+µ2

β+

=µ2
α+σ2

β+ + µ2
β+σ2

α+ + σ2
α+σ2

β+

=2σ2 + σ4

(20)

The mean and variance of εγ+ are εµγ+ and
ε2σ2

γ+ . Since data symbols {ql,k} are independent
of each other and have the same distribution, the
distribution of âl will be approximately normally
distributed according to the central limit theorem
[16]. Therefore, the distribution of âl is a normal
distribution N (εPµγ+ , ε2Pσ2

γ+) for P À 1.
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ON CRACKING DIRECT-SEQUENCE SPREAD-SPECTRUM (DS-SS) SYSTEMS 7

Under the condition that a0 = 1, the probability of
the error estimation of âl is

p(âl < 0|al = +1)

=
∫ 0

−∞

1√
2πε2Pσ2

γ+

exp

[
− (x− εPµγ+)2

2ε2Pσ2
γ+

]
dx

=
1
2

erfc

(
µγ+

√
P

2σ2
γ+

)

(21)

where

erfc (x) =
2√
π

∫ ∞

x

exp (−t2)dt (22)

For al = −1, with similar notations µγ− and σ2
γ− and

using the same procedure, we have:

p(âl > 0|al = −1)

=
∫ ∞

0

1√
2πε2Pσ2

γ−

exp

[
− (x− εPµγ−)2

2ε2Pσ2
γ−

]
dx

= 1− 1
2

erfc

(
µγ−

√
P

2σ2
γ−

)

=
1
2

erfc

(
µγ+

√
P

2σ2
γ+

)

(23)

since µγ− = −µγ+ and σ2
γ− = σ2

γ+ . The bit-error rate
of estimation of the symbol al is:

P a
b = p(âl > 0|al = −1)p(al = −1)

+ p(âl < 0|al = +1)p(al = +1)

=
1
2

erfc

(
µγ+

√
P

2σ2
γ+

)

(24)

6. Spread Sequence Estimation

To recover the PN sequence in (6), we use a matched
filter operation between the synchronized intercepted
signal y0 in (7) and the estimated data symbols â in
(15). That is:

ĉ = sgn
(
< y0, â >

)
(25)

where 〈·, ·〉 denotes inner product, â =
[â0, · · · , âL−1]

T is a vector of the estimated symbol,

and ĉ = [ĉ0, · · · , ĉP−1]
T stands for a vector of the

estimated spread sequence. The sign of the sequence
in (25) can also be reversed by a multiplicative factor
in (15).

To analyze the performance of the sequence
estimator in (25), we use the same Gaussian
approximation method in Section 5. The sequence
estimator (25) can be rewritten as follows:

ĉk =
L−1∑

l=0

yl,k · âl

=
L−1∑

l=0

(alhl,k + nl,k) · âl

(26)

Let ωl,k = yl,kāl, and hl,k = ck for simplicity.
Assume ck = 1 for generality. Then we have:

ωl,k = (alck + nl,k) âl

= al

(
ck +

nl,k

al

)
âl

=
√

ε (1 + σn̄l,k) âl (27)

where σ2 = σ2
n/ε, ε = |al|2. Let u+ = 1 + σn̄l,k,

γ+ = āl, and w+ = u+γ+. Since n̄l,k ∼ N (0, 1),
u+ ∼ N (1, σ2). We need to find a marginal probabil-
ity density f(w+) which is a product of two normal
distributions as (18):

f(w+) =
∫ ∞

−∞
f(w+|γ+)f(γ+)dγ+ (28)

Let µw+ denote the mean and σ2
w+ denote the variance

of w+. Since u+ and γ+ are independent, the mean
and variance of w+ are:

µw+ = E[u+γ+]

= E[u+]E[γ+] = µu+µγ+ = 1
(29)

σ2
w+ =E[(u+γ+)2]− (E[u+γ+])2

=E[(u+)2]E[(γ+)2]− µ2
u+µ2

γ+

=µ2
u+σ2

γ+ + µ2
γ+σ2

u+ + σ2
u+σ2

γ+

=3σ2 + 3σ4 + σ6

(30)

Therefore, the mean and variance of
√

εw+ are√
εµw+ and εσ2

w+ . Since the sequence {ωl,k} is inde-
pendent of each other and has the same distribution,
the distribution of ĉk will be approximately normally
distributed according to the central limit theorem
[16]. Therefore, the distribution of ĉk is a normal
distribution N (

√
εLµw+ , εLσ2

w+) for L À 1.
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Under the condition that ck = 1, the probability of
the error estimation of ĉk is:

p(ĉk < 0|ck = +1)

=
∫ 0

−∞

1√
2πεLσ2

w+

exp
[
− (x−√εLµw+)2

2εLσ2
w+

]
dx

=
1
2

erfc

(
µw+

√
L

2σ2
w+

)

(31)

For ck = −1, with similar notations µw− and σ2
w− and

using the same procedure, we have:

p(ĉk > 0|ck = −1)

=
∫ 0

−∞

1√
2πεLσ2

w−

exp
[
− (x−√εLµw−)2

2εLσ2
w−

]
dx

=
1
2

erfc

(
µw+

√
L

2σ2
w+

)

(32)

since µw− = −µw+ and σ2
w− = σ2

w+ .
The probability of error P c

b in estimation of the
sequence ck is:

P c
b = p(ĉk 6= ck)

= p(ĉk > 0|ck = −1)p(ck = −1)
+ p(ĉk < 0|ck = +1)p(ck = +1)

=
1
2

erfc

(
µw+

√
L

2σ2
w+

) (33)

Note that the probability of error in (24) and (33)
does not account for the polarity error. We will address
this problem in the succeeding section.

7. Identification of Generator Polynomial

It is expensive to save hundreds or thousands
of sequence bits, say ĉ = [ĉ0, · · · , ĉP−1]

T , in the
memory of the eavesdropper. This motivates us to
estimate a generator polynomial of the estimated
spread sequence from (25).

Shift registers are the practical and efficient
implementation for the spread sequence. We con-
sidered a linear feedback shift register (LFSR) as
the implementation technique for PN sequence. The
correct selection of the n-tuple tap-weights (or n
feedback stages) will result in a maximal sequence of
the length N = 2n − 1 [1, 14].

Let F = GF (q) where q is a prime or a power of a
prime where GF ‡ denotes a finite field and q is called
the order of the field F [14]. If the feedback function
f(x0, · · · , xn−1) is a linear function; that is, if it can
be expressed as

f(x0, · · · , xn−1) =
w0x0 + · · ·+ wn−1xn−1, wi ∈ F

(34)

where wi denotes a tap weight of the LFSR for i =
0, · · · , n− 1 over F . Then, sequences have the linear
recursion relation [14]:

ck+n =
n−1∑

i=0

wick+i, k = 0, 1, 2, . . . (35)

If we have 2n successive sequence bits, we can
estimate the generator polynomial of sequence c =
(c0, · · · , cP−1) over F = GF (q). We may rewrite
the recursion relation (35) into the following matrix
representation [14]:




cn

cn+1

...
c2n−1


 =




c0 c1 · · · cn−1

c1 c2 · · · cn

...
. . . . . .

...
cn−1 cn · · · c2n−2







w0

w1

...
wn−1


 (36)

We can solve the recursion relation in (36) over
GF (q) to obtain tap weights w = (w0, · · · , wn−1).
The next successive sequence bit can be generated
and tested with the estimated tap weights ŵ and n
successive sequences using transform matrix M of
LFSR as follows [14]:

M =




0 0 · · · 0 ŵ0

1 0 · · · 0 ŵ1

...
. . . . . . . . .

...
0 0 · · · 1 ŵn−1


 (37)

and

(ĉk+1,ĉk+2, · · · , ĉk+n)

=(ĉ0, ĉ1, · · · , ĉn−1)Mk+1
(38)

Note that det(M) = (−1)nŵ0 and thus M is
invertible if and only if ŵ0 6= 0.

The method we propose is called a “zigzag
estimator” which searches for a generator polynomial
primarily based on (36) and (38) from the estimated

‡Finite fields are called Galois fields. See [14].
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ĉ

ĉ
∗

n̂ n̂ + 1 n̂ + 2 n̂ + 3

n̂ n̂ + 1 n̂ + 2 n̂ + 3

1

Fig. 3. A graphical illustration of the zigzag estimator where
n̂ = blog2(P + 1)c and ĉ∗ = − sgn(ĉ)

sequence ĉ in (25), and also corrects the polarity
error in the estimated sequence ĉ and data symbol
â. A graphical representation of the zigzag estimator
is given in Fig. 3. A fundamental idea in correcting
signs of the estimated sequence is that the zigzag
estimator returns the non-sign reversed sequence if the
zigzag estimator can find a code generator polynomial
from the estimated sequence ĉ. Let us introduce some
mathematical notations. Let c = (c0, c1, · · · ) be the
set of sequence or symbols. Let ĉ denote the estimated
version of c and c∗ be the sign-flipped version of c,
i.e., c∗ = − sgn (c). Let bnc denote the nearest integer
less than or equal to n. Following is an algorithm for
the zigzag estimator. Note that we do not claim the
algorithm herein is optimal or sub-optimal.

(Step 1) Estimate ĉ by (25). Store s ← ĉ (s temporal
memory of ĉ). Initialize TestFlag ← 0,
FlipCount ← 0, and n̂ ← blog2(P + 1)c

(Step 2) Estimate f̂n̂(x) by (36).

(Step 3) Generate 2n̂ successive α̂i by (38). Increase
FlipCount← FlipCount+1.

(Step 4) Test ĉi = α̂i,i=2n̂,··· ,4n̂−1.

(4a) If ĉi = α̂i,i=2n̂,··· ,4n̂−1, set TestFlag←
1 and go to (Step 6).

(4b) If ĉi 6= α̂i,i=2n̂,··· ,4n̂−1, set TestFlag←
0 and go to (Step 5).

(Step 5) If TestFlag=0, flip the sequence ĉ ← ĉ∗

(5a) If FlipCount=1, increase FlipCount←
FlipCount+1. Go to (Step 2).

(5b) If FlipCount=2, increase n̂ ← n̂ + 1
and reset FlipCount ← 0. Go to (Step
2).

(Step 6) Check polarity errors. If s 6= ĉ, ĉ ← ĉ∗.
Store ĉzigzag ← ĉ.

Note that the method proposed in this section
can also be applied to Gold codes. Some pairs
of m-sequences with the same degree can be used
to generate Gold Codes by linearly combining
two m-sequences with different offsets in Galois
field. If the estimated generator polynomial can
be decomposed into two preferred pairs of m-
sequence, we can decompose the estimated generator
polynomial into two m-sequences. For example, a
Gold code generator f(x) = 1 + x + x2 + x3 + x4 +
x5 + x6 can be factored into f1(x) = 1 + x + x3 and
f2(x) = 1 + x2 + x3§.

Finally, we use a matched filter operation between
the intercepted signal ys and the sign corrected
estimated sequence ĉzigzag in (Step 6). That is:

âzigzag = sgn
(
< y0, ĉzigzag >

)
(39)

However,

ânon−zigzag = sgn
(
< y0, ĉ >

)
(40)

Now we are ready to find the probability of error of
the zigzag estimator in (39). First, we will find the
probability of error of the symbol detector without the
zigzag estimator of (40). After that, the probability
of the symbol detector by the zigzag estimator (39)
will be analyzed. A symbol detector of a cooperative
receiver (Rx) can be written as follows:

â = sgn (〈y, c〉) = sgn (〈ca + σn̄, c〉)
= sgn (a 〈c, c〉+ σ 〈n̄, c〉) (41)

where n̄ ∼ N (0, 1). Then, signal-to-noise ratio ρRx of
the cooperative receiver is:

ρRx =
〈c, c〉2
σ2‖c‖2 =

P

σ2
(42)

Therefore, the probability of error of the cooperative
receiver with the known spread sequence c is [17]:

P a
b,Rx =

1
2

erfc

(√
P

2σ2

)
(43)

However, signal-to-noise ratio ρEv of the eavesdrop-
per (Ev) is:

ρEv =
〈c, ĉ〉2
σ2‖ĉ‖2 =

〈c, ĉ〉2
σ2P

(44)

§See 4.4 Decomposition of LFSR sequences in [14].
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10 Y. JO AND D. WU

Table II. Relationship among Pr(K = k) in (45), 〈c, ĉ〉, and 1
2

erfc
(√

ρEv

)
in (47) where k denotes the number of errors in the estimation

of the spread sequence of the non-zigzag method.

k 0 1 · · · P

〈c, ĉ〉 P P − 2 · · · −P
1
2 erfc

(√
ρEv

)
1
2 erfc

(
P

√
1

2σ2P

)
1
2 erfc

(
(P − 2)

√
1

2σ2P

)
· · · 1

2 erfc
(
−P

√
1

2σ2P

)

Pr(K = k) f(0; P, P c
b ) f(1; P, P c

b ) · · · f(P ; P, P c
b )

In Section 6, we find the probability of error P c
b in

the estimation of each chip in (33). The number of
incorrect estimations of each chip ck in the spread
sequence c is an independent yes/no experiment with
a fail probability P c

b . Let K denote the number of
errors in the estimation of the spread sequence c of
the length P . Then, we can write K ∼ B(P, P c

b ). The
probability of getting exactly k errors in the estimation
of the spread sequence c with the length of P is given
by:

Pr(K = k) = f(k; P, P c
b )

=
(

P
k

)
(P c

b )k (1− P c
b )P−k (45)

for k = 0, 1, 2, · · · , P with the binomial coefficient

(
P
k

)
=

P !
(P − k)!k!

(46)

If there is no error in the estimation of the spread
sequence c, i.e., c = ĉ or k = 0, 〈c, ĉ〉 = P and
ρEv(K = 0) = 1/σ2. If there is only one error in
the estimation of the spread sequence c, i.e., k = 1,
〈c, ĉ〉 = P − 2 and ρEv(K = 1) = (P − 2)2/(σ2P ).
Table II shows the relationship among 〈c, ĉ〉, ρEv and
Pr(K = k) in (47) and (45). Therefore, the probability
of error in the estimation of symbol without the zigzag
estimator can be written as follows:

P a
b,non−zigzag =

P∑

k=0

1
2

erfc

(
(P − 2k)

√
1

2σ2P

)
Pr(K = k)

(47)

Since f(k; P, P c
b ) = f(P − k;P, 1− P c

b ), the prob-
ability of k errors in the estimation of the spread
sequence is the same as that of P − k correct
estimations of the spread sequence. Let Q denote the
number of correct estimations of the spread sequence
and q = P − k. If the length of the spread sequence P

is odd,

P a,odd
b,non−zigzag =
bP/2c∑

k=0

1
2

erfc

(
(P − 2k)

√
1

2σ2P

)
f(k; P, P c

b )

+
bP/2c∑
q=0

1
2

erfc

(
(2q − P )

√
1

2σ2P

)
f(q; P, 1− P c

b )

(48)

If P is even,

P a,even
b,non−zigzag =

P/2−1∑

k=0

1
2

erfc

(
(P − 2k)

√
1

2σ2P

)
f(k; P, P c

b )

+
(

P
P/2

)
(P c

b )P/2(1− P c
b )P/2

+
P/2−1∑

q=0

1
2

erfc

(
(2q − P )

√
1

2σ2P

)
f(q;P, 1− P c

b )

(49)

The meanings of (48) and (49) are (i) the probability
distribution of 〈c, ĉ〉 is symmetric, (ii) the probability
distribution of 〈c, ĉ〉 > 0 follows f(k;P, P c

b ), and
(iii) the probability distribution of 〈c, ĉ〉 < 0 follows
f(q; P, 1− P c

b ).
The zigzag estimator in (39) can identify the PN

code generator polynomial to correct the polarity error
in the estimation of the spread sequence if 〈c, ĉ〉 =
−P or k = P or q = 0. Then, the probability of error
in the estimation of symbols with the zigzag estimator
P a

b,zigzag is:

P a
b,zigzag =
P−1∑

k=0

1
2

erfc

(
(P − 2i)

√
1

2σ2P

)
Pr(K = k)

+
1
2

erfc

(√
P

2σ2

)
Pr(K = P )

(50)
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ON CRACKING DIRECT-SEQUENCE SPREAD-SPECTRUM (DS-SS) SYSTEMS 11

The probability of error of (50) by the zigzag estimator
is enhanced by a factor of two, compared to (47)
without the zigzag estimator, if the zigzag estimator
can estimate a code generator polynomial. We will
validate the probability of error of the symbol detector
in (39) and (40) in the following Section 8.

8. Simulation and Validation

In this section, we present a complete simulation
example to illustrate our approaches. We consider
information symbols modulated by an m-sequence
with the generator polynomial f(x) = 1 + x2 + x5 of
length N = P = 31. Signal constellation is BPSK and
the number of data symbols is L = 128. The received
signal is corrupted by AWGN noise with SNR=-10dB.
We assume the sampling rate of an eavesdropper is
the chip rate Tc, however this is not required by our
method.

−30 −20 −10 0 10 20 30
−5

0

5

k

y

(a) Desynchronized signal yk=26
0

−30 −20 −10 0 10 20 30
−5

0

5

k

y

(b) Synchronized signal y0
0

−30 −20 −10 0 10 20 30
−5

0

5

k

y

(c) True signal y

Fig. 4. Symbol synchronization by the spectral norm where
the dashed ¤ denotes a−1, the solid ◦ denotes a0, the

dashed-dotted ∗ denotes a1, respectively

First, we need to determine a synchronized version
of the intercepted signal by (12). Fig. 4(a) shows
a desynchronized signal yk=26 delayed by 26Tc.
Therefore, a sample window yk=26

−1 contains the end
of a symbol a−1 for a duration of 5Tc followed by
the beginning of next symbol signal a0 for a duration
26Tc. A synchronized signal yk=0

0 by (12) is shown
in Fig. 4(b). Note that the desynchronized samples
which belong to a−1 are truncated. Fig. 4(c) shows

10 20 30 40 50 60
−1

0

1

l

a~ l

(a) Estimated data symbols â

10 20 30 40 50 60
−1

0

1

l

a l

(b) True data symbols a

Fig. 5. Data symbols estimation by (15)
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−100

0

100

k
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(a) Noisy estimated sequence ĉ

0 5 10 15 20 25 30
−1

0

1

k

c~ k

(b) Estimated sequence sgn (ĉ)
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−1

0

1
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c k

(c) True sequence c

Fig. 6. Spread sequence estimation by (25)
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0
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(a) Sign corrected sequence ĉ
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−1

0

1

l
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(b) Sign corrected data symbol â

Fig. 7. Sign correction by the zigzag estimator

Copyright c© 2008 John Wiley & Sons, Ltd.
Prepared using wcmauth.cls

Wirel. Commun. Mob. Comput. 00: 1–15 (2008)
DOI: 10.1002/wcm



12 Y. JO AND D. WU

two synchronized sample windows for the purpose of
comparison.

Second, estimations of data symbols and spread
sequences are followed by the symbol synchroniza-
tion. Fig. 5 shows the first 62 estimated data symbols
â by (15). Fig. 6 shows the noisy estimated sequence ĉ
by (25). Note that the estimated data â in Fig. 5(a) and
the estimated sequence in Fig. 6(b) are sign reversed
versions of the true symbol a and the true sequence c,
respectively. Therefore, 〈c, ĉ〉 = −P . We can correct
polarity errors in the estimated data symbol â and the
spread sequence ĉ by the proposed zigzag estimator.

Third, we can correct polarity errors in the estimated
data symbol â and the spread sequences ĉ by the
zigzag estimator. The zigzag estimator in Section 7
searches and tests a generator polynomial from the
estimated sequence ĉ by the recursion relation in (36)
and the transform matrix in (37). Fig. 7 shows the sign
corrected sequence ĉzigzag and data symbol âzigzag

by the proposed zigzag estimator.
We also conduct a simulation to evaluate the

performance of the proposed zigzag estimator. The
generator polynomial used in this simulation is
an m-sequence with f(x) = 1 + x + x11 + x12 + x14

and the sequence is truncated, P < N = 2n − 1 for
comparison. We randomly seed initial conditions and
randomly generate data symbols corrupted by AWGN
noise. The signal constellation is BPSK. 10,000
simulation trials are carried out and averaged.

First, we compare the histogram of 〈c, ĉ〉 between
with the zigzag estimator and without the zigzag
estimator to verify the relation between (47) and
(50). In this simulation, we use the number of
data symbol L = 128, the length of the spread
sequence P = 64, and SNR=−5dB. Fig. 8 shows the
comparison of histograms 〈c, ĉ〉 between with the
zigzag estimator and without the zigzag estimator. The
horizontal axis is the value 〈c, ĉ〉 and the vertical
axis represents the normalized occurrence frequency
of 〈c, ĉ〉. The occurrence frequency of 〈c, ĉ〉 = P is
0.9991 and 0.4939 for with the zigzag estimator and
without the zigzag estimator, respectively. However,
the occurrence frequency of 〈c, ĉ〉 = −P with the
zigzag estimator and without the zigzag estimator is
0.0000 and 0.5052. The zigzag estimator in Section
7 can identify the PN code generator polynomial
to correct the polarity error in the estimation of
the spread sequence when 〈c, ĉ〉 = −P . Therefore,
the occurrence frequency 〈c, ĉ〉 = P with the zigzag
estimator is the sum of that of 〈c, ĉ〉 = P and 〈c, ĉ〉 =
−P without the zigzag estimator. This validates the
relation between (47) and (50).

Second, we compare Pr(〈c, ĉ〉 = P ) between with
the zigzag estimator and without the zigzag estimator
in (47) and (50), respectively. Fig. 9 shows the
Pr(〈c, ĉ〉 = P ) with different combinations of the
number of data symbols L and the length of the spread
sequence P . Note that the Pr(〈c, ĉ〉 = P ) corresponds
to Pr(K = 0) without the zigzag estimator and
Pr(K = 0) + Pr(K = P ) with the zigzag estimator.
The Pr(〈c, ĉ〉 = P ) increases as the number of the
intercepted symbols L increased and also increases
as the length of the spread sequence P increased.
Therefore, the Pr(〈c, ĉ〉 = P ) obtained by the zigzag
estimator is almost two times greater than that without
our proposed zigzag estimator.

Third, we compare the simulated probability of
error of the symbol detector in (39) and the analytical
probability of error in (50). Fig. 10 shows the P a

b,zigzag

with different combinations of the number of data
symbols L and the length of the spread sequence P .
Note that Pb,Rx/P = 64 denotes the probability of
error of a cooperative receiver in (43) with P = 64 for
comparison. The P a

b,zigzag is enhanced as the number
of samples L increases and as the length of sequence
P increases. Moreover, the analytical performance
P a

b,zigzag of the symbol detector in (50) is almost
the same as that of the simulated probability of error
in (40). Since the simulated Pr(〈c, ĉ〉 = P ) ' 1 for
P = 64, L = 128, SNR=-5dB in Fig. 9 over 10,000
trials, P a

b,zigzag ' Pb,Rx. Therefore, the analytical
probability of error in (50) is a good approximation
of the performance of an eavesdropper. This analytical
performance can provide an efficient prediction of the
performance of our proposed zigzag estimator.

Finally, we conduct a simulation with the n-tuple
code generator polynomial to validate the performance
of the proposed zigzag method with the long length
sequence. The length of the spread sequence is P =
2n − 1. We randomly seed initial conditions and
randomly generate data symbols corrupted by AWGN
noise with SNR = −10dB. The signal constellation is
BPSK and 10,000 simulation trials are carried out and
averaged. Fig. 11 shows the probability of the correct
estimation of the spread sequence Pr(〈c, ĉ〉 = P )
with n = 6, · · · , 13 with the number of data symbols
L = 256. The Pr(〈c, ĉ〉 = P ) increases as the length
of the spread sequence P = 2n − 1 increased.

9. Conclusion

In this paper, we consider the problem of eaves-
dropping on the adversary’s communication, which
uses Direct-Sequence Spread-Spectrum (DS-SS). To
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Fig. 8. Histogram of 〈c, ĉ〉 with P = 64, L = 128, and SNR=-5dB
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Fig. 9. Comparison of the probability of correct estimation of the spread sequence Pr(〈c, ĉ〉 = P )

intercept the adversary’s communication, one needs
to (a) identify the start position of a data symbol in
the spread signal for symbol synchronization purpose,
(b) remove the PN sequence, (c) estimate the PN
sequence, and (d) estimate the generator polynomial.
In this paper, we propose effective methods to address
these four problems. To identify the start position
of a data symbol, we developed a method that uses
the spectral norm of the sample covariance matrix.
After symbol synchronization, a method based on the
cross-correlation was used to estimate data symbols up
to an unknown multiplicative factor. These estimated
symbols were used by a matched filtering operation
for identifying the PN sequence from the intercepted

signal. In addition to obtaining the PN sequence and
the data symbols, we also proposed a zigzag estimator
to identify the PN code generator polynomial and
proposed a method to identify the polarity in the
received signal. Our method improves the probability
of correct estimation by a factor of two, compared to
the previous method. We also analyze the probability
of error of the zigzag estimator in terms of SNR, the
number of intercepted data symbols, and the length
of the spread sequence. Our validation by simulation
and theoretical analysis show the effectiveness of
our proposed method. Our proposed method can be
used by an interceptor to eavesdrop on an adversary’s
communication. Other applications of our method
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(c) P =128, L =256
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Fig. 10. Comparison of the simulated and analytical probability of bit error P a
b,zigzag with the zigzag estimator in (50) where

Pb,Rx is the probability of error of an cooperative receiver (Rx)

include altering an adversary’s information, isolating
an adversary’s communication link, and jamming
by a denial-of-service (DoS) attack by our smart
eavesdropper. Furthermore, our method can be used
for the synchronization by estimating the received
spread code by an intended receiver.
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