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Abstract

We consider the problem of optimal power control for quality-of-service-assured wireless commu-
nication. The quality of service (QoS) measures of our consideration are a triplet of data rate, delay,
and delay bound violation probability. Our target is to develop power control laws that can provide
delay guarantees for real-time applications over wireless networks. The power control laws that aim
at optimizing certain physical-layer performance measures, usually adapt the transmission power based
on the channel gain; we call these “channel-gain-based” (CGB) power control (PC). In this paper, we
show that CGB-PC laws achieve poor link-layer delay performance. To improve the performance, we
propose a novel scheme called hierarchical queue-length-aware (HQLA) power control. The key idea
is to combine the best features of the two PC laws, i.e., a given CGB-PC law and the clear-queue PC
law; here, the clear-queue PC is defined as a PC law that uses a transmission power just enough to
empty the queue at the link layer. We analyze our proposed HQLA-PC scheme by the matrix-geometric
method. The analysis agrees well with the simulation results. More importantly, our results show that
the proposed HQLA power control scheme is superior to the corresponding CGB-PC in both average
power consumption and effective capacity.

Index Terms

Delay-constrained communications, power control, queuing theory, matrix-geometric method, ef-
fective capacity

I. INTRODUCTION

Future wireless networks are expected to support real-time applications, such as streaming
multimedia, online games or remote medical monitoring and diagnosis, which require quality
of service (QoS) guarantees. For the delay sensitive real-time services, two QoS requirements,
reliability and transmission delay, are of great importance. Reliability accounts for the quality
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of the information transmitted. In physical layer, it is referred to as bit error rate (BER). Each
application has its own BER requirement. Many physical layer technologies such as coding and
interleaving have been invented to improve the BER performance. Another QoS requirement,
the transmission delay, comes from the link layer, which affects the “real-time” property and
user experiences. For good user experiences, such as watching a streaming video, the packet
delay should be kept small and consistent so that the user can enjoy a smooth screen.

The success of these real-time applications critically depends on how much spectrum efficiency
and power efficiency these network can achieve. This paper focuses on power efficiency. The
transmission power is an important physical layer resource for a wireless communication system.
On one hand, for a particular user, the larger the transmission power, the better performance can
be expected. On the other hand, one user’s strong signal will interfere with other users’ on going
links and degenerate their performance. Also for mobile terminals, lower transmission power
leads to longer standby and talking time. In this paper, we study the problem of determining a
PC law that minimizes transmission power while satisfying the required QoS, especially, delay
guarantee, for a given spectrum.

Existing PC laws fall into two categories, namely, CGB PC and queue-length-aware (QLA) PC.
CGB-PC adapts the transmission power based on the channel gain (physical-layer information),
with the aim of optimizing certain physical-layer performance measures such as physical-layer
data rate, BER, or signal-to-noise ratio (SNR). An example of CGB-PC is time-domain water
filling (TDWF) proposed by Goldsmith and Varaiya [1], which maximizes the physical-layer data
rate (Shannon’s ergodic capacity), subject to the average power constraint. Since the constraint
only comes from the physical layer, in the optimal solution, the physical layer information, i.e. the
instantaneous channel gain, uniquely determines the transmission power. The price for the TDWF
PC strategy to achieve the high capacity is that the packets may experience an arbitrary long delay
(coding delay). To find the upper bound of capacity with finite coding delay, people studied the
delay-constrained capacity of fading channels [2] and the power control schemes which maximize
those capacities. Existing delay-constrained capacity notions include outage capacity [3], delay-
limited capacity [4], and expected capacity [5]. The optimal causal power control scheme which
maximizes the expected capacity subject to average power constraint is also TDWF [5]. An
optimal non-causal power control scheme is studied in [6], where the channel gains of all future
fading states are assumed to be known at the beginning of the transmission. The optimal power
control that maximizes outage capacity under non-causal channel state information, is studied
in [7]; The optimal power control that maximizes outage capacity under causal channel state
information, is studied in [5].

QLA-PC adapts the transmission power based on the queue-length (link-layer information) and
possibly the channel gain (physical-layer information), with the aim of optimizing certain link-
layer performance measures such as link-layer data rate and delay bound violation probability. In
this paper, we show that CGB-PC laws achieve poor link-layer delay performance. To improve the
performance, QLA-PC is needed. Existing QLA-PC laws [8] aim at minimizing the transmission
power under the constraint on the average delay. But average-delay guarantee may not satisfy the
requirements of delay-sensitive applications; e.g., using a handheld device to watch mobile TV
over WiMax, requires certain delay bound violation probability, which cannot be specified by
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average delay since average delay cannot specify the (tail) probability distribution function; e.g.,
for a given delay bound (say, 1 second), two systems with the same average delay of 500 ms
could have quite different delay bound violation probabilities, e.g., 40% vs. 0.1%. Different from
guaranteeing average delay, this paper considers statistical delay guarantees or statistical QoS
[9], i.e., the triplet of data rate, delay bound, and delay bound violation probability (DBVP),
which is more general and challenging than guaranteeing average delay. That the statistical
QoS constraint is satisfied means that for a constant source data rate, the probability that the
transmission delay of a packet exceeding the delay bound is smaller than DBVP.

Under the statistical QoS constraint, the maximum capacity achieved by the TDWF PC strategy
is no longer achievable. Wu and Negi [9] studied the capacity of a wireless link under this
constraint, namely the effective capacity, which describes the maximum constant data rate that
the system can sustain under the statistical QoS constraints. Tang and Zhang [10] studied the
optimal PC scheme that maximize the effective capacity subject to a average power constraint.
They still assumed that the transmission power is controlled by the instantaneous channel gain
and did not consider the queue length.

In fact, since for many real-time applications, the data source is generated on the fly, e.g.
video captured by a webcamera, the instantaneous channel capacity provided by the CGB PC
scheme may be greater than the backlog in the transmitter buffer. Under this scenario, if the
transmitter still schedules that power to transmit, it will be idle after the buffer is cleared. As
suggested in the lazy scheduling [11], we can always find a more energy/power efficient strategy
by preventing the transmitter from idle. On the other words, if we keep the average power
unchanged, the effective capacity will be increased. We show later in the simulation that the
effective capacity achieved by their PC can be exceeded.

In this paper, we focus on QLA-PC laws that aim at minimizing the transmission power
under the constraint on statistical delay guarantees. Specifically, we propose a novel scheme
called HQLA PC. The key idea is to combine the best features of the two PC laws, i.e., a given
CGB-PC law and the clear-queue (CQ) PC law; here, the CQ-PC is defined as a PC law that
uses a transmission power just large enough to empty the queue (i.e., transmit all the buffered
bits in the link-layer queue). The HQLA PC scheme is not optimal in terms of maximizing the
effective capacity yet it is practically usable and dramatically increases the effective capacity.

To analytically analyze the performance of the proposed scheme, we model the queue length
as a Markov chain and numerically calculated the steady state queue length distribution by means
of matrix-geometric method [12]. From the steady state distribution,the average power can be
obtained. Both the numerical results and the simulation results show that the proposed HQLA
PC scheme reduces the average power greatly, comparing to the CGB PC scheme, for the same
statistical QoS constraint. And for the same average power, the HQLA PC scheme significantly
increases the effective capacity.

The remainder of this paper is organized as follows. Section II describes the system structure
and the Markov chain model of the system. Section III introduces the proposed HQLA PC
scheme and analyze its performance in terms of the resulting queue length distribution and the
average power. Section IV presents the simulation results. Section V concludes the paper.
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II. SYSTEM DESCRIPTION

The abbreviations used in this paper are listed in Table V. We consider a node to node
transmission over wireless fading channels. The wireless channel in question is modeled as a
time-slotted flat fading channel. The slot has a fixed duration of Ts sec, which is assumed to
be small enough that the channel gains are constant, yet large enough that ideal channel codes
can achieve Shannon’s capacity over that duration. The channel gain of each slot is assumed to
be i.i.d. Rayleigh distributed. Notice that the i.i.d. assumption is only for the analytical analysis
purpose, the proposed power control scheme can be applied to any channel conditions.

A. Structure of Data Source and Transmitter

The structure of data source and transmitter is illustrated in Fig. 1. A data source generates
bit stream at a constant rate µ̃ bits/sec. The bit stream is first stored in a source buffer where
data processing is performed. This procedure may involve block processing such as frequency
domain video coding, block coding or formatting the bits stream into a packet. In general, the
output of the source buffer is no longer consecutive. Assume that the output of the source buffer
is blocked data with a constant rate of one block per slot. Each block contains µ bits, where µ is
an integer and µ ≥ µ̃Ts. The equality takes place when there is no extra data added in the data
processing procedure and a proper chosen Ts such that µ̃Ts is an integer. The later condition is
easy to meet for large µ̃. The blocked data is fed into the transmission buffer at the beginning
of each slot and is served (transmitted) in a first-in-first-out (FIFO) fashion. We assume that
the capacity of the transmission buffer is infinite, therefore all the bits can be served eventually.
Since for the transmitter, only the block size µ matters, we will use µ to denote the arrival rate
and discard µ̃ in the following discussions.

In the model described above, the transmission delay is simply the waiting time in the
transmission buffer. For a constant arrival rate, the transmission delay (count in slots) is equivalent
to the queue length (count in bits) up to a scalar and a fraction. In fact, denote q the queue
length in the buffer when a certain bit is transmitted, the transmission delay of this bit ranges
from bq/µc to bq/µc + 1, where bxc finds the largest integer that is not greater than x. By
studying the queue length distribution of the system , the statistical measure of the transmission
delay can be obtained. In the following subsections, we demonstrate that the queue length forms
a Markov chain, and in subsection III-B the steady state queue length distribution is obtained
by matrix-geometric method.

B. Markov Chain Model

According to the time-slotted flat fading assumption, the channel gain remains unchanged
during one slot. The transmitter will adapt the modulation and coding scheme to achieve the
Shannon’s capacity. Therefore the queue length within one slot may have various behaviors
depending on the particular scheme used. The random process of continuous time queue length
q(t) may not have Markovian property. However if we focus on the queue length at the beginning
of each slot, and the following two conditions are satisfied, 1) the channel gain of each slot is
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i.i.d. 2) the transmission power is a function of the current slot channel gain and queue length,
we will have a Markov chain, as described following.

Let q(n) denote the queue length at the beginning of the nth slot, or on the other words, it
is the number of bits waiting in the transmission buffer before the arrival of the new block and
the transmission of that slot; s(n) denotes the number of bits that will be transmitted during the
nth slot. As illustrated in Fig. 2. the queue length update function is

q(n + 1) = [q(n) + µ− s(n)]+, (1)

where [x]+ is the Lindley’s operator which means max(x, 0).

s(n) depends on the bandwidth which is fixed, the current channel gain g(n) and the transmis-
sion power P (n). As indicated in assumption 2), P (n) is a function of g(n) and the current slot
queue length q(n). Therefore s(n) is also a function of g(n) and q(n). Consequently, q(n + 1)
can be also written as a function of g(n) and q(n)

q(n + 1) = h(g(n), q(n)). (2)

The relationship between q(n + 1), g(n), q(n) is illustrated in Fig. 3. Notice that q(n) is the
queue length at the beginning of the nth slot, it is independent of g(n). Since {g(n)} are i.i.d
by assumption 1), if q(n) is known, the value of q(n + 1) is uniquely determined by g(n) and
is irrelative to the previous queue length q(k), k < n. Therefore under the two assumptions
mentioned above, q(n) forms a discrete-time Markov chain. Furthermore, if we require that s(n)
be an integer, which is almost always true in practice, q(n) forms a discrete-time, discrete-state
Markov chain.

III. HIERARCHICAL QUEUE-LENGTH-AWARE POWER CONTROL SCHEME

In this section we introduce the proposed HQLA PC scheme, and analyze the steady state
queue length distribution, from which the average power can be obtained.

As mentioned in section I, for real-time applications, since the data to be transmitted is
generated on the fly, it is possible that the capacity provided by the CGB PC scheme exceeds
the backlog in the buffer. To schedule the transmission power more efficiently, we need to
design a PC scheme which considers both the channel gain and the queue length. Without loss
of generality, denote the transmission power as P̃ (n) = P̃ (g(n), q(n)). The optimal PC scheme
should maximize the throughput while satisfies the statistical QoS constraint.

The statistical QoS requirement is satisfied means that for a certain constant arrival rate µ,
the probability that the delay bound Dmax is violated is not greater than the DBVP

Prob[ D(∞) ≥ Dmax ] ≤ ε, (3)

Where ε is the user specified DBVP, and D(∞) is the transmission delay when the queue enters
the steady state (the transient process is neglected). The optimization problem can be expressed
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as

max
P̃ (g(n),q(n))

µ (4)

s.t. Prob[ D(∞) ≥ Dmax ] ≤ ε

average power = P̄ ,

where P̄ is the average power constraint. In practice, another optimization problem is also
important: to support a given throughput, what is the optimal power control scheme which has
the lowest average power. By alternating the objective function and the power constraint in (4),
we have the second optimization problem,

min
P̃ (g(n),q(n))

average power (5)

s.t. Prob[ D(∞) ≥ Dmax ] ≤ ε

µ = µ0,

where µ0 is the throughput constraint.

The above two optimization problems can be related by a two objective optimization problem.
The two objectives are throughput µ and average power P̄ . Denote {µ∗, P̄ ∗} the optimal solution.
The optimality is in a Pareto sense, which means that there does not exist any other pair of {µ, P̄},
such that the following two conditions are satisfied simultaneously,

{
µ ≥ µ∗

P̄ ≤ P̄ ∗.
(6)

{µ∗, P̄ ∗} is not unique. Actually it forms a curve, called Pareto curve, in a two-dimensional
plane spanned by µ and P̄ . If the Pareto curve is continuously increasing (Intuitively, this is
true in our problem since higher average power is allowed, higher throughput can be expected,
and vice versa. However we are not intent to provide proof on this since it is beyond the scope
of this paper), the two optimization problems (4) and (5) are equivalent, i.e. if P̃ (g(n), q(n)) is
optimal to (4), it is also optimal to (5).

Both of the two optimization problems are not easy to solve. The transmission power is
averaged over both the channel gain and the queue length. However, for most queueing problems,
the closed form of the steady state queue length distribution is not available. In this paper, we
propose a PC scheme which is not optimal yet still superior to the CGB PC scheme in terms of
the throughput or average power.

The proposed HQLA PC scheme consists of two components, the CGB PC and the CQ PC
. The CGB PC part could be any PC scheme which determines the transmission power only
according to the current slot channel gain, i.e. TDWF. The CQ PC finds the minimum power
needed to clear the current slot queue. The two parts work independently. After each of the two
parts determines the transmission power, the smaller one is chosen. The hierarchical structure
is easy to be implemented or upgraded from the existing CGB PC system. In practice, there
is always a peak power constraint. A third component, the peak power component, should be
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added to the HQLA PC scheme. At each power control cycle, the smallest one of the three
components is chosen.

In subsection III-A, we discuss the proposed HQLA PC scheme in detail. In subsection III-
B we analyze the steady state queue length distribution of the proposed scheme. The average
power is given in subsection III-C. Subsection III-D discusses the effective capacity with power
control. The HQLA with peak power constraint is discussed in subsection III-E.

A. Hierarchical Queue-Length-Aware Power Control Scheme

Denote B the bandwidth of the channel and f(g(n)) the CGB PC scheme. By Shannon’s
capacity formula, the instantaneous channel capacity provided by the channel gain based PC
scheme is

s(n) = bBTs log2(1 + f(g(n))g(n))c. (7)

From (1), s(n) should not exceed q(n) + µ because the maximum number of bits that can be
transmitted during one slot is the number of bits remained in the buffer plus the new arrival of
that slot. Therefore

bBTs log2(1 + f(g(n))g(n))c ≤ q(n) + µ. (8)

When (8) is violated, the actual transmission time Tactual will be smaller than the slot length Ts;
while if the transmission time is set to be Ts, the transmission power can be reduced to

P0(g(n), q(n)) =
2

q(n)+µ
BTs − 1

g(n)
. (9)

One can also use other pair of {T, P (n)}, Tactual ≤ T ≤ Ts, P0(g(n), q(n)) ≤ P (n) ≤
f(g(n)) to schedule the transmission under this situation. Obviously the pair {Ts, P0(g(n), q(n))}
minimizes the power. Choosing transmission time equal to the slot time Ts can be also viewed
as the lazy scheduling within one slot, which minimizes the total energy of a transmission with
an arbitrary arrival pattern and a deadline constraint. Lazy scheduling always schedules the
current work load evenly between the current time and the deadline. In our case all the work
loads come at the beginning of the slot and the deadline is Ts sec after that. Therefore the pair
{Ts, P0(g(n), q(n))} minimizes both the power and the energy within one slot. These lead to
the HQLA PC strategy: when the power determined by f(g(n)) can not clear the queue, keep
P (n) = f(g(n)) unchanged otherwise reduce the power from f(g(n)) to P0(g(n), q(n))

P̃ (n) = min

[
f(g(n)),

2
q(n)+µ

BTs − 1

g(n)

]
. (10)
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B. Steady State Queue Length Distribution

In the queueing theory’s perspective, the system has group arrivals with a fixed group size µ
and a fixed arrival rate 1/Ts. The service facility has multiple servers. Each of them has a fixed
service rate 1/Ts and serves (transmits) one bit per time. The number of server, which equals
s(n), varies every Ts sec and synchronizes with the arrival. It is different from the general
G/G/m queue model because although the arrival and departure process can be said to have
general interval pattern, the number of server is not deterministic.

As described in subsection II-B, the sequence q(n) forms a discrete-time discrete-state Markov
chain. Since we assume the buffer has infinite capacity, the dimension of the states space is
infinite. Denote the infinite dimension row vector x = [x0, x1, . . . ] the steady state distribution
of the queue where

xi = lim
n→∞

Prob[ q(n) = i ]. i = 0, 1, 2 . . . . (11)

In an irreducible and aperiodic homogeneous Markov chain, the steady state distribution always
exists and is independent of the initial state probability distribution. Either xi = 0 for all i,
where there exists no stationary distribution, or xi > 0 for all i and the value of xi are uniquely
determined through the equilibrium equation [13, page 29]

x = xP, (12)
∞∑
i=0

xi = 1, (13)

where the infinite dimension matrix P is the one step transition probability matrix, with its
element pi,j the one step transition probability from state i to state j.

In the following discussion we show that the Markov chain q(n) is homogeneous under the
proposed HQLA PC scheme and the i.i.d. channel assumption. Then the transition probability
matrix P is calculated from the marginal distribution of g(n). The irreducible and aperiodic
property can be easily obtained from matrix P.

By contradiction, suppose the Markov chain is not homogeneous. Denote pi,j(n) the one step
transition probability from state i to state j at slot n,

pi,j(n) = Prob[ q(n + 1) = j|q(n) = i ], i ≥ 0, j ≥ 0

= Prob[ [i + µ− s(n)]+ = j ]

= Prob[bBTs log2(1 + P̃ (n)g(n))c = i + µ− j]. (14)

The last equality holds because P̃ (n) guarantees that i + µ − s(n) ≥ 0. From (10), P̃ (n) is
a function only of g(n) when the current queue length q(n) is known to be i. Therefore the
marginal distribution of the channel gain g(n) uniquely determines pi,j(n). When g(n) is i.i.d.,
pi,j(n) = pi,j and P(n) = P are irrelevant to the slot index n. Hence the Markov chain q(n) is
homogeneous.
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Obviously pi,j = 0 for j > i + µ. When j = 0, the queue is cleared. According to (10),
f(g(n)) ≥ P0(g(n), q(n)) because P0(g(n), q(n)) is the minimum power needed to clear the
queue. Therefore

pi,0 = Prob[f(g(n)) ≥ P0(g(n), q(n))] (15)

= Prob[f(g(n))g(n) ≥ 2
i+µ
BTs − 1].

When 0 < j ≤ i + µ, f(g(n)) < P0(g(n), q(n)), the transition probability is given by

pi,j = Prob[2
i+µ−j
BTs − 1 ≤ f(g(n))g(n) < 2

i+µ−j+1
BTs − 1]. (16)

Define a set of µ by µ matrix {Ai}, {Bi}, i = 0, 1, 2, . . . . The kth row and lth column element
of matrix Ai and Bi are

(Ai)k,l = pk+iµ,l+µ, (17)
(Bi)k,l = pk+iµ,l, (18)
0 ≤ k,l ≤ µ− 1.

Notice that when j > 0, the transition probability is uniquely determined by the difference of
the two states j − i. Therefore pi,j = pi+k,j+k, k ≥ 0. The matrix P has the repetitive structure
of the form

P =




B0 A0 0 0 . . .

B1 A1 A0 0 . . .

B2 A2 A1 A0 . . .

B3 A3 A2 A1 . . .

. . . . . . .

. . . . . . .

. . . . . . .




. (19)

All the states are connected hence the Markov chain is irreducible. If the chain starts at state i,
it can return to state i after arbitrary steps. Therefore the chain is aperiodic.

Since the Markov chain q(n) is irreducible, aperiodic and homogenous, we can solve for x by
(12) and (13). If the transition probability matrix P has the form in (19), the eigenvector problem
(12) can be solved by the matrix-geometric method up to a scalar, which can be obtained by
the normalization function (13). Partition the infinite dimension row vector x into a set of 1×µ
row vectors xi = [xiµ, xiµ+1, ..., x(i+1)µ−1], i ≥ 0. According to the matrix-geometric method,

xi = x0Ri, (20)

where R is the solution of

R =
∞∑

k=0

RkAk, (21)

and x0 is the solution of

x0 = x0

∞∑

k=0

RkBk. (22)
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Both equation (21) and (22) can be solved in an iterative way, see [14] for detail discussions.
Finally apply the normalization constraint

∑∞
i=0 xi = 1 to get the steady state queue length

distribution.

C. Average Power

In this subsection, we calculate the average power of the HQLA PC scheme on 1) constant
power (CONST) fc(g(n)) ≡ P̄ ; 2) TDWF, fw(g(n)) = [C−1 − g(n)−1]+, where the cutoff
threshold C is properly chosen such that the average power Eg(n)[fw(g(n))] = P̄ , where Eg(n)(x)
averages x over g(n) .

Assuming channel gain g(n) is i.i.d. Rayleigh distributed with probability density function
fch(g) = λe−λg. From (15) and (16), the transition probability for CONST {pc

i,j} is:




pc
i,0 = e−

λ
P

(2
i+µ
BTs −1)

pc
i,j = e−

λ
P

(2
i+µ−j
BTs −1) − e−

λ
P

(2
i+µ−j+1

BTs −1)

0 < j ≤ i + µ

pc
i,j = 0, j > i + µ.

(23)

For TDWF, there are two situations that account to the event q(n + 1) = q(n) + µ. One is
the same as CONST, the transmission power is so small that s(n) is smaller than one; another
situation is g(n) < C, P̃ (n) = f(g(n)) = 0. The channel gain is smaller than the cutoff
threshold, the transmitter will not transmit at the current slot at all. The transition probability
for TDWF {pw

i,j} is:





pw
i,0 = e−λC2

i+µ
BTs

pw
i,j = e−λC2

i+µ−j
BTs − e−λC2

i+µ−j+1
BTs

0 < j < i + µ

pw
i,i+µ = 1− e−λC2

1
BTs

pw
i,j = 0, j > i + µ.

(24)

The average power is

Eg,q(P̃ ) =
∞∑

q=0

xq

∫ ∞

0

fch(g)P̃ (g, q)dg, (25)

where Eg,q(x) averages x over both g and q. The slot index n in (25) is omitted because at steady
state, both channel gain and queue length are stationary. (25) can be numerically evaluated.
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D. Effective Capacity with Power Control

Effective capacity is defined as the maximum arrival rate that the system can sustain for a
given {Dmax, ε}. It is a dual problem of effective bandwidth, where the departure process is
constant and the arrival process is random. The validity of effective bandwidth requires that
the arrival process be stationary [15, Page 291]. Analogously, the validity of effective capacity
requires that the virtual departure process (the capacity provided by the channel) be stationary.
Notice that the HQLA PC does not change s(n) comparing to its corresponding CGB PC. And
for CGB PC, the departure process s(n) is determined by the channel gain g(n). If {g(n)} is
stationary, {s(n)} is also stationary. Therefore, the effective capacity is valid for CGB PC and
HQLA PC (except for channel inversion PC where P ∝ 1/g, s(n) becomes a deterministic
value, not random value).

Theoretically, for CGB PC scheme, the effective capacity can be calculated by [9]

α(u) = −1

u
lim
t→∞

1

t
log E[e−u

Pt
i=0 s(i)], (26)

where u is the QoS exponent which relates the Dmax and ε. In fact, using the theory of large
deviations, it can be shown that the probability of steady state queue length q(∞) exceeding the
threshold Qmax satisfies [16]

Prob[ q(∞) ≥ Qmax ] ' e−uQmax . (27)

From II-A, D(∞) ∈ [bq(∞)/µc, bq(∞)/µc+ 1], If the fraction part can be neglected, D(∞) '
q(∞)/µ, (27) can be also written as

Prob[ D(∞) ≥ Dmax ] ' e−uµDmax , (28)

where Dmax = Qmax/µ. From (28) and (3), let e−uµDmax = ε, the statistical QoS requirement
can be satisfied. And u = − log(ε)/Dmaxµ.

E. Peak Power Constraint

When there is a peak power constraint Ppeak, the transmission power is

P̃ (n) = min

[
Ppeak, min[f(g(n)),

2
q(n)+µ

BTs − 1

g(n)
]

]
. (29)

Define a combined CGB PC scheme fpeak(g(n)) = min[Ppeak, f(g(n))], P̃ (n) can be rewritten
as

P̃ (n) = min

[
fpeak(g(n)),

2
q(n)+µ

BTs − 1

g(n)

]
. (30)

The conclusion and result in subsection III-B and III-C can be directly applied to this situation,
provided that the transition probability matrix P is re-calculated according to fpeak(g(n)).

The peak power constraint limits the QoS providing capability of the system. Define the
achievable Dmax region as the set of Dmax that a certain PC scheme can support under the peak
power constraint, for a fixed µ and ε.
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1) The lower bound of Dmax: Obviously, the achievable Dmax has a minimum value. For
HQLA/CONST (We use the notation “HQLA/X” to describe the specific PC scheme, where X
represents the CGB PC), it is obtained when f(g(n)) = P̄ = Ppeak. For HQLA/TDWF, it is
obtained when C → 0. Notice that when C → 0, P̃ (n) = fpeak(g(n)) = Ppeak except for g(n) =
0. Hence P̃ (n)g(n) = Ppeakg(n) for all g(n). HQLA/TDWF is equivalent to HQLA/COSNT.
They have the same queue length distribution and the average power. To obtain the lower bound
of Dmax, first calculate the queue length distribution of the PC scheme mentioned above. Then
find the queue length which has the violation probability nearest to ε. The lower bound of Dmax

equals this queue length divided by µ.

2) The lower bound of average power: The average power decreases as Dmax increases. The
lower bound of average power is achieved as Dmax → ∞. When the average power is smaller
than the lower bound, the queue will be unstable. We can obtain this lower bound by the effective
capacity at Dmax →∞.

Notice that the HQLA PC scheme with CGB PC part f(g(n)) actually has the same queue
length distribution as f(g(n)). Therefore the effective capacity calculated by (26) is also true
for HQLA PC scheme with the same f(g(n)). For i.i.d. channel gain,

α(u) = −1

u
lim
t→∞

1

t
log E[e−u

Pt
i=0 s(i)]

= −1

u
lim
t→∞

1

t
log Et[e−us(1)]

= −1

u
log E[e−us(1)]. (31)

For fixed µ and ε, as Dmax →∞, u → 0,

lim
u→0

α(u) = −1

u
log

∫ ∞

0

e−uBTs log2(1+f(g)g)fch(g)dg

=

∫ ∞

0

BTs log2(1 + f(g)g)fch(g)dg

= Eg[BTs log2(1 + f(g)g)]. (32)

Solve for
Eg[BTs log2(1 + f(g)g)] = µ (33)

get the parameter of the CGB PC scheme, i.e. P̄ for CONST and C for TDWF, for the critical
status. If a smaller P̄ or larger C is used, the queue will be unstable, and all the states are transient.
At the critical status, the queue is recurrent null, the mean recurrence time is ∞ and there is no
stationary distribution. Therefore as time goes by, the probability that the queue length return to
zero is zero. Under this situation, the HQLA PC scheme is equivalent to the CGB PC scheme
because the probability that the queue can be cleared is zero. Therefore Eg,q[P̃ (g, q)] = Eg[f(g)].
The lower bound of average power is

Eg,q[P̃ (g, q)] = Eg(f(g)) =

∫ ∞

0

fch(g)f(g)dg (34)

where the parameter of f(g) is obtained by (33).
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IV. SIMULATION RESULTS

A. Steady State Queue Length Distribution

In this subsection, we demonstrate the steady state queue length distributions obtained from
both the analytical matrix-geometric approach and the computer simulation. Fig. 4 and Fig. 5
show the probability mass function for HQLA/CONST and HQLA/TDWF respectively. For
all the simulations, λ = 1, BTs = 100, µ = 50 and P̄ = 1. The computer simulation
has 106 runs. The analytical results match the simulation results very well. The queue length
distribution behaves dramatically different for different CGB PC components. The distribution
of HQLA/CONST decays smoothly and exponentially when the queue length is large. The
distribution of HQLA/TDWF has peaks at queue length equal to Kµ, K = 0, 2, . . . . And the
amplitude of the peak decreases as K increases. This is because for HQLA/TDWF, when the
channel gain is smaller than the cutoff threshold, the transmitter stops transmitting. When K
such slots successively occur, the increment of the queue length will be Kµ. The probability
decreases exponentially with K. Fig. 6 shows DBVP of HQLA/TDWF with the same simulation
parameters. For large Dmax, the violation probability is approximately exponentially distributed,
which validates the applicability of effective capacity theory to the power controlled physical
layer.

Since the analytical result matches the simulation result very well, in the following subsections,
only the analytical (numerical) results will be shown.

B. Effective Capacity

Secondly we show the effective capacity improvements of the proposed PC scheme. In the
simulation, HQLA/OPT uses the PC scheme proposed by Tang and Zhang [10] as the CGB
part, which maximizes the effective capacity among all the CGB PC scheme. Fig. 7, Fig. 8 and
Fig. 9 illustrate the effective capacity of the HQLA/CONST, HQLA/TDWF and HQLA/OPT
respectively. In Fig. 7 and Fig. 8, the effective capacity of OPT is also illustrated as a reference.
In the simulation, λ = 1, BTs = 100, the average power E(P̃ ) = 1. For the same average power,
the effective capacity of HQLA/TDWF and HQLA/CONST PC scheme is significantly increased
comparing to the corresponding channel gain based PC scheme. HQLA/OPT boosts the effective
capacity for moderate u. For large u, all of the three HQLA PC schemes approach the OPT PC
scheme. HQLA/TDWF and HQLA/OPT perform almost the same and are both superior to OPT.

C. Power Gain in 3G Environment

Fig. 10-12 shows the power gain in a typical 3G WCDMA environment [17]. In the simulation,
“TCI” denotes the truncated channel inversion PC [1]. The performance gain is defined as the
ratio of the average power required by the CGB PC scheme and that of the proposed HQLA
PC scheme to fulfil the 3G QoS requirement,

G =
Eg(f(g))

Eg,q(P̃ (g, q))
. (35)
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Two types of services are considered in the simulation, voice data and video data. The
simulation parameters are listed as in Table V.

We simulate three typical moving speeds, 3 mph walking speed, 35 mph local driving speed
and 70 mph highway speed. The movement of the terminal causes Doppler frequency shift fm.
In time domain, the coherent time is Tc =

√
9/16π/fm. As an approximation, we assume that

the channel gain within the coherent time Tc is highly correlated and out of the coherent time
is uncorrelated. The transmitter adapts the transmission power every Tc sec. Therefore the slot
time Ts = Tc and µ = dµ̃Tse where dxe finds the smallest integer that is not smaller than x. All
of the three schemes have a power gain greater than one (i.e., 0 dB). The power gain for slow
speed is much more significant than high speed. Voice data has a larger gain than video data.
The power gain for HQLA/TDWF and HQLA/TCI is much higher than HQLA/CONST.

D. HQLA with Adaptive Modulation

In practice, s(n) cannot take arbitrary value. And the idea Shannon’s capacity is not achievable
during a small slot duration. The power decision process must consider the specific modulation
scheme and the target BER. For MQAM modulation, each symbol bears M = 2k bits, k =
1, 2, 3... When the BER constraint is given, the minimum SINR required to achieve the target
BER can be obtained by the BER performance of each modulation [18]. Denote αk the minimum
SINR of modulation scheme k, and Bk the number of bits that can be transmitted during one slot
if modulation scheme k is applied. For convenient, let α0 = B0 = 0, and αK+1 = BK+1 = ∞
where K is the maximum modulation scheme. For CGB PC, the modulation scheme tc is chose
such that αtc ≤ f(g(n))g(n) < αtc+1. For QLA PC, the modulation scheme tp is chosen such that
Btp−1 < q(n) + µ ≤ Btp . The actual modulation scheme is t = min(tc, tp) and the transmission
power is αt/g(n).

Fig. 13 shows the power gain of HQLA/TCI over TCI PC for voice data transmission. The
parameters are listed in Table V

The factor 1.1 in µ addresses the signaling overhead. f(g(n)) = min[α6/g(n), Pmax] where
Pmax is the peak power constraint. The delay constraint is fulfilled by turning Pmax. The receiver
estimates and channel gain and sends an channel gain adjustment indicator back to the receiver
which takes value of ±1 dB. The transmitter updates the channel gain by the indicator at each
slot and determines the modulation scheme. The power gain is significant at low speed and
approaches unit at high speed. That is because at high speed, the coherent time becomes shorter,
and the effective capacity increases. Therefore less Pmax is needed to fulfill the QoS requirement.
Accordingly, tc is smaller and the possibility that tp is smaller than tc decreases.

E. Peak Power Constraint

The achievable Dmax region and its corresponding average power for HQLA/TDWF and
HQLA/CONST are shown in Fig. 14. In the simulation, λ = 1, BTs = 200, µ = 120, Ppeak = 1,
ε = 10−3. As indicated in subsection III-E, HQLA/TDWF and HQLA/CONST have the same
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average power at the minimum achievable Dmax, the two curves joint at the leftmost point. As
Dmax →∞, the average power approaches to the lower bound indicated by (34).

V. CONCLUSION

We study the problem of efficient PC to maximize the delay-throughput performance over
wireless networks. A suboptimal yet practically usable HQLA PC scheme is proposed. The pro-
posed HQLA PC scheme adapts the transmission power not only according to the instantaneous
channel gain but also to the queue length in the buffer. This strategy can be applied to any
CGB PC scheme such as the time-domain water filling. The transmission delay is analytically
analyzed and the numerical solution is obtained by the matrix-geometric method. The proposed
HQLA PC scheme increases the effective capacity. The effective capacity of HQLA/TDWF is
much higher than the maximum effective capacity achieved by the optimal channel gain based
PC scheme. We compared the average power of CONST and TDWF with and without HQLA
PC scheme. Both the simulation results and the numerical results suggest a great average power
saving under the typical 3G environment.
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Fig. 4: Probability mass function of HQLA/CONST
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Fig. 5: Probability mass function of HQLA/TDWF
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BER bit error rate
CGB power-gain-based

CONST constant power control
CQ clear queue

DBVP delay bound violation probability
HQLA hierarchical queue-length-aware
OPT optimal channel-gain-based power control
PC power control

QLA queue length aware
QoS quality of service
SNR signal to noise ratio
TCI truncated channel inversion power control

TDWF time domain water filling power control

TABLE I: Abbreviations

eµ Dmax ε

Voice 12.2Kbps 50msec 10−3

Data 144Kbps 50msec 10−3

Bandwidth 3.84MHz
Carrier Frequency 1.9GHz

TABLE II: Parameters for 3G environment simulation

Ts 2/3msec
Spreading Factor 64
Coding Rate 1/3
K 6
Bk 2560k/SF
µ d1.1µ̃RcTse

TABLE III: Parameters for 3G environment simulation with adaptive modulation
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