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Abstract

To efficiently support quality of service (QoS) in future wireless networks, it is important

to model a wireless channel in terms of connection-level QoS metrics such as data rate, delay

and delay-violation probability. To achieve this, in [7], we proposed and developed a link-layer

channel model termed effective capacity (EC) for flat fading channels. In this paper, we apply

the effective capacity technique to modeling frequency selective fading channels. Specifically, we

utilize the duality between the distribution of a queue with superposition of N i.i.d. sources,

and the distribution of a queue with a frequency-selective fading channel that consists of N i.i.d.

sub-channels, to model a frequency selective fading channel. In the proposed model, a frequency

selective fading channel is modeled by three EC functions; we also propose a simple and efficient

algorithm to estimate these EC functions. Simulation results show that the actual QoS metric

is closely approximated by the QoS metric predicted by the proposed EC channel model. The

accuracy of the prediction using our model can translate into efficiency in admission control and

resource reservation.
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1 Introduction

Future cellular wireless networks are expected to support multimedia traffic with diverse QoS

guarantees. Wireless channels are characterized by time-varying capacity due to channel

fading; to provide explicit QoS guarantees such as a data rate, delay bound, and delay-

bound violation probability triplet, it is necessary to analyze a QoS provisioning system in

terms of these QoS measures, for the fading channels. This task requires characterization of

the service (channel modeling), and queueing analysis of the system. Specifically, a general

methodology of designing QoS provisioning mechanisms at a wireless network node, involves

four steps:

1. Channel measurement: e.g., measure the channel capacity process [4]. It requires chan-

nel estimation at the receiver side and feedback of channel estimates to the transmitter.

2. Channel modeling: e.g., use a Markov-modulated Poisson process to model the channel

capacity process [4].

3. Deriving QoS measures: e.g., analyze the queue of the system and derive the delay

distribution, given the Markov-modulated Poisson process as the service model and

assuming a certain Markovian traffic model [4].

4. Relating the control parameters of QoS provisioning mechanisms to the derived QoS

measures: e.g., relate the amount of allocated resource to the QoS measures. If such a

relationship is known, given the QoS requirements specified by a user, we can calculate

how much resource needs to be allocated to satisfy the QoS.

Steps 1 to 3 are intended to analyze the QoS provisioning mechanisms, whereas step 4 is

aimed at designing the QoS provisioning mechanisms.

However, the main obstacle of applying the four steps in QoS provisioning, is the high

complexity in characterizing the relation between the control parameters and the calculated

QoS measures, based on existing channel models, i.e., physical-layer channel models (see

Fig. 1). This is because the physical-layer channel models (e.g., Rayleigh fading model with
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Figure 1: A wireless communication system and associated channel models.

a specified Doppler spectrum) do not explicitly characterize a wireless channel in terms of

the link-level QoS metrics specified by users, such as data rate, delay and delay-violation

probability. To use the physical-layer channel models for QoS support, we first need to

estimate the parameters for the channel model, and then extract the link-level QoS metrics

from the model. This two-step approach is obviously complex, and may lead to inaccuracies

due to possible approximations in extracting QoS metrics from the models. For example,

in [10, pp. 123–125], we showed that using a finite-state Markov chain channel model, one

could analyze the queue (having a complexity that is exponential in the number of users)

to determine what percentage of the channel resource need be allocated to a scheduler, so

that a specified QoS can be satisfied; to make matters worse, the queueing analysis does not

result in a closed-form relation between the control parameters and the QoS measures.

Recognizing that the limitation of physical-layer channel models in QoS support, is the

difficulty in analyzing queues using them, in [7], we proposed moving the channel model up

the protocol stack, from the physical-layer to the link-layer. We call the resulting model an

effective capacity (EC) channel model [7], because it captures a generalized link-level capacity
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notion of the fading channel. Figure 1 illustrates the difference between the conventional

physical-layer channels and the link-layer channel. In [7], we presented the EC model for

flat fading channels; in this paper, we consider an EC model for frequency-selective fading

channels.

To summarize, the effective capacity channel model that we propose, aims to characterize

wireless channels in terms of functions that can be easily mapped to link-level QoS metrics,

such as delay-bound violation probability. Furthermore, we propose a channel estimation

algorithm that allows practical and accurate measurements of the effective capacity model

functions. The EC model captures the effect of channel fading on the queueing behavior of

the link, using a computationally simple yet accurate model, and thus, is a critical tool for

designing efficient QoS provisioning mechanisms as shown in [8, 9].

The remainder of this paper is organized as follows. In Section 2, we describe various

classes of wireless channel models to provide the reader with a big picture. Section 3 presents

an effective capacity model for frequency selective fading channels. In Section 4, we show

simulation results that demonstrate the accuracy of the proposed channel model. Section 5

concludes the paper.

2 Wireless Channel Models

This section describes various classes of wireless channel models.

Figure 1 shows a wireless communication system. The data source generates packets and

the packets are first put into a buffer to accommodate the mismatch between the source rate

and the time-varying wireless channel capacity. Then the packets traverse a channel encoder,

a modulator, a wireless channel, a demodulator, a channel decoder, a network access device,

and finally reach the data sink. As shown in Figure 1, one can model the communication

channel at different layers as below

• Radio-layer channel: is the part between the output of the modulator and the input

of the demodulator.
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Figure 2: Classification of physical-layer channel models.

• Modem-layer channel: is the part between the output of the channel encoder and the

input of the channel decoder.

• Codec-layer channel: is the part between the output of the network access device at

the transmitter, and the input of the network access device at the receiver.

• Link-layer channel: is the part between the output of the data source and the input of

the data sink.

The above radio-layer, the modem-layer, and the codec-layer channels can all be regarded

as physical-layer channels.

As shown in Figure 2, radio-layer channel models can be classified into two categories:

large-scale path loss and small-scale fading. Large-scale path loss models, also called prop-

agation models, characterize signal strength over large transmitter-receiver separation dis-

tance (several hundreds or thousands of meters). These models specify signal attenuation

as a function of distance, which is affected by prominent terrain contours (buildings, hills,

forests, etc.) between the transmitter and the receiver. Path loss models describe the mean

signal attenuation vs. distance in a deterministic fashion (e.g., nth-power law [5]), and also

the statistical variation about the mean (e.g., log-normal distribution [5]).

Small-scale fading models describe the dramatic changes in signal amplitude and phase

that can be experienced as a result of small changes (as small as a half-wavelength) in the

spatial separation between the receiver and the transmitter [6]. Small-scale fading can be

4



slow or fast, depending on the Doppler rate. Small-scale fading can also be flat or frequency-

selective, depending on the delay spread of the channel. The statistical time-varying nature of

the envelope of a flat-fading signal is characterized by distributions such as Rayleigh, Ricean,

Nakagami, etc. [5]. Uncorrelated scattering is often assumed, to extend these distributions

to the frequency-selective case. The large-scale path loss and small-scale fading together

characterize the received signal power over a wide range of distances.

A modem-layer channel can be modeled by a finite-state Markov chain [11], whose states

are characterized by different bit error rates (BER). For example, in [11], a Rayleigh fading

with certain Doppler spectrum is converted to a BER process, modeled by a finite-state

Markov chain. The idea is the following: 1) quantize the continuous Rayleigh random

variable into a discrete random variable, based on certain optimal criterion (e.g., minimum

mean squared error), 2) map the resulting discrete random variable or SNR to discrete BER,

for a given modulation scheme (say, binary phase shift keying), and 3) estimate the state

transition probabilities, which reflect the Doppler spectrum. This procedure gives the states

(i.e., BER’s) and the transition probability matrix of the Markov chain.

A codec-layer channel can also be modeled by a finite-state Markov chain, whose states

can be characterized by different data-rates [4], or symbol being error-free/in-error, or chan-

nel being good/bad [12]. The two state Markov chain model with good/bad states [12] is

widely used in analyzing the performance of upper layer protocols such as TCP [13]. If the

decoder uses hard decisions from the demodulator/detector, a codec-layer channel model can

be easily obtained from a modem-layer channel model. For example, the good/bad chan-

nel model can be derived from a finite-state Markov chain with BER’s as the states in the

following way: first compute symbol error probability from BER; then decide the channel

being good if the symbol error probability is less than a preset threshold, otherwise decide

the channel being bad. The resulting good/bad channel process is a two state Markov chain.

Radio-layer channel models provide a quick estimate of the performance of wireless com-

munications systems (e.g., symbol error rate vs. signal-to-noise ratio (SNR)). However,

radio-layer channel models cannot be easily translated into complex QoS guarantees for a

connection, such as bounds on delay violation probability and packet loss ratio. The rea-
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son is that, these complex QoS requirements need an analysis of the queueing behavior of

the connection, which is hard to extract from radio-layer models [7]. Thus it is hard to

use radio-layer models in QoS support mechanisms, such as admission control and resource

reservation.

Finite-state Markov chain models for a modem-layer or codec-layer channel also require a

queueing analysis of very high complexity to obtain connection-level QoS such as a data rate,

delay bound, and delay-bound violation probability triplet. We showed this high complexity

through an example in [10, pp. 123–125].

Recognizing that the limitation of the physical-layer channel models in QoS support, is

the difficulty in analyzing queues, we propose moving the channel model up the protocol

stack, from the physical-layer to the link-layer. The resulting link-layer channel model is

called effective capacity model, which was developed in [7]. For convenience, we briefly

describe it in the following section.

2.1 Effective Capacity Model for Flat Fading Channels

We first formally define statistical QoS, which characterizes the requirement of a user. First,

consider a single-connection system with a flat fading channel. Assume that the user source

has a fixed rate rs and a specified delay bound Dmax, and requires that the delay-bound

violation probability is not greater than a certain value ε, that is,

Pr{D(∞) > Dmax} ≤ ε, (1)

where D(∞) is the steady-state delay experienced by a flow, and Pr{D(∞) > Dmax} is the

probability of D(∞) exceeding a delay bound Dmax. Then, we say that the user is specified

by the (statistical) QoS triplet {rs, Dmax, ε}. Even for this simple case, it is not immediately

obvious as to which QoS triplets are feasible, for the given channel, since a rather complex

queueing system (with an arbitrary channel capacity process) will need to be analyzed. The

key contribution of [7] was to introduce a concept of statistical delay-constrained capacity

termed effective capacity, which allows us to obtain a simple and efficient test, to check the

feasibility of QoS triplets for a given time-varying channel. That paper dealt with flat fading
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channels instead of frequency selective fading channels, which we consider in this paper.

Next, we briefly explain the concept of effective capacity, and refer the reader to [7] for

details.

Let r(t) be the instantaneous channel capacity at time t. Assume that, the asymptotic

log-moment generation function of r(t)

Λ(−u) = lim
t→∞

1

t
log E[e−u

∫ t
0 r(τ)dτ ] (2)

exists for all u ≥ 0. Then, the effective capacity function of r(t) is defined as

α(u) =
−Λ(−u)

u
, ∀ u > 0. (3)

That is,

α(u) = − lim
t→∞

1

ut
log E[e−u

∫ t
0

r(τ)dτ ], ∀ u > 0. (4)

Consider a queue of infinite buffer size supplied by a data source of constant data rate

µ (see Fig. 3). It can be shown [7] that if α(u) indeed exists (e.g., for ergodic, stationary,

Markovian r(t)), then the probability of D(∞) exceeding a delay bound Dmax satisfies

Pr{D(∞) > Dmax} ≈ γ(µ)e−θ(µ)Dmax , (5)

where {γ(µ), θ(µ)} are functions of source rate µ and they depend only on the channel

capacity process r(t). {γ(µ), θ(µ)} can be considered as a channel model that models the

channel at the link layer (in contrast to physical layer models). The approximation (5) is

accurate for large Dmax.
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In terms of the effective capacity function (4) defined earlier, the QoS exponent function

θ(µ) can be written as [7]

θ(µ) = µα−1(µ) (6)

where α−1(·) is the inverse function of α(u). Once {γ(µ), θ(µ)} have been measured for a

given channel, they can be used to check the feasibility of QoS triplets. Specifically, a QoS

triplet {rs, Dmax, ε} is feasible if θ(rs) ≥ − log(ε/γ(rs))/Dmax.

The above effective capacity model is for flat fading channels. Next, we extend the EC

model to the case of frequency selective fading channels.

3 Modeling for Frequency Selective Fading Channels

In [7], we modeled the wireless channel in terms of two ‘effective capacity’ functions; namely,

the probability of non-empty buffer γ(µ) and the QoS exponent θ(µ). Furthermore, we

developed a simple and efficient algorithm to estimate the EC functions {γ(µ), θ(µ)}. For

flat-fading channels (e.g., Rayleigh fading with a specified Doppler spectrum), the simulation

results [7] have shown that the actual QoS metric is closely approximated by the QoS metric

predicted by the EC channel model and its estimation algorithm, under various scenarios.

On the other hand, for frequency selective fading channels with high degrees of frequency

diversity, a refinement is useful to characterize γ(µ) further. The technique we use is a dual

of large deviations theory for many sources.

In this section, we use the duality between the distribution of a queue with superposition

of N i.i.d. sources, and the distribution of a queue with a frequency-selective fading channel

that consists of N i.i.d. sub-channels, to propose a channel model, specified by three functions

{β(c)(µ), η(c)(µ), θ1(µ)}.
The remainder of this section is organized as follows. Section 3.1 presents large de-

viation results for a queue with many inputs, which provide us the method to model

frequency-selective fading channels. In Section 3.2, we describe an effective capacity model

for frequency-selective fading channels.
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3.1 Large Deviation Results for a Queue with Many Inputs

In [1], Botvich and Duffield obtained a large deviation result for the queue at a multiplexer

with N inputs. To state their results, let QN (∞) be the length of the steady-state queue

due to a superposition of N i.i.d. stationary sources, served at constant rate N × r (r fixed).

Denote by AN(t) (t ≥ 0) the amount of aggregate traffic from the N sources over the time

interval [0, t). Assume that the many-source-asymptotic1 log-moment generating function of

AN(t), defined as

Λt(u) = lim
N→∞

1

Nt
log E[eu(AN (t)−Nrt)], (7)

exists for all u > 0 and t > 0.

Define Λ∗
t the Legendre-Fenchel transform of Λt, through

Λ∗
t (B) = sup

u
(B × u − Λt(u)). (8)

Under appropriate conditions, paralleling the result for large buffer asymptotic [10, page

75, Eq. (23)], Botvich and Duffield’s result for many source asymptotic [1] is

loge Pr{QN(∞) ≥ B} ∼ −N × I(B/N) as N → ∞, (9)

where I(B) = inft>0 tΛ∗
t (B/t), and f(x) ∼ g(x) means that limx→∞ f(x)/g(x) = 1. Eq. (9)

yields the approximation

Pr{QN(∞) ≥ B} ≈ e−N×I(B/N), (10)

By introducing a prefactor β(s)(r), a more accurate approximation was proposed in [2] as

below,

Pr{QN(∞) ≥ B} ≈ β(s)(r) × e−N×I(B/N) (11)

≈ β(s)(r) × e−η(s)(r)×N × e−θB(N,r)×B, (12)

1Many source asymptotic is for the case where the number of sources N goes to ∞ while large buffer

asymptotic is for the case where the buffer size B goes to ∞.
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where β(s)(r) and η(s)(r) are functions of r, θB(N, r) is a function of N and r, and η(s)(r)

and θB(N, r) satisfy [1]

lim
B→∞

(I(B) − θB(N, r) × B) = η(s)(r), (13)

and

η(s)(r) = − lim
t→∞

tΛt(θB(N, r)), (14)

under appropriate conditions. The quantity β(s)(r) × e−η(s)(r)×N can be regarded as the

probability that the buffer is non-empty; this probability decays exponentially as the number

of sources N increases.

If the quantity of interest is the steady-state delay DN(∞), then the probability of DN(∞)

exceeding a delay bound Dmax satisfies

Pr{DN(∞) ≥ Dmax} ≈ β(s)(r) × e−η(s)(r)×N × e−θ(s)(N,r)×Dmax , (15)

where θ(s)(N, r) = θB(N, r)×N ×r. Thus, the triplet {β(s)(r), η(s)(r), θ(s)(N, r)} models the

aggregate source.

In the following section, we use the duality between traffic modeling ({β(s)(r), η(s)(r), θ(s)(N, r)})
and channel modeling to propose a link-layer model for frequency selective fading channels,

specified by a triplet {β(c)(µ), η(c)(µ), θN(µ)}. It is clear that we intend {β(c)(µ), η(c)(µ), θN(µ)}
to be the channel duals of the source functions {β(s)(r), η(s)(r), θ(s)(N, r)}. Just as the con-

stant channel rate r is used in source traffic modeling, we use the constant source traffic

rate µ in modeling the channel.

3.2 Channel Modeling

Consider a queue of infinite buffer size supplied by a data source of constant data rate µ,

served by 1/N fraction of a frequency-selective fading channel that consists of N i.i.d. sub-

channels. The queue is served by 1/N fraction of the channel to keep the system load2

2The system load is defined as the ratio of the expected source rate to the ergodic channel capacity.
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constant as N increases. The large deviation results in Section 3.1 can be easily adapted to

this case. The difference is that whereas in Section 3.1, the source rate was variable while

the channel capacity per source was constant, in this section, the source rate is constant

while the channel capacity is variable. Similar to (15), it can be shown that the probability

of D(∞) exceeding a delay bound Dmax satisfies

Pr{D(∞) ≥ Dmax} ≈ γN(µ) × e−θN (µ)×Dmax (16)

where the functions {γN(µ), θN(µ)} characterize the frequency-diversity channel with N

independent sub-channels, and the function γN(µ) can be approximated by

γN(µ) ≈ β(c)(µ) × e−η(c)(µ)×N (17)

Assuming equality in (17), we can easily derive a method to estimate η(c)(µ) and β(c)(µ) as

below

η(c)(µ) = − log(γN(µ)/γ1(µ))/(N − 1), (18)

and

β(c)(µ) = γ1(µ) × eη(c)(µ). (19)

where γ1(µ) and γN(µ) can be estimated by Eq. (39) in the Appendix.

For the case where the sub-channels are i.i.d., a simplification occurs. Let rN(t) be the

instantaneous channel capacity of 1/N fraction of a frequency-selective fading channel with

N i.i.d. sub-channels, at time t. Then, the effective capacity function of rN(t) is defined as

αN(u) = − lim
t→∞

1

ut
log E[e−u

∫ t
0

rN (τ)dτ ], ∀ u > 0, (20)

if it exists. Let r1(t) be the instantaneous channel capacity of one sub-channel of the

frequency-selective fading channel, at time t. Then, the effective capacity function of r1(t) is

defined as

α1(u) = − lim
t→∞

1

ut
log E[e−u

∫ t
0 r1(τ)dτ ], ∀ u > 0. (21)
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According to [10, page 78, Eq. (30)], the QoS exponents θN (µ) and θ1(µ) are defined as

θN (µ) = µα−1
N (µ), (22)

and

θ1(µ) = µα−1
1 (µ), (23)

respectively, and the two QoS exponents have a relation specified by Proposition 1.

Proposition 1 The QoS exponents θN(µ) and θ1(µ) satisfy

θN (µ) = N × θ1(µ). (24)

For a proof of Proposition 1, see the Appendix.

From (16), (17), and (24), we have

Pr{D(∞) ≥ Dmax} ≈ β(c)(µ) × e−η(c)(µ)×N × e−N×θ1(µ)×Dmax . (25)

So, the functions {β(c)(µ), η(c)(µ), θ1(µ)} sufficiently characterize the QoS Pr{D(∞) ≥ Dmax}
for a frequency-selective fading channel, consisting of arbitrary N i.i.d. sub-channels. There

is no need to directly estimate γN(µ) and θN (µ) for arbitrary N , i.e., using Eqs. (39) through

(42) in the Appendix.

The EC channel model for frequency-selective fading channels and its application are

summarized below.

1. {β(c)(µ), η(c)(µ), θ1(µ)} is the EC channel model.

2. {β(c)(µ), η(c)(µ), θ1(µ)} can be estimated by (19), (18), and (39) through (42), respec-

tively.

3. Given the EC channel model, the QoS {µ, Dmax, ε} can be computed by Eq. (25),

where ε = Pr{D(∞) ≥ Dmax}.
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4 Simulation Results

4.1 Simulation Setting

We simulate the discrete-time system depicted in Figure 4. In this system, the data source

generates packets at a constant rate µ. Generated packets are first sent to the (infinite) buffer

at the transmitter, whose queue length is Q(n), where n refers to the n-th sample-interval.

The head-of-line packet in the queue is transmitted over a frequency selective fading channel

at data rate r(n). We use a fluid model, that is, the size of a packet is infinitesimal. In

practical systems, the results presented here will have to be modified to account for finite

packet sizes.

Denote hi(n) the channel voltage gain of sub-channel i (i = 1, 2, · · · , N) in a frequency

selective fading channel, at sample-interval n. We assume that the transmitter has perfect

knowledge of the current channel gains hi(n) of each sub-channel i at each sample-interval

n. Therefore, it can use rate-adaptive transmissions and ideal channel codes, to transmit

packets without decoding errors. Thus, the transmission rate ri(n) of sub-channel i is equal

to the instantaneous (time-varying) capacity of the fading channel, as below,

ri(n) = Bc log2(1 + |hi(n)|2 × P0/σ
2
n) (26)

where Bc denotes the channel bandwidth, and the transmission power P0 and noise variance

σ2
n are assumed to be constant.

The average SNR is fixed in each simulation run. We define rawgn as the capacity of an
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equivalent AWGN channel, which has the same average SNR, i.e.,

rawgn = Bc log2(1 + SNRavg) (27)

where SNRavg = E[|hi(n)|2 × P0/σ
2] = P0/σ

2. We set E[|hi(n)|2] = 1. Then, we can

eliminate Bc using Eqs. (26) and (27) as,

ri(n) =
rawgn log2(1 + |hi(n)|2 × SNRavg)

log2(1 + SNRavg)
. (28)

Since the transmission rate r(n) is equal to 1/N of the sum of the instantaneous capacities

of the N sub-channels, we have

r(n) =
1

N

N∑

i=1

ri(n) =

∑N
i=1 rawgn log2(1 + |hi(n)|2 × SNRavg)

N log2(1 + SNRavg)
. (29)

The channel gain hi(n) of each sub-channel i (i = 1, 2, · · · , N) is assumed to be Rayleigh-

distributed and is generated by an AR(1) model as below,

hi(n) = κ × hi(n − 1) + vi(n), (30)

where vi(n) are i.i.d. complex Gaussian variables with zero mean and variance of (1− κ2)/2

per dimension. It is clear that (30) results in E[|hi(n)|2] = 1. The coefficient κ determines the

Doppler rate, i.e., the larger the κ, the smaller the Doppler rate. Specifically, the coefficient

κ can be determined by the following procedure: 1) compute the coherence time Tc by [5,

page 165]

Tc ≈ 9

16πfm
, (31)

where the coherence time is defined as the time, over which the time auto-correlation function

of the fading process is above 0.5; 2) compute the coefficient κ by3

κ = 0.5Ts/Tc . (32)

3The auto-correlation function of the AR(1) process is κm, where m is the number of sample intervals.
Solving κTc/Ts = 0.5 for κ, we obtain (32).
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In all the simulations, we fix the following parameters: rawgn = 100 kb/s, κ = 0.98, and

SNRavg = 0 dB. The sample interval Ts is set to 1 milli-second. This is not too far from

reality, since 3G WCDMA systems already incorporate rate adaptation on the order of 10

milli-second [3]. Each simulation run is 1000-second long in all scenarios.

In the next section, we use simulation results to show the accuracy of the channel model

{β(c)(µ), η(c)(µ), θ1(µ)}.

4.2 Accuracy of Channel Model {β(c)(µ), η(c)(µ), θ1(µ)}

In the simulations, for the purpose of comparison, we first directly estimate γN and θN

for various number of sub-channels N , using Eqs. (39) through (42); then we estimate

{β(c)(µ), η(c)(µ), θ1(µ)} by (19), (18), and (39) through (42), respectively.

Figure 5 shows the actual and estimated θN vs. N for µ = 85 kb/s. The actual θN is

meant to be the θN directly measured by Eqs. (39) through (42) for the case with N sub-

channels; the estimated θN is meant to be N × θ1, i.e., Eq. (24), where θ1 is measured by

Eqs. (39) through (42) for the case with one sub-channel. The figure indicates that 1) the

actual θN linearly increase with N , justifying the linear relation in (24), and 2) the estimated

θN can serve as a rough estimate of the actual θN .
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Figure 6: Actual and estimated γN vs. N : (a) µ = 40 kb/s, (b) µ = 60 kb/s, and (c) µ = 85

kb/s.
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Figure 7: Actual and estimated delay-bound violation probability for µ = 85 kb/s and

N = 1.

Figure 6 shows the actual and estimated γN vs. N for various source rate µ. The

actual γN is meant to be the γN directly measured by Eqs. (39) through (42) for the case

with N sub-channels; the estimated γN is obtained by Eq. (17), where η(c)(µ) and β(c)(µ)

are estimated by (18) and (19), respectively. The figure demonstrates that 1) the actual

γN decrease exponentially with N , justifying the exponential relation in (17), and 2) the

estimated γN is close to the actual γN .

Figures 7 and 8 show the actual and estimated delay-bound violation probability Pr{D(∞) ≥
Dmax} vs. the delay bound Dmax, for various N and µ = 85 kb/s. The actual Pr{D(∞) ≥
Dmax} is obtained by directly measuring the queue; the estimated Pr{D(∞) ≥ Dmax} is

obtained by Eq. (25), where {β(c)(µ), η(c)(µ), θ1(µ)} are estimated by (19), (18), and (39)

through (42), respectively. The figures illustrate that the estimated Pr{D(∞) ≥ Dmax}
agrees with the actual Pr{D(∞) ≥ Dmax}. It is clear that as the number of sub-channels

N increases, Pr{D(∞) ≥ Dmax} decreases for a fixed Dmax. This indicates that frequency

diversity improves the delay performance of a wireless channel. In [9], we showed how to

utilize frequency diversity to improve delay performance.

Figure 9 shows the actual and estimated Pr{D(∞) ≥ Dmax} vs. the delay bound Dmax,

for various µ and N = 4. The actual and estimated Pr{D(∞) ≥ Dmax} are obtained by
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Figure 8: Actual and estimated delay-bound violation probability for µ = 85 kb/s and

various N : (a) N = 2, (b) N = 4, (c) N = 8, (d) N = 16, (e) N = 32, and (f) N = 64.
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Figure 9: Actual and estimated delay-bound violation probability for N = 4 channels: (a)

µ = 20 kb/s, (b) µ = 40 kb/s, and (c) µ = 60 kb/s.
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Figure 10: Actual and simply estimated delay-bound violation probability for N = 4 chan-

nels: (a) µ = 20 kb/s, (b) µ = 40 kb/s, and (c) µ = 60 kb/s.
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the same ways as Figure 8. Figure 9 indicates that the estimated Pr{D(∞) ≥ Dmax} gives

good agreement with the actual Pr{D(∞) ≥ Dmax} for various data rates µ.

Figure 10 shows the actual and estimated Pr{D(∞) ≥ Dmax} vs. the delay bound Dmax,

for various µ and N = 4, with a simplified estimation method. The actual Pr{D(∞) ≥
Dmax} is obtained by the same way as Figure 8. Different from Eq. (25), the estimated

Pr{D(∞) ≥ Dmax} is obtained by a simplified estimate as below,

Pr{D(∞) ≥ Dmax} = γ1(µ) × e−N×θ1(µ)×Dmax , (33)

where γ1(µ) and θ1(µ) are estimated by Eqs. (39) through (42) for the case with one sub-

channel. Compared with Figure 9, Figure 10 indicates that if γN(µ) in (16) is replaced by

γ1(µ), the estimated Pr{D(∞) ≥ Dmax} would be very conservative. Hence, the estimation

of γN(µ) is necessary.

In summary, by estimating functions {β(c)(µ), η(c)(µ), θ1(µ)} and using Eq. (25), we can

obtain the QoS Pr{D(∞) ≥ Dmax} for a frequency-selective fading channel, consisting of

arbitrary N i.i.d. sub-channels, with reasonable accuracy.

5 Concluding Remarks

In this paper, we proposed a link-layer channel model for frequency selective fading chan-

nels. The proposed model extends the effective capacity channel model we developed in [7].

Specifically, we utilize the duality between the distribution of a queue with superposition of

N i.i.d. sources, and the distribution of a queue with a frequency-selective fading channel

that consists of N i.i.d. sub-channels, to develop a model for frequency selective fading

channels. Under the proposed model, a frequency selective fading channel is modeled by

three EC functions, namely, {β(c)(µ), η(c)(µ), θ1(µ)}; we also developed a simple and efficient

algorithm to estimate these EC functions. Simulation results show that the actual QoS met-

ric is closely approximated by the QoS metric predicted by the proposed EC channel model.

The accuracy of our model can lead to efficient bandwidth allocation and QoS provisioning

over wireless links.
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Appendix

Proof of Proposition 1

Denote ri(t) the instantaneous channel capacity of sub-channel i (i = 1, · · · , N) of the

frequency-selective fading channel, at time t. Then for u ≥ 0, we have

αN(u)
(a)
= − lim

t→∞
1

ut
log E[e−u

∫ t
0

rN (τ)dτ ]

(b)
= − lim

t→∞
1

ut
log E[e−u

∫ t
0

1
N

∑N
i=1 ri(τ)dτ ]

(c)
= − lim

t→∞
1

ut
log(E[e−u

∫ t
0

1
N

r1(τ)dτ ])N

= − lim
t→∞

1

t u
N

log E[e−
u
N

∫ t
0 r1(τ)dτ ]

(d)
= α1(

u

N
) (34)

where (a) from (20), (b) since rN(t) = 1
N

∑N
i=1 ri(t), (c) since ri(t) (i = 1, · · · , N) are i.i.d.,

and (d) from (21). Then by αN(u) = α1(
u
N

)
.
= µ, we have

u = α−1
N (µ) (35)

and
u

N
= α−1

1 (µ). (36)

Removing u in (35) and (36) results in

α−1
N (µ) = N × α−1

1 (µ) (37)
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Thus, we have

θ
(c)
N (µ)

(a)
= µα−1

N (µ)

(b)
= µ × N × α−1

1 (µ)

(c)
= N × θ

(c)
1 (µ) (38)

where (a) from (22), (b) from (37), and (c) from (23). This completes the proof.

Estimation of EC Functions {γ(µ), θ(µ)}

We briefly describe a simple algorithm to estimate the EC functions {γ(µ), θ(µ)} (see [7]

for details of derivation). Assume that the time-varying channel capacity process r(n) is

stationary and ergodic. For a given (unknown) fading channel and a given source rate µ,

we take measurements from the queue (see Fig. 4). Note that the queue is a only simulated

queue, which is calculated based on the observed r(n). First, take a number of samples,

say N , over an interval of length T , and record the following quantities at the nth sampling

epoch: Sn the indicator of whether a packets is in service4 (Sn ∈ {0, 1}), Qn the number of

bits in the queue (excluding the packet in service), and Tn the remaining service time of the

packet in service (if there is one in service). Then, compute the following sample means,

γ̂ =
1

N

N∑

n=1

Sn, (39)

q̂ =
1

N

N∑

n=1

Qn, (40)

and

τ̂s =
1

N

N∑

n=1

Tn. (41)

4A packet in service refers to a packet in the process of being transmitted.

23



Finally, we obtain the estimate of θ(µ) by

θ̂ =
γ̂ × µ

µ × τ̂s + q̂
(42)

Eqs. (39) through (42) constitute our algorithm for estimating the EC functions {γ(µ), θ(µ)}.
Note that, to get the functions γ(µ) and θ(µ), we need to estimate γ and θ for different source

rate µ.
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