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Abstract

In this paper, we develop a target detection algorithm based on a super-
vised learning technique that maximizes the margin between two classes,
i.e., the target class and the non-target class. Specifically, our target detec-
tion algorithm consists of 1) image differencing, 2) maximum-margin classi-
fier, and 3) diversity combining. The image differencing is to enhance and
highlight the targets so that the targets are more distinguishable from the
background. The maximum-margin classifier is based on a recently devel-
oped feature weighting technique called Iterative RELIEF; the objective of
the maximum-margin classifier is to achieve robustness against uncertain-
ties and clutter. The diversity combining utilizes multiple images to further
improve the performance of detection, and hence it is a type of multi-pass
change detection. We evaluate the performance of our proposed detection
algorithm, using the CARABAS-II synthetic aperture radar (SAR) image
data and the experimental results demonstrate superior performance of our
algorithm, compared to the benchmark algorithm.
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1. Introduction

Detecting targets concealed in foliage or camouflage in a large area is
a challenge problem and is critical for ground surveillance. It has many
applications such as detecting the deployment of enemies hidden in the forest,
locating the position of an accident in forest rescue activities and marking
the foliage-covered terrain changes.

There are mainly two difficulties for this problem, namely, 1) how to
remotely acquire information that contains important features of foliage-
concealed targets, and 2) how to distinguish targets from background and
clutter. Synthetic aperture radar (SAR) operated at low Very High Fre-
quency (VHF)-band is a good solution to the first problem [1][2]. At the low
VHF-band around 20MHz - 90MHz, radar wave is more likely to make a re-
turn on objects exceeding certain dimension. Since this dimension is usually
much larger than the leaves and branches under which targets are concealed,
radar signal can penetrate the forest canopy and get reflected by the tar-
gets under it. These backscatters describe the scene covered and are used
to form SAR images in which large objects show themselves as bright areas.
In this way, VHF-band SAR technology transforms the foliage penetration
problem into a traditional image based target detection problem. The second
problem is also known as automatic target detection (ATD) problem. Major
techniques for ATD include adaptive boosting [3], extended fractal feature
[4], genetic programming [5], multiscale autoregressive (MAR), multiscale
autoregressive moving average (MARMA) models, singular value decompo-
sition (SVD) methods [6] and constant false alarm rate (CFAR) processing
[7]. CFAR processing is widely used to give a globally applicable threshold
for a constant probability of false alarms through estimating and removing
the local background statistics.

According to Lundberg et al. [8], the main technical challenge in designing
an ATD algorithm lies in how to keep the false alarm rate at a low level
while yet achieving high detection rate. Suppressing false alarms is especially
important in the case of detecting concealed targets because the foliage can
add substantial amount of noise to the image. The denser the forest is,
the more noisy the image looks. In certain cases, it is almost impossible to
distinguish targets from noise and background clutter such as huge trunks
and rocks, given a single image. To mitigate this problem, multiple images
can be used to suppress noise and background clutter.

For ground surveillance, it is reasonable to assume that targets are in the
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areas of change between two images taken at different times while background
clutter is unchanged between the two images. Hence, the target detection
problem can be addressed by change detection techniques, if multiple images
are given. The objective of change detection is to find areas of change between
an image under test and a reference image; here, an image under test may
contain targets, and a reference image is an image of the same geographical
region as the image under test; a reference image is captured at a differ-
ent time and may not contain targets or contain targets that are in totally
different locations, compared to the image under test. The changed areas
or differences between two images may contain targets of interest, and the
differencing can greatly suppress the background noise and clutter. Hence,
change detection can help increase the probability of detection and reduce
the false alarm rate [9][10][11][12].

In this paper, we propose a target detection scheme that leverages change
detection and a max-margin classifier based on nonlinear I-RELIEF feature
weighting technique. In our target detection scheme, change detection helps
separate targets from static background; the max-margin classifier makes our
algorithm more robust to noise and unexpected clutter; we also use diversity
combining to boost the performance of the algorithm further. Specifically, the
first step is image differencing between an image under test and a reference
image. Here, we assume that all the images are geometrically registered
so that the same pixel in two images corresponds to the same geographical
location; and all the images are radiometrically adjusted so that the lighting
variation between two images is removed. Then, feature extraction, feature
weighting and distance-ratio-based classification are applied to the difference
image. Refer to Section 4 for more details. Diversity combining means
combining signals from multiple sources into a single improved signal. In our
case, differencing images between a specific image under test and multiple
independent reference images are considered as diversity sources. After the
same classification process on each source, multiple decisions are obtained
independently. Majority voting among all the decisions gives a final decision,
which is more reliable. Of course, the number of sources needs to be odd as
required by majority voting. Fig. 1 shows the flow chart of our proposed
algorithm.

We evaluate our proposed algorithm using a public released data set [13]
acquired with the airborne CARABAS-II system which produces SAR images
at low VHF-band around 20MHz – 90MHz during a flight campaign held in
northern Sweden. It includes 24 images with 4 different targets deployments
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Figure 1: Flow chart: (a) learning; (b) testing; (c) diversity combining

and 6 different flight passes for each deployment [8]. The image corresponding
to mission 3 pass 5 was used for learning and the rest 23 images were used
for testing. With different threshold values for distance ratio in the classifier,
a performance curve of correct detection rate versus number of false alarms
is obtained. Compared with the benchmark algorithm associated with the
data set [8], our proposed scheme achieves much lower false alarm rate while
yet achieving the same target-detection probability.

The remainder of the paper is organized as below. In Section 2, we
describe the image data set used for target detection. In Section 3, a baseline
algorithm associated with the data set is presented. Section 4 presents our
proposed scheme, which consists of four parts, namely, feature extraction,
feature weighting, classification, and post processing. Section 5 shows our
experimental results and compare our proposed scheme with the baseline
algorithm. Finally, Section 6 concludes the paper.

2. Data Description

The image data set used for the evaluation of our proposed target-detection
scheme is a subset of data collected during a flight campaign held in Sweden in
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Figure 2: A sample image from the data set showing the targets, noise and
background clutters.

the early summer of 2002 [13]. The images were taken by CARABAS-II, the
second generation ultra-wide-band SAR mounted on a Sabreliner airplane.
The system was operated in the frequency range of 20MHz - 90MHz with
corresponding wave lengths between 3.3 meters and 15 meters. This dimen-
sion is much larger than that of leaves and branches and close to dimensions
of vehicles which are the imagined targets to be pursued.

In this data set, there are several disturbing factors such as heading dif-
ference between images, different target orientations, different target sizes
and radio frequency interference. Figure 2 shows an image example from
the data set. The campaign was run at a spot in northern Sweden which
mainly include a river and two blocks of forests. A rectangular area of 3km
by 2km is chosen as the focus of all the data. And the GPS parameters of
the corners are given with the data set. The recorded SAR images are all in
3000 by 2000 pixel size. Each pixel in the image corresponds to an area of
1m by 1m on the ground. 25 vehicles of three types and four deployments are
used as targets hiding in the forests. There are ten TGB11 (4.4 × 1.9 × 2.2
m), eight TGB30 (6.8× 2.5× 3.0 m) and seven TGB40 (7.8× 2.5× 3.0 m).
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Figure 3: Four sample images from the data set with deployments Sigismund,
Karl, Fredrik and Adolf-Fredrik from left to right respectively.

TGB11, TGB30 and TGB40 represent different kinds of vehicles. Sigismund,
Karl, Fredrik and Adolf-Fredrik are the codes of the four deployments shown
in Figure 3. The vehicles have totally different positions and orientations
between different deployments. To guarantee the variety of the data set, for
every single vehicle deployment, six different flight headings were adopted.
So totally 24 images were acquired. There is a TV transmitter which is the
source of radio frequency interference located south-east of the focused area.
This affects the SAR imaging precesses and makes various contribution for
different flight heading angles. Along with the data set, the actual position
of each vehicles are given in the form of GPS parameters for the purpose of
evaluation. Please refer to [8] for more information of the data set.

3. Baseline Algorithm for Target Detection

Along with the data set, a baseline algorithm and experimental results
are given in [8]. Details about the algorithm are discussed in [14]. This
algorithm is based on change analysis, statistic hypothesis test and CFAR
normalization techniques. First of all, two pixel values are extracted from
image under test It and reference image Ir at the corresponding position
respectively. They are combined into a vector as:

z =

[
z1

z2

]
(1)

It is assumed that each pixel value in the image is a random variable and
values of different pixels are statistically independent. z1, z2 are two real-
valued random variables and z is a random vector. Then, target or change,
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clutter and noise signal are defined in the similar way as:

s =

[
s1

s2

]
, c =

[
c1

c2

]
, n =

[
n1

n2

]
, (2)

where indices 1 and 2 indicate the two images. Hypothesis test is used to
determine whether a change is present. The two hypotheses are defined as:

H0 : z = c + n = q (no change)
H1 : z = s + c + n = s + q (change)

(3)

A test statistic of likelihood ratio is computed to test the two hypotheses.
The test statistic is defined by:

∆(z) =
P (z|H1)

P (z|H0)
(4)

The random vectors of noise n and clutter c are assumed to have bivariate
zero-mean circular Gaussian distribution. So the sum of the two q also fol-
lows bivariate zero-mean circular Gaussian distribution. The two probability
density functions (PDF) of the likelihoods in (4) are:

P (z|H0) =
1

π2|C|exp(−zTC−1z) (5)

and

P (z|H1) =
1

π2|C|exp(−(z− s)TC−1(z− s)) (6)

where C is a 2× 2 covariance matrix defined by:

C = E{(z− E{z})(z− E{z})T}
=

(
σ2

1 ρ21σ2σ1

ρ12σ1σ2 σ2
2

)
(7)

where σ2
k = E{q2

k} and ρkl = E{qkql}/(σkσl). The value of covariance matrix
C is estimated using pixel values within smaller local image blocks. Then
the statistic test is

|sTC−1z| > λ → decide H1

|sTC−1z| ≤ λ → decide H0 (8)
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Figure 4: The area used for computing the background statistics surrounding
a pixel under test

It is assumed that the target is not present in one image but present in the
other image, that means:

s =

[
0
1

]
or s =

[
1
0

]
(9)

With the change detection algorithm described above, we can convert two
SAR images into one binary image with ‘0’ indicating no change and ‘1’ in-
dicating change. Next, we describe how to determine the value of threshold
λ. Because the statistic features vary at different locations in an image, the
threshold λ should also change for different locations. This change is difficult
to predict for different images. To normalize the value of threshold λ, a CFAR
detection filter is used. It is used to estimate the local background statistics
in the change image and remove the variance between different locations.
The shape of the CFAR filter is shown in Fig. 4. The background statistics,
mean value and standard deviation are estimated based on the pixel values
within the outer box but outside the inner box. The sizes of outer box and
inner box are 31×31 and 19×19 respectively. Then the background statistics
are compared with the pixel under test. The mean value is subtracted from
the center pixel, then divided by the standard deviation. The resulting value
is compared with a global threshold λ′ to make a decision. After threshold-
ing, morphological operations, i.e., one erosion operation and two dilation
operations are applied to the binary change mask to remove false alarms.
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4. Our Proposed Scheme for Target Detection

Figure 5: Flow chart of the learning stage

The flow chart of our proposed target-detection scheme is shown in Fig. 1.
The input of our algorithm is SAR images and the output of our algorithm
is locations of possible targets, if there is any. In the situation considered in
this paper, as in most situations, a target occupies an area of more than one
pixel in an image. But the location of a target is usually specified by the co-
ordinates of a single point, e.g., the centroid, the top-left corner point, or the
very top point of the target. So the ATD task is divided into two subtasks:
1) label each pixel as target or non-target; 2) group connected target pixels
into targets and extract their coordinates. Usually, the first part is much
more challenging than the second part. If the image is correctly labeled, the
second step becomes simple. The first subtask is actually classification. A
carefully designed classifier is the core of this subtask. In our scheme, we use
a distance-ratio-based classifier and train the classifier through supervised
learning. The learning process is shown in Figure 5 and the testing proce-
dure is shown in Figure 6. The major steps of our classification algorithm
are feature extraction, feature weighting, and classification/target-detection,
which are presented in the following sections, respectively.

4.1. Feature Extraction

Our feature extraction method is based on change analysis. The first
step is to acquire change information. Simple differencing between image
under test It and reference image Ir is adopted here. A difference image Id

is obtained by

Id =

{
It − Ir It − Ir > 0
0 It − Ir ≤ 0

(10)
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Figure 6: Flow chart of our classification algorithm
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In the difference images, target areas should always be brighter than back-
ground areas. All the images in this data set are all geometrically registered.
In order to reduce the influence of noise on classification, the difference image
is processed by a low pass filter. It is equivalent to be convoluted by a core
matrix with averaging effect. A convolution core of 5× 5 pixels, which is of
the same size as that used in the benchmark algorithm [8] is adopted. Also,
a prescreening step is performed. It forces those pixels with intensities lower
than a given threshold to be 0. This threshold should be enough to preserve
all the target pixels. It is intended to remove those pixels that are obviously
noise or background. These denoising processes can contribute to boosting
the performance of the classifier and increasing the converging speed at the
training stage. All the input data is SAR images of 3000 by 2000 pixels.
Because there are multiple targets in each image, it is not reasonable to take
the whole image as a sample and label it as target or non-target. Instead,
for each pixel, a local feature set is extracted and conveyed to the classifier.
Then, each pixel is classified as target pixel or non-target pixel. In the base-
line algorithm, only the intensity of current pixel is conveyed to the classifier
as features. It does not consider the local environment of that pixel and is
easy to be fooled by some high-intensity noise. To avoid this problem, for
every pixel in the SAR image, all its neighbors within a 2n + 1 × 2n + 1
window are considered helpful in representing the behavior of that pixel and
used to extend the feature extracted from the current pixel. Their pixel val-
ues, Fourier transform coefficients or other transform results can all be used
as features. These features include lots of local information in addition to
one pixel value and are widely used in image analysis [15]. Here, for a given
pixel i, original pixel values of its neighbors are extracted and reordered to
form a feature vector xi. Then, by sliding a window within the image, a set
of features X is obtained. Fig. 7 shows the process of feature extraction.

4.2. Feature Weighting

This is actually the supervised learning stage, shown in Figure 5 of the
whole algorithm. In this stage, the I-RELIEF feature weighting algorithm
searches for a set of feature weights which maximizes the discrimination
between the target and non-target groups. Then the corresponding weight
vector w, centroid of target group x̄target and centroid of non-target group
x̄ntarget in weighted space are transfered to the following testing stage.

As mentioned in the previous section, all the pixel values within the neigh-
borhood of pixel under test are extracted to form a feature vector x. These
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Figure 7: Feature extraction process

features do not have the same contribution to discriminating the target and
non-target classes. For example, the feature pixels closer to the pixel under
test, i.e., near the center of the sliding window, deserve more attention than
those farther away from the pixel under test, i.e., near the border. Otherwise,
in a non-target case, the noise within the border area may trigger the clas-
sifier to decide that a target is present. In the training stage, some features
which are very noisy may prevent the training algorithm from converging or
lead to the classifier’s over-fitting to the training data. In order to figure out
how much attention should be paid to each feature, feature weighting, which
assigns a real-valued number to each feature is adopted. The real-valued
number here is called the weight of the corresponding feature. For a given
feature vector x and a global weight vector w, a weighted feature vector x′ is
obtained by multiplying each feature x(i) with its corresponding weight w(i).
Define

x =




x(1)

x(2)

...
x(I)


 , w =




w(1)

w(2)

...
w(I)


 , x′ =




x′(1)

x′(2)

...
x′(I)


 , (11)

where x′(i) = x(i) × w(i), i = 1, 2, . . . , I, where I is the data dimensionality.
We use I-RELIEF or Iterative-RELIEF, an improved interpretation of

RELIEF for feature weighting. The key idea of I-RELIEF is to solve a convex
optimization problem with a margin-based objective function. For RELIEF,
the margin is defined based on a 1-NN, i.e. one nearest neighbor classifier. It
only considers one nearest neighbor in the same class and one nearest neigh-
bor in the other class. For I-RELIEF, the margin is averaged between all
the sample pairs weighted by the possibility of being an outlier. The feature
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weights are iteratively estimated according to their ability to discriminate
between neighboring patterns. Most algorithms for feature weighting and
feature selection, which is the specific case of feature weighting with weights
taking values of 0 or 1, rely on heuristic searching, because it is hard to
define an objective function that can be optimized with low computational
complexity. So they do not guarantee to give optimal solutions. RELIEF [16]
addresses this problem by optimizing an objective function with low compu-
tational complexity. Let D = {(xn, yn)}N

1 ∈ RI × {±1} denotes a training
data set, where I is the data dimensionality, xn is a sample feature, yn is the
label of the feature, and N is the total number of samples in the training
data set. Then, in RELIEF, the feature weighting problem is converted into
the following optimization problem:

max
w

∑N
n=1(

∑I
i=1 w(i)|x(i)

n −NM (i)(xn)| −∑I
i=1 w(i)|x(i)

n −NH(i)(xn)|)
s.t. ‖w‖2

2 = 1,w ≥ 0 (12)

where NM means nearest miss which is the nearest neighbor of x from dif-
ferent class and NH means nearest hit which is the nearest neighbor of x
from the same class. This is generated from a natural idea of scaling each
feature such that the averaged margin in a weighted feature space is maxi-
mized. The constraint ‖w‖2

2 = 1 prevents the maximization from increasing
to infinity. The constraint w ≥ 0 ensures the weight vector is a distance
metric. I-RELIEF [17] is an improved version of RELIEF. It solves two ma-
jor problems in RELIEF: 1) the nearest neighbors are defined in the original
feature space, which may not be the nearest in the weighted feature space;
2) the margin calculation can be influenced by outliers greatly. Based on
the assumption that nearest neighbors and identity of a pattern are hidden
random variables, I-RELIEF iteratively estimates feature weights following
the principle of EM algorithm until convergence. This algorithm is proved
to be convergent [17].

To be more specific, for a data sample xn, two sets Mn and Hn are
defined as the sets of nearest misses and nearest hits of xn respectively,
set Sn = {(sn1, sn2)} is used to save indices of nearest hit and miss, where
sn1 ∈ Mn and sn2 ∈ Hn. o = [o1, o2, . . . , oN ] is a binary vector indentifying
outliers. on = 0 if xn is an outlier, on = 1 otherwise. Pm(i|xn,w), Ph(i|xn,w)
and Po(on = 0|D,w) are defined as the probabilities of the i -th data point
being the nearest miss, hit of xn and that xn being an outlier respectively as
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following:

Pm(i|xn,w) =
f(‖xn − xi‖w)∑

j∈Mn
f(‖xn − xi‖w)

(13)

Ph(i|xn,w) =
f(‖xn − xi‖w)∑

j∈Hn
f(‖xn − xi‖w)

(14)

Po(on = 0|D,w) =

∑
i∈Mn

f(‖xn − xi‖w)∑
j∈D\xn

f(‖xn − xi‖w)
(15)

where f(·) is a kernel function. For example, f(d) = exp(−d/σ) where σ is
the user defined kernel width.

According to [17], the detailed algorithm can be described as below.
For briefness, some notations are defined as αi,n = Pm(i|xn,w(t)), βi,n =
Ph(i|xn,w(t)), γn = 1 − Po(on = 0|D,w(t)), W = {w : ‖w‖2 = 1,w ≥ 0},
mn,i = |xn − xi| if i ∈Mn and hn,i = |xn − xi| if i ∈ Hn.
Step 1: After t-th iteration,the Q function is calculated as:

Q(w|w(t)) = E{S,o}[C(w)],

=
N∑

n=1

γn(
∑

i∈Mn

αi,n ‖xn − xi‖w −
∑
i∈Hn

βi,n ‖xn − xi‖w),

=
N∑

n=1

γn(
∑

j

wj

∑
i∈Mn

αi,nm
j
n,i

︸ ︷︷ ︸
m̄j

n

−
∑

j

wj

∑
i∈Hn

βi,nh
j
n,i

︸ ︷︷ ︸
h̄j

n

),

= wT

N∑
n=1

γn(m̄n − h̄n) = wT ν. (16)

Step 2: The re-estimation of w in the (t + 1)-th iteration is w(t+1) =
arg maxw∈W Q(w|w(t)) = ν+| ‖ν+‖2. The above two steps iterate alterna-
tively until convergence, i.e.

∥∥w(t+1) −w(t)
∥∥ < θ.

4.3. Classification

From the training stage, an optimal feature weight vector w∗ is generated.
In the new weighted feature space, the distance between two different classes
is maximized and the distance within the same class is minimized. In the
weighted space, various distance-based classifier can be designed. In this
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paper, we choose a distance ratio to design our classifier. Next, we define
this distance ratio.

In the training phase, we can obtain the centroid of the target sample set
x̄target = 1

Nt

∑
i∈CT x′i and the centroid of non-target sample set x̄ntarget =

1
Nn

∑
i∈CN x′i, where CT is the set of indices of target samples, CN is the set

of indices of non-target samples, Nt is the number of target samples, and Nn

is the number of non-target samples. Then, for a feature sample (under test)
x, the distance ratio is defined by

DR(x) =
|x− x̄ntarget|
|x− x̄target| (17)

Given an input SAR image under test, a distance ratio is calculated for each
pixel. Then, the distance ratio is compared to a threshold and a decision is
made for each pixel, based on the following criterion:

DR(x) > λ → decide change/target, labeled as ‘1’

DR(x) ≤ λ → decide no change/non-target, labeled as ‘0’ (18)

The above process produces a binary-valued image with ‘1’ denoting target
and ‘0’ denoting non-target. This image is also called change mask. For
the same input SAR image under test, different reference images may result
in different change masks. With multiple change masks, we can apply a
majority voting rule to each pixel and obtain a final change mask, as shown
in Figure 8. Note that for a different reference image, we need to re-do the
training of our classifier since a different reference image represents a different
training sample set.

4.4. Post Processing

The output produced by our classifier is a binary valued image. But
the objective of target detection is to obtain the locations of targets. To
achieve this, we group connected pixels whose value is “1”, and declare such
a connected region as a target. The coordinates of the centroid of a connected
region represents the location of the target associated with the region.

Another purpose of post processing is to remove false alarms. Since we
have prior knowledge about the size of the targets, we can remove the con-
nected regions whose sizes are smaller than an expected value. Our ex-
perimental results in the next section show the effectiveness of such post
processing.
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Figure 8: Majority voting of change masks.

5. Experimental Results

In the experiments, for any given input image, the reference images are
always chosen to be those images taken under the same flight angle but dif-
ferent deployments. The requirement of same flight angle ensures that the
imaging conditions are the same. According to the data set, the four deploy-
ments Sigismund, Karl, Fredrik and Adolf-Fredrik are denoted as mission 2,
3, 4 and 5 respectively. So, for each image, there can be no more than three
different reference images from other deployments.

Processing step Parameter Value
Preprocessing Averaging kernel size 5× 5 pixels

Denoising threshold 0.25
Feature extraction Sliding window size 19× 19 pixels

Maximum number of iterations 500
I-RELIEF feature Distance metric ‘Euclidean’

weighting Kernel function f(d) = exp(−d/σ)
Kernel width σ 25

Classification Threshold λ on DR 1/3
Minimum number of

Post processing connected pixels as 35 pixels
a target

Evaluation Distance threshold 10 pixels

Table 1: Parameters used in the experiments
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Table 1 shows the parameters used in our experiments. Our rationale
of choosing 19 × 19 for the sliding window size is the following. For best
performance, the sliding window should be large enough to cover a whole
target. On the other hand, a larger sliding window means higher computa-
tional complexity. We tested sliding window sizes of 7× 7, 19× 19, 31× 31
and 41× 41 pixels. The later three achieve the same performance while the
first one performs worse. Hence, we choose 19 × 19 for the sliding window
size. The setup of the parameters for I-RELIEF feature weighting is sim-
ply a maximum iteration constrain and a definition of kernel specified by its
distance metric, kernel function and kernel width. The Euclidean distance
metric and kernel function of f(d) = exp(−d/σ) defines one of the most
common kernel structure. The kernel width σ is a key parameter controlling
the trade off between the variance and bias of the estimation results. Larger
σ leads to smaller variance and larger bias and vice versa. Since smaller
number of samples leads to larger variance of the estimation and we do not
have many training samples, we choose a relative large kernel width of 25 to
trade some of the bias for smaller variance of our estimation. If more training
samples are given, this values should be reduced to increase the accuracy of
the scheme. The choice of threshold λ depends on how much emphasis we
have on the correct detection rate and the false alarm rate, because larger
value of λ leads to smaller false alarm rate as well as smaller detection rate.
We set λ = 1/3 to adjust our detection rate to the same level as that given by
the benchmark algorithm, so that we can compare the false alarm rate with
the benchmark algorithm at the condition of same detection rate. The value
of minimum number of connected pixels as a target is estimated according
to the size of the real target we are detecting, e.g vehicles or tanks, height of
the flight when the data was collected, resolution and diffusion effect of the
radar used. All these information should be given by the scenario where our
scheme is applied. The distance threshold is set to 10 pixels, the same as that
used in the benchmark algorithm, to ensure the fairness of the comparison.

When we reshape all the feature and weight vectors into form of matrix
with the same size of the sliding window, we can see in Figure 9 that the
shape of the major part of the target is automatically extracted as the weight
matrix. So, as long as the sliding window is large enough to hold the whole
target, the weight matrix could be trained to match the target itself and
the performance of the scheme will not decay with the increasing size of the
window. This explains the phenomenon stated above that larger window
size does not improve the performance. Of course, the performance will be
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influenced if the sliding window is so large that more than one target are
within its range.

Figure 9: Feature and weight vectors in matrix form.

In the training stage, the image of mission 3 flight 5 is used as training
samples. The coordinates of the 25 target vehicles are included in the data
set. For each target, a sliding window is manually shifted within a 5 × 5
neighborhood of the given coordinates of the target, and one feature vector
belongs to the target class is extracted from the sliding window at each
position. A feature vector set labeled as target including totally 625 samples
is extracted from the 25 target locations. Another feature vector set labeled
as non-target is extracted from 625 background positions which are manually
chosen to avoid the target region. These two label sample sets are used as
the input of the I-RELIEF feature weighting algorithm to give an output
of weight vector w∗. Values of x̄target and x̄ntarget are also estimated from
the training sample sets. According to the above reference look-up matrices,
three different references are chosen, and training and testing are performed
independently for each of the three references. Finally, a majority vote is
applied to the three change masks obtained from the training and testing
w.r.t. the three references, and the algorithm outputs the coordinates of all
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the detected targets.
For performance evaluation, the output coordinates are compared to the

ground-truth target positions. If the location of a target detected by the ATD
algorithm, is within the disk of 10-pixel (i.e., 10-meters) radius, centered at
the ground truth position, then we declare that the detection is correct. If
more than one target is found within this disk, one will be counted as a
correct detection while others will be counted as false alarms.

Table 2 shows the testing results of our proposed scheme with majority
vote from 3 references compared with the benchmark algorithm. Figure 10
shows an example of the input and output images of our proposed scheme
with 3 references, where Figure 10a is the raw input image from mission 4
pass 2 in the data set, Figure 10b is the output binary mask before post
processing and Figure 10c is the output binary mask after post processing.
If you zoom in on the masks, you should be able to find that several small dot
areas were removed by the post processing. Table 3 shows the testing results
of our proposed scheme with a single reference image compared with the
benchmark algorithm. In the testing stage, the image of mission 3 flight 5 is
not used for testing because it serves as training samples. The experimental

(a) Input data, mission 4
pass 2.

(b) Result before post
processing.

(c) Result after post
processing.

Figure 10: An example of the input and outputs, with and without post
processing of our proposed scheme with 3 references.

results show that compared to the benchmark algorithm [8], our proposed
scheme produces much fewer false alarms, i.e., 11 for ours vs. 86 for the
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Image under test Correct detections False alarms
Benchmark This Benchmark This

Mission Pass Algorithm Scheme Algorithm Scheme
2 1 25 25 2 0
3 1 22 24 1 3
4 1 25 25 2 0
5 1 23 25 4 2
2 2 25 25 2 0
3 2 25 25 4 1
4 2 25 25 3 2
5 2 25 21 4 0
2 3 25 25 3 1
3 3 23 23 4 0
4 3 25 25 0 2
5 3 24 25 2 0
2 4 24 25 3 0
3 4 25 25 2 0
4 4 25 25 4 0
5 4 25 22 4 0
2 5 25 25 3 0
3 5 17 19 10 13
4 5 25 25 2 0
5 5 23 25 29 0
2 6 25 25 1 0
3 6 25 24 3 0
4 6 25 25 1 0
5 6 23 25 3 0

Total 579 583 96 24
Miss.3 pass5

Removed 562 564 86 11

Table 2: Comparing of results from benchmark algorithm and that from
proposed scheme with 3 different reference images.

20



Image under test Correct detections False alarms
Benchmark This Benchmark This

Mission Pass Algorithm Scheme Algorithm Scheme
2 1 25 25 2 0
3 1 22 23 1 3
4 1 25 25 2 0
5 1 23 25 4 3
2 2 25 25 2 0
3 2 25 25 4 1
4 2 25 25 3 1
5 2 25 21 4 0
2 3 25 25 3 1
3 3 23 23 4 0
4 3 25 25 0 1
5 3 24 25 2 0
2 4 24 25 3 0
3 4 25 25 2 0
4 4 25 25 4 0
5 4 25 23 4 1
2 5 25 25 3 0
3 5 17 18 10 18
4 5 25 25 2 0
5 5 23 23 29 10
2 6 25 25 1 0
3 6 25 24 3 0
4 6 25 25 1 0
5 6 23 25 3 0

Total 579 580 96 39
Miss.3 pass5

Removed 562 562 86 21

Table 3: Comparing of results from benchmark algorithm and that from
proposed scheme with exact the same single reference image.

21



benchmark, while yet achieving better target detection performance, i.e.,
564 for ours vs. 562 for the benchmark.

The proposed scheme uses more than one reference images which means
more information than what the benchmark algorithm needs. Can the scheme
still give better performance without the help of extra information? The
comparing of results from benchmark algorithm and that from the proposed
scheme with exact the same single reference image is also shown in Table 3.
The reference image is picked up according to matrix refm which is built
based on the correspondence in the benchmark algorithm in [8]. It shows
that without extra reference images, the proposed algorithm still provides
much better performance than the benchmark algorithm does.

Remark 1. Our scheme achieves better performance than that of the bench-
mark algorithm because of the following three reasons. First of all, instead
of assuming the intensity values from testing and reference images as inde-
pendent random variables as assumed in [8] and [18], we do direct image
differencing to suppress the background clutters and noise. Since all the im-
ages in the data set are registered, image differencing could achieve better
suppression performance without assuming the spatial independence of pixel
values. The spatial correlation is automatically alleviated. Secondly, we use
the maximum-margin classifier to boost the performance with given samples
by doing the classification in a transformed feature space with larger distinc-
tion between the two categories. In the end, we use diversity combining by
repeating the detection procedure with different reference images and combin-
ing the results. This means we explore more information contained in the
data set which is helpful for our detection task.

6. Conclusion and Future Work

In this paper, we looked into a target detection problem for wide area
ground surveillance through SAR. To solve this problem, we proposed a new
scheme based on local feature extraction and supervised learning through
feature weighting. Instead of making assumptions of statistic models like
conventional benchmark algorithm did, this scheme extracts prior informa-
tion through learning, which made it more flexible to be fitted in different
scenarios. On the other hand, this scheme uses local features instead of
single pixels to make decisions, so it should be more robust to single-pixel
noise. Besides, in the training stage, the shape factor of the targets was
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automatically included into the weight vector, which means the probability
of giving false alarms on different shaped potential detections was reduced.
Compared with the benchmark algorithm stated in [8], this scheme produced
much fewer false alarms, 11 compared to 86 at the same correct detection
level, 564 compared to 562.

There is still room to improve our scheme. For example, we can use
wavelet coefficients or scale invariant features (e.g., obtained by scale-invariant
feature transform (SIFT)) instead of image intensities as the input and re-
consider our feature weighting algorithm in a kernel space. As a result, we
will get a generalized feature weighting algorithm on sophisticated features.
To make better usage of the inter-class and inner-class margins, we can try
out some more advanced classifiers such as support vector machine. It is also
possible to improve the preprocessing step with the latest denoising tech-
niques, e.g., non-local means algorithm. Furthermore, we will try to find
more data sets on which our scheme could be evaluated.
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