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Abstract

In an ad-hoc network, intermediate nodes on a communication path are expected to forward

packets of other nodes so that the mobile nodes can communicate beyond their wireless transmission

range. However, because wireless mobile nodes are usually constrained by limited power and

computation resources, a selfish node may be unwilling to spend its resources in forwarding packets

which are not of its direct interest, even though it expects other nodes to forward its packets to

the destination. It has been shown that the presence of such selfish nodes degrades the overall

performance of a non-cooperative ad hoc network.

To address this problem, we propose a Secure and Objective Reputation-based Incentive (SORI)

architecture to encourage packet forwarding and discipline selfish behavior. Different from existing

schemes, under our architecture, the reputation of a node is quantified by objective measures;

the propagation of reputation is efficiently secured by a one-way-hash-chain-based authentication

scheme; and secure routing is in place. Armed with the reputation-based mechanism, we design

a punishment scheme to penalize selfish nodes. The experimental results show that the proposed

scheme can successfully identify selfish nodes and punish them accordingly.
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1 Introduction

The convergence of wireless communication (e.g., IEEE 802.11 and Bluetooth) and mobile

computing devices (e.g., laptop, personal digital assistant (PDA), and wearable computer)

offers great promise of providing us with unprecedented connectivity and mobility which

enable us to enjoy untethered computing, at any place and at any time. One of the at-

tractive paradigms under such a convergence is ad-hoc networks which can be easily and

dynamically formed by a group of wireless mobile nodes without assistance from any fixed

communication infrastructure such as base stations or access points. In an ad-hoc network,

the transmission range of a mobile node is limited due to the power constraint, and there

is no fixed communication infrastructure to facilitate packet forwarding; hence, the commu-

nication between two nodes beyond the transmission range relies on intermediate nodes to

forward the packets. However, because mobile nodes are typically constrained by power and

computing resources, a selfish node1 may not be willing to use its computing and energy re-

sources to forward packets that are not directly beneficial to it, even though it expects others

to forward packets on its behalf. It has been shown [8] that the presence of such selfish nodes

significantly degrades the overall performance of a non-cooperative ad-hoc network. Here,

by “non-cooperative”, we mean that a node is not willing to forward packets of other nodes

unless it can benefit from the packet forwarding.

To address the above problem, we propose a Secure and Objective Reputation-based

Incentive (SORI) architecture to encourage packet forwarding and discipline selfish nodes.

The unique features of our architecture are that 1) the reputation of a node is quantified

by objective measures, 2) the propagation of reputation is computationally-efficiently secured

by a one-way-hash-chain-based authentication scheme, 3) the reputation of a node is only

propagated to its neighbors but not entire network since the reputation of a node is only used

by its neighbors in our scheme, which reduces communication overhead, and 4) routing is

effectively secured. Equipped with the reputation-based mechanism, we design a punishment

scheme to penalize selfish nodes. The experimental results show that the proposed scheme

1A node that does not fulfill the responsibility of forwarding packets is called “selfish node” or “misbe-

having node”. “Selfish node” and “misbehaving node” are two interchangeable terms in this paper.
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can successfully identify selfish nodes and punish them accordingly.

The incentive schemes for packet forwarding in the literature basically fall into two cat-

egories, namely, reputation-based schemes and pricing-based schemes.

Reputation-based schemes utilize reputation in routing [8] and/or enforcing punishment

[1]. However, the existing reputation-based schemes suffer from lack of effective mechanisms

to measure and propagate reputation. Without quantitative and objective ways to measure

reputation, and secure ways to propagate reputation, a reputation-based incentive scheme

would not serve the purpose of stimulating packet forwarding, since reputation can be easily

manipulated by selfish nodes in this case. Hence, this paper proposes a quantity to objectively

measure reputation of a node, and a secure mechanism to propagate reputation, with the

aim of resolving the drawbacks of the existing reputation-based incentive schemes.

Pricing-based schemes [2, 5, 16] treat packet forwarding as a service that can be priced,

and introduce some form of virtual currency to regulate the packet-forwarding relationships

among different nodes. However, these schemes require either tamper-resistant hardware2

[2] or virtual banks (trust authorities) that all parties can trust [5, 16]. In the case where

tamper-resistant hardware is used, if a node (say, node A) sends much less traffic than

another node (say, node B), node A may drop most of the packets of node B without losing

anything, since node A need not earn more money than necessary to support the small

volume of its own traffic. In the case where a trust authority or virtual bank is required,

it needs assistance from a fixed communication infrastructure to implement the incentive

schemes, which is not applicable for a pure ad hoc network. In contrast to these, our SORI

architecture is based on reputation and hence does not require tamper-resistant hardware

or trust authorities; in addition, under our scheme, each node are motivated to maintain a

good reputation in order to keep a desirable quality of its network connectivity.

The remainder of the paper is organized as follows. In Section 2, we specify assumptions

made in this paper. Under these assumptions, we first develop our basic scheme in Section 3

2A tamper-resistant hardware contains a counter indicating the amount of available virtual currency; it

increases the counter when the node forwards packets, and decreases the counter when the node sends out

its own packet; it can be accessed only by its intended user(s) and only for its intended purposes.
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and then improve the basic scheme with security enhancements described in Section 4. In

Section 5, we show simulation results to demonstrate the effectiveness of our scheme. Sec-

tion 6 discusses the related work. In Section 7, we conclude the paper.

2 Assumptions

In this paper, we make the following assumptions.

1. The nodes in an ad hoc network under our consideration are non-cooperative in packet

forwarding, that is, a node is not willing to forward packets of other nodes unless it

can benefit from the packet forwarding. If nodes are cooperative, e.g., in military ad

hoc networks, there is no need to use incentive mechanisms.

2. There is no conspiracy among nodes.

3. Broadcast transmission: A packet can be received by all the neighbors of the trans-

mitting node (within its transmission range) because of the broadcast nature of the

wireless medium.

4. Desire to communicate: All the participating nodes have the desire to communicate

with some others.

5. Invariant identity : No node changes its identity during its life time. This assumption is

reasonable since changing identity of a node results in unreachability of packets destined

to the node, which violates the previous assumption “desire to communicate”.

6. Selfish but not malicious: A node may be selfish in terms of conservation of power and

computing resources, but not malicious, which means that it will not try something

that could be more expensive in consuming energy and computing resources than coop-

erating in packet forwarding. In other words, a node will not do something that cannot

conserve its computation/energy resource. For example, a node will not sabotage the

network by denial-of-service attacks, which consumes a great deal of its energy.
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7. Promiscuous mode: Each node operates in a promiscuous mode, i.e., each node listens

to every packet transmitted by its neighbors even if the packet is not intended for the

node; and each node is able to determine who transmits the packet. The promiscuous

mode is (typically) required for ad hoc networks unless deterministic medium access

control such as time division multiple access is employed; without listening to every

packet transmitted by its neighbors, a node may miss some packets destined to it.

3 Basic Scheme

This section presents the basic scheme of our incentive mechanism, under the assumptions

listed in Section 2. The basic scheme consists of three components, namely, neighbor moni-

toring, reputation propagation, and punishment, which are described as follows.

3.1 Neighbor Monitoring

In our scheme, neighbor monitoring is used to collect information about the packet-forwarding

behavior of the neighbors. Due to the promiscuous mode that we assume, a node is capable

of overhearing the transmissions of its neighbors. With this capability, a mobile node N can

maintain a neighbor node list (denoted by NNLN ) which contains all of its neighbor nodes

that node N learns of by overhearing. In addition, node N keeps track of two numbers, for

each of its neighbor (denoted by X), as below.

• RFN(X) (Request-for-Forwarding): the total number of packets that node N has trans-

mitted to X for forwarding.

• HFN(X) (Has-Forwarded): the total number of packets that have been forwarded by

X and noticed by N .

The two numbers are updated by the following rules. When node N sends a packet to node

X for forwarding, the counter RFN(X) is increased by one. Then N listens to the wireless

channel and check whether node X forwards the packet as expected. If N detects that X
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has forwarded the packet before a preset time-out expires, the counter HFN(X) is increased

by one.

Given RFN (X) and HFN(X), node N can create a record called local evaluation record

(denoted by LERN (X)), for the neighbor node X. The record LERN (X) consists of two

entries, that is, GN(X) and CN(X), where GN(X) = HFN (X)
RFN (X)

and CN(X) is a metric called

confidence, used to describe how confident node N is for its judgement on the reputation of

node X. In our scheme, we set CN(X) = RFN(X); that is, the more packets transmitted to

X for forwarding, the better estimation about how well the neighbor X does forwarding.

3.2 Reputation Propagation

With the fore-mentioned neighbor monitoring, a node could build a record of the reputation

of its neighboring nodes. However, our initial experimental result shows that actions (drop-

ping selfish nodes’ packets) solely based on one’s own observation of its neighbors cannot

effectively punish selfish nodes. To address this problem, reputation propagation is employed

to have neighbors share the reputation information of other nodes, so that a selfish node will

be punished by all of its neighbors (who share the reputation information about its misbe-

havior) instead of just the ones who get hurt by the selfish node. The reputation propagation

works as follows:

1. Each node N periodically updates its LERN (X) for each neighbor node X based on

the changes of RFN (X) and HFN(X), and it broadcasts the updated record to its

neighborhood if GN(X) has been significantly changed.

2. Node N uses its LERN (X) and LERi(X) (where i is in the NNLN ) to calculate its

overall evaluation record of X (denoted by OERN(X)) as below:

OERN(X) =

∑
i∈NNLN∪{N},i�=X λN(i) · Ci(X) · Gi(X)∑

k∈NNLN∪{N},k �=X λN(k) · Ck(X)
(1)

where λN(i) is the credibility that node i has earned from the perspective of node N .

In current scheme, we choose λN(i) = GN(i), especially, λN(N) = 1, and λN(i) = 0 if
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RFN(i) = 0, which means a node would not have any credit from N if it has not been

requested by N to forward any packet.

3.3 Punishment

With the reputation measure OERN(X) obtained, node N can punish its neighbor X by

probabilistic dropping as follows. If the OERN(X) is lower than a preset threshold, node N

takes punishment action by probabilistically dropping the packets originated from X. The

probability of dropping is

p =

{
q − δ if q > δ
0 otherwise

(2)

where q = 1−OERN(X) and 0 < δ < 1 is the margin introduced for the following considera-

tion: a dropping action could be occasionally triggered by some phenomena such as collision,

rather than selfishness. Without the margin, two nodes may keep increasing the dropping

probability and consequently fall into a retaliation situation. The margin is designed to help

well-behaving nodes avoid this situation by treating each other a little bit more generously.

To summarize, this section presents our basic incentive scheme, which consists of neigh-

bor monitoring, reputation propagation, and punishment. Neighbor monitoring is to collect

information about misbehavior of neighbors and objectively quantify reputation of neigh-

bors. Reputation propagation is aimed at sharing information among neighboring nodes to

make the reputation measure more accurate (from statistical perspective, i.e., the weighted

averaging in (1) helps removing dependence of the reputation measure on location and node

identity). Punishment is to encourage packet forwarding and discipline selfish nodes.

The basic scheme is vulnerable to some tricks played by selfish nodes and we improve it

by security enhancements presented in section 4.

Remark 1 Objective quantification of reputation

• The reputation of a node is objectively measured based on the packet forwarding ratio

of the node, and it directly affects the service the node can obtain from other nodes.
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• The reputation of a node is weighted by the confidence, which is objectively determined

by the number of packets that the node is requested to forward, and the total number

of packets forwarded and observed. Such a weighting is rational from a statistical

perspective, since the more samples that are used, the more reliable the estimation of

reputation will be.

• The reputation of a node is also weighted by the credibility of the nodes which contribute

to the calculation of the reputation.This makes it difficult for a selfish node to play with

multiple identities, trying to use one identity to propagate fake information in order to

improve its reputation under another identity. Since as a selfish node who intrinsically

has very little credibility under any of its identities (otherwise it wouldn’t be a selfish

node), weighting the reputation by credibility effectively limits the contribution that one

identity can make to the calculation of the reputation under another identity. That is, if

an identity (denoted by IA) is used by a selfish node, this selfish node cannot effectively

get a good reputation for the identity IA by using another identity to propagate fake

information. An extreme example is that a selfish node which never helps others on

packet forwarding will earn a zero credibility from any other node and therefore cannot

make any contribution to the calculation of the reputation under any other identity.

• Reputation propagation is to share information among neighboring nodes to make the

reputation measure more accurate. For example, node X drops all the packets from

node N but forwards all the packets from all the other nodes; hence, node N has

LERN (X) = 0 and all the other nodes i (i �= N) have LERi(X) = 1. Due to reputa-

tion propagation in our scheme, node X will be punished by all its neighbors; without

reputation propagation, node X will be punished by node N only. Therefore, reputation

propagation can help discourage selfish behavior.

• Since we assume there is no conspiracy among nodes, a well-behaving node will not

help to falsify good reputation for a misbehaving node; for example, a node i with good

reputation will not propagate fake LERi(X) to boost the reputation of another node X,

which has a bad reputation.
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• Since we assume a node may be selfish but not malicious, a node with good reputation

will not spread fake bad-reputation report about its neighbors, which may result in

punishment on these neighbors; another reason for a node not to do so, is that spreading

fake reputation report will not conserve its computation/energy resource.

• A limitation of the reputation calculation is that the objectivity of the calculated repu-

tation depends on the probability of transmission collision. This is because the measure

HFN(X) may not reflect the total number of packets that are transmitted from node N

to node X and have been correctly received by node X, due to packet collision in the

wireless medium. However, our simulation results in Section 5 show that our incentive

scheme can identify selfish nodes and punish them under a light or medium network

load. For the case when the network is heavily loaded, congestion control is required.

Obviously, no incentive scheme will work well under a heavy network load, without the

aid of congestion control.

4 Security Enhancement

This section presents security enhancements to fix the vulnerabilities of the basic scheme,

which could be potentially exploited by selfish nodes.

A selfish node may play the following tricks in order to benefit itself without being

detected by the basic scheme:

Problem 1 (P1): Impersonate a node that is near the selfish node and has a good reputa-

tion, in order to send its own packets (using other’s identity).

Problem 2 (P2): Impersonate a node with a good reputation, in order to broadcast fake

observation information in order to boost its reputation calculated by other nodes.

Problem 3 (P3): Manipulate the routing information during routing path discovery in

order to have the data packets get around the selfish node itself so that the selfish

node can avoid the responsibility for forwarding other’s data packets without being

detected. Here, we assume the dynamic source routing (DSR) protocol [6] is used.

8



To address the first two problems, we propose an identification and authentication method

based on a one-way-hash chain, which is presented in Section 4.1. To mitigate the third

problem, we design a secure dynamic routing protocol, which is described in Section 4.2.

4.1 One-way-hash Chain for Identification and Authentication

To address the problems P1 and P2, a natural solution is to use identification and authen-

tication since with identification and authentication, well-behaving nodes can be identified

(and rewarded) and misbehaving nodes can also be identified (and punished). To design an

effective identification and authentication scheme, one needs to consider the unique property

of ad hoc networks, which is different from wired networks and wireless cellular networks.

This property of ad hoc networks is no fixed infrastructure. Due to this feature, our de-

sign for identification and authentication does not rely on any infrastructure to help the

communication or management of mobile nodes. Note that this design principle is different

from those assuming the existence of an authentication infrastructure such as a public key

infrastructure (PKI) or a “friendship” infrastructure as in [1].

Based on the above design principle, we propose an authentication mechanism based on

a one-way-hash chain [7] as below. Node N gets its identity, denoted by IDN , by choosing a

random number rN and recursively applying a pseudo-random function h on rN by k times,3

that is, IDN = Hk(rN) which is recursively obtained by

Hi(rN) =

{
h(Hi−1(rN )) if i ∈ {1, 2, · · · , k}
h(rN ) if i = 0

(3)

When N is joining an ad-hoc network, it broadcasts its identity IDN and all its neighbors

receive this identity and put this identity into their NNLs. The neighbors will use this

identity to authenticate messages originated or forwarded by this node (identified by IDN)

thereafter.

3The k is the length of the one-way-hash chain and this length limits the maximum numbers of the

messages to generate before a new one-way-hash chain must be created. How to handle unlimited message

authentication by switching one-way-hash chains was discussed by Perrig et al. [13].
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Next, we describe our procedure of message authentication. Our procedure of authenti-

cation is the same as that suggested by Perrig et al. [13] for broadcast authentication. Node

N partitions the time into equal intervals and assigns the i-th interval with a key (denoted

by Ki) which is Ki = Hk−i(rN) in the one-way-hash chain. The messages sent in an inter-

val will be accompanied by a message authentication code (MAC) which is computed with

the corresponding key K and the message M as the input, denoted by MAC(K, M). For

instance, the content of packet Pi sent in the i-th interval is

{Mi||MAC(K
′
i , Mi)||Ki−d}

where Mi is the message to be sent in the i-th interval; the key K
′
i is obtained from

K
′
i = f(Ki) where f is the second pseudo-random function4 and Ki = Hk−i(rN); d is

the key disclosure delay (for example, in the (i−d)-th interval, the message is authenticated

by key Ki−d, and key Ki−d will be disclosed in the i-th interval). Once receivers receive a

packet, they check if the key used for the MAC is already disclosed. If the key has not been

disclosed, they cache the message and will check its authenticity at the time when the Ki

is disclosed; otherwise, they discard the packet because the key was disclosed before they

received the packet and the MAC could be potentially forged. In addition, a packet with an

invalid MAC will be discarded.

Note that a misbehaving node N will not generate a new random number r̂N and the

associated one-way-hash chain to get rid of its bad reputation (assuming node N generated

a random number rN previously for authentication). This is because the identity IDN of

node N is already set to Hk(rN) and changing IDN to Hk(r̂N) violates the assumption of

invariant identity (see Section 2).

The key feature of our authentication scheme is that the one-way-hash chains are designed

to ‘identify’ mobile nodes; specifically, the identity of a node N is associated with the keys

that are used to ‘authenticate’ packets, i.e., IDN = Hk(rN). In contrast to this, most

existing schemes separate the identification of mobile nodes from message authentication;

and hence they require a PKI or other trust management systems to identify mobile nodes,

4The second pseudo-random function is used to avoid using the same key multiple times in different

cryptographic operations, hash chains and MACs.
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which are usually not practical for a non-cooperative ad-hoc network.

Our authentication scheme makes it difficult for a selfish node which has a bad reputation

to send out its packets or broadcast fake observation information to affect the others calcu-

lation of its reputation by impersonating a node with a good reputation. This is because the

MAC is computationally difficult to forge without the key of that node. Moreover, our design

is efficient because the authentication is done with a one-way-hash function which is com-

putationally much cheaper than the digital signature used in many other schemes. This is

particularly desirable since most mobile devices are constrained by energy and computation

resource.

Like any other security measure, our scheme also pays some cost. A cost is that our

scheme requires time synchronization to make a time-slotted system. However, the synchro-

nization can be loose and there are a number of simple ways to achieve synchronization as

suggested by [13].

4.2 Secure Dynamic Routing Protocol

To mitigate the problem P3, we enhance the DSR routing protocol by a security measure.

We first briefly describe the DSR protocol [6]. The DSR is an on-demand source routing

protocol. The key component of the DSR is a route discovery protocol, which is invoked

by a source node S when node S does not know any path from node S to the destination

D. It works as below. First, node S initiates a route request packet rreq and broadcasts

it to its neighbors. Then, the neighbors in turn append their own address to packet rreq

and broadcast it. This process continues until packet rreq reaches the destination D. Since

packet rreq contains a complete path from node S to node D when it reaches node D, node

D can send a route request reply packet rrep (containing the path information) back to

node S through the reverse path. Once node S receives packet rrep, the path from node

S to node D (contained in packet rrep) is confirmed. Then, the packets to node D can be

forwarded through this identified path.

We start with discussion about the vulnerabilities of our basic scheme in Section 3. First,
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we are not worried about that a selfish node may not be cooperative on forwarding route

request packets since doing so will damage its reputation. What is of our concern is that

a selfish node may play some tricks when forwarding route request rreq and route request

reply rrep. For example, a selfish node may provide a source node with a fake path, which

does not include the selfish node and hence looks shorter than the valid path that includes

the selfish node. Since usually the shortest path would be picked, the shorter path not

containing the selfish node is selected; hence, the selfish node avoids the responsibility of

forwarding data packets and this cheating is not detected! This kind of misbehavior would

severely degrade the performance of the network [10] since the packets transmitted along the

invalid path are unlikely to reach the destination.

To fake a path not including a selfish node N , node N may take the following actions.

Case 1 (node N is a neighbor of the source S): First, node N participates in the nor-

mal procedure of the route discovery protocol; and assume a route request reply

rrep conveys a valid path record (containing node N) to node S. Then, node N

can fake a route request reply rrep containing an arbitrary path of length l that

is shorter than the discovered path containing node N ; denote this fake path by

{N0(= S), N1, ..., Nl(= D)}, where D is the destination, and N1 is any neighbor of

S other than node N . As long as N /∈ {N1, N2, ..., Nl}, the selfish node N will not be

asked to forward the packets from node S to node D.

Case 2 (node N is not a neighbor of the source S): Node N also participates in the

normal procedure of the route discovery protocol. However, upon receiving a route

request rreq including a route record, say {N0(= S), N1, ..., Nj−1}, node N broad-

casts two packets, denoted by rreq1 and rreq2, to the next hop; rreq1 contains node

N in its route record but rreq2 does not. Then, the destination D will return two

route request reply messages rrep1 and rrep2; rrep1 contains a route record {N0(=

S), N1, ..., Nj−1, Nj(= N), Nj+1, ..., Nl(= D)} (where l is the number of hops on the

route) and rrep2 contains {N0(= S), N1, ..., Nj−1, Nj+1, ..., Nl(= D)}. Upon receiving

rrep1 and rrep2, node N forwards both rrep1 and rrep2 to node Nj−1. Note that here

we assume node Nj+1 does not check whether node N is its neighbor and hence node
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Nj+1 will broadcast rrep2 and node N will receive rrep2 even though node N is not on

the path as specified by rrep2. In this way, source S obtains a (fake) shorter path that

does not include node N . Therefore, the selfish node N will not be asked to forward

the packets from node S to node D.

Alternatively, node N may fake an invalid path of the same length as that of the valid

one, by replacing its own ID by a spoofed ID; in so doing, it may end up with a path

like {N0(= S), N1, ..., Nj−1, N
′
j( �= N), Nj+1, ..., Nl(= D)}. Hence, the probability that

the valid path (containing node N) would be selected is reduced by 50%.

We address Case 1 by enhancing the DSR protocol with a source-destination authenti-

cation scheme. The key assumption of our scheme is that the source S and the destination

D can verify the authenticity of the messages in their communications. This assumption

is reasonable since the communication between S and D implies that the existence of an

association between S and D and a secret key can be shared between them through the

association. Accordingly, the communication partners S and D can use this secret key to

compute MACs in order for them to authenticate the messages in their communications. In

fact, because of its feasibility, this assumption is usually the basis of many secure routing

protocols, e.g., [12].

Our source-destination authentication scheme is as below. Upon receiving a route request

rreq, the destination D computes a message authentication code, denoted by MACd, for the

message {N0(= S), N1, ..., Nl(= D), seq, MACs}, where {N0(= S), N1, ..., Nl(= D)} is the

discovered path, seq is a query sequence number, and MACs is the MAC for {N0(= S), seq}
and is generated by the source S; the query sequence number seq, used only by S for query

identification, allows D to discard replayed queries. Then, the destination D appends MACd

to its reply packet, rrep = {N0(= S), N1, ..., Nl(= D), seq, MACs, MACd}, and sends the

rrep to S in the reverse direction of the discovered path. A route reply rrep will not be

accepted by S unless the MACd contained is valid. Since the MAC is computationally

infeasible to be forged without the secret key shared by S and D, it is difficult for a selfish

node to have the source accept a fake path.

To address Case 2, we borrow the idea originated from the associativity-based routing
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(ABR) [15]. Under the ABR protocol, every node periodically transmits beacons indicating

its existence to its neighbors, and also receives beacons from its neighbors. Each node

maintains a table, each entry of which registers the number of beacons the node has heard

from one of its neighbors; different entry of the table corresponds to different neighbor.

These numbers are used in the ABR to measure the node’s connectivity relationship (a.k.a.

associativity) with its neighbors. Under the ABR, the associativity measure is used to select

the most reliable path. Different from the ABR, we utilize the associativity measure to

identify ‘inactive’ neighbors, which could be faked by selfish nodes. A neighbor X of node

N is regarded as being active if node N periodically receives the beacons from node X;

otherwise, node X is regarded as being inactive. Because of transmission collision in the

shared channel, there is no guarantee that a node N receives every transmitted beacon from

its neighbors. So, a practical way of deciding being active is as below: node N marks a

neighbor X as being active if the number of successfully received beacons from node X

during a certain time period exceeds a pre-determined threshold.

Assuming a time-slotted system as in Section 4.1, with the above tag of being active or

inactive, and the one-way-hash-chain based authentication scheme described in Section 4.1,

we propose an enhanced route discovery protocol for the DSR as below.

1. The source node S initiates the route discovery protocol, by constructing and broad-

casting a route request packet rreq = {S, D, seq, MACs}, where seq is the query

sequence number and MACs is the MAC for message {S, D, seq}, computed with the

key shared by S and D.

2. Once the j-th intermediate node X (along the path) receives the request rreq at the

i-th interval, node X works as below.

(a) If the identity of node X is already contained in the route record of the rreq,

discard the request.

(b) If the node that forwarded this rreq is not an active neighbor of X, discard the

request.
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(c) If the route record in the rreq contains more than one active neighbor of X,

discard the request.5

(d) If the MACj−1 (described as below) in the rreq is incorrect,6 discard the request.

(e) Otherwise, node X removes MACj−1 from the rreq; append its identity to the

route record; compute a message authentication code MACj for {N0(= S), ..., Nj−1, Nj(=

X), seq, MACs}, using the key of the i-th interval; and broadcast the request

rreq = {N0(= S), ..., Nj−1, Nj(= X), seq, MACs, MACj , Ki−d}, where d is the

key disclosure delay and Ki−d is the key of the (i − d)-th interval.

3. When the request rreq reaches the destination D, node D works as below.

(a) If the seq in the rreq is not new, discard the request.

(b) If the node that forwarded the rreq is not an active neighbor of D, discard the

request.

(c) If the route record in the rreq contains more than one active neighbor of D,

discard the request.

(d) If the MAC in the rreq is incorrect, discard the request.

(e) Otherwise, node D constructs a route request reply rrep = {N0(= S), N1, ..., Nl(=

D), seq, MACs, MACd}, where MACd is the MAC for the message {N0(= S), N1, ..., Nl(=

D), seq, MACs}. Then, node D sends the rrep to source S in the reverse direction

of the discovered path.

4. When the rrep reaches node S, node S operates as below.

(a) If the MACd in the rrep is incorrect, discard the rrep.

(b) Otherwise, accept the path in the rrep as a valid path, and pick the shortest path

among all the valid paths to send data packets.

5This could help the source node find an optimal path. But this step is optional.
6To authenticate MACj−1, node X may need to wait for key disclosure from the upstream node Nj−1.

To reduce this delay, immediate authentication can be achieved using the method presented in [13].
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Under our secure routing protocol, it is unlikely for a selfish node N to play tricks to

make the source node pick a fake (shorter) path. A possible trick is that node N periodically

broadcasts the beacons on behalf of its neighbor, say node X, making node X appear to be

the neighbor of node Y , which is a neighber of node N but is two hops away from node X.

However, sending these fake beacons may cost more energy resource than forwarding others’

packets.

In our scheme, beaconing is required and may incur quite a bit overhead; however, if

an ABR-type of routing protocol is used, beaconing is readily available and we do not have

to pay an extra cost. To reduce the energy consumed by beaconing, we can increase the

beaconing interval; or a node does not need to send beacons unless it has not communicated

for a certain time period, and a node N marks its neighbor X as being active if node N

learns that there are certain amount of communication from node X during the time period.

5 Simulation Results

In this section, we implement our basic incentive scheme on a simulator and evaluate its

performance under various settings. The purpose of this section is to demonstrate the ef-

fectiveness of our scheme in identifying selfish nodes and punish them accordingly. This

section is organized as follows. Section 5.1 describes the simulation setting, while Section 5.2

illustrates the performance of our scheme.

5.1 Simulation Setting

Our incentive scheme is implemented on ns-2 [11]. We simulate a wireless ad-hoc network

with 50 mobile nodes randomly deployed in an area of 670× 670 square meters. We use the

Distributed Coordination Function (DCF) of IEEE 802.11 as the medium access control layer

protocol, and dynamic source routing (DSR) as the routing protocol. The radio transmission

range for each node is 250 meters and the transmission data rate is 2 Mbits/s. The physical

layer model is either the free space or the two-ray propagation model [14], depending on the

separation distance between the transmit antenna and the receive antenna. The height of
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both the transmit antenna and the receive antenna is 1.5 meters.

The random waypoint mobility model [4] is used to generate the moving direction, the

speed and the pause duration of each node. The node speed is uniformly distributed between

0 and 20 m/s, and the pause duration is exponentially distributed with an expectation of

600 seconds.

Among the 50 nodes, 5 nodes are randomly selected and assigned as selfish nodes. A

selfish node in our simulation probabilistically drops packets from other nodes unless it is

the destination of the packet.

For each simulation, we first set the total number of connection, denoted by Nconn. Then,

we randomly generate Nconn source-destination pairs; the generated source-destination pairs

may be duplicated, that is, the same source-destination pair may have multiple connections.

Each connection lasts for 10 simulated seconds. Once a connection is terminated at the end

of the 10th simulated second, a new source-destination pair is randomly generated and a

connection is set up between the newly generated source-destination pair. Since the source-

destination pairs are randomly generated (each node is equally likely to be selected to form

a pair), the traffic is uniformly distributed among different nodes. In addition, the constant

bit rate (CBR) traffic model in ns-2 is employed for all the connections. Each simulation is

executed for 1000 simulated seconds. We set the threshold δ in Eq. (2) to 0.1, for all the

simulations.

Next, we evaluate the performance of our scheme.

5.2 Performance Evaluation

We organize this section as below. In Sections 5.2.1 through 5.2.3, we investigate how our

incentive scheme performs under various number of connections, different data-rate of CBR

traffic, and various dropping probability of selfish nodes, respectively. Section 5.2.4 shows

the overhead incurred by our incentive scheme.
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Figure 1: Throughput under various number of connections Nconn

5.2.1 Performance under Various Number of Connections

This experiment is to show the performance of our incentive scheme under various number

of connections Nconn. In this experiment, a selfish node drops all the packets from other

nodes unless it is the source or the destination of the packet; the data rate of all the CBR

connections is fixed to 1 packet/sec.

Fig. 1 plots the average throughput of a well-behaving/selfish node vs. the total number

of connections Nconn. Note that for each simulation run, the value of Nconn is fixed. In the

figure, the average throughput of a well-behaving node is obtained by 1) summing up the

number of packets correctly received by all well-behaving nodes, 2) dividing this sum by

the total number of well-behaving nodes, and 3) dividing the result by the total simulation

time, i.e., 1000 seconds. Similarly, the average throughput of a selfish node is obtained by

1) summing up the number of packets correctly received by all selfish nodes, 2) dividing this

sum by the total number of selfish nodes, and 3) dividing the result by the total simulation

time.

As depicted in Fig. 1, a well-behaving node achieves significantly higher average through-

put than that of a selfish node; on average, a selfish node suffers about 50% throughput

reduction, as compared to a well-behaving node. This shows that our scheme can identify a
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Figure 2: Throughput under various data-rate

selfish node and punish it accordingly.

5.2.2 Performance under Various Data-rate

This experiment is to show the performance of our incentive scheme under various data-

rate of CBR traffic. In this experiment, a selfish node drops all the packets from other

nodes unless it is the source or the destination of the packet. For each simulation, the data

rate of all the CBR connections is fixed; but for different simulation, the data rate of CBR

connections changes from 1 to 10 packets/sec. For all the simulations, we set the total

number of connections Nconn = 10.

Fig. 2 shows the average throughput of a well-behaving/selfish node vs. the data-rate

of a CBR connection. As shown in Fig. 2, a well-behaving node achieves higher average

throughput than that of a selfish node; however, the difference (in terms of percentage)

between the throughput of a well-behaving node and that of a selfish node reduces with

the increase of the data-rate. The reason for this reduction is the following: as the data-

rate increases, the probability of transmission collision increases, which results in higher

probability of mis-calculation of objective reputation (refer to Remark 1).
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Figure 3: Throughput

5.2.3 Performance under Various Dropping Probability of Selfish Nodes

This experiment is to show the performance of our incentive scheme under various dropping

probability of selfish nodes. In this experiment, each selfish node probabilistically drops

the packets from other nodes unless it is the source or the destination of the packet. The

dropping probability is the same for all selfish nodes and varies from 10% to 100% in different

simulations. That is, for each simulation, the dropping probability of selfish nodes is fixed;

but for different simulation, the dropping probability changes from 10% to 100%. For all the

simulations, we set the total number of connections Nconn = 10 and fix the data rate of all

the CBR connections at 1 packet/sec.

Fig. 3 plots the average throughput of a well-behaving/selfish node vs. the dropping

probability of selfish nodes. It can be seen that as the dropping probability of selfish nodes

increases, the gap between the throughput of a well-behaving node and that of a selfish node

increases. Hence, our incentive scheme can not only distinguish the selfish nodes from the

well-behaving nodes, but also impose a punishment proportional to the severity of the selfish

behavior. This shows the effectiveness of our incentive scheme.

Fig. 3 also shows that the average throughput of a well-behaving node decreases with the

increase of the dropping probability of selfish nodes. This is because the loss probability of
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a packet destined to a well-behaving node increases with the dropping probability of selfish

nodes.

From Fig. 3, one may notice that the average throughput of a selfish node is not zero

when the dropping probability of selfish nodes is 100%. The reason is the following. When

the dropping probability of a selfish node X is 100%, the overall evaluation record OERN(X)

at node N is zero. Hence, q = 1 − OERN(X) = 1 and p = q − δ = 0.9 since we set δ in

Eq. (2) to be 0.1. Therefore, the average throughput of a selfish node should 1− p = 10% of

the transmission rate. From Fig. 3, we see the average throughput of a selfish node is about

0.1 packet/sec at a dropping probability of 100%, which is 10% of the transmission rate at

1 packet/sec. This validates our calculation.

One may argue that the average throughput of a selfish node should be zero when the

dropping probability of the selfish node is 100%. This is the special case when δ = 0, i.e.,

zero tolerance about others’ selfishness. As mentioned in Section 3.2, a dropping action

could be occasionally triggered by some phenomena such as collision, rather than selfishness.

If δ = 0, two nodes may keep increasing the dropping probability and consequently fall into

a retaliation situation. Letting δ > 0 can help well-behaving nodes avoid this situation by

treating each other a little bit more generously. Of course, the cost of non-zero δ is that a

selfish node with a dropping probability of 100% can still have a throughput of δ×α (where

α is its transmission rate), instead of zero; however, this throughput δ × α is small and a

selfish node has to waste a good deal of energy to retransmit the dropped packets many

times in order for the packets to get through to the destination. So, the node may even save

energy if it cooperates in forwarding others’ packets!

An open problem is how to tune δ so as to achieve the desirable trade-off between the

throughput of a selfish node and the robustness of network stability (due to generosity in

punishment). We leave this for future study.

5.2.4 Overhead Incurred by Our Incentive Scheme

This experiment is to show the overhead incurred by our incentive scheme, as compared to

the scheme that does not use our incentive mechanisms. In this experiment, a selfish node

21



drops all the packets from other nodes unless it is the source or the destination of the packet;

the data rate of all the CBR connections is fixed to 1 packet/sec. We do simulations for

two schemes: one is our incentive scheme, and the other (which we call benchmark scheme)

does not take any of the three actions, i.e., neighbor monitoring, propagating reputation,

and punishing selfish nodes.

Fig. 4 plots the average throughput vs. the total number of connections Nconn. The

dashed line in the figure shows the average throughput of a node (averaged over all nodes)

under the benchmark scheme (without incentive mechanisms); here, since the benchmark

scheme does not distinguish the selfish nodes from the well-behaving nodes, the average

throughput of a selfish node should be the same as that of a well-behaving nodes, from

the statistical perspective. The solid line in the figure shows the average throughput of a

well-behaving node under our incentive scheme. It can be observed that the throughput

of a well-behaving node under our incentive scheme is reduced, as compared to that under

the benchmark scheme. This throughput reduction is what we call overhead. The reason

for this throughput reduction is two-fold: first, reputation propagation consumes bandwidth

and therefore reduces the net throughput; second, collision may cause mis-calculation of the

reputation measure, leading to improper punishment on the well-behaving nodes.

Fig. 4 shows that the overhead incurred by our scheme is not more than 8%, which is

small. Just because of this small overhead, we are able to propagate reputation, identify

selfish nodes and punish them according to the severity of their misbehavior. It can also

be seen that the overhead increases with the total number of connections Nconn. This is

because the larger Nconn, the high probability of collision, which results in higher probability

of reputation mis-calculation and hence larger overhead.

6 Related Work

As mentioned in Section 1, the existing incentive schemes for packet forwarding can be

classified into two categories, namely, reputation-based schemes and pricing-based schemes,

the representative work of which are discussed as below.
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Figure 4: Communication overhead of our scheme

6.1 Reputation-based Schemes

One of the pioneering work on reputation-based incentive schemes is Ref. [8], where Marti

et al. proposed two mechanisms called watchdog and pathrater, for non-cooperative ad-hoc

networks. The watchdog identifies misbehaving nodes while the pathrater selects routes that

avoid the identified misbehaving nodes. Their results showed that these two mechanisms

can achieve an acceptable total throughput even with a large percentage of misbehaving

nodes. However, how to punish a selfish node was not addressed in their work. Therefore,

under their framework, selfish nodes are not discouraged and well-behaving nodes may be

unfairly made busier. To remedy this, Buchegger and Le Boudec [1] proposed a punishment-

based protocol called CONFIDANT. The nice feature of this protocol is that the nodes called

friends can share the reputation information about other nodes, and punish the misbehaving

nodes that have bad reputation. Friends play a crucial role in the protocol; however, how to

win friends is not clear. In addition, encryption and digital signatures are used to protect the

confidentiality and integrity of the communications among friends, but distributing (public)

keys in ad-hoc networks is a challenging problem and is not addressed in their work.

In contrast to the above work, this paper proposed a secure reputation-based incentive

architecture, in which not only a punishment mechanism is employed to discourage misbe-

havior, but also a set of secure protocols for identification, authentication, and routing are
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specifically designed for ‘non-cooperative’ ad-hoc networks.

6.2 Pricing-based Schemes

Buttyan and Hubaux [2] proposed one of the early pricing-based incentive schemes. In their

scheme, a virtual currency called nuglet is used as payments for packet forwarding. Later

on, they [3] proposed another scheme based on credit counter. The nice feature of the

two schemes is that they do not possess the limitation that many reputation-based schemes

(excluding the SORI architecture in this paper) have: reputation may be falsified by selfish

nodes. However, both of the schemes in [2, 3] require a tamper-resistant hardware module

and assume that each node in the ad hoc network has almost the same amount of packets

to forward. Moreover, the schemes introduce much management communication overhead

to maintain the virtual currency flows.

Jakobsson et al. [5] proposed a nice scheme, which does not use tamper-resistant hard-

ware. This scheme is designed for multihop cellular networks. Under the scheme, a micro-

payment system suggested by Micali and Rivest [9] is employed, and the operator of the base

stations plays the trusted role of banks in the micro-payment system. A disadvantage of this

scheme is much communication overhead incurred due to managing the micro-payment sys-

tem. For example, each time before a packet is forwarded at a node N , node N needs to send

a request message to its neighbor and an acknowledgement from its neighbor is expected. To

make things worse, if a packet reaches a node X and none of the neighbors of X is willing

to forward the packet, the packet will be dropped and the previous forwarding efforts will

be wasted.7 In the scheme, whenever a base station receives a packet, the base station must

contact the home network of the packet’s originator to verify the message authentication

code, which also introduces much communication overhead.

Pricing-based schemes require either tamper-resistant hardware [2] or virtual banks (trust

authorities) that all parties can trust [5, 16]. As discussed in Section 1, these requirements

impose serious limitations on the applicability of pricing-based schemes to non-cooperative

7This problem could be solved if the pricing query function in [5] is extended to some routing protocol

such as the DSR.
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ad hoc networks. In contrast, our incentive architecture is based on reputation and a belief

that each node would like to stay in the network with a desirable quality of connectivity

(punishment will seriously degrade the quality of connectivity of an identified selfish node).

Our solution is comprehensive in the sense that it integrates reputation measurement, rep-

utation propagation, punishment, node identification, message authentication, and secure

routing. Each component in our incentive architecture is designed with careful consideration

of the unique features of non-cooperative ad-hoc networks.

7 Concluding Remarks

In this paper, we propose a Secure and Objective Reputation-based Incentive (SORI) archi-

tecture to encourage packet forwarding and discipline selfish behavior in a non-cooperative

ad hoc network. The unique features of our SORI architecture are the following.

1. The reputation of a node is quantified by objective measures (through neighbor mon-

itoring).

2. The propagation of reputation is secured by a one-way-hash-chain based authentica-

tion scheme, which is computationally efficient and eliminates the need for a PKI or

other forms of authentication infrastructures which are usually not practical for non-

cooperative ad-hoc networks.

3. The reputation of a node is only propagated to its neighbors, which greatly reduces

communication overhead as compared to the schemes that maintain reputation globally.

4. Routing is effectively secured with the aid of beaconing and the one-way-hash-chain

based authentication scheme.

With the reputation measure obtained by the SORI architecture, we are able to design

a punishment scheme to penalize selfish nodes. The experimental results show that the

proposed scheme can successfully identify selfish nodes and punish them accordingly.
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