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Abstract

In this paper, we develop new bounds for the first order Marcum Q-function, which are extremely

tight and tighter than any of the existing bounds to the best of our knowledge. The key idea of our

approach is to derive refined approximations for the 0th order modified Bessel function in the integration

region of the Marcum Q-function. The new bounds are very tight and can serve as an effective means

in bit error rate (BER) performance analysis for non-coherent demodulation in digital communication.

Keywords: BER, Marcum Q-function, upper bounds, lower bounds, the 0th order modified Bessel

function of the first kind.

I. INTRODUCTION

Performance analysis is very important in digital communication. Q-function provides an

effective means to analyze BER performance for coherent demodulation. However, for non-

coherent demodulation, we need to use Marcum Q-function [1]–[3] rather than Q-function to

analyze BER performance.

Marcum Q-function consists of two integrals, thereby requiring complicated numerical cal-

culation. To simplify the computation, simple lower bounds and upper bounds were derived.

However, the existing lower bounds and upper bounds for Marcum Q-function are not tight. In

this paper, we derive lower bounds and upper bounds, which are tighter than any of the existing

bounds to the best of our knowledge. We will only consider the first order Marcum Q-function

since higher order Marcum Q-function can be derived by the first order Marcum Q-function.

The first order Marcum Q-function denoted by Q1(a, b) is defined by [4]

Q1(a, b) =

∫ ∞

b

x exp

(
−x2 + a2

2

)
I0(ax) dx, a ≥ 0, b ≥ 0 (1)
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where (also see Ref. [4])

I0(y) =
1

π

∫ π

0

exp(y cos θ) dθ (2)

To develop bounds on Q1(a, b), our idea is to bound the 0th order modified Bessel function

of the first kind indicated as Bessel function I0(·) in the integrand with refined functions. We

want to emphasize two key points. First, we only need to use a function to approximate I0(·) in

the integration region of Q1(a, b), i.e., [b,∞). Second, the maximum point of the integrand can

be approximated by parameter a [4]; also, the integrand is a monotonically increasing function

in x ∈ [0, a] and a monotonically decreasing function in x ∈ [a,∞). Hence, if b > a, we intend

to use a simple monotonically decreasing function to bound the integrand in [b,∞); otherwise,

we intend to use a simple monotonically increasing function to bound the integrand in [0, b].

Previous work on bounds for the first-order Marcum Q-function has been reported in Ref. [3]–

[7]. Simon and Alouini [3] derived exponential-type bounds; the derived bounds have simple

expressions, thereby simplifying the BER analysis; however, the bounds are not tight. Simon

[6] obtained tight exponential-type bounds by using the series representation of the Marcum

Q-function; however, Simon did not give an upper bound for the case of b < a. Chiani [5] used

a different integral expression of the Marcum Q-function and derived tight bounds. But the upper

bound in the case of b < a was not given in Ref. [5]. Kam and Li [7], [8] regarded the Marcum

Q-function as the probability of 2D normalized Gaussian random variables in the region outside

a disc and derived tight bounds for medium values of parameters a and b; however, when a and

b are both large or small, the bounds are not tight. Zhao et al. [9] proposed tight upper bound in

the case b ≥ a based on the same geometric interpretation of the Marcum Q-function. Corazza

and Ferrari [4] derived bounds that are the tightest overall in the literature, for all values of a and

b; however, in the case of b ≥ a, the smaller a becomes, the looser the lower bound becomes.

The methods proposed in this paper are intended to address all the aforementioned limitations.

The new bounds, which we obtain, are extremely tight and tighter than any of the existing

bounds to the best of our knowledge. By bounding I0(x) with refined functions, we overcome

the weakness in Ref. [4] and thus derive extremely tight bounds for the Marcum Q-function.

The remainder of this paper is organized as follows. Section II presents our lower bounds
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for the first-order Marcum Q-function. In Section III, we describe our upper bounds for the

first-order Marcum Q-function. Section IV compares our bounds with the existing bounds by

both theoretical analysis and numerical results. We conclude the paper in Section V.

II. LOWER BOUNDS

In this section, we present our lower bounds. Similar to Ref. [4], our idea is to bound the

integrand in the integration domain [b,∞) instead of the whole support [0,∞). Note that the

maximum point of the integrand can be approximated by parameter a; also, the integrand is

a monotonically increasing function in x ∈ [0, a] and a monotonically decreasing function in

x ∈ [a,∞). Hence, if b > a, we aim at finding tight lower bound for function I0(·) in [b,∞);

otherwise, we aim at finding tight upper bound for function I0(·) in [0, b] to bound 1−Q1(a, b).

The following proposition shows our lower bounds for the two cases, i.e., b ≥ a and b ≤ a.

Proposition 1: In the case b ≥ a ≥ 0, our lower bound, denoted as LB1-Ours, is given by

LB1-Ours ,
√

π

8

bI0(ab)

sinh(ab)

[
erfc

(
b− a√

2

)
− erfc

(
b + a√

2

)]
(3)

In the case a ≥ b ≥ 0, our lower bound, denoted as LB2-Ours, is given by

LB2-Ours , 1−
√

π

2

bI0(ab)

sinh(ab)

[
erf

(
a√
2

)
− 1

2
erf

(
a− b√

2

)
− 1

2
erf

(
a + b√

2

)]
(4)

Proof: Here we take into account the asymptotic form for the Bessel function I0(x); the

following asymptotic expression is well known [10]

I0(x) → 1√
2πx

ex, x À 1

4
(5)

Define

f(x) , 1√
2πx

ex

and consider function h(x), defined by

h(x) =
sinh x

x
, x > 0
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It is easy to see that f(x)
h(x)

is monotonically increasing in x > 1 since

(
f(x)

h(x)

)′

=
e2x − 1− 4x

4
√

2πx sinh2x

>
1 + 2x + 4x2

2!
− 1− 4x

4
√

2πx sinh2x

>
2x2 − 2x

4
√

2πx sinh2x

> 0, for x > 1 (6)

The Bessel function and its asymptotic function are shown in Fig. 1 where we can see they

are equal when x ≈ 0.26 and approach each other very fast when x > 0.26. The inequality in (6)

shows that f(x), i.e., the asymptotic function for Bessel function, is growing faster than h(x).

With the asymptotic property in Eq. (5), it assures that I0(x) should grow faster than h(x) when

x gets large enough. For small value of x, however, we cannot use this asymptotic characteristic

any more and thus resort to numerical simulation which is not mathematically strict but still can

clarify its accuracy. As a result, we examine numerical value of the derivative function, given

by

(
I0(x)

h(x)

)′

=

(
xI0(x)

sinh x

)′

=
[I0(x) + xI1(x)] sinh x− xI0(x) cosh x

sinh2 x

Since the denominator is positive we just consider the numerator and examine its sign. Define

g(x) , [I0(x) + xI1(x)] sinh x− xI0(x) cosh x

and its numerical plot is presented in Fig. 2 from which we can clearly know that g(x) is

increasing exponentially from the origin. Actually we have tested large values of x to find that

g(x) is exponentially increasing with x. Meanwhile, when x is large enough, e.g., x > 50, the

Bessel function could be replaced by its asymptotic function f(x) defined in Eq. (5) already for

analysis.
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Combing the asymptotic approximation for larger x and numerical illustration for smaller x,

we safely say that I0(x)
h(x)

is also increasing in x > 0 just as f(x)
h(x)

defined in Eq. (6) and thus the

following inequalities can be verified.

I0(x) ≥ bI0(b)

sinh b
· sinh x

x
, x ≥ b ≥ 0 (7)

I0(x) ≤ bI0(b)

sinh b
· sinh x

x
, 0 < x ≤ b (8)

The functions involved in inequalities Eq. (7) and Eq. (8) are shown in Fig. 3 for b = 4.

Using the above two inequalities, we can derive two lower bounds in the cases b ≥ a ≥ 0

and a ≥ b ≥ 0. Note that in the case a ≥ b ≥ 0, we can bound 1−Q1(a, b) instead of Q1(a, b)

since the integrand is monotonically increasing in the integration region of 1−Q1(a, b).

Case b ≥ a ≥ 0 :

Q1(a, b) =

∫ ∞

b

x exp

(
−x2 + a2

2

)
I0(ax) dx

≥ bI0(ab)

sinh ab

∫ ∞

b

exp

(
−x2 + a2

2

)
sinh(ax) dx

=

√
π

8

bI0(ab)

sinh(ab)

[
erfc

(
b− a√

2

)
− erfc

(
b + a√

2

)]

, LB1-Ours (9)

Thus, Eq. (9) proves that Eq. (3) is indeed a lower bound for the Marcum Q-function in the

case b ≥ a ≥ 0.
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Case a ≥ b ≥ 0 :

Q1(a, b) ≥ 1− bI0(ab)

sinh(ab)

∫ b

0

exp

(
−x2 + a2

2

)
sinh(ax) dx

= 1−
√

π

2

bI0(ab)

sinh(ab)

[
erf

(
a√
2

)
− 1

2
erf

(
a− b√

2

)
− 1

2
erf

(
a + b√

2

)]

, LB2-Ours (10)

Combining Eq. (9) and Eq. (10), we complete the proof of Eq. (3) and Eq. (4).

In Section IV, we will show that our lower bounds are extremely tight.

III. UPPER BOUNDS

Similar to deriving the lower bounds, in order to obtain upper bounds for Q1(a, b), we aim at

finding tight upper bound for the function I0(·) in [b,∞) if b > a; otherwise, we aim at finding

tight lower bound for the function I0(·) in [0, b] to bound 1−Q1(a, b).

The following proposition shows our upper bounds for the two cases, i.e., b ≥ a and b ≤ a.

Proposition 2: In the case b ≥ a ≥ 0, our upper bound, denoted as UB1-Ours, is give by

UB1-Ours

, I0(ab) + 3

eab + 3

{
exp

[
−(b− a)2

2

]
+ a

√
π

2
erfc

(
b− a√

2

)
+ 3 exp

(
−a2 + b2

2

)}
(11)

In the case a ≥ b ≥ 0, our upper bound, denoted as UB2-Ours, is given by

UB2-Ours

, 1− I0(ab)

eab + 3

{
4 exp

(
−a2

2

)
− exp

[
−(b− a)2

2

]

− 3 exp

(
−a2 + b2

2

)
+ a

√
π

2

[
erfc

(
− a√

2

)
− erfc

(
b− a√

2

)]}
(12)
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Proof: Consider function r(x) defined below,

r(x) =
I0(x)

ex + m
, x ≥ 0,m ≥ 0; (13)

We want to choose maximized m such that r(x) is monotonically decreasing. It will be shown

in Section IV that the larger m, the tighter the upper bounds provided that r(x) is monotonically

decreasing.

Actually in Ref. [4] the authors have used r(x) in the case m = 0 and given the following

simple proof [4] to show r(x) is decreasing in x > 0.

r
′
(x) =

(
I0(x)

ex

)′

=
I1(x)− I0(x)

ex

< 0 for x > 0

In order to choose lager value of m and obtain tighter upper bounds, we consider the derivative

function of r(x) defined in Eq. (13), i.e.,

r
′
(x) =

(
I0(x)

ex + m

)′

(14)

=
I1(x)(ex + m)− I0(x)ex

(ex + m)2
(15)

Define

p(x) , I1(x)(ex + m)− I0(x)ex

= ex
[
I1(x)

(
1 +

m

ex

)
− I0(x)

]

Obviously this function is increasing first and decreasing after the maximum point, as shown

in Fig. 4. The maximum value of m to maintain p(x) nonpositive over the whole region x > 0
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is slightly larger than 3. For convenience, here we choose m = 3 and accordingly r(x) becomes

r(x) =
I0(x)

ex + 3
, x ≥ 0 (16)

which is monotonically decreasing in x > 0. Therefore, the following inequalities hold, as shown

in Fig. 5.

I0(x) ≤ I0(b)

eb + 3
(ex + 3) , x ≥ b ≥ 0 (17)

I0(x) ≥ I0(b)

eb + 3
(ex + 3) , 0 ≤ x ≤ b (18)

Using the above two inequalities, we can derive two upper bounds in the cases b ≥ a ≥ 0

and a ≥ b ≥ 0.

Case b ≥ a ≥ 0 :

Q1(a, b)

≤ I0(ab) + 3

eab + 3

∫ ∞

b

x exp

(
−x2 + a2

2

)
(ex + 3) dx

=
I0(ab) + 3

eab + 3

{
exp

[
−(b− a)2

2

]
+ a

√
π

2
erfc

(
b− a√

2

)
+ 3 exp

(
−a2 + b2

2

)}

, UB1-Ours (19)

With regard to upper bound for the case a ≥ b ≥ 0, we can calculate 1−Q1(a, b) instead.
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Case a ≥ b ≥ 0 :

Q1(a, b)

≤ 1− I0(ab)

eab + 3

∫ b

0

x exp

(
−x2 + a2

2

)
(eax + 3) dx

= 1− I0(ab)

eab + 3

{
4 exp

(
−a2

2

)
− exp

[
−(b− a)2

2

]

− 3 exp

(
−a2 + b2

2

)
+ a

√
π

2

[
erfc

(
− a√

2

)
− erfc

(
b− a√

2

)]}

, UB2-Ours (20)

Eq. (19) and Eq. (20) complete the proof.

IV. COMPARISON BETWEEN OUR BOUNDS AND THE EXISTING BOUNDS

To the best of our knowledge, Ref. [4] provides the tightest bounds in the literature. So we first

focus on the comparison between our bounds and the bounds in [4] from both theoretical analysis

and numerical results. In addition, the bounds in [7], [9] are also very tight and have simple

expressions so we will also present the comparison results with them. To show the improvement

of our bounds over the existing bounds, the numerical comparison between our bounds and other

typical bounds in the literature is given at the same time.

A. Our bounds vs. the bounds in [4]

The following proposition shows that our bounds theoretically outperform the bounds in [4].

Proposition 3: In the defined intervals,

LB1-CF < LB1-Ours ≤ Q1(a, b) (21)

UB1-CF > UB1-Ours ≥ Q1(a, b) (22)

UB2-CF > UB2-Ours ≥ Q1(a, b) (23)

where LB1-CF is defined in [3, Eq. (9)], UB1-CF in [3, Eq. (7)], and UB2-CF in [3, Eq. (12)].
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Proof: First, we prove the results for the lower bounds. Ref. [4] uses the following inequal-

ities to derive the lower bounds for Q1(a, b).

I0(x) >
bI0(b)

eb

ex

x
, x > b ≥ 0, b ≥ a ≥ 0 (24)

I0(x) ≤ exp(ςx), 0 ≤ x ≤ b, a ≥ b ≥ 0 (25)

where

ς =
log I0(ab)

b

In this paper we adopt refined functions to approximate I0(x) with Eq. (7) and Eq. (8). It is

easy to see that

bI0(b)

sinh b

sinh x

x
>

bI0(b)

eb

ex

x
, x > b ≥ 0 (26)

which means that the function for approximating I0(x) in Eq. (7) is tighter than that in Eq. (24).

Therefore, our lower bound LB1-Ours is always tighter than LB1-CF. Thus, Eq. (21) holds.

Now, we prove the results for the upper bounds. Ref. [4] uses following inequalities to bound

the Bessel function:

I0(x) ≤ I0(b)

eb
(ex) , x ≥ b ≥ 0 (27)

I0(x) ≥ I0(b)

eb + 3
(ex) , 0 ≤ x ≤ b (28)

It is easy to prove the following inequalities, i.e.,

ex

eb
>

ex + 3

eb + 3
, x > b (29)

ex

eb
<

ex + 3

eb + 3
, 0 < x < b (30)

Then, from (17), (18), (27), (28), (29), and (30), we derive tighter functions to approximate

the Bessel function and thus our upper bounds are tighter than the upper bounds in Ref. [4].

Therefore, Eq. (22) and Eq. (23) hold. This completes the proof.
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We would like to emphasize that LB1-Ours outperforms LB1-CF significantly when parameter

a is relatively small. Consider the case when b ≥ a and a is small, for example, a = 0.1. Then,

when b is not large enough,

I0(ab), eab, erfc

(
b− a√

2

)
→ 1, when a → 0

but b is quite small, just slightly larger than a, then LB1-CF becomes quite small and loose and

thus cannot bound the Marcum Q-function anymore. In contrast, LB1-Ours is still tight enough

so that LB1-Ours ≤ Q1(a, b) and LB1-Ours → 1 since

√
π

8

abI0(ab)

sinh(ab)
= O(1), when a → 0

erfc

(
b− a√

2

)
− erfc

(
b + a√

2

)
= O(a), when a → 0

Fig. 6 indicates that when b ≥ a and a is small, e.g., a = 0.5, LB1-CF indeed becomes quite

loose in the region when b is not too large, while our lower bound LB1-Ours can still tightly

bound the Marcum Q-function. Moreover, with parameter a getting smaller, e.g., a = 0.1, LB1-

Ours outperforms LB1-CF more significantly, as we can see in Fig. 7. In contrast to the fact that

LB1-CF gets quite loose when a and b are small, the robustness of our lower bound LB1-Ours

makes it accurate in BER estimation even under low signal to noise ratio (SNR) regime.

Eq. (22) in Proposition 3 can also be verified by numerical results. From Fig. 6 and Fig. 7, it

is evident that when the parameters are small, our upper bound UB1-Ours outperforms UB1-CF

obviously. With parameters getting larger, though UB1-Ours and UB1-CF tend to be equivalent,

UB1-Ours is always tighter than UB1-CF as indicated by Eq. (22). UB2-Ours is slightly tighter

than UB2-CF; hence, we only show the theoretical comparison in Eq. (23), without numerical

comparison.

Considering LB2-Ours vs. LB2-CF, it is not easy to compare two approximated functions in

Eq. (8) with Eq. (25) for I0(x). However, we can use numerical results to compare these two

lower bounds for the Marcum Q-function. The comparison between LB2-Ours and LB2-CF is

presented in Fig. 8, which illustrates that LB2-Ours is much tighter than LB2-CF; note that

LB2-Ours has a simpler expression than LB2-CF.
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B. Our bounds vs. other typical bounds

Ref. [7] proposed exponential bounds and erfc bounds. Since the erfc bounds are usually

tighter than exponential bounds, we focus on the comparison between our bounds and erfc

bounds UB3-KL and LB3-KL in Ref. [7], where UB3-KL is defined in [5, Eq. (18)] and LB3-

KL in [5, Eq. (19)].

UB3-KL

=
1

2
erfc

(
b + a√

2

)
+

1

2
erfc

(
b− a√

2

)

+
1

a
√

2π

{
exp

[
−(b− a)2

2

]
− exp

[
−(b + a)2

2

]}

LB3-KL

=
1

2

[
erfc

(
b + a√

2

)
+ erfc

(
b− a√

2

)]
·
[
1− erfc

(
b√
2

)]
+ erfc

(
b√
2

)

where UB3-KL is valid in a > 0, b ≥ 0 and LB3-KL in a ≥ 0, b ≥ 0.

Ref. [9] obtained tight upper bound UB1-MSB defined by

UB1-MSB =
1

2
e−(b2−a2)/2 +

arctan(a/b)

π
e−(b2−a2)/2 +

arctan(b/a)

π
e−(b2+a2)/2, b ≥ a ≥ 0

The upper bound UB1-SA, two lower bounds LB1-SA and LB2-SA in [3] are given by

UB1-SA = exp

[
−(b− a)2

2

]
, b ≥ a

LB1-SA = exp

[
−(b + a)2

2

]
, b ≥ a

LB2-SA = 1− 1

2

{
exp

[
−(b− a)2

2

]
− exp

[
−(b + a)2

2

]}
, b ≤ a
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The I0(·) type tight bounds in [5] are as follows.

UB1C = exp

(
−a2 + b2

2

)
I0(ab) + a

√
π

8
erfc

(
b− a√

2

)
, b ≥ a

LB1C = exp

(
−a2 + b2

2

)
I0(ab), b ≥ a

LB2C = exp

(
−b2 + a2

2

)
I0(ab), b ≤ a

The numerical comparisons between our bounds and aforementioned bounds are shown in

Fig. 9-13, where we show the numerical comparisons for the cases b ≥ a ≥ 0 and a ≥ b ≥ 0.

In Fig. 9, we compare the upper bounds when a = 1 and b ≥ a. As can be seen in Fig. 9,

our upper bound UB1-Ours outperform other bounds significantly. With increasing value of a,

e.g., a = 8, we show the comparison result in Fig. 10 in logarithmic scale. In this case, only

UB3-KL [7] has the similar performance as ours, though slightly looser than UB1-Ours.

In Fig. 11, we compare the lower bounds in the case a = 5 and b ≥ a and find our lower

bound LB1-Ours is the tightest among the bounds overall. We show the numerical comparison

of lower bounds for a = 1 and b ≤ a in Fig. 12 where we can see some bounds get quite loose

as opposed to our lower bound LB2-Ours that is almost equal to the actual value of the Marcum

Q-function.

Since only [7] gives upper bound when b ≤ a and the bounds in [7] are valid for a > 0 and

b > 0, we consider comparing our bounds with UB3-KL/LB3-kL together. As shown in Fig. 13,

our bounds outperform UB3-KL/LB3-kL overall.

As a result of the comaprisons above, we highlight the tightness and robustness of our bounds

and it is worth remarking that our bounds for the first-order Marcum Q-function can potentially

serve as an effective means for BER performance analysis in digital communication. The Bessel

function is complicated without closed-form; in order to obtain extreme tight bounds, we resort to

numerical tool, though not mathematically strict, to prove inequalities Eq. (8)(18)(7)(17) which

are indeed accurate as stated in Section II and III.
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V. CONCLUSION

This paper proposes extremely tight bounds for the first order Marcum Q-function. To the best

of our knowledge, our proposed bounds outperform the tightest bounds in the literature, which

are given in Ref. [4]. This is validated by theoretical analysis and numerical results. Although

the bounds in Ref. [4] are quite tight in most cases, the bounds become unbounded when the

argument is small. Our proposed bounds overcome this limitation; specifically, our bounds are

tight no matter whether parameters a and b are large or small. Moreover, our bounds are much

tighter than the other typical bounds given in [3], [5], [7], and [9]. Our bounds enjoy tightness

and robustness against change of parameters a and b, and have simple expressions, resulting in

reduced computation overhead. Hence, our bounds are expected to serve as a powerful tool for

BER performance analysis in digital communication.
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Fig. 7. The bounds comparison between our bounds and the bounds in [4], in the case a = 0.1 and b ≥ a.
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Fig. 9. The upper bounds comparison in the case a = 1 and b ≥ a.
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Fig. 10. The upper bounds comparison (logarithmic scale) in the case a = 8 and b ≥ a.
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Fig. 11. The lower bounds comparison in the case a = 5 and b ≥ a.
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Fig. 12. The lower bounds comparison in the case a = 1 and b ≤ a.
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