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Abstract

In this paper, we present a new decoding algorithm for the Wyner-Ziv (WZ) video coding scheme based on turbo

codes. The WZ video coding scheme is based on the principles of distributed source coding and shifts the complexity

of the video codec from the encoder to the decoder. In the WZ coding schemes based on turbo codes, a video frame

is encoded using a turbo code, and only a subset of the parity bits are sent to the decoder. At the decoder, the

temporal correlation of the video sequence is exploited by using the previous frame as noisy side information for the

current frame. However, there is a mismatch between the side information, which is available as pixel values, and

the binary code bits. Previous implementations of the decoder used a suboptimal approach that converted the pixel

values to soft information for the code bits. In this paper, we present a new decoding algorithm for this application

based on decoding on a hyper-trellis, in which multiple states of the original code trellis are combined. We show that

this approach significantly improves the performance of the WZ coding scheme without changing the complexity of

the decoder. We also introduce a new technique for the WZ decoder to exploit the spatial correlation within a frame

without requiring transform-domain encoding at the encoder, thereby reducing its complexity. We present results for

fixed-rate coding because fixed data rates may be required in many practical applications and variable-rate coding

disguises some of the faults of other decoding schemes. Simulation results show a 9–10 dB improvement in the peak

signal-to-noise ratio when compared to previous implementations of the WZ video codec that do bitwise decoding

and utilize only the temporal correlation.
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I. INTRODUCTION

In traditional video coding schemes like MPEG and H.26x [1], the encoder bears most of the computational burden

when compared to the decoder. The statistical correlation in the frames of the video sequence is usually exploited

at the encoder using motion compensation algorithms that are computationally intensive. However, the advent of

wireless video and sensor networks have placed stringent requirements on the complexity of the video encoder. These

applications call for a simple encoder to reduce cost and enable real-time encoding in small mobile devices that

are power-constrained, computationally limited, and inexpensive. Though a simple encoder is required, the coding

rate should not be compromised because this directly impacts the amount of power consumed in transmission.

Low-complexity codecs based on the principles of distributed source coding (DSC) have been proposed recently

for wireless video applications [2], [3]. These techniques are similar in the fact that they exploit the temporal

correlation between video frames at the decoder. The Slepian-Wolf theorem [4] and Wyner-Ziv result [5] motivate

this approach. These information-theoretic results state that it is possible to encode the outputs from correlated

sources independently, and still achieve efficient compression as long as decoding is performed jointly. In the

context of video coding, these results imply that ideally all the processing to exploit temporal (interframe) and

spatial (intraframe) correlation in the video stream can be performed the decoder. This facilitates the design of

a simple video encoder at the cost of increased complexity at the decoder. We first begin by describing a few

approaches to DSC and then discuss the application of DSC techniques to video coding.

In the distributed source coding scenario, multiple nodes have sensors that produce correlated outputs. Each sensor

applies source coding to its own sensor data without knowledge of the data at other nodes, but the source decoding

is done on the compressed output from all nodes. The goal of distributed source coding is to achieve compression

close to that of joint compression of the correlated data. Current work on DSC can be broadly classified into two

approaches based on how the encoding and decoding is done. Most of the techniques consider the compression of

information X given that the decoder has knowledge of correlated data Y from another sensor. The first approach [6],

[7], [8], [9] is based on explicit random binning techniques [10], [11] that are typically used in achievability proofs

in information theory. The other approach to DSC [12], [13], [14], [15], [16] involves transmitting parity bits from

a high-rate error-control code for X and decoding using Y as a noisy version of X . It is this second parity-bit

approach that we consider in this paper because of its simple implementation using turbo codes.

Distributed source coding principles were first applied to compression of video sequences at a single sensor

in [3], [2]. In this application, there is only one sensing node, which observes temporally correlated video frames.

Rather than utilizing sensor measurements that are spatially correlated, the temporal correlation of video sequences

is utilized. Here the sensor has all of the observations and thus could utilize joint source coding. The goal of

applying the DSC compression techniques in this application is to avoid the complexity of joint encoding.

In [2], [17] Aaron and Girod applied the parity-bit approach to DSC for video coding. In their approach, a

previously decoded frame acts as SI for the current frame. This approach leads to a simple encoder because each

frame is independently encoded with a forward error-correction code that has a low complexity encoder. In this
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scheme, the frames are encoded independently (intraframe encoding) and decoded jointly (interframe decoding).

Since their technique is based on the Wyner-Ziv theorem [5] on source coding with side-information at the decoder,

and it operates directly on the pixels of a frame, we refer to their codec as the pixel-domain Wyner-Ziv (WZ)

video codec. In [2], the odd frames are assumed to be intra-coded using typical transform-coding techniques like

the discrete cosine transform (DCT), and these frames can be recovered at the receivers with very little loss. These

key frames are also referred to as I-frames in MPEG and H.26x literature. The key frames are used to generate

SI about the even frames at the decoder1. The WZ codec is used to encode and decode only the even frames. The

correlation between the pixels in the SI frame and the original frame is modeled as a Laplacian channel. A turbo

code is then used to correct the errors in this “correlation-channel”.

In this paper, we examine the approach used to generate the channel likelihoods in the turbo decoder in previous

work and show that the approach is suboptimal. We then show how the likelihoods can be calculated on a pixel-

by-pixel basis without approximation by using a hyper-trellis in the MAP decoder. In previous work, only the

results for adaptive-rate coding are applied, where it is assumed that the decoder can feedback information about

the output error rate to the encoder. The ability to select the optimal rate based on actual decoding can hide some

of the deficiencies of the suboptimal MAP decoding approach. Furthermore, the use of feedback to achieve this is

not practical in many networks, and adaptive-rate transmission may not be possible in networks that are trying to

provide quality-of-service guarantees. Thus, in this paper we consider the performance at fixed transmission rates.

Under this constraint, simulation results show that the hyper-trellis approach has the potential to improve the peak

signal-to-noise ratio (PSNR) by over 5 dB.

The WZ codec in [2], [17] utilizes only the temporal correlation of the video sequence. Techniques to exploit

both the temporal and spatial correlation of a video sequence were previously proposed by Girod et al. in [18].

A transform-domain video codec based on DSC principles was also independently proposed in [3]. More recently,

transform domain techniques have been used for layered WZ video coding in [19]. In these variants of the WZ

codec, the spatial correlation in the pixels of a frame is exploited at the encoder using transform coding. A pixel-

domain WZ codec that also utilizes spatial correlation of a frame without requiring transform-domain coding is

presented in [20]. Similar to the approach of [20], we show how to efficiently exploit the spatial correlation in

video frames while concentrating the complexity at the decoder. This results in a simple encoder operating in

the pixel-domain and conforms to the principle of letting the decoder bear the computational burden to exploit all

redundancy. In our approach, spatial side information for a pixel is generated as a function of the closest neighboring

pixels. The temporal and spatial side information (SI) can be treated as the outputs of two virtual channels. In

communication systems, copies of a symbol that are received over separate channels are combined using diversity

combining techniques [21] in order to improve performance. We can thus use diversity combining on the temporal

and spatial SI to improve the performance of the Wyner-Ziv decoder. In order to achieve best performance in

1It is not necessary that the key frames correspond to the odd frames in the sequence. The key frames can be periodically placed in a sequence

as described in [17].
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diversity combining, the received copies should be independent. Thus, we introduce a novel channel permuter to

reduce the dependence between the spatial and temporal information. Simulation results show an additional 4–5 dB

improvement in PSNR when compared to a hyper-trellis implementation of the WZ video codec that utilizes only

the temporal correlation.

II. WYNER-ZIV VIDEO CODING USING TURBO CODES

In this section, we briefly explain the operation of the WZ video codec presented in [2], [17]. We also discuss

in some detail the BCJR maximum a posteriori (MAP) decoding [22] algorithm used in the Wyner-Ziv decoder.

Although this is a well-established scheme, repeating some of the equations here makes it easier to show that the

approach used in [2], [17] is suboptimal. These equations also facilitate the development of the BCJR algorithm

on the hyper-trellis in Section III-B.

The Wyner-Ziv codec of Aaron and Girod [2], [17] operates as follows. Let F1, F2, . . . , FN denote the frames

of the video sequence. The odd frames (F2i+1) of the video sequence are intra-coded using the typical approach

of applying a discrete cosine transform (DCT) followed by uniform quantization with different step sizes for each

DCT coefficient. It is assumed that these I-frames can be decoded with high accuracy. At the decoder, the odd

frames are used to generate SI (S2i) for the even frames (F2i). Thus, the I-frames are also referred to as key

frames. The SI S2i is usually generated by interpolating the key frames. As inter-frame coding is not the focus of

this paper, we follow the approach of [2], [17] and do not consider coding of the odd frames. Perfect estimates of

the key frames are assumed to be available to the decoder.

The WZ codec is shown in Fig. 1. The WZ codec is used to encode and decode only the even frames. Each pixel

u of F2i is quantized using a uniform quantizer with 2M levels to produce a quantized symbol q.2 The quantized

symbol q is then converted to a binary codeword [q0, . . . , qM−1]. A sufficient number of symbols are collected

and are encoded using a turbo code. The turbo encoding is done as follows. The quantized symbols are converted

to binary codewords and encoded using a recursive systematic convolutional (RSC) code to produce a systematic

bit stream and a parity bit stream. The quantized symbols are interleaved and then encoded using another identical

RSC code to produce a second parity bit stream. In [2], [17] the interleaving is performed on the pixels, although

this is not strictly required based on the way that the decoder is implemented in [2], [17].

The decoder has SI (S2i) about the current frame F2i. In the video coding literature, the difference between the

pixels of F2i and S2i is usually modeled as a Laplacian random variable,

{S2i}m,n = {F2i}m,n + η, (1)

where (m,n) indexes the pixel location and η is a Laplacian random variable with density function p(η) = α
2 e−α|n|.

Thus, S2i can be considered to be the output of a channel with Laplacian noise to which the original frame F2i is

2Note that the quantized symbol (q) is not a vector We use the vector notation to indicate that the quantized symbol has a binary representation

given by q = [q0, . . . , qM−1]. This notation allows us to use the quantized symbol (q) and the binary representation of the quantized symbol

([q0, . . . , qM−1]) interchangeably, thereby simplifying exposition.
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Fig. 1. Wyner-Ziv Codec

the input. This fictitious channel that arises because of the correlation between the frames of the video is sometimes

referred to as the correlation channel. Since a noisy version of F2i is available at the decoder in the form of S2i,

the systematic part of the turbo code need not be transmitted. It is shown in Fig. 1 that the systematic part is

discarded. The parity streams generated by the two RSCs can be punctured to obtain any desired rate. Compression

is achieved when the number parity bits transmitted is smaller than the number of bits input to the turbo encoder.

The decoder in the receiver has to estimate the original frame F2i from the SI S2i and the parity bits from

the turbo code. The parity bits are assumed to be transmitted through an error-free channel. This is a common

assumption in source coding, wherein the compressed bits are assumed to be error-free at the source decoder.

The WZ video decoder consists of a turbo decoder followed by a reconstruction function. The WZ decoder

estimates the pixels of the original frame (F2i) in a two-step process. First, the turbo decoder operates on the

transmitted parity bits along with the side-information to produce an estimate of the quantized symbols, q̂. This

estimate q̂ and the SI S2i are used to reconstruct an estimate û of the original pixel u in frame F2i. The reconstruction

function used in [2], [17] is given by

û = E(u|q̂, S2i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bl, v ≤ bl

v, bl < v < bu

bu, v ≥ bu,

(2)

where v is the pixel in S2i that forms the side-information for u, and bl and bu are the lower and upper boundaries

of the quantization bin indexed by q̂. That is, if a pixel has a value s such that bl ≤ s < bu, then the quantized

symbol representing s is q̂. Thus, if the side-information v lies in the reconstruction bin indexed by q̂, then û takes

on the value of v. If v lies outside the reconstruction bit of q̂, then û takes on the value of the boundary closest to

v.
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A. BCJR MAP decoding on the regular trellis

We now show how the BCJR MAP algorithm is used in [2], [17] for turbo decoding of WZ coded video. This

is a simple extension of the BCJR MAP decoder for additive white Gaussian noise channels presented in [23].

In the discussion that follows in this Section and Section III, we focus on the computations within each of the

constituent BCJR decoders that make up the turbo decoders. We use the following notation. The input to one of

the rate-1/2 RSC constituent encoders is represented as x = [x1, . . . , xK ]. The output of the RSC code is denoted

by c = [c1, , . . . , cK ], where each ci = [xi, pi] and pi is the parity bit produced by the RSC encoder at time i. The

received vector at the decoder is represented by y = [y1, . . . , yK ], where each yi = [yx
i , yp

i ]. We have used yx
i to

represent the received value for the systematic bit xi and yp
i to represent the received value for the parity bit pi.

The state of the encoder at time i is denoted by si.

The BCJR MAP decoder computes the log-likelihood ratio (LLR) for information bit xk as

L(xk) = log
P (xk = 0|y)
P (xk = 1|y)

. (3)

The decoder decides x̂k = 0 if L(xk) > 0, and x̂k = 1 if L(xk) < 0. Following the development in [23], the LLR

can be expressed as

L(xk) = log

(∑
X0

αk−1(s′)γk(s′, s)βk(s)∑
X1

αk−1(s′)γk(s′, s)βk(s)

)
, (4)

where Xi is the set of all transitions from state (sk−1 = s′) → (sk = s) with an input label of i and the branch

metrics αk(s), βk(s) and γk(s′, s) are defined as follows:

αk(s) � P (sk = s,yk
1) =

∑
sk−1=s′

αk−1(s′)γk(s′, s), (5)

βk(s) � P (yK
k+1|sk = s) =

∑
sk=s

βk(s)γk(s′, s), (6)

γk(s′, s) � P (sk=s, yk|sk−1 = s′). (7)

The branch metric γk(s′, s) can be further reduced to [23]

γk(s′, s) = P (xk)P (yx
k |xk)P (yp

k|pk). (8)

Note that P (xk) denotes the a priori probability of xk. This quantity takes the value of the extrinsic information

at the other constituent decoder (see [23]). P (yp
k|pk) is the likelihood for the parity bits. In the Wyner-Ziv video

coding setup, the parity bits at the output of the encoder are either punctured or transmitted to the decoder without

errors. Thus, the likelihoods of the parity bits can be evaluated as

P (yp
k|pk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, yp
k = pk, pk not punctured

0, yp
k �= pk, pk not punctured

0.5, pk punctured

(9)

The probability P (yx
k |xk) in (8) is the channel likelihood, which is calculated as follows. Recall that the input

labels xi on the trellis for the turbo decoder in the Wyner-Ziv codec correspond to the components of the quantized
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symbols q. Then, assuming N quantized symbol are grouped together before encoding, the input to the encoder

can be written as x = [q0
1 , . . . , qM−1

1 , . . . , q0
N , . . . , qM−1

N ], where qm
l is the mth bit-plane in the quantized symbol

representing pixel l. Thus, in order to compute the branch metric in (8), the channel-likelihoods, P (yx
k |qm

l ), need to

be computed. Since the systematic bit xk is not transmitted, there is no information for yx
k . However, side-information

for each pixel is available at the decoder. The authors of [2], [17] use the following approach to estimate P (yx
k |qm

l )

from the SI.3 Let vl be the side-information corresponding to pixel ul that has been quantized into symbol ql. Also

assume that a pixel u is quantized to value ρi if bi−1 ≤ u ≤ bl. Then, the probability P (ql = ρi|v) is given by

P (ql = ρi|vl) = P (bi−1 ≤ ul ≤ bi|vl) = P (bi−1 − vl ≤ η ≤ bi − vl) (10)

= Fη(bi − vl) − Fη(bi−1 − vl), (11)

where the second equality in (10) follows from (1), and Fη(·) is the cumulative distribution function of η. The

probability P (qm
l = j|vl), j ∈ {0, 1} can then be obtained by marginalization as

P (qm
l = j|vl) =

∑
ρi:ρ

m
i =j

P (ql = ρi|vl), j ∈ {0, 1}. (12)

The probability P (vl|qm
l = j) is then obtained using Bayes’ rule and used to approximate the channel-likelihood

P (yx
k |qm

l ) in the computation of the branch metric in (8).

Quantized value Two-bit representation

1 00

3 01

5 10

7 11

TABLE I

EXAMPLE TWO-BIT QUANTIZATION SCHEME.

This approach results in an approximation to the channel likelihoods. The approximation comes about because

the decoder is operating on bits, and thus calculates P (vl|qm
l ), which is the conditional probability of a pixel value

given a particular bit value for that pixel. These probabilities are not available to the decoder, so the probability is

calculated as described above. The approximation arises because of the marginalization in (12), where the events

qm
l = j and qn

l = k, m �= n, are treated as conditionally independent given vl, when in fact they are correlated. For

instance, suppose that two-bit quantization is used with the bit mapping shown in Table I. Consider some symbol

ql for which P (q0
l = 0) = 1, the second bit has been punctured, and the side information is vl = 4. Using (12)

for the second bit gives P (q1
l = 0|vl) = P (q1

l = 1|vl) because of symmetry; i.e., P (ql = 00|vl) = P (ql = 11|vl)

and P (ql = 01|vl) = P (ql = 10|vl). However, if the correlation is not ignored, the fact that q0
l = 0 results in

P (q1
l = 0) = P (ql = 00|vl), which is smaller than P (q1

l = 1) = P (ql = 01|vl).

3This information was obtained through a private communication with A. Aaron, one of the co-authors of [2], [17].
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Fig. 2. (a) Trellis for the (1, 5/7) recursive systematic convolutional code.(b) The corresponding hyper-trellis for use with 2 bit quantization

(two regular trellis sections are combined to form one hyper-trellis section). Labels on the branches of the form a/b imply that input of a

produces an output of b.

III. TURBO DECODING ON A HYPER-TRELLIS

In order to avoid the drawbacks of the approach mentioned in the previous section, marginalizing the probabilities

P (q|vl) should be avoided. Thus, the decoder should directly determine the a posteriori probabilities for the pixels

rather than the bits that make up the pixels. One obvious solution is to use a turbo encoder/decoder over an M -ary

alphabet. Converting q to binary codewords is no longer necessary if an M -ary alphabet is used. In this case,

the input to the correlation channel would be the quantized version ql of pixel vl, and the output would be the

corresponding pixel vl in the SI frame. Thus, the channel likelihood for the correlation channel with M -ary input

is of the form P (vl|xk = qi), i ∈ {1, 2, . . . , 2M}. Thus, the channel likelihoods can be calculated using (11) and

Bayes’ rule. However, the turbo encoder now requires the ability to perform operations over a higher-dimensional

field which increases the complexity. Also, the decoder complexity increases exponentially because the number of

states in the trellis is (2M )m for an M -ary alphabet, where m is the memory of the RSC code (a binary turbo code

only requires 2m states). The exponential increase in trellis complexity may be prohibitive. This is especially true

when a turbo code with a reasonably large memory is used in conjunction with a quantizer having many levels.

A. Construction of the Hyper-Trellis

We avoid this increase in complexity by performing pixel-wise decoding using a hyper-trellis structure in the turbo

decoder and performing BCJR MAP decoding on the hyper-trellis. The encoder used is the same as in [2], [17],
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Fig. 3. A hyper-trellis section for use with 3 bit quantization (three regular trellis sections are combined to form one hyper-trellis section).

although it is now required that the interleaving be performed on the pixels because each branch of the hyper-trellis

represents one pixel.4 The hyper-trellis is formed by merging M branches of the regular trellis into one hyper-trellis

section. Fig. 2-(a) shows the regular trellis structure for the (1, 5/7) RSC code and the corresponding hyper-trellis

for use in a Wyner-Ziv video codec with 2-bit quantization. Thus, two sections of the trellis section are merged to

form one hyper-trellis section. The hyper-trellis is constructed as follows. Starting at time i = 0, we trace all the

paths through M consecutive sections of the trellis. If a path starts at state s′ at time i = Mk for some integer k

and ends at state s at time i + M − 1, then all the input labels xi, . . . , xi+M−1 on the branches in that path are

collected to form an input label Xi = (xi, . . . , xi+M−1) for the branch connecting state s′ and s in the hyper-trellis.

Similarly, the output label on the length-M path in the regular trellis are grouped together to form the output label

for the corresponding hyper-trellis branch. Consider an example from Fig. 2-(a). One hyper-trellis section is formed

by collapsing two consecutive sections of the regular trellis. For instance, let 00 → 10 → 01 denote the path in the

regular trellis that starts in state 00, passes through state 10, and ends in state 01. The corresponding branch labels

are 1/11 and 1/10. As shown in Fig. 2-(b), in the hyper-trellis, this path is replaced by a single branch that starts

in state 00, ends in state 01, and has branch label 11/1110. This is the branch labeled i in Fig. 2-(b).

A hyper-trellis section for 3-bit quantization is shown in Fig. 3. Note that the hyper-trellis has parallel transitions.

Since there are 8 possible inputs, eight branches emerge from each state, but since there are only four possible

states, two branches lead to the same next state. Thus, there are 2 parallel branches connecting a pair of states

at adjacent time intervals. The parallel transitions between a pair of states are distinguished in Fig. 3 by using

4Note that the bits within a pixel may be interleaved if desired.
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solid and dashed lines. By allowing parallel transitions, the complexity of the hyper-trellis decoder is smaller than

the approach used in [2], [17] and described in Section II. Though there are more transitions per section in the

hyper-trellis, the total number of hyper-trellis sections is reduced, yielding the same number of branch calculations

but fewer state calculations. Furthermore, the computations on the hyper-trellis eliminate the marginalization steps

that must be performed on the regular trellis.

Recall that the input labels xi+k, i ∈ {0,M, 2M, . . .} on the regular trellis corresponds to the kth compo-

nent of quantized symbol (qi) at time i; i.e, xi+k = qk
i . Therefore the input label on the hyper-trellis Xi =

[xi, . . . , xi+M−1] = [q0
i , . . . , qM−1

i ] = qi Thus, the input labels on the branches of the hyper-trellis are the quantized

symbols q. This can be see in Fig. 2-(b), where the input labels correspond to the four possible quantized symbols

{00, 01, 10, 11}.

B. BCJR MAP decoding on the Hyper-Trellis

The input to the turbo encoder is x = [x1, . . . , xK ]. To derive the BCJR MAP algorithm for the hyper-trellis, we

group the input bits into M-tuples and express the input as X = [X1, . . . ,XN ], where Xi = (xM(i−1), . . . , xMi−1),

and xi ∈ {0, 1}. Thus, the output of the turbo encoder can be expressed as C = [C1, . . . ,CN ], where Ci =

[cM(i−1), . . . , cMi−1] = [xM(i−1), pM(i−1), . . . , xMi−1, pMi−1]. Similarly, the input to the turbo decoder y =

[y1, . . . , yK ] is also grouped into M-tuples and the results vector is denoted by Y = [Y1, . . . ,YN ]. Note that

Yi = [yM(i−1), . . . , yMi−1] = [yx
M(i−1), y

p
M(i−1), . . . , y

x
Mi−1, y

p
Mi−1]. Since there a total 2M different input labels,

it is hard to define a log-likelihood ratio as in the case of binary inputs. Thus, the following development of

the BCJR algorithm for the hyper-trellis operates in the log-likelihood domain instead of the LLR domain. The

log-likelihood for an input Xk is defined as

L′(Xk = qi) = log(P (Xk = qi|y)), i = 1, 2, . . . , 2M . (13)

The decoder decides X̂k = qi if L′(Xk = qi) ≥ L′(Xk = qj),∀i �= j, where ties are broken arbitrarily. The

log-likelihoods can be expressed as

L′(Xk = qi) = log

⎛
⎝∑

Xqi

αk−1(s′)γk(s′, s)βk(s)

⎞
⎠ , (14)

where Xqi is the set of all transitions in the hyper-trellis with an input label of qi, and α, β, and γ are defined in

a manner similar to (5), (6), and (7). As in (8), the branch metric for the hyper-trellis can be expressed as

γk(s′, s) = P (Xk = qi)P (Yx
k|Xk = qi)P (Yp

k|Pk), (15)

where Pk = [pM(k−1), . . . , pMk−1] are the parity bits corresponding to the information symbol qi at time k, and

Y�
k = [y�

M(k−1), . . . , y
�
Mk−1] for � ∈ {x, p}. The likelihoods for the parity symbols, P (Yp

k|Pk), can be evaluated

as

P (Yp
k|Pk) =

M−1∏
i=0

P (yp
M(k−1)+i|pM(k−1)+i), (16)

where P (yp
i |pi) is given in (9).
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The side-information at the decoder plays the role of the received systematic symbols Yx
k . Thus, the channel-

likelihood can be computed as P (Yx
k|Xk = qi) = P (vk|Xk = qi), where vk is the side-information corresponding

to pixel uk (that has been quantized to qi). Thus, P (Xk = qi|vk) can be computed using (11) for i = 1, . . . , 2M

and then the channel-likelihoods can be obtained using Bayes’ rule. Note that in the hyper-trellis approach, the

channel-likelihoods are computed as if an M -ary alphabet was used at the encoder. However, the likelihoods for

the parity bits are computed differently.

Once the likelihoods in (14) are evaluated, it is standard procedure to extract extrinsic information to be sent to

the other constituent decoder. The extrinsic information for information symbol qi is given by

L′
e(Xk = qi) = L′(Xk = qi) − log (P (Yx

k|Xk = qi)) . (17)

Note that P (Xk = qi) in (15) represents the a priori information available to the decoder about Xk. In the first

iteration of turbo decoding, P (Xk = qi) = 2−M , ∀i ∈ {1, . . . , 2M}, and in the ensuing iterations the extrinsic

information (L′
e(Xk = qi)) that is generated by the other decoder is used as the a priori information.

IV. UTILIZING SPATIAL CORRELATION AT THE DECODER

Typical video encoders like H.26x and MPEG exploit the temporal correlation using predictive coding and

additionally use transform-domain techniques like DCT to compress the spatially redundant information in each

frame. In [17], [18], Girod et al. present a transform-domain Wyner-Ziv codec to utilize the spatial correlation to

improve compression. The codec is very similar to the one described in Section II of Part I, except that it operates

on the DCT coefficients of the image. More recently, DCT-based layered WZ video coding was considered in [19].

Spectral components of equal importance from different pixels are collected and encoded using a turbo code. Parity

bits from each spectral component are input to a separate turbo decoder. Performance gains up to 2 dB are reported

over the pixel-domain Wyner-Ziv codec.

There are several drawbacks to this approach. First, the encoder must calculate the DCT for each frame, which

increases the complexity of the encoder. Second, the correlation between the DCT coefficients is not well modeled.

Though the correlation between co-located pixels in a frame and the temporal SI for that frame is well modeled by

a Laplacian random variable, the nature of the correlation between the DCT of a frame and the DCT of adjacent

frames is not clear. In [17], [18], the correlation between the DCT of a frame and that of the corresponding temporal

SI is also modeled as a Laplacian random variable, with different spectral coefficients having different parameters

for the Laplacian distribution. The correlation parameters were obtained through extensive simulation.

A simpler pixel-domain codec utilizing spatial correlation of a frame is introduced in [20]. In this technique,

alternate bits in a WZ frame (F ) are collected into two groups, FA and FB , and encoded independently. One group

(FA) is decoded using temporal side-information only, and the estimate of this group (F̂A) is used to generate spatial

SI for the other group FB . Based on a correlation threshold the decoder then chooses to use either the temporal

SI or the spatial SI to decode FB . In this section, we present a pixel-domain WZ codec that also utilizes spatial

correlation at the decoder, and differs from the approach of [20] in the following aspects. In our approach, all the
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Fig. 4. Correlation between pixels in a frame F and a spatially-smoothed version of F . Each pixel in the spatially-smoothed frame Fs is

obtained by averaging the pixel values of the four nearest-neighbors of a co-located pixel in F .

pixels benefit from spatial correlation whereas only half the pixels (the pixels in FB) can potentially benefit from

spatial correlation [20]. The spatial correlation is used for all pixels at all times in our decoder (based on diversity

combining between the temporal and spatial side-information) whereas in [20] the decoder chooses to use either

the temporal or the spatial side-information (selection diversity). Spatial correlation is utilized in the iterative turbo

decoding process in our scheme unlike the approach in [20] . The approach of [20] improves PSNR up to 1.8 dB,

whereas our approach is capable of producing PSNR improvements of 4–5 dB as shown in Section V.

A. The spatial-correlation channel

We now present an approach to utilize the spatial correlation in a hyper-trellis based, pixel-domain Wyner-Ziv

codec. This approach further embodies the principle of minimizing encoder complexity by exploiting all of the

correlation at the decoder. As with the temporal correlation, we model the spatial correlation as a virtual channel.

The spatial information can be extracted from a frame in several ways. We propose the following ad hoc approach

because it is easy to implement in the decoder and has shown good performance. Future research into techniques
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Fig. 5. The pixel-domain Wyner-Ziv codec with spatial processing at the decoder

to exploit the spatial correlation may provide even better performance.

We calculate the spatial side information for a pixel as the average of the values of the four nearest pixels. Define

Is as a spatially smoothed version of image I , wherein each pixel in Is is obtained as an average of the nearest

neighbors of that pixel in I ,

{Is}m,n � round
({I}m−1,n + {I}m+1,n + {I}m,n−1 + {I}m,n+1

4

)
. (18)

Then, we claim that difference between co-located pixels in I and Is is well modeled by a Laplacian random

variable. The empirical correlation between the pixels in a frame in the Foreman video sequence and its spatially-

smoothed version is shown in Fig. 4. The density function of a Laplacian random variable that closely models

the correlation is also shown in Fig. 4. The parameter for the Laplacian random variable was obtained empirically

using the variance of the pixel-difference in I and Is. Although not a perfect match, the empirical results indicate

that the spatial correlation in an image can also be approximated by a Laplacian random variable.

B. The pixel-domain Wyner-Ziv codec with spatial processing at the decoder

Now that we have obtained a simple model for the spatial correlation, we explain how to utilize this in a pixel-

domain Wyner-Ziv turbo codec. Let F be a frame of video, and let Ft and Fs be the side information for F
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derived from the temporal and spatial correlation, respectively. Then Ft and Fs can be combined and used as noisy

side-information in a hyper-trellis-based turbo decoder, as shown in Fig. 5.

There are two main differences from the pixel-domain Wyner-Ziv codec in [2], [17] (see Section II). First, the

pixels of every frame (and the SI frame at the decoder) are interleaved using a channel permuter5 Πc before turbo

encoding (decoding). Second, the WZ decoder iterates between diversity combining and turbo decoding. We first

describe the operation of the Wyner-Ziv decoder. The necessity and design of the channel permuter is described in

Section IV-C.

In the first iteration for a frame F , the only source of side information available to the decoder is from the

temporal correlation with adjacent frames (Ft), as the spatial information is only computed from an estimate of

the current frame. Thus, in the first decoder iteration, the channel likelihood P (Yx
k|Xk = qi) is computed as

described in Section III-B. Depending on the puncturing level, several iterations of turbo decoding must typically

be performed before the quality of the decoder output is sufficient to be used to generate spatial side information.

The output of the turbo decoder, F̂ is a noisy estimate of the frame F . The WZ decoder then uses the spatial

correlation in F̂ to generate the spatially-smoothed frame F̂s using (18). Now the decoder has two noisy versions

of F in Ft and F̂s, and it performs diversity combining before performing another round of turbo decoding. The

channel-likelihood after diversity combining can be expressed as

P (Yx
k|Xk = qi) = P (vk|Xk = qi)P (ûk,s|Xk = qi), (19)

where Yx
k , and Xk are the output and input labels on a hyper-trellis branch respectively, vk is the side-information

that is obtained from Ft for pixel uk (that has been quantized to qi), and ûk,s represents the pixel value obtained

from the nearest neighbors (information from spatial correlation6). The two conditional probabilities on the R.H.S of

(19) can be computed as described in Section III . In each iteration after the first, the spatial information improves

the performance of the turbo decoder, which thereby improves the spatial information in the next iteration. Note that

the spatial information depends very directly on the extrinsic information generated in the turbo decoder through

the averaging in (18). After two iterations, the extrinsic information would pass from an adjacent pixel back to

the original pixel, causing the extrinsic information to reinforce itself at the input to the turbo decoder. To avoid

this problem, the extrinsic information generated by the turbo decoder in an iteration is discarded after diversity

combining is performed and turbo decoding is performed in the next iteration. Because the extrinsic information

from decoding each of the turbo coded blocks is not utilized again after the spatial processing, there is no additional

storage needed to apply this spatial processing, even if the system uses the channel permuter described in the next

section.

C. The channel permuter Πc

5The channel interleaver can be implemented as a simple look-up table and the increase in complexity is negligible.
6i.e., ûk,s is a co-located pixel in F̂s
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Fig. 6. Dividing a frame into turbo encoder blocks. (a) Dividing a frame sequentially without a channel permuter. Pixels from three columns

are collected to form one block for turbo encoding. (b) Dividing a frame using a channel permuter. Pixels with the same color are grouped into

a block. The channel permuter divides pixels such that the four nearest neighbors are divided into four different blocks for most pixels (most

pixels are surrounded by four different colors).

In computing the channel likelihood according to (19), the decoder treats the side information obtained from the

spatial and temporal correlation as independent. If no channel permuter is used, then this independence assumption

is not correct. For instance, consider the scenario shown in Fig. 6-(a) in which the pixels of a frame are partitioned

sequentially into blocks for turbo encoding. The pixels from the frame are collected column-wise into different

blocks. In this example, the input block size to the turbo encoder consists of three columns from the frame.

Consider the pixel at coordinates (2, 2), p�, that is marked by a black circle. As mentioned in Section IV-B, after

a round of turbo decoding, this pixel gets additional information from its four-closest neighbors (indexed by the

other geometric shapes in Fig. 6-(a)) i.e.,

ps� = round((p̂� + p̂� + p̂� + p̂�)/4), (20)

where ps is the information generated from spatial correlation for pixel p, and p̂ is the estimate of pixel p after

turbo decoding. Note that all the pixels indexed by the geometric shapes are collected into one turbo encoding

block. Therefore, the estimate of each of the pixels depends on the temporal SI for other pixels in that block. For

example,

p̂� = f(pt
�, pt

�, pt
�, pt�, ...), (21)

where pt represents the temporal side-information for pixel p, and f() abstracts the turbo decoding operation. Thus,

from (20) and (21), it is seen that the spatial and temporal side information are highly dependent, which will degrade
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the performance under iterative processing. The main way in which this problem manifests itself is when the turbo

decoder fails to converge to the correct codeword. Then the spatial information for most of the pixels in that block

are also being computed from incorrect information, so the use of spatial information may enhance the decoding

errors in future iterations.

The channel permuter ensures that the independence assumption in (19) is a reasonable approximation. The

channel permuter operates as shown in Fig. 6-(b). Pixels marked with different colors are grouped into different

blocks. The channel permuter operates such that the four nearest neighbors for most pixels are grouped into different

blocks. We can see that the neighbors of p� are all grouped into different blocks. Thus, the estimates p̂� will only

depend on the temporal SI for pixels in block 1. The additional information generated using the spatial correlation

(as in (20)) will depend on the temporal SI for pixels in other blocks. This keeps ps� independent of the temporal

SI for pixels in block 1. Thus, diversity combining can be performed as described in (19). If turbo decoding of

block 1 has convergence problems, good information from spatial correlation can be obtained provided that a few

of the other blocks decode correctly. By ensuring that all four nearest neighbors get mapped to different blocks, the

likelihood of obtaining good information from spatial correlation is maximized. The idea of using an interleaver

before turbo coding has also been independently proposed in [24]. The interleaver in [24] was introduced to break

bursty error patterns caused by fast motion in the video sequence.

The problem of finding a channel permuter can be reduced to a graph coloring problem. The graph for the

permuter can be represented as a rectangular grid where vertices correspond to integer coordinates, and edges

connect any pair of vertices with Euclidean distance of one unit. Every vertex represents one pixel and every color

represents the block to which the corresponding pixel corresponds. The graph is regular and has degree 4. Before

we describe the vertex coloring required by the channel permuter, we define two vertex coloring schemes for graphs.

A vertex coloring is proper if no two adjacent vertices7 are assigned the same color [25]. A proper vertex coloring

is harmonious if every pair of colors appears on at most one pair of adjacent vertices [25]. A subgraph consisting

of a vertex and its adjacent nodes will be referred to as a unit-subgraph. The coloring on the graph representing

the channel permuter should be such that every unit-subgraph has a harmonious coloring. Note that the coloring

on the original graph need not be harmonious. This coloring ensures that the nearest neighbors of any pixel are

permuted into different blocks for turbo encoding. Since a vertex has at most four neighbors, at least five colors

are required to ensure a harmonious coloring of the unit-subgraphs. This implies that the channel permuter should

partition each frame into at least five blocks. It is also necessary that all colors are used equally. This additional

constraint ensures that the blocks are equally sized.

V. SIMULATION RESULTS

Simulation results are presented for a Wyner-Ziv codec that uses the 3GPP turbo code. The 3GPP turbo code

consists of two identical RSC codes with feed-forward and feedback generator polynomials given by 1 + D + D3

7vertices that share an edge are said to be adjacent
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and 1+D2 +D3 respectively. The Foreman and Coastguard sequences in QCIF format (144×176 pixels) are used

to evaluate the performance of the Wyner-Ziv codec. Only the luminance values of the video sequence are used in

our simulations. The input block length of the turbo code is fixed at 1056 bits. Thus, each QCIF frame is divided

into 24 blocks, and each block is encoded using the turbo code and punctured to the desired rate. Since every

frame consists of 24 turbo encoded blocks, we choose a channel permuter that is obtained as a proper 24-coloring

of 144 × 176 rectangular-grid graph such that every unit-subgraph has a harmonious coloring.

As previously mentioned, we evaluate the performance of the WZ codecs for fixed transmission and quantization

rates. This differs from previous work in which the transmission rate is varied on a frame-by-frame basis in response

to ideal feedback from the decoder [2], [17]. Our motivation for considering the performance for fixed transmission

rates is threefold. First, in many mobile video applications, fixed transmission and quantization rates may be required

to provide consistent network data rates. Second, the approach considered in [2], [17] requires multiple iterations

of decoding followed by additional transmission from the encoder or else an accurate rate-estimation algorithm at

the encoder. Third, the use of fixed transmission rates simplifies the exposition and clarifies the conditions in which

the hyper-trellis approach offers significantly better performance than the approach used in [2], [17]. It should be

noted that the performance of our fixed-rate WZ schemes may provide worse performance than schemes that vary

the code rate from frame-to-frame, such as H.26x. In order to make a fair comparison with schemes like H.26x, a

rate-estimation algorithm at the encoder should be used to enable an adaptive-rate WZ scheme. This is an area of

ongoing research.

We evaluate the performance of the WZ codecs with two different approaches for generating the side information

(SI). In the first approach, SI for the even frames (F2i) is generated by using motion compensated interpolation

(MCI) [1] between two consecutive odd frames (F2i−1 and F2i+1). The interpolation is done under the assumption

of symmetric motion vectors (SMV) between frames (see [2], [17] for details). This technique of generating SI will

be referred to as SMV-MCI. We use a search range of 16 pixels and a block size of 16 × 16 pixels in the block

matching algorithm (BMA) [1] used in SMV-MCI. We refer to the SI generated using SMV-MCI as “good” SI

since the mean-squared error (MSE) between the SI and the original frame is typically low. The second method

for generating SI is an extremely pessimistic approach. The odd frame (F2i−1) is assumed to act as SI for the even

frame (F2i), and this usually results in a higher MSE between the SI and the original frame when compared to the

“good” SI. The SI generated using the previous frame is referred to as “bad” SI (due to the high MSE).

We use the following terminology to refer to the various schemes. The original codec of [2], [17] that is described

in Section II will be referred as the Wyner-Ziv codec (WZC). The hyper-trellis based Wyner-Ziv codec described in

Section III will be referred to as the HT-WZC. The HT-WZC of Section IV-B that also utilizes spatial correlation at

the decoder by performing diversity combining (DC) between the SI and the information generated from the nearest

neighbors is denoted by HT-WZC-DC. For all the results on HT-WZC-DC, three iterations of turbo decoding are
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Fig. 7. Rate versus average PSNR performance for the first 400 frames of the Foreman sequence with 2 bit quantization. Solid and dashed

lines show the performance with “bad” and “good” side-information, respectively. CP refers to the channel permuter.

performed before extracting spatial information and performing diversity combining 8. This procedure of extracting

spatial information, applying diversity combining to the spatial and temporal information, and decoding, is repeated

ten times.

The performance of the Foreman sequence for various codecs with either good or bad side information is shown

in Fig. 7 for 2-bit quantization. If no parity bits are sent (zero-rate), the decoder uses the SI frames to estimate the

even frames, resulting in PSNRs of 25.0 dB and 28.4 dB for bad and good side information, respectively. Note that

the WZC performs worse than when no information is transmitted for rates less than 1.5 bits-per-pixel (bpp) and

1.2 bpp for bad and good side information, respectively. This shows the suboptimality of the schemes used in [2],

[17] because having additional information should not degrade performance. These poor results are a consequence of

8Multiple iterations of turbo decoding is necessary before extracting spatial SI to ensure that the turbo decoder produces reliable pixel

estimates. Three iterations before generation spatial SI was chosen as it resulted in a good performance/decoding-latency tradeoff.
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Fig. 8. Decoded Wyner-Ziv frames using the regular trellis and hyper-trellis. For both schemes, the frame was quantized using M = 2 bits,

and the rate was punctured to 1 bit-per-pixel. SI was generated using SMV-MCI between adjacent odd frames.

approximating the channel-likelihoods (see Section II-A) in the approach in [2], [17]. The performance of the hyper-

trellis based decoders converges to zero-rate performance (MCI performance) as the transmission rate decreases.

When used with bad side information at a rate of 1 bpp, the HT-WZC provides a PSNR that is approximately

2.2 dB higher than the WZC, and the HT-WZC-DC, CP scheme that utilizes spatial information and a channel

permuter achieves an additional 1.2 dB gain in PSNR. The gains are even larger at higher rates. Similarly, for

good side information at a rate of 1 bpp, the HT-WZC achieves a PSNR that is approximately 1.7 dB higher than

the WZC, and the use of spatial information with a channel permuter in the HT-WZC-DC,CP scheme provides an

additional gain of approximately 1.1 dB. The visual quality of the WZC, and HT-WZC-DC with channel permuting

is compared in Fig. 8 for M = 2 quantization and a transmission rate of 1 bpp. The decoding errors in the sub-

optimal WZC leads to pixelation, blocking, and other visual artifacts that are significantly reduced when using the

HT-WZC-DC.

The results in Figs. 9 and 10 illustrate the PSNR achieved using the various codecs for the first 400 frames of
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Fig. 9. Rate versus average PSNR performance for the first 400 frames of the Foreman sequence with 4 bit quantization and good side

information. CP refers to the channel permuter.

the Foreman sequence with 4-bit quantization. The results in Figs. 9 and 10 are for good and bad side information,

respectively. Consider the PSNR achieved by the various codecs at 2 bpp. For good side information, the results in

Fig. 9 show that the PSNRs achieved by the WZC, HT-WZC, and HT-WZC-DC,CP schemes are 24.8 dB, 29.5 dB,

and 35.4 dB, respectively. Thus, the use of our hyper-trellis decoder yields a gain of 4.7 dB over the previous WZ

decoder, and the use of the spatial correlation with a channel interleaver yields an additional gain of 5.9 dB. The

total gain in PSNR from using the hyper-trellis decoder and exploiting spatial information is 10.6 dB. Note that the

channel permuter significantly improves the performance (by up to 5.0 dB) of the HT-WZC-DC scheme. For bad

side information, the gain from using the hyper-trellis decoder is similar, at 4.9 dB, but the gain from utilizing the

spatial correlation is much smaller, at only 0.9 dB at 2 bpp. This can reduction in gain from utilizing the spatial

correlation makes sense because the spatial information is calculated in part from the side information, which is

much worse when the previous frame is used as side information without motion compensation. For both good

and bad side information, the HT-WZC-DC,CP scheme can decrease the required rate to achieve a target PSNR by

more than 1.5 bpp in some cases. For example for a target PSNR of 30 dB with good side information, the WZC

requires 3.3 bpp, while the HT-WZC-DC,CP scheme requires only 1.4 bpp.
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Fig. 10. Rate versus average PSNR performance for the first 400 frames of the Foreman sequence with 4 bit quantization. The previous frame

is used as the SI for the current frame. CP refers to using a channel permuter.

The results in Figs. 11 and 12 illustrate the PSNR of the various codecs as a function of rate for the Coastguard

sequence with 4-bit quantization. The results are similar to those for the Foreman sequence. Again, the use of the

HT-WZC provides significant gains over the previously used WZC. For example, when spatial information is not

used, at a rate of 2.5 bpp the gain is 6.3 dB and 7.5 dB for good and bad side information, respectively. The use

of spatial information at the decoder with a channel permuter increases the gain to 9.2 dB and 9.8 dB for good

and bad side information, respectively. One noticeable difference between that results for the Foreman sequence

and those for the Coastguard sequence is that the difference in performance from using a channel permuter with

good side information is much smaller with the Coastguard sequence than with the Foreman sequence. The smaller

difference is because the channel permuter is not needed for this video sequence to get most of the gain from the

spatial information. This may be attributable to the slower scene variations present in the Coastguard sequence,

which provides less degradation when the information in the decoder becomes correlated because of the lack of

interleaving. However, interleaving still provides some gain and costs very little to implement.
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Fig. 11. Rate versus average PSNR performance for 300-frame Coastguard sequence with 4 bit quantization and good side information. CP

refers to the channel permuter.

VI. CONCLUSIONS

Wyner-Ziv coding of video is a new approach for source coding of video sequences that offers low complexity

encoding, which is particularly desirable for use in mobile and wireless devices. Unlike conventional video coding

schemes, the WZ codec exploits the temporal correlation among video frames at the decoder. Existing WZ codecs

model this temporal correlation as a virtual channel and use an error-control code to correct “errors” that occur in

this virtual channel. We show that previous implementations of the decoder for turbo-code based WZ video coding

scheme are suboptimal because of an approximation used in the BCJR algorithm to estimate the a posteriori

probabilities of the transmitted bits.

In this paper, a hyper-trellis structure is introduced for the Wyner-Ziv video decoder. The hyper-trellis is formed by

merging consecutive sections of a regular trellis into a single section of a hyper-trellis. This approach allows pixel-

level decoding of the video information with neither the suboptimality of the previous decoder nor the complexity of
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Fig. 12. Rate versus average PSNR performance for the 300-frame Coastguard sequence with 4 bit quantization and bad side information.

CP refers to the channel permuter.

using M -ary error-control codes. Simulation results show that the hyper-trellis approach has the potential improve

the PSNR by over 5 dB for the same rate, or decrease the rate required by over one bit-per-pixel for a fixed PSNR

threshold. The performance improvement offered by the hyper-trellis approach increases with the number of levels

used for quantization.

We have also proposed a new approach to exploit the spatial correlation at the decoder for the Wyner-Ziv video

coding scheme based on turbo codes. information for a pixel as the average of the pixel’s four closest neighbors. The

decoder treats the temporal and spatial side information as the outputs of two virtual channels, which are combined

using diversity combining techniques under the assumption that the outputs of the two channels are independent. A

novel channel permuter is introduced to maintain independence between the two virtual channels and helps protect

against turbo-decoder convergence issues. It is shown that utilizing spatial correlation in the hyper-trellis based

decoder has the potential to improve performance by 4 to 6 dB when compared to not using the spatial correlation.

Thus, the hyper-trellis based turbo decoder that also utilizes spatial correlation in frames has the ability to improve

PSNR by 9–10 dB when compared to a bit-wise decoder that utilizes only temporal correlation.
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