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ABSTRACT

Providing quality of service (QoS) guarantees is an important objective in the de-

sign of the next-generation wireless networks. In this dissertation, we address the QoS

provisioning problem from both the network and the end system perspectives.

In the first part of the dissertation, we investigate the problem of statistical QoS provi-

sioning from the network perspective. We propose and develop a link-layer channel model

termed the effective capacity (EC) model. The effective capacity model captures the effect

of channel fading on the queueing behavior of the link, using a computationally simple yet

accurate model, and thus, is the critical device we need to design efficient QoS provision-

ing mechanisms. We call such an approach to channel modeling and QoS provisioning, as

effective capacity approach.

With the effective capacity approach, we obtain link-layer QoS measures for various

scenarios: flat-fading channels, frequency-selective fading channels, multi-link wireless net-

works, variable-bit-rate sources, packetized traffic, and wireless channels with non-negligible

propagation delay. The link-layer QoS measures are characterized by a data rate, delay

bound, and delay-bound violation probability triplet. Armed with the EC channel model,

we develop simple and efficient schemes for admission control, resource allocation, and

scheduling, which can yield substantial capacity gain.

We study some of the practical aspects of effective capacity approach, namely, the effect

of modulation and channel coding, and robustness against non-stationary channel gain

processes. We show how to quantify the effect of practical modulation and channel coding

on the effective capacity approach to QoS provisioning. We identify the fundamental trade-

off between power and time diversity in QoS provisioning over fading channels, and propose

a novel time-diversity dependent power control scheme to leverage time diversity.

In the second part of the dissertation, we focus our attention on QoS support from the

iii



end system perspective. We introduce adaptive QoS control for real-time video communi-

cation over wireless channels. The adaptive QoS control consists of optimal mode selection

and delay-constrained hybrid ARQ. By combining the best features of error-resilient source

encoding, forword error correction (FEC) and delay-constrained retransmission, our pro-

posed adaptive QoS control system is capable of achieving bounded delay, high reliability,

and efficiency.
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CHAPTER 1

INTRODUCTION

The next-generation wireless networks such as the fourth generation (4G) cellular systems

are targeted at supporting various applications such as voice, data, and multimedia over

packet-switched networks. In these networks, person-to-person communication can be en-

hanced with high quality images and video, and access to information and services on public

and private networks will be enhanced by higher data rates, quality of service (QoS), security

measures, location-awareness, energy efficiency, and new flexible communication capabili-

ties. These features will create new business opportunities not only for manufacturers and

operators, but also for providers of content and services using these networks.

Providing QoS guarantees to various applications is an important objective in designing

the next-generation wireless networks. Different applications can have very diverse QoS

requirements in terms of data rates, delay bounds, and delay bound violation probabilities,

among others. For example, applications such as power plant control, demand reliable and

timely delivery of control commands; hence, it is critical to guarantee that no packet is

lost or delayed during the packet transmission. This type of QoS guarantees is usually

called deterministic or hard guarantees. On the other hand, most multimedia applications

including video telephony, multimedia streaming, and Internet gaming, do not require such

stringent QoS. This is because these applications can tolerate a certain small probability of

QoS violation. This type of QoS guarantees is commonly referred to as statistical or soft

guarantees.

For wireless networks, since the capacity of a wireless channel varies randomly with time,

an attempt to provide deterministic QoS (i.e., requiring zero QoS violation probability)

will most likely result in extremely conservative guarantees. For example, in a Rayleigh or
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Ricean fading channel, the deterministically guaranteed capacity1 (without power control)

is zero! This conservative guarantee is clearly useless. For this reason, we only consider

statistical QoS in this dissertation.

To support QoS guarantees, two general approaches have been proposed. The first ap-

proach is network-centric. That is, the routers, switches, and base stations in the network

are required to provide QoS support to satisfy data rate, bounded delay, and packet loss

requirements requested by applications (e.g., integrated services [19, 29, 116, 163] or dif-

ferentiated services [14, 68, 95]). The second approach is solely end-system-based and does

not impose any requirements on the network. In particular, the end systems employ control

techniques to maximize the application-layer quality without any QoS support from the

transport network.

In this dissertation, we address the problem of QoS provisioning primarily from the

network perspective; on the other hand, we will also apply the end-system-based approach

to QoS support. Next, we motivate the problem from these two perspectives.

1.1 Motivation

1.1.1 Network-centric QoS Provisioning

To provide QoS guarantees in wireless networks, a network architecture should contain the

following six components: traffic specification, QoS routing, call admission control, wireless

channel characterization, resource reservation, and packet scheduling.

The network architecture is illustrated in Figure 1. First, an end system uses a traffic

specification procedure to specify the source traffic characteristics and desired QoS. Then,

the network employs QoS routing to find path(s) between source and destination(s) that

have sufficient resources to support the requested QoS. At each network node, call admission

control decides whether a connection request should be accepted or rejected, based on

the requested QoS, the wired link status, and/or the statistics of wireless channels. For

1The capacity here is meant to be delay-limited capacity, which is the maximum rate achievable with a
prescribed delay bound (see [57] for details).
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base stations, wireless channel characterization is needed to specify the statistical QoS

measure of a wireless channel, e.g., a data rate, delay bound, and delay-bound violation

probability triplet; this information is used by call admission control. If a connection

request is accepted, resource reservation at each network node allots resources such as

wireless channels, bandwidth, and buffers that are required to satisfy the QoS guarantees.

During the connection life time, packet scheduling at each network node schedules packets

to be transmitted according to the QoS requirements of the connections. As shown in

Figure 1, in a network node, QoS routing, call admission control, resource allocation, and

wireless channel characterization, are functions on the control plane, i.e., performed to

set up connections; packet scheduling is a function on the data plane, i.e., performed to

transmit packets.

Wireless channel

QoS routing

Resource

allocation

Traffic 
specification

Wireless channel
 characterization
(in a basestation)

SchedulerEnd
system

End
system

Control plane

Network node

Data plane

Admission
control

Figure 1: Network architecture for QoS provisioning.

The next-generation wireless networks are aimed at supporting diverse QoS require-

ments and traffic characteristics [60]. The success in the deployment of such networks will

critically depend upon how efficiently the wireless networks can support traffic flows with

QoS guarantees [65]. To achieve this goal, QoS provisioning mechanisms in Figure 1 (e.g.,

admission control, resource reservation, and packet scheduling) need to be efficient and

practical. For this reason, in this dissertation, we focus primarily on designing efficient and

practical admission control, resource reservation, and packet scheduling algorithms.
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At a base station, to provide connection-level QoS guarantees such as data rate, delay

and delay-violation probability, it is necessary to relate these QoS measures to the system of

QoS provisioning in Figure 1. This task requires characterization of the server/service (i.e.,

wireless channel modeling) and queueing analysis of the system. However, the existing

wireless channel models (e.g., Rayleigh fading model with a specified Doppler spectrum,

or finite-state Markov chain models [71, 164, 165, 170]) do not explicitly characterize a

wireless channel in terms of these QoS measures. To use the existing channel models for

QoS support, we first need to estimate the parameters for the channel model, and then

derive QoS measures from the model, using queueing analysis. This two-step approach is

obviously complex [156], and may lead to inaccuracies due to possible approximations in

channel modeling and deriving QoS metrics from the models.

Due to the complexity and difficulty in analyzing queues using these channel models,

existing QoS provisioning schemes [4, 9, 87, 94, 106] do not utilize these channel models in

their designs. This results in an undesirable situation that these schemes do not provide

explicit QoS guarantees [157]. In other words, it is not clear how to characterize the QoS

provisioning system under a given fading channel, in terms of connection-level QoS mea-

sures, or how to relate the control parameters of the QoS provisioning system to the QoS

measures.

These observations motivate us to investigate the following problems:

1. (Wireless channel modeling) Is it possible to construct a simple and accurate wire-

less channel model so that connection-level QoS measures of a system can be easily

obtained?

2. (QoS provisioning) If such a channel model is established, is it easy to design an

efficient and practical QoS provisioning system that provides explicit QoS guarantees?

Recognizing that the key difficulty in explicit QoS provisioning, is the lack of a wireless

channel model that can easily relate the control parameters of a QoS provisioning system to

the QoS measures, we propose and develop a link-layer channel model termed the effective
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capacity (EC) model.

The effective capacity model captures the effect of channel fading on the queueing be-

havior of the link, using a computationally simple yet accurate model, and thus, is a critical

tool for designing efficient QoS provisioning mechanisms. We call such an approach to

channel modeling and QoS provisioning, effective capacity approach. Our contribution in

developing the effective capacity approach are summarized in Section 1.2.

1.1.2 End-system-based QoS Support

As mentioned before, the end-system-based QoS support does not impose any requirements

on the network. Such an approach is of particular significance since it does not require the

participation of the networks in QoS provisioning and is applicable to both the current and

future wireless Internet.2 Note that the current wireless Internet does not provide any

QoS guarantee.

End-system-based QoS support is typically application specific. In this dissertation, we

choose real-time wireless video communication as the target application. Compared with

wired links, wireless channels are typically much more noisy and have both small-scale and

large-scale fades [119], making the bit error rate very high; the resulting bit errors could

have devastating effects on the video presentation quality. Thus, robust transmission of

real-time video over wireless channels is a critical problem; and this is the problem we want

to investigate in this dissertation.

To address the above problem, we introduce adaptive QoS control for video communi-

cation over wireless channels. The objective of our adaptive QoS control is to achieve good

perceptual quality and utilize network resources efficiently through adaptation to time-

varying wireless channels. Our adaptive QoS control consists of optimal mode selection and

delay-constrained hybrid automatic repeat request (ARQ). Optimal mode selection provides

QoS support (i.e., error resilience) on the compression layer while delay-constrained hybrid

ARQ provides QoS support (i.e., bounded delay and reliability) on the link layer. Our

2By wireless Internet, we mean an IP-based network with wireless segments.
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contributions in robust wireless video transmission are summarized in the next section.

1.2 Contributions of this Dissertation

The contributions of this dissertation are the following.

In the area of network-centric QoS Provisioning:

• We propose and develop a link-layer channel model termed the effective capacity (EC)

model. In this model, we characterize a wireless link by two EC functions, namely,

the probability of non-empty buffer, and the QoS exponent of the connection; and

we propose a simple and efficient algorithm to estimate these EC functions. We pro-

vide important insights about the relations between the EC channel model and the

physical-layer channel. The key advantages of the EC link-layer modeling and esti-

mation are (1) ease of translation into QoS measures, such as delay-bound violation

probability, (2) simplicity of implementation, (3) accuracy, and hence, efficiency in

admission control, and (4) flexibility in allocating bandwidth and delay for connec-

tions. In addition, the EC channel model provides a general framework, under which

physical-layer fading channels such as AWGN, Rayleigh fading, and Ricean fading

channels can be studied.

• With the effective capacity approach, we obtain link-layer QoS measures for various

scenarios: flat-fading channels, frequency-selective fading channels, multi-link wireless

networks, variable-bit-rate sources, packetized traffic, and wireless channels with non-

negligible propagation delay. The QoS measures obtained can be easily translated

into traffic envelope and service curve characterizations, which are popular in wired

networks, such as ATM and IP, to provide guaranteed services.

• To provide QoS guarantees for K users sharing a downlink time-slotted fading chan-

nel, we develop simple and efficient schemes for admission control, resource allocation,

and scheduling, which can yield substantial capacity gain. The efficiency is achieved

by virtue of recently identified multiuser diversity. A unique feature of our work is
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explicit provisioning of statistical QoS, which is characterized by a data rate, delay

bound, and delay-bound violation probability triplet. The results show that compared

with a fixed-slot assignment scheme, our approach can substantially increase the sta-

tistical delay-constrained capacity of a fading channel (i.e., the maximum data rate

achievable with the delay-bound violation probability satisfied), when delay require-

ments are not very tight, while yet guaranteeing QoS at any delay requirement. For

example, in the case of low signal-to-noise-ratio (SNR) and ergodic Rayleigh fading,

our scheme can achieve approximately
∑K

k=1
1
k gain for K users with loose-delay re-

quirements, as expected from the classic paper [72] on multiuser diversity. But more

importantly, when the delay bound is not loose, so that simple-minded multiuser-

diversity scheduling does not directly apply, our scheme can achieve a capacity gain,

and yet meet the QoS requirements.

• We design simple and efficient admission control, resource allocation, and scheduling

algorithms, to provide QoS guarantees for multiple users sharing multiple parallel

time-varying channels. Our scheduling algorithms consists of two sets, namely, (what

we call) joint K&H/RR scheduling and Reference Channel (RC) scheduling. The joint

K&H/RR scheduling, composed of K&H scheduling and Round Robin (RR) schedul-

ing, utilizes both multiuser diversity and frequency diversity to achieve capacity gain,

and the RC scheduling minimizes the channel usage while satisfying users’ QoS con-

straints. The relation between the joint K&H/RR scheduling and the RC scheduling

is that 1) if the admission control allocates channel resources to the RR scheduling

due to tight delay requirements, then the RC scheduler can be used to minimize

channel usage; 2) if the admission control allocates channel resources to the K&H

scheduling only, due to loose delay requirements, then there is no need to use the RC

scheduler. In designing the RC scheduler, we propose a reference channel approach

and formulate the scheduler as a linear program, dispensing with complex dynamic

programming approaches, by the use of a resource allocation scheme. An advantage

of this formulation is that the desired QoS constraints can be explicitly enforced, by

allotting sufficient channel resources to users, during call admission.
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• We study some of the practical aspects of the effective capacity approach, namely, the

effect of modulation and channel coding, and robustness against non-stationary chan-

nel gain processes. We show how to quantify the effect of practical modulation and

channel coding on the effective capacity approach to QoS provisioning. We identify an

important trade-off between power control and time diversity in QoS provisioning over

fading channels, and propose a novel time-diversity dependent power control scheme

to leverage time diversity. Compared to the power control used in the 3G wireless

systems, our time-diversity dependent power control can achieve substantial capacity

gains. Equipped with the time-diversity dependent power control and the effective

capacity approach, we design a power control and scheduling mechanism, which is

robust in QoS provisioning against large scale fading and non-stationary small scale

fading.

In the area of end-system-based QoS support:

• We introduce adaptive QoS control for real-time video communication over wireless

channels. The adaptive QoS control consists of optimal mode selection and delay-

constrained hybrid ARQ. Specifically, optimal mode selection provides QoS support

(i.e., error resilience) on the compression layer while delay-constrained hybrid ARQ

provides QoS support (i.e., bounded delay and reliability) on the link layer.

To provide QoS on the compression layer, we employ a novel approach to rate-

distortion optimized mode selection for real-time video communication over wireless

channels. Different from the classical approach that only takes quantization distortion

into account, our optimal mode selection also considers wireless channel characteristics

and receiver behavior. To provide QoS on the link layer, we employ delay-constrained

hybrid ARQ, which integrates rate-compatible punctured convolutional (RCPC) codes

with delay-constrained retransmissions. Our delay-constrained hybrid ARQ has the

advantage of providing reliability for the compression layer while guaranteeing delay

bound and achieving high throughput.
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By combining the best features of error-resilient source encoding, forward error correc-

tion (FEC) and delay-constrained retransmission, our proposed adaptive QoS control

system is capable of achieving bounded delay, high reliability, and efficiency. Simu-

lation results show that the proposed adaptive QoS control achieves better quality

for real-time video under varying wireless channel conditions and utilizes network

resources efficiently.

1.3 Outline of the Dissertation

In this introduction, we have provided the motivation of the problems we address in this

dissertation: 1) network support for explicit QoS guarantees, and 2) robust transmission of

real-time video over wireless channels. The remainder of this dissertation is organized as

follows.

In Chapters 2 and 3, we overview the techniques in network-centric QoS provisioning

and end-system-based QoS support, respectively.

In Chapter 4, we present the technique of effective capacity channel modeling. We first

motivate the link-layer channel modeling, and present an EC link-layer model for flat fading

channels, which consists of two EC functions, namely, the probability of non-empty buffer,

and the QoS exponent of a connection. Then, we propose a simple and efficient algorithm to

estimate these EC functions. Further, we extend the EC modeling technique to frequency

selective fading channels. With the EC model obtained, we derive link-layer QoS measures

for multi-link wireless networks, variable-bit-rate sources, packetized traffic, and wireless

channels with non-negligible propagation delay.

Armed with the new channel model, we investigate its use in designing admission control,

resource reservation, and scheduling algorithms, for efficient support of QoS guarantees, in

Chapters 5 and 6. Specifically, Chapter 5 addresses the problem of QoS provisioning for

multiple users sharing a single channel, while Chapter 6 deals with the problem of QoS

provisioning for multiple users sharing multiple parallel channels.

In Chapter 7, we investigate practical aspects of the effective capacity approach. We first
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discuss the effect of modulation and channel coding. We then identify the trade-off between

power control and time diversity, and propose a time-diversity dependent power control

scheme to leverage time diversity. Based on the time-diversity dependent power control,

we design our power control and scheduling scheme, which is robust in QoS provisioning

against large scale fading and non-stationary small scale fading.

In Chapter 8, we introduce adaptive QoS control for real-time video communication

over wireless channels. We first sketch the overall transport architecture for real-time video

communication over the wireless channel. Then, we describe our optimal mode selection

algorithm and present the delay-constrained hybrid ARQ.

In Chapter 9, we summarize the dissertation and point out future research directions.
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CHAPTER 2

NETWORK-CENTRIC QOS PROVISIONING: AN

OVERVIEW

In this chapter, we overview the issues and techniques in network-centric QoS provision-

ing for wireless networks. We organize this chapter as follows. Section 2.1 presents vari-

ous network services models. Understanding network service models and associated QoS

guarantees is the first step in designing QoS provisioning mechanisms. In Section 2.2, we

overview widely-used traffic models. Section 2.3 surveys packet scheduling schemes for wire-

less transmission. In Section 2.4, we discuss the issue of call admission control in wireless

networks. Section 2.5 addresses wireless channel modeling, which plays an important role

in QoS provisioning.

2.1 Network Services Models

2.1.1 The Integrated Services Model of the IETF

To support applications with diverse QoS guarantees in IP networks, the IETF Integrated

Services (IntServ) Working Group has specified three types of services, namely, the guar-

anteed service [116], the controlled-load service [145], and the best-effort service.

The guaranteed service (GS) guarantees that packets will arrive within the guaranteed

delivery time, and will not be discarded due to buffer overflows, provided that the flow’s

traffic conforms to its specified traffic parameters [116]. This service is intended for appli-

cations which need a hard guarantee that a packet will arrive no later than a certain time

after it was transmitted by its sender. That is, the GS does not control the minimal or av-

erage delay of a packet; it merely controls the maximal queueing delay. Examples that have

hard real-time requirements and require guaranteed service include certain audio and video
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applications which have fixed playback rates. Delay typically consists of two components,

namely, fixed delay and queueing delay. The fixed delay is a property of the chosen path,

which is not determined by the guaranteed service, but rather, by the setup mechanism.

Only queueing delay is determined by the GS.

The controlled-load (CL) service is intended to support a broad class of applications

which have been developed for use in today’s Internet, but are sensitive to heavy load

conditions [145]. Important members of this class are the adaptive real-time applications

(e.g., vat and vic) which are offered by a number of vendors and researchers [69]. These

applications have been shown to work well over lightly-loaded Internet environment, but to

degrade quickly under heavy load conditions. The controlled-load service does not specify

any target QoS parameters. Instead, acceptance of a request for controlled-load service

is defined to imply a commitment by the network to provide the requester with a service

closely approximating the QoS the same flow would receive under lightly-loaded conditions.

Both the guaranteed service and the controlled-load service are designed to support

real-time applications which need different levels of QoS guarantee from the network.

The best-effort (BE) service class offers the same type of service under the current

Internet architecture. That is, the network makes effort to deliver data packets but makes

no guarantees. This works well for non-real-time applications which can use an end-to-end

retransmission strategy (i.e., TCP) to make sure that all packets are delivered correctly.

These include most popular applications like Telnet, FTP, email, Web browsing, and so on.

All of these applications can work without guarantees of timely delivery of data. Another

term for such non-real-time applications is elastic, since they are able to stretch gracefully

in the face of increased delay. Note that these applications can benefit from shorter-length

delays but that they do not become unusable as delays increase.
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2.1.2 The Differentiated Services Model of the IETF

The implementation of the IntServ models suffers severe scalability problem. To mitigate

it, the IETF specifies the Differentiated Services (DiffServ) framework for the next gener-

ation Internet [14, 96]. The DiffServ architecture offers a framework within which service

providers can offer each customer a range of network services differentiated on the basis of

performance. Once properly designed, a DiffServ architecture can offer great flexibility and

scalability, as well as meeting the service requirements for multimedia streaming applica-

tions. The IETF DiffServ working group has specified the Assured Forwarding (AF) per

hop behavior (PHB) [58]. The AF PHB is intended to provide different levels of forward-

ing assurances for IP packets at a node and therefore, can be used to implement multiple

priority service classes.

2.1.3 The Services Model of the ATM Forum

For ATM networks, the ATM Forum [5] defines the following services: constant bit rate

(CBR), real-time variable bit rate (rt-VBR), non-real-time VBR (nrt-VBR), available bit

rate (ABR), and unspecified bit rate (UBR).

Under the CBR service, traffic is specified by its peak cell rate (PCR) and its associated

cell delay variation (CDV) tolerance; the connection is serviced at its peak rate at each

network node. Under the VBR service, a connection is characterized by PCR, sustainable

cell rate (SCR), and the maximum burst size (MBS). The rt-VBR service supports slightly

bursty, isochronous streams such as packet voice and video, while the nrt-VBR service is

suitable for interactive streams, which are asynchronous, but still delay sensitive. Under the

ABR service, the end system transmits its packets at an (instantaneous) rate dynamically

set by the network so as to avoid network congestion. Under the UBR service, a connection

does not declare traffic parameters and receives no QoS guarantees.
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2.1.4 The Services Model for Wireless Networks

Providing QoS guarantees such as data rate, delay, and loss rate is one of the main features of

the next-generation wireless networks. As we mentioned in Chapter 1, these QoS guarantees

can be either deterministic or statistical. However, due to the severely conservative nature

of deterministic guarantees, we only consider statistical QoS guarantees in this dissertation.

In order to support the QoS requested by applications, network designers need to decide

what kind of network services should be provided. According to the nature of wireless

networks and the QoS guarantees offered, we classify network services into three categories:

statistical QoS-assured service, adaptive service, and best-effort. Under statistical QoS-

assured services, statistical QoS guarantees are explicitly provisioned; we will formally define

statistical QoS guarantees in Chapter 4. Under best-effort services, no QoS guarantees are

supported.

Adaptive services provide mechanisms to adapt traffic streams during periods of QoS

fluctuations and hand-offs [152]. Adaptive services have been demonstrated to be able to

effectively mitigate fluctuations of resource availability in wireless networks [6]. There have

been many proposals on adaptive approaches and services in the literature, which include an

“adaptive reserved service” framework [78], a wireless adaptive mobile information system

(WAMIS) [3], an adaptive service based on QoS bounds and revenue [86], an adaptive

framework targeted at end-to-end QoS provisioning [93], a utility-fair adaptive service [12],

a framework for soft QoS control [110], a teleservice model based on an adaptive QoS

paradigm [63], an adaptive QoS framework called AQuaFWiN [132], and an adaptive QoS

management architecture [75], among others. Although adaptive services provide a service

better than best effort, no explicit QoS guarantees is enforced.

2.2 Traffic Modeling

Traffic modeling plays an important role in QoS provisioning. It facilitates traffic specifi-

cations and accurate call admission control. Without a traffic model or characterization,

measurement-based admission control needs to be employed with reduced accuracy and
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efficiency, compared to traffic-specification based admission control.

Traffic models fall into two categories: CBR and VBR as shown in Figure 2. For VBR,

the traffic models can be either deterministic or stochastic.

The most commonly used deterministic model is linear bounded arrival process (LBAP)

[34]. It has two parameters: token generating rate ρ and token bucket size σ. The amount

of source traffic over any time interval of length τ is upper bounded by ρτ + σ, i.e.,

A(t, t + τ) ≤ ρτ + σ, (1)

where A(t, t + τ) is the amount of source traffic generated during [t, t + τ). The simplicity

of the LBAP model makes it very useful for traffic shaping and policing, which are required

to ensure that the source traffic conforms to the declared characterization. Actually, the

(σ, ρ)-leaky bucket regulator [131], which is the most widely used traffic shaping and policing

scheme, produces traffic that can be characterized by the LBAP model. Hence, the LBAP

is also called leaky-bucket constrained traffic model.

In stochastic modeling, there are three common approaches: the first approach is to use

stochastic processes such as Markov processes to model the traffic arrival process itself; the

second one is a stochastic bounding approach, e.g., the exponentially bounded burstiness

(EBB) model [160] provides an upper bound on the probability of violating the LBAP

constraint; the third approach uses large deviations theory, specifically, the asymptotic

log-moment generating function of the traffic process, to characterize the traffic. Effective

bandwidth and self-similar traffic model are two important stochastic models.

In this dissertation, we focus on large-deviations-theoretical approach to model both the

source and the channel. Hence, in the following, we introduce large-deviations-theoretical

modeling, i.e., theory of effective bandwidth.
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Figure 2: Classification of traffic models.

2.2.1 Theory of Effective Bandwidth for Exponential Processes

The stochastic behavior of a source traffic process can be modeled asymptotically by its

effective bandwidth, if the traffic is an exponential process [167]. We will define exponen-

tial processes shortly. Next, we present the theory of effective bandwidth using Chang’s

framework [22, 23, 24, 167].

Consider an arrival process {A(t), t ≥ 0} where A(t) represents the amount of source

data (in bits) over the time interval [0, t). Assume that sample paths of A(t) are right

continuous with left limits. For any t ≥ t0 ≥ 0, let A(t0, t) = A(t) − A(t0). Hence A(t0, t)

denotes the cumulative arrivals over the time interval [t0, t). Assume that for u ≥ 0 and

t ≥ 0,

Λ(u, t) =
1
t

sup
s≥0

log E[euA(s,s+t)], (2)

is bounded. Assume further that the asymptotic log-moment generating function of A,

defined as

Λ(u) = lim sup
t→∞

Λ(u, t) = lim sup
t→∞

1
t

sup
s≥0

log E[euA(s,s+t)], (3)

exists for all u > 0; a stochastic process satisfying this assumption is called an exponential

process. Examples of exponential processes include all Markov processes, and all EBB
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processes. Then, the effective bandwidth function of an exponential process A is defined as

α(u) =
Λ(u)

u
, (4)

for all u > 0.

Under appropriate conditions, it can be shown [22] that α(u) is continuous and increasing

in u, and that

inf
t≥0

1
t

sup
s≥0

E[A(s, s + t)] = α(0) ≤ α(u) ≤ α(∞) = inf
t≥0

1
t

sup
s≥0

||A(s, s + t)||∞ (5)

where ||X||∞ = inf{x : Pr(X > x) = 0}. Notice that α(0) can be regarded as the long

term average rate of the arrival process A and α(∞) the long term peak rate of A. Hence,

α(u) is an increasing function from the long term average rate to the long term peak rate.

The effective capacity function α(u) is essential in characterizing the asymptotic behav-

ior of a queueing system with an exponential arrival process A. Consider a queue of infinite

buffer size served by a single server of rate r. Let a(t) be the arrival rate to the queue

at time t, and denote the queue length at time t by Q(t). Using the theory of effective

bandwidth, it can be shown that the probability of Q(t) exceeding a threshold B satisfies

[23]

lim sup
B→∞

1
B

log sup
t≥0

Pr{Q(t) ≥ B} ≤ −u∗ (6)

where u∗ = sup{u > 0 : α(u) < r}.

From (6), it is clear that for any u > 0, if α(u) < r, then the asymptotic decay rate

of the queue length process Q(t), as defined by the left hand side of (6), is upper bounded

by u. Informally speaking, the queue length decays exponentially at a rate of at least u.

Owing to this fact, a process whose asymptotic log-moment generating function (3) exists

for all u > 0, is referred to as an exponential process [167, page 24] to indicate that its

queue length process has an exponentially decaying tail distribution.

The result in (6) can be made tight if stronger conditions on the arrival process are

imposed. For example, if A(s, t) is stationary, and

Λ(u) = lim
t→∞

1
t

log E[euA(0,t)], (7)
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exists and is differentiable for u ∈ R, and Q(0) = 0, then one can show [24, page 291] that

lim
B→∞

1
B

log sup
t≥0

Pr{Q(t) ≥ B} = lim
B→∞

1
B

log Pr{Q(∞) ≥ B} = −u∗ (8)

where Q(∞) denotes the steady state queue length, and u∗ is the solution of the equation

α(u) = r. In other words, u∗ can be obtained by

u∗ = α−1(r) (9)

where α−1(·) is the inverse function of α(u).

Under the aforementioned stronger conditions, the effective bandwidth functions of inde-

pendent arrivals are additive [24, page 299]: let {ai(t)} (1 ≤ i ≤ N , t ≥ 0) be N independent

rate processes with effective bandwidths {αi(u)}, and let a(t) =
∑N

i=1 ai(t) (t ≥ 0) be the

aggregate rate process, then the effective bandwidth α(u) of the aggregate process is equal

to
∑N

i=1 αi(u), i.e., α(u) =
∑N

i=1 αi(u).

Eq. (8) indicates that the effective bandwidth α(u) of the arrival process characterizes

the exact bandwidth requirement for achieving the event that Pr{Q(∞) ≥ q} ≤ e−uq

asymptotically, and suggests the following effective bandwidth approximation to the queue

length tail distribution Pr{Q(∞) ≥ q}:

Pr{Q(∞) ≥ q} ≈ e−u∗q (10)

In this section, we have introduced the basic results of effective bandwidth theory for

exponential processes. We will use these results in later chapters.

2.3 Scheduling for Wireless Transmission

Packet scheduling is an important QoS provisioning mechanism at a network node. Com-

pared with the scheduler design for the wired networks, the design of scheduling for wireless

networks with QoS guarantees, is particularly challenging. This is because wireless chan-

nels have low reliability, and time varying signal strength, which may cause severe QoS

violations. Further, the capacity of a wireless channel is severely limited, making efficient

bandwidth utilization a priority.
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In wired networks, the task of packet scheduling is to associate a packet with a time

slot. In wireless networks, packet scheduling can be more general than that; its function

is to schedule such resources as time slots, powers, data rates, channels, or combination of

them, when packets are transmitted. (Note that a wired scheduler does not assign powers,

data rates, and channels since packets are transmitted at a constant power, a constant

data rate or link speed, and through one shared channel.)1 Specifically, based on the

source characteristics, QoS requirements, channel states, and perhaps the queue lengths, a

wireless scheduler assigns time slots, powers, data rates, channels, or combinations of them,

to the packets for transmission. For example, in TDMA systems, time slots, powers, and

data rates can be scheduled [30, 105]; in FDMA systems, channels (i.e., frequencies) can

be assigned [157] (see Figure 3(b)); in CDMA systems, powers, channels (i.e., signature

sequences), and data rates (i.e., variable spreading factor) can be allotted [7, 43, 113, 137].

Scheduler

Wireless

channel

User 1

User K

Mobile terminals
Base station

To User 1

To User K

Buffer 1

Buffer K

Channel state

information
Channel state

information

Scheduler

Base station Wireless channels

Channel N

Channel 1 User 1

User K

Mobile terminals
To User 1

To User K

Buffer 1

Buffer K

(a) (b)

Figure 3: Wireless schedulers: (a) single channel, and (2) multiple channels.

A unique feature of wireless scheduling with QoS guarantees is its channel state de-

pendency , i.e., how to schedule the resources depends on the channel state (see Figure 3).

This is necessary since without the knowledge about the channel state, it is impossible to

guarantee QoS! A key difference between a wired scheduler and a wireless scheduler is that

a wireless scheduler can utilize asynchronous channel variations or multiuser diversity [158]

1Here, we assume all flows share one wired channel/link. For the multiple shared channel case, a switch
needs to be used.
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while a wired scheduler cannot.

Except the aforementioned differences, wireless and wired schedulers with QoS guaran-

tees perform the same functions as below.

• Isolation: the scheduler supports the implementation of network service classes and

provides isolation among these service classes in order to prevent one class from in-

terfering with another class in achieving its QoS guarantees;

• Sharing : the scheduler controls bandwidth sharing among various service classes, and

among flows in the same class, so that 1) statistical multiplexing gains can be exploited

to efficiently utilize network resources, and 2) fair sharing of bandwidth among classes

and sessions can be enforced.

There have been many proposals on scheduling with QoS constraints in wireless net-

works (see [46] for a survey). These schedulers fall into two classes: work-conserving and

non-work-conserving. A work-conserving scheduler is never idle if there is a packet await-

ing transmission. Examples include wireless fair queueing [87, 94, 106], modified largest

weighted delay first (M-LWDF) [4], opportunistic transmission scheduling [83] and lazy

packet scheduling [102]. In contrast, a non-work-conserving scheduler may be idle even

if there is a backlogged packet in the queue because the packet may not be eligible for

transmission. Examples are weighted round robin, the joint Knopp&Humblet/round robin

(K&H/RR) scheduler [157] and the reference channel (RC) scheduler [158]. A non-work-

conserving scheduler is an important component of a hierarchical scheduler supporting both

QoS-assured flows and best-effort traffic. Such a hierarchical scheduler for wireless trans-

mission was described in [152].

Next we briefly overview the pros and cons of some representative scheduling algorithms

mentioned above.

Wireless fair queueing schemes [87, 94, 106] are aimed at applying wired fair queueing

[99] to wireless networks. The objective of these schemes is to provide fairness, while provid-

ing loose QoS guarantees. Although these schedulers make decisions based on the channel
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state information (i.e., good or bad channel), they do not exploit asynchronous channel

variations to improve efficiency since packets destined to different users are transmitted at

the same bit-rate.

The M-LWDF algorithm [4] and the opportunistic transmission scheduling [83] optimize

a certain QoS parameter or utility index. They both exploit asynchronous channel variations

and allow different user to transmit at different bit-rate or signal-to-interference-noise ratio

(SINR), so that higher efficiency can be achieved. However, they do not provide the explicit

QoS guarantees such as data rate, delay bound, and delay-bound violation probability.

The lazy packet scheduling [102] is targeted at minimizing energy, subject to a delay

constraint. The scheme only considers AWGN channels and thus allows for a determinis-

tic delay bound, unlike fading channels and the general statistical QoS considered in this

dissertation.

Time-division scheduling (or weighted round robin) has been proposed for 3-G WCDMA

[60, page 226]. However, their proposal did not provide methods on how to use time-division

scheduling to support statistical QoS guarantees explicitly.

To address the limitation of the above scheduling algorithms, i.e., inability of provision-

ing explicit QoS, we present the K&H/RR scheduler in Chapter 5 and the reference channel

scheduler in Chapter 6, respectively.

2.4 Call Admission Control in Wireless Networks

The objective of call admission control (CAC) is to provide QoS guarantees for individual

connections while efficiently utilizing network resources. Specifically, a CAC algorithm

makes the following decision:

Given a call arriving to a network, can it be admitted by the network, with its

requested QoS satisfied and without violating the QoS guarantees made to the existing

connections?
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The decision is made based on the availability of network resources as well as traffic

specifications and QoS requirements of the users. If the decision is affirmative, necessary

network resources need to be reserved to support the QoS. Hence, CAC is closely related

to channel allocation, base station assignment, scheduling, power control, and bandwidth

reservation. For example, whether the channel assignment is dynamic or fixed will result in

different CAC algorithms.

The CAC problem can be formulated as an optimization problem, i.e., maximize the

network efficiency/utility/revenue subject to the QoS constraints of connections. The QoS

constraints could be signal-to-interference ratio (SIR), the ratio of bit energy to interference

density Eb/I0, bit error rate (BER), call dropping probability, or connection-level QoS (such

as a data rate, delay bound, and delay-bound violation probability triplet). For example, a

CAC problem can be maximizing the number of users admitted or minimizing the blocking

probability, subject to the BER violation probability not more than a required value ε1,

i.e.,

maximize the number of users admitted (11)

or minimize the blocking probability (12)

subject to Pr{ BER> BERth} ≤ ε1 (13)

where BERth denotes a threshold for the BER. The constraint (13) can be replaced by

subject to the dropping probability ≤ ε2 (14)

where the value of ε2 may be different from that of ε1.

CAC can also be used to provide priority to some service classes, or to enforce some

policies like fair resource sharing, which includes complete sharing, complete partitioning,

and threshold-based sharing.

There have been many algorithms on CAC in wireless networks (refer to [1] for a sur-

vey). These CAC algorithms may differ in admission criteria; they may be centralized or

distributed; they may use global (all-cell) or local (single-cell) information about resource

availability and interference levels to make admission decisions. The design of distributed
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CAC for cellular networks is not an easy task since intra-cell and inter-cell interference needs

to be considered. The associated intra-cell and inter-cell resource allocation are complicated

due to the interference.

A typical admission criterion is SIR. For example, Ref. [84] employs SIR to define a

measure called residual capacity, and uses it as the admission criterion: if the residual

capacity is positive, accept the new call; otherwise, reject it. Ref. [45] uses the concept of

effective bandwidth2 to measure whether the signal to interference density ratio (SIDR)

can be satisfied for each class with certain probability. There, SIDR is defined as rs×Eb/I0,

where rs denotes the source data rate in bits/sec. If the total effective bandwidth including

that for the new call, is less than the available bandwidth, the new call will be accepted;

otherwise, it will be rejected.

Another important admission criterion is transmitted or received power. In [73], a new

call is admitted if the total transmitted power does not exceed a preset value. In [74], the

CAC uses the 95-percentile of the total received power as the admission criterion.

However, none of the existing CAC algorithms provides explicit connection-level QoS

guarantees such as a data rate, delay bound, and delay-bound violation probability triplet.

In this dissertation, we propose CAC algorithms that are capable of providing connection-

level QoS guarantees explicitly. Such CAC schemes will be presented in Chapters 5 and

6.

2.5 Wireless Channel Modeling

Figure 4 shows a wireless communication system. The data source generates packets and

the packets are first put into a buffer to accommodate the mismatch between the source

rate and the time-varying wireless channel capacity. Then the packets traverse a channel

encoder, a modulator, a wireless channel, a demodulator, a channel decoder, a network

access device, and finally reach the data sink.

2Note that the effective bandwidth defined in [45] is different from that defined in Section 2.2.1.
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Figure 4: A wireless communication system and associated channel models.

As shown in Figure 4, one can model the communication channel at different layers as

below

• Radio-layer channel: is the part between the output of the modulator and the input

of the demodulator.

• Modem-layer channel: is the part between the output of the channel encoder and the

input of the channel decoder.

• Codec-layer channel: is the part between the output of the network access device at

the transmitter, and the input of the network access device at the receiver.

• Link-layer channel: is the part between the output of the data source and the input

of the data sink.

The above radio-layer, the modem-layer, and the codec-layer channels can all be regarded

as physical-layer channels.

As shown in Figure 5, radio-layer channel models can be classified into two categories:
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large-scale path loss and small-scale fading. Large-scale path loss models, also called propa-

gation models, characterize the underlying physical mechanisms (i.e., reflection, diffraction,

scattering) for specific paths. These models specify signal attenuation as a function of

distance, which is affected by prominent terrain contours (buildings, hills, forests, etc.)

between the transmitter and the receiver. Path loss models describe the mean signal at-

tenuation vs. distance in a deterministic fashion (e.g., nth-power law [109]), and also the

statistical variation about the mean (e.g., log-normal distribution [109]).

Small-scale fading models describe the characteristics of generic radio paths in a sta-

tistical fashion. Small-scale fading refers to the dramatic changes in signal amplitude and

phase that can be experienced as a result of small changes (as small as a half-wavelength)

in the spatial separation between the receiver and the transmitter [119]. Small-scale fading

can be slow or fast, depending on the Doppler rate. Small-scale fading can also be flat

or frequency-selective, depending on the delay spread of the channel. The statistical time-

varying nature of the envelope of a flat-fading signal is characterized by distributions such as

Rayleigh, Ricean, Nakagami, etc. [109]. Uncorrelated scattering is often assumed, to extend

these distributions to the frequency-selective case. The large-scale path loss and small-scale

fading together characterize the received signal power over a wide range of distances.

A modem-layer channel can be modeled by a finite-state Markov chain [165], whose

states are characterized by different bit error rates (BER). For example, in [165], a Rayleigh
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fading with certain Doppler spectrum is converted to a BER process, modeled by a finite-

state Markov chain. The idea is the following: 1) quantize the continuous Rayleigh random

variable into a discrete random variable, based on certain optimal criterion (e.g., minimum

mean squared error), 2) map the resulting discrete random variable or SNR to discrete

BER, for a given modulation scheme (say, binary phase shift keying), and 3) estimate the

state transition probabilities, which reflect the Doppler spectrum. This procedure gives the

states (i.e., BER’s) and the transition probability matrix of the Markov chain.

A codec-layer channel can also be modeled by a finite-state Markov chain, whose states

can be characterized by different data-rates [71], or symbol being error-free/in-error, or

channel being good/bad [170]. The two state Markov chain model with good/bad states

[170] is widely used in analyzing the performance of upper layer protocols such as TCP

[171]. If the decoder uses hard decisions from the demodulator/detector, a codec-layer

channel model can be easily obtained from a modem-layer channel model. For example,

the good/bad channel model can be derived from a finite-state Markov chain with BER’s

as the states in the following way: first compute symbol error probability from BER; then

decide the channel being good if the symbol error probability is less than a preset threshold,

otherwise decide the channel being bad. The resulting good/bad channel process is a two

state Markov chain.

Radio-layer channel models provide a quick estimate of the performance of wireless

communications systems (e.g., symbol error rate vs. signal-to-noise ratio (SNR)). However,

radio-layer channel models cannot be easily translated into complex QoS guarantees for a

connection, such as bounds on delay violation probability and packet loss ratio. The reason

is that, these complex QoS requirements need an analysis of the queueing behavior of the

connection, which is hard to extract from radio-layer models [156]. Thus it is hard to use

radio-layer models in QoS support mechanisms, such as admission control and resource

reservation.

Finite-state Markov chain models for a modem-layer or codec-layer channel also require

a queueing analysis of very high complexity to obtain connection-level QoS such as a data
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rate, delay bound, and delay-bound violation probability triplet. We will show this through

an example in Section 5.2.3.

Recognizing that the limitation of the physical-layer channel models in QoS support, is

the difficulty in analyzing queues, we propose moving the channel model up the protocol

stack, from the physical-layer to the link-layer. The resulting link-layer channel model is

called effective capacity model and will be presented in Chapter 4.
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CHAPTER 3

END-SYSTEM-BASED QOS SUPPORT: AN OVERVIEW

In this chapter, we overview the issues and challenges in end-system-based QoS support,

and present a survey of related work. Since end-system-based QoS support is typically

application specific, for illustration purpose, we choose real-time video transport over the

Internet as the target application. The end-system-based techniques surveyed here are

general and hence also applicable to wireless video transport.

3.1 Introduction

Unicast and multicast delivery of real-time video are important building blocks of many

Internet multimedia applications, such as Internet television, video conferencing, distance

learning, digital libraries, tele-presence, and video-on-demand. Transmission of real-time

video has bandwidth, delay and loss requirements. However, there is no QoS guarantee for

video transmission over the current Internet. In addition, for video multicast, the hetero-

geneity of the networks and receivers makes it difficult to achieve bandwidth efficiency and

service flexibility. Therefore, there are many challenging issues that need to be addressed

in designing protocols and mechanisms for Internet video transmission.

We list the challenging QoS issues as follows.

1. Bandwidth. To achieve acceptable presentation quality, transmission of real-time

video typically has minimum bandwidth requirement (say, 28 kb/s). However, the

current Internet does not provide bandwidth reservation to meet such a requirement.

Furthermore, since traditional routers typically do not actively participate in conges-

tion control [21], excessive traffic can cause congestion collapse, which can further

degrade the throughput of real-time video.
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2. Delay. In contrast to data transmission, which are usually not subject to strict

delay constraints, real-time video requires bounded end-to-end delay (say, 1 second).

That is, every video packet must arrive at the destination in time to be decoded and

displayed. This is because real-time video must be played out continuously. If the

video packet does not arrive timely, the playout process will pause, which is annoying

to human eyes. In other words, the video packet that arrives beyond a time constraint

is useless and can be considered lost. Although real-time video requires timely delivery,

the current Internet does not offer such a delay guarantee. In particular, the congestion

in the Internet could incur excessive delay, which exceeds the delay requirement of

real-time video.

3. Loss. Loss of packets can potentially make the presentation displeasing to human

eyes, or, in some cases, make the presentation impossible. Thus, video applications

typically impose some packet loss requirements. Specifically, the packet loss ratio is

required to be kept below a threshold (say, 1%) to achieve acceptable visual quality.

Although real-time video has a loss requirement, the current Internet does not provide

any loss guarantee. In particular, the packet loss ratio could be very high during

network congestion, causing severe degradation of video quality.

Receiver Receiver
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ReceiverReceiver

Sender
Link 1 Link 2

Receiver Receiver
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Figure 6: (a) Unicast video distribution using multiple point-to-point connections. (b)
Multicast video distribution using point-to-multipoint transmission.

Besides the above QoS problems, for video multicast applications, there is another chal-

lenge coming from the heterogeneity problem. Before addressing the heterogeneity problem,

we first describe the advantages and disadvantages of unicast and multicast. The unicast
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delivery of real-time video uses point-to-point transmission, where only one sender and one

receiver are involved. In contrast, the multicast delivery of real-time video uses point-to-

multipoint transmission, where one sender and multiple receivers are involved. For applica-

tions such as video conferencing and Internet television, delivery using multicast can achieve

high bandwidth efficiency since the receivers can share links. On the other hand, unicast

delivery of such applications is inefficient in terms of bandwidth utilization. An example

is give in Fig. 6, where, for unicast, five copies of the video content flow across Link 1 and

three copies flow across Link 2 as shown in Fig. 6(a). In contrast, the multicast removes

this replication. That is, there is only one copy of the video content traversing any link in

the network (Fig. 6(b)), resulting in substantial bandwidth savings. However, the efficiency

of multicast is achieved at the cost of losing the service flexibility of unicast (i.e., in unicast,

each receiver can individually negotiate service parameters with the source). Such lack of

flexibility in multicast can be problematic in a heterogeneous network environment, which

we elaborate as follows.

Heterogeneity. There are two kinds of heterogeneity, namely, network heterogeneity and

receiver heterogeneity. Network heterogeneity refers to the sub-networks in the Internet

having unevenly distributed resources (e.g., processing, bandwidth, storage and conges-

tion control policies). Network heterogeneity could make different user experience different

packet loss/delay characteristics. Receiver heterogeneity means that receivers have different

or even varying latency requirements, visual quality requirement, and/or processing capabil-

ity. For example, in live multicast of a lecture, participants who want to ask questions and

interact with the lecturer desire stringent real-time constraints on the video while passive

listeners may be willing to sacrifice latency for higher video quality.

The sharing nature of multicast and the heterogeneity of networks and receivers some-

times present a conflicting dilemma. For example, the receivers in Fig. 6(b) may attempt

to request for different video quality with different bandwidth. But only one copy of the

video content is sent out from the source. As a result, all the receivers have to receive the
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same video content with the same quality. It is thus a challenge to design a multicast mech-

anism that not only achieves efficiency in network bandwidth but also meets the various

requirements of the receivers.

To address the above technical issues, extensive research based on the end system-based

approach has been conducted and various solutions have been proposed. This chapter is

aimed at giving the reader a big picture of this challenging area and identifying a design

space that can be explored by video application designers. We take a holistic approach to

present solutions from both transport and compression perspectives. By transport perspec-

tive, we refer to the use of control/processing techniques without regard of the specific video

semantics. In other words, these control/processing techniques are applicable to generic

data. By compression perspective, we mean employing signal processing techniques with

consideration of the video semantics on the compression layer. With the holistic approach,

we next present a framework, which consists of two components, namely, congestion control

and error control.

1. Congestion control. Bursty loss and excessive delay have devastating effect on

video presentation quality and they are usually caused by network congestion. Thus,

congestion control is required to reduce packet loss and delay. One congestion control

mechanism is rate control [17]. Rate control attempts to minimize network conges-

tion and the amount of packet loss by matching the rate of the video stream to the

available network bandwidth. In contrast, without rate control, the traffic exceeding

the available bandwidth would be discarded in the network. To force the source to

send the video stream at the rate dictated by the rate control algorithm, rate adaptive

video encoding [150] or rate shaping [44] is required.

2. Error control. The purpose of congestion control is to prevent packet loss. How-

ever, packet loss is unavoidable in the Internet and may have significant impact on

perceptual quality. Thus, other mechanisms must be in place to maximize video pre-

sentation quality in presence of packet loss. Such mechanisms include error control

mechanisms, which can be classified into four types, namely, forward error correction

31



(FEC), retransmission, error-resilience, and error concealment.

The remainder of this chapter is organized as follows. Section 3.2 presents the approaches

for congestion control. In Section 3.3, we describe the mechanisms for error control. Sec-

tion 3.4 summarizes this chapter.

3.2 Congestion Control

There are three mechanisms for congestion control: rate control, rate adaptive video en-

coding, and rate shaping. Rate control follows the transport approach; rate adaptive video

encoding follows the compression approach; rate shaping could follow either the transport

approach or the compression approach.

For the purpose of illustration, we present an architecture including the three congestion

control mechanisms in Fig. 7, where the rate control is a source-based one (i.e., the source

is responsible for adapting the rate). Although the architecture in Fig. 7 is targeted at

transporting live video, this architecture is also applicable to stored video if the rate adaptive

encoding is excluded. At the sender side, the compression layer compresses the live video

based on a rate adaptive encoding algorithm. After this stage, the compressed video bit-

stream is first filtered by the rate shaper and then passed through the RTP/UDP/IP layers

before entering the Internet, where RTP is Real-time Transport Protocol [114]. Packets

may be dropped inside the Internet (due to congestion) or at the destination (due to excess

delay). For packets that are successfully delivered to the destination, they first pass through

the IP/UDP/RTP layers before being decoded at the video decoder.

Under our architecture, a QoS monitor is maintained at the receiver side to infer network

congestion status based on the behavior of the arriving packets, e.g., packet loss and delay.

Such information is used in the feedback control protocol, which sends information back to

the video source. Based on such feedback information, the rate control module estimates

the available network bandwidth and conveys the estimated network bandwidth to the rate

adaptive encoder or the rate shaper. Then, the rate adaptive encoder or the rate shaper

regulates the output rate of the video stream according to the estimated network bandwidth.
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Figure 7: A layered architecture for transporting real-time video.

It is clear that the source-based congestion control must include: (1) rate control, and (2)

rate adaptive video encoding or rate shaping.

We organize the rest of this section as follows. In Section 3.2.1, we survey the approaches

for rate control. Section 3.2.2 describes basic methods for rate-adaptive video encoding. In

Section 3.2.3, we classify methodologies for rate shaping and summarize representative

schemes.

3.2.1 Rate Control: A Transport Approach

Since TCP retransmission introduces delays that may not be acceptable for real-time video

applications, UDP is usually employed as the transport protocol for real-time video streams

[150]. However, UDP is not able to provide congestion control and overcome the lack

of service guarantees in the Internet. Therefore, it is necessary to implement a control

mechanism on the upper layer (higher than UDP) to prevent congestion.

There are two types of control for congestion prevention: one is window-based [67] and

the other is rate-based [129]. The window-based control such as TCP works as follows:

it probes for the available network bandwidth by slowly increasing a congestion window

(used to control how much data is outstanding in the network); when congestion is detected

(indicated by the loss of one or more packets), the protocol reduces the congestion window
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greatly. The rapid reduction of the window size in response to congestion is essential to avoid

network collapse. On the other hand, the rate-based control sets the sending rate based on

the estimated available bandwidth in the network; if the estimation of the available network

bandwidth is relatively accurate, the rate-based control could also prevent network collapse.

Since the window-based control like TCP typically couples retransmission which can

introduce intolerable delays, the rate-based control (i.e., rate control) is usually employed

for transporting real-time video [150]. Existing rate control schemes for real-time video can

be classified into three categories, namely, source-based, receiver-based, and hybrid rate

control, which are described in Sections 3.2.1.1 to 3.2.1.3, respectively.

3.2.1.1 Source-based Rate Control

Under the source-based rate control, the sender is responsible for adapting the transmission

rate of the video stream. The source-based rate control can minimize the amount of packet

loss by matching the rate of the video stream to the available network bandwidth. In con-

trast, without rate control, the traffic exceeding the available bandwidth could be discarded

in the network.

Typically, feedback is employed by source-based rate control mechanisms to convey the

changing status of the Internet. Based upon the feedback information about the network,

the sender could regulate the rate of the video stream. The source-based rate control can

be applied to both unicast [150] and multicast [15].

For unicast video, the existing source-based rate control mechanisms can be classified

into two approaches, namely, the probe-based approach and the model-based approach,

which are presented as follows.

Probe-based approach. Such an approach is based on probing experiments. Specifically,

the source probes for the available network bandwidth by adjusting the sending rate so that

some QoS requirements are met, e.g., packet loss ratio p is below a certain threshold Pth

[150]. The value of Pth is determined according to the minimum video perceptual quality

required by the receiver. There are two ways to adjust the sending rate: Additive Increase
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and Multiplicative Decrease (AIMD) [150], and Multiplicative Increase and Multiplicative

Decrease (MIMD) [129]. The probe-based rate control could avoid congestion since it always

tries to adapt to the congestion status, e.g., keep the packet loss at an acceptable level.

For the purpose of illustration, we briefly describe the source-based rate control based

on additive increase and multiplicative decrease. The AIMD rate control algorithm is shown

as follows [150].

if (p ≤ Pth)

r := min{(r + AIR), MaxR};
else

r := max{(α × r),MinR}.

where p is the packet loss ratio; Pth is the threshold for the packet loss ratio; r is the sending

rate at the source; AIR is the additive increase rate; MaxR and MinR are the maximum

rate and the minimum rate of the sender, respectively; and α is the multiplicative decrease

factor.

Packet loss ratio p is measured by the receiver and conveyed back to the sender. An

example source rate behavior under the AIMD rate control is illustrated in Fig. 8.
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Figure 8: Source rate behavior under the AIMD rate control.

Model-based approach. Different from the probe-based approach, which implicitly es-

timates the available network bandwidth, the model-based approach attempts to estimate

the available network bandwidth explicitly. This can be achieved by using a throughput

35



model of a TCP connection, which is characterized by the following formula [47]:

λ =
1.22 × MTU

RTT ×√
p

, (15)

where λ is the throughput of a TCP connection, MTU (Maximum Transit Unit) is the

maximum packet size used by the connection, RTT is the round trip time for the connection,

p is the packet loss ratio experienced by the connection. Under the model-based rate control,

Eq. (15) can be used to determine the sending rate of the video stream. That is, the rate-

controlled video flow gets its bandwidth share like a TCP connection. As a result, the

rate-controlled video flow could avoid congestion in a way similar to that of TCP, and can

co-exist with TCP flows in a “friendly” manner. Hence, the model-based rate control is

also called “TCP friendly” rate control [139]. In contrast to this TCP friendliness, a flow

without rate control can get much more bandwidth than a TCP flow when the network is

congested. This may lead to possible starvation of competing TCP flows due to the rapid

reduction of the TCP window size in response to congestion.

To compute the sending rate λ in Eq. (15), it is necessary for the source to obtain the

MTU , RTT , and packet loss ratio p. The MTU can be found through the mechanism

proposed by Mogul and Deering [92]. In the case when the MTU information is not avail-

able, the default MTU , i.e., 576 bytes, will be used. The parameter RTT can be obtained

through feedback of timing information. In addition, the receiver can periodically send the

parameter p to the source in the time scale of the round trip time. Upon the receipt of the

parameter p, the source estimates the sending rate λ and then a rate control action may be

taken.

Single-channel multicast vs. unicast. For multicast under the source-based rate con-

trol, the sender uses a single channel or one IP multicast group to transport the video

stream to the receivers. Thus, such multicast is called single-channel multicast.

For single-channel multicast, only the probe-based rate control can be employed [15].

A representative work is the IVS (INRIA Video-conference System) [15]. The rate control

in IVS is based on additive increase and multiplicative decrease, which is summarized as

follows. Each receiver estimates its packet loss ratio, based on which, each receiver can
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determine the network status to be in one of the three states: UNLOADED, LOADED,

and CONGESTED. The source solicits the network status information from the receivers

through probabilistic polling, which helps to avoid feedback implosion.1 In this way, the

fraction of UNLOADED and CONGESTED receivers can be estimated. Then, the source

adjusts the sending rate according to the following algorithm.

if (Fcon > Tcon)

r := max(r/2,MinR);

else if (Fun == 100%)

r := min{(r + AIR), MaxR};

where Fcon, Fun, and Tcon are fraction of CONGESTED receivers, fraction of UNLOADED

receivers, and a preset threshold, respectively; r, MaxR, MinR, and AIR are the sending

rate, the maximum rate, the minimum rate, and additive increase rate, respectively.

Single-channel multicast has good bandwidth efficiency since all the receivers share one

channel (e.g., the IP multicast group in Fig. 6(b)). But single-channel multicast is unable

to provide service flexibility and differentiation to different receivers with diverse access link

capacities, processing capabilities and interests.
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Figure 9: Trade-off between bandwidth efficiency and service flexibility.

On the other hand, multicast video, delivered through individual unicast streams (see

Fig. 6(a)), can offer differentiated services to receivers since each receiver can individually

negotiate the service parameters with the source. But the problem with unicast-based

multicast video is bandwidth inefficiency.

1Feedback implosion means that there are too many feedback messages for the source to handle.
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Single-channel multicast and unicast-based multicast are two extreme cases shown in

Fig. 9. To achieve good trade-off between bandwidth efficiency and service flexibility for

multicast video, two mechanisms, namely, receiver-based and hybrid rate control, have been

proposed, which we discuss as follows.

3.2.1.2 Receiver-based Rate Control

Under the receiver-based rate control, the receivers regulate the receiving rate of video

streams by adding/dropping channels. In contrast to the sender-based rate control, the

sender does not participate in rate control here. Typically, the receiver-based rate control

is applied to layered multicast video rather than unicast video. This is primarily because

the source-based rate control works reasonably well for unicast video and the receiver-based

rate control is targeted at solving heterogeneity problem in the multicast case.

Before we address the receiver-based rate control, we first briefly describe layered multi-

cast video as follows. At the sender side, a raw video sequence is compressed into multiple

layers: a base layer (i.e., Layer 0) and one or more enhancement layers (e.g., Layers 1 and

2 in Fig. 10). The base layer can be independently decoded and it provides basic video

quality; the enhancement layers can only be decoded together with the base layer and they

further refine the quality of the base layer. This is illustrated in Fig. 10. The base layer

consumes the least bandwidth (e.g., 64 kb/s in Fig. 10); the higher the layer is, the more

bandwidth the layer consumes (see Fig. 10). After compression, each video layer is sent to

a separate IP multicast group. At the receiver side, each receiver subscribes to a certain set

of video layers by joining the corresponding IP multicast group. In addition, each receiver

tries to achieve the highest subscription level of video layers without incurring congestion.

In the example shown in Fig. 11, each layer has a separate IP multicast group. Receiver

1 joins all three IP multicast groups. As a result, it consumes 1 Mb/s and receives all the

three layers. Receiver 2 joins the two IP multicast groups for Layer 0 and Layer 1 with

bandwidth usage of 256 kb/s. Receiver 3 only joins the IP multicast group for Layer 0 with

bandwidth consumption of 64 kb/s.
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Figure 10: Layered video encoding/decoding. D denotes the decoder.
            

Figure 11: IP multicast for layered video.

Like the source-based rate control, we classify existing receiver-based rate control mech-

anisms into two approaches, namely, the probe-based approach and the model-based ap-

proach, which are presented as follows.

Probe-based approach. This approach was first employed in Receiver driven Layered

Multicast (RLM) [91]. Basically, the probe-based rate control consists of two parts:

1. When no congestion is detected, a receiver probes for the available bandwidth by

joining a layer, which leads to an increase of its receiving rate. If no congestion is

detected after the joining, the join-experiment is considered “successful”. Otherwise,

the receiver drops the newly added layer.

2. When congestion is detected, the receiver drops a layer, resulting in reduction of its

receiving rate.
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The above control has a potential problem when the number of receivers becomes large.

If each receiver carries out the above join-experiment independently, the aggregate frequency

of such experiments increases with the number of receivers. Since a failed join-experiment

could incur congestion to the network, an increase of join-experiments could aggravate

network congestion.

To minimize the frequency of join-experiments, a shared learning algorithm was proposed

in [91]. The essence of the shared learning algorithm is to have a receiver multicast its intent

to the group before it starts a join-experiment. In this way, each receiver can learn from

other receivers’ failed join-experiments, resulting in a decrease of the number of failed join-

experiments.

The shared learning algorithm in [91] requires each receiver to maintain a comprehen-

sive group knowledge base, which contains the results of all the join-experiments for the

multicast group. In addition, the use of multicasting to update the comprehensive group

knowledge base may decrease usable bandwidth on low-speed links and lead to lower quality

for receivers on these links. To reduce message processing overhead at each receiver and

to decrease bandwidth usage of the shared learning algorithm, a hierarchical rate control

mechanism called Layered Video Multicast with Retransmissions (LVMR) [80] was pro-

posed. The methodology of the hierarchical rate control is to partition the comprehensive

group knowledge base, organize the partitions in a hierarchical way and distribute relevant

information (rather than all the information) to the receivers. In addition, the partitioning

of the comprehensive group knowledge base allows multiple experiments to be conducted

simultaneously, making it faster for the rate to converge to the stable state. Although the

hierarchical rate control could reduce control protocol traffic, it requires installing agents

in the network so that the comprehensive group knowledge base can be partitioned and

organized in a hierarchical way.

Model-based approach. Unlike the probe-based approach which implicitly estimates

the available network bandwidth through probing experiments, the model-based approach
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Figure 12: Flow chart of the basic model-based rate control for a receiver.

attempts to explicitly estimate the available network bandwidth. The model-based ap-

proach is based on the throughput model of a TCP connection, which was described in

Section 3.2.1.1.

Fig. 12 shows the flow chart of the basic model-based rate control executed by each

receiver, where γi is the transmission rate of Layer i. In the algorithm, it is assumed that

each receiver knows the transmission rate of all the layers. For the ease of description, we

divide the algorithm into the following steps.

Initialization: A receiver starts with subscribing the base layer (i.e., Layer 0) and ini-

tializes the variable L to 0. The variable L represents the highest layer currently

subscribed.

Step 1: Receiver estimates MTU , RTT , and packet loss ratio p for a given period. The
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MTU can be found through the mechanism proposed by Mogul and Deering [92].

Packet loss ratio p can be easily obtained. However, the RTT cannot be measured

through a simple feedback mechanism due to feedback implosion problem. A mecha-

nism [130], based on RTCP protocol, has been proposed to estimate the RTT .

Step 2: Upon obtaining MTU , RTT , and p for a given period, the target rate λ can be

computed through Eq. (15).

Step 3: Upon obtaining λ, a rate control action can be taken. If λ < γ0, drop the base

layer and stop receiving video (the network cannot deliver even the base layer due to

congestion); otherwise, determine L′, the largest integer such that
∑L′

i=0 γi ≤ λ. If

L′ > L, add the layers from Layer L+1 to Layer L′, and Layer L′ becomes the highest

layer currently subscribed (let L = L′); if L′ < L, drop layers from Layer L′ + 1 to

Layer L, and Layer L′ becomes the highest layer currently subscribed (let L = L′).

Return to Step 1.

The above algorithm has a potential problem when the number of receivers becomes

large. If each receiver carries out the rate control independently, the aggregate frequency of

join-experiments increases with the number of receivers. Since a failed join-experiment could

incur congestion to the network, an increase of join-experiments could aggravate network

congestion. To coordinate the joining/leaving actions of the receivers, a scheme based on

synchronization points [134] was proposed. With small protocol overhead, the proposed

scheme in [134] helps to reduce the frequency and duration of join-experiments, resulting

in a smaller possibility of congestion.

3.2.1.3 Hybrid Rate Control

Under the hybrid rate control, the receivers regulate the receiving rate of video streams

by adding/dropping channels while the sender also adjusts the transmission rate of each

channel based on feedback information from the receivers. Since the hybrid rate control

consists of rate control at both the sender and a receiver, previous approaches described in

Sections 3.2.1.1 and 3.2.1.2 can be employed.
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The hybrid rate control is targeted at multicast video and is applicable to both lay-

ered video [120] and non-layered video [25]. Different from the source-based rate control

framework where the sender uses a single channel, the hybrid rate control framework uses

multiple channels. On the other hand, different from the receiver-based rate control frame-

work where the rate for each channel is constant, the hybrid rate control enables the sender

to dynamically change the rate for each channel based on congestion status.

One representative work using hybrid rate control is destination set grouping (DSG)

protocol [25]. Before we present the DSG protocol, we first briefly describe the architecture

associated with DSG. At the sender side, a raw video sequence is compressed into multiple

streams (called replicated adaptive streams), which carry the same video information with

different rate and quality. Different from layered video, each stream in DSG can be decoded

independently. After compression, each video stream is sent to a separate IP multicast

group. At the receiver side, each receiver can choose a multicast group to join by taking

into account of its capability and congestion status. The receivers also send feedback to the

source, and the source uses this feedback to adjust the transmission rate for each stream.

The DSG protocol consists of two main components:

1. Rate control at the source. For each stream, the rate control at the source is

essentially the same as that used in IVS (see Section 3.2.1.1). But the feedback

control for each stream works independently.

2. Rate control at a receiver. A receiver can change its subscription and join a higher

or lower quality stream based on network status, i.e., the fraction of UNLOADED,

LOADED and CONGESTED receivers. The mechanism to obtain the fraction of

UNLOADED, LOADED and CONGESTED receivers is similar to that used in IVS.

The rate control at a receiver takes the probe-based approach as presented in Sec-

tion 3.2.1.2.
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3.2.2 Rate-adaptive Video Encoding: A Compression Approach

Rate-adaptive video encoding has been studied extensively for various standards and ap-

plications, such as video conferencing with H.261 and H.263 [89, 144], storage media with

MPEG-1 and MPEG-2 [39, 77, 125], real-time transmission with MPEG-1 and MPEG-2

[40, 62], and the recent object-based coding with MPEG-4 [133, 150]. The objective of a

rate-adaptive encoding algorithm is to maximize the perceptual quality under a given en-

coding rate.2 Such adaptive encoding can be achieved by the alteration of the encoder’s

quantization parameter (QP) and/or the alteration of the video frame rate.

Traditional video encoders (e.g., H.261, MPEG-1/2) typically rely on altering the QP of

the encoder to achieve rate adaptation. These encoding schemes must perform coding with

constant frame rates. This is because even a slight reduction in frame rate can substantially

degrade the perceptual quality at the receiver, especially during a dynamic scene change.

Since altering the QP is not enough to achieve very low bit-rate, these encoding schemes

may not be suitable for very low bit-rate video applications.

On the contrary, MPEG-4 and H.263 coding schemes are suitable for very low bit-rate

video applications since they allow the alteration of the frame rate. In fact, the alteration

of the frame rate is achieved by frame-skip.3 Specifically, if the encoder buffer is in danger

of overflow (i.e., the bit budget is over-used by the previous frame), a complete frame can

be skipped at the encoder. This will allow the coded bits of the previous frames to be

transmitted during the time period of this frame, therefore reducing the buffer level (i.e.,

keeping the encoded bits within the budget).

In addition, MPEG-4 is the first international standard addressing the coding of video

objects (VO’s) (see Fig. 13) [64]. With the flexibility and efficiency provided by coding video

objects, MPEG-4 is capable of addressing interactive content-based video services as well

as conventional stored and live video [108]. In MPEG-4, a frame of a video object is called

2The given encoding rate can be either fixed or dynamically changing based on the network congestion
status.

3Skipping a frame means that the frame is not encoded.
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a video object plane (VOP), which is encoded separately. Such isolation of video objects

provides us with much greater flexibility to perform adaptive encoding. In particular, we

can dynamically adjust target bit-rate distribution among video objects, in addition to the

alteration of QP on each VOP (such a scheme is proposed in [150]). This can upgrade the

perceptual quality for the regions of interest (e.g., head and shoulder) while lowering the

quality for other regions (e.g., background).

Figure 13: An example of video object (VO) concept in MPEG-4 video. A video frame
(left) is segmented into two VO planes where VO1 (middle) is the background and VO2
(right) is the foreground.

For all the video coding algorithms, a fundamental problem is how to determine a suit-

able QP to achieve the target bit-rate. The rate-distortion (R-D) theory is a powerful tool

to solve this problem. Under the R-D framework, there are two approaches for encoding

rate control in the literature: the model-based approach and the operational R-D based

approach. The model-based approach assumes various input distributions and quantizer

characteristics [26, 150]. Under this approach, closed-form solutions can be obtained by us-

ing continuous optimization theory. On the other hand, the operational R-D based approach

considers practical coding environments where only a finite set of quantizers is admissible

[62, 77, 125, 144]. Under the operational R-D based approach, the admissible quantizers

are used by the rate control algorithm to determine the optimal strategy to minimize the

distortion under the constraint of a given bit budget. The optimal discrete solutions can be

found through applying integer programming theory.
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3.2.3 Rate Shaping

Rate shaping is a technique to adapt the rate of compressed video bit-streams to the target

rate constraint. A rate shaper is an interface (or filter) between the encoder and the network,

with which the encoder’s output rate can be matched to the available network bandwidth.

Since rate shaping does not require interaction with the encoder, rate shaping is applicable

to any video coding scheme and is applicable to both live and stored video. Rate shaping

can be achieved through two approaches: one is from the transport perspective [59, 121, 168]

and the other is from the compression perspective [44].

A representative mechanism from the transport perspective is server selective frame

discard [168]. The server selective frame discard is motivated by the following fact. Usually,

a server transmits each frame without any awareness of the available network bandwidth and

the client buffer size. As a result, the network may drop packets if the available bandwidth is

less than required, which leads to frame losses. In addition, the client may also drop packets

that arrive too late for playback. This causes wastage of network bandwidth and client buffer

resources. To address this problem, the selective frame discard scheme preemptively drops

frames at the server in an intelligent manner by considering available network bandwidth

and client QoS requirements. The selective frame discard has two major advantages. First,

by taking the network bandwidth and client buffer constraints into account, the server can

make the best use of network resources by selectively discarding frames in order to minimize

the likelihood of future frames being discarded, thereby increasing the overall quality of the

video delivered. Second, unlike frame dropping in the network or at the client, the server

can also take advantage of application-specific information such as regions of interest and

group of pictures (GOP) structure, in its decision in discarding frames. As a result, the

server optimizes the perceived quality at the client while maintaining efficient utilization of

the network resources.

A representative mechanism from the compression perspective is dynamic rate shaping

[44]. Based on the R-D theory, the dynamic rate shaper selectively discards the Discrete

Cosine Transform (DCT) coefficients of the high frequencies so that the target rate can be
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achieved. Since human eyes are less sensitive to higher frequencies, the dynamic rate shaper

selects the highest frequencies and discards the DCT coefficients of these frequencies until

the target rate is met.

Congestion control attempts to prevent packet loss by matching the rate of video streams

to the available bandwidth in the network. However, packet loss is unavoidable in the

Internet and may have significant impact on perceptual quality. Therefore, we need other

mechanisms to maximize the video presentation quality in presence of packet loss. Such

mechanisms include error control mechanisms, which are presented in the next section.

3.3 Error Control

In the Internet, packets may be dropped due to congestion at routers, they may be mis-

routed, or they may reach the destination with such a long delay as to be considered useless

or lost. Packet loss may severely degrade the visual presentation quality. To enhance the

video quality in presence of packet loss, error control mechanisms have been proposed.

For certain types of data (such as text), packet loss is intolerable while delay is ac-

ceptable. When a packet is lost, there are two ways to recover the packet: the corrupted

data must be corrected by traditional FEC (i.e., channel coding), or the packet must be

retransmitted. On the other hand, for real-time video, some visual quality degradation is

often acceptable while delay must be bounded. This feature of real-time video introduces

many new error control mechanisms, which are applicable to video applications but not ap-

plicable to traditional data such as text. Basically, the error control mechanisms for video

applications can be classified into four types, namely, FEC, retransmission, error-resilience,

and error concealment. FEC, retransmission, and error-resilience are performed at both the

source and the receiver side, while error concealment is carried out only at the receiver side.

Fig. 14 shows the location of each error control mechanism in a layered architecture. As

shown in Fig. 14, retransmission recovers packet loss from the transport perspective; error-

resilience and error concealment deal with packet loss from the compression perspective;

and FEC falls in both transport and compression domains. For the rest of this section, we
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present FEC, retransmission, error-resilience, and error concealment, respectively.
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Figure 14: An architecture for error control mechanisms.

3.3.1 FEC

The use of FEC is primarily because of its advantage of small transmission delay, com-

pared with TCP [35]. The principle of FEC is to add extra (redundant) information to a

compressed video bit-stream so that the original video can be reconstructed in presence of

packet loss. Based on the kind of redundant information to be added, the existing FEC

schemes can be classified into three categories: (1) channel coding, (2) source coding-based

FEC, and (3) joint source/channel coding, which will be presented in Sections 3.3.1.1 to

3.3.1.3, respectively.

3.3.1.1 Channel Coding

For Internet applications, channel coding is typically used in terms of block codes. Specif-

ically, a video stream is first chopped into segments, each of which is packetized into k

packets; then for each segment, a block code (e.g., Tornado code [2]) is applied to the k

packets to generate a n-packet block, where n > k. Specifically, the channel encoder places

the k packets into a group and then creates additional packets from them so that the total

number of packets in the group becomes n, where n > k (shown in Fig. 15). This group

of packets is transmitted to the receiver, which receives K packets. To perfectly recover a

segment, a user must receive K (K ≥ k) packets in the n-packet block (see Fig. 15). In
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other words, a user only needs to receive any k packets in the n-packet block so that it can

reconstruct all the original k packets.

Encoder Decoder

source
data

encoded
data

received
data

reconstructed
data

k

n K>=k

k

Figure 15: Channel coding/decoding operation.

Since recovery is carried out entirely at the receiver, the channel coding approach can

scale to arbitrary number of receivers in a large multicast group. In addition, due to its

ability to recover from any k out of n packets regardless of which packets are lost, it allows

the network and receivers to discard some of the packets which cannot be handled due to

limited bandwidth or processing power. Thus, it is also applicable to heterogeneous net-

works and receivers with different capabilities. However, there are also some disadvantages

associated with channel coding as follows.

1. It increases the transmission rate. This is because channel coding adds n−k redundant

packets to every k original packets, which increases the rate by a factor of n/k. In

addition, the higher the loss rate is, the higher the transmission rate is required to

recover from the loss. The higher the transmission rate is, the more congested the

network gets, which leads to an even higher loss rate. This makes channel coding

vulnerable for short-term congestion. However, efficiency may be improved by using

unequal error protection [2].

2. It increases delay. This is because (1) a channel encoder must wait for all k packets

in a segment before it can generate the n− k redundant packets; and (2) the receiver

must wait for at least k packets of a block before it can playback the video segment.

In addition, recovery from bursty loss requires the use of either longer blocks (i.e.,

larger k and n) or techniques like interleaving. In either case, delay will be further
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increased. But for video streaming applications, which can tolerate relatively large

delay, the increase in delay may not be an issue.

3. It is not adaptive to varying loss characteristics and it works best only when the packet

loss rate is stable. If more than n−k packets of a block are lost, channel coding cannot

recover any portion of the original segment. This makes channel coding useless when

the short-term loss rate exceeds the recovery capability of the code. On the other

hand, if the loss rate is well below the code’s recovery capability, the redundant

information is more than necessary (a smaller ratio n/k would be more appropriate).

To improve the adaptive capability of channel coding, feedback can be used. That is,

if the receiver conveys the loss characteristics to the source, the channel encoder can

adapt the redundancy accordingly. Note that this requires a closed loop rather than

an open loop in the original channel coding design.

A significant portion of previous research on channel coding for video transmission has

involved equal error protection (EEP), in which all the bits of the compressed video stream

are treated equally, and given an equal amount of redundancy. However, the compressed

video stream typically does not consist of bits of equal significance. For example, in MPEG,

an I-frame is more important than a P-frame while a P-frame is more important than a

B-frame. Current research is heavily weighted towards unequal error protection (UEP)

schemes, in which the more significant information bits are given more protection. A rep-

resentative work of UEP is the Priority Encoding Transmission (PET) [2]. A key feature

of the PET scheme is to allow a user to set different levels (priorities) of error protection

for different segments of the video stream. This unequal protection makes PET efficient

(less redundancy) and suitable for transporting MPEG video which has an inherent priority

hierarchy (i.e., I-, P-, and B-frames).

To provide error recovery in layered multicast video, Tan and Zakhor proposed a receiver-

driven hierarchical FEC (HFEC) [127]. In HFEC, additional streams with only FEC re-

dundant information are generated along with the video layers. Each of the FEC streams

is used for recovery of a different video layer, and each of the FEC streams is sent to a
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different multicast group. Subscribing to more FEC groups corresponds to higher level of

protection. Like other receiver-driven schemes, HFEC also achieves good trade-off between

flexibility of providing recovery and bandwidth efficiency, that is:

• Flexibility of providing recovery: Each receiver can independently adjust the desired

level of protection based on past reception statistics and the application’s delay tol-

erance.

• Bandwidth efficiency: Each receiver will subscribe to only as many redundancy layers

as necessary, reducing overall bandwidth utilization.

3.3.1.2 Source Coding-based FEC

Source coding-based FEC (SFEC) is a recently devised variant of FEC for Internet video

[16]. Like channel coding, SFEC also adds redundant information to recover from loss. For

example, SFEC could add redundant information as follows: the nth packet contains the

nth GOB (Group of Blocks) and redundant information about the (n − 1)th GOB. If the

(n− 1)th packet is lost but the nth packet is received, the receiver can still reconstruct the

(n−1)th GOB from the redundant information about the (n−1)th GOB, which is contained

in the nth packet. However, the reconstructed (n − 1)th GOB has a coarser quality. This

is because the redundant information about the (n − 1)th GOB is a compressed version of

the (n − 1)th GOB with a larger quantizer, resulting in less redundancy added to the nth

packet.

The main difference between SFEC and channel coding is the kind of redundant in-

formation being added to a compressed video stream. Specifically, channel coding adds

redundant information according to a block code (irrelevant to the video) while the re-

dundant information added by SFEC is more compressed versions of the raw video. As a

result, when there is packet loss, channel coding could achieve perfect recovery while SFEC

recovers the video with reduced quality.

One advantage of SFEC over channel coding is lower delay. This is because each packet

can be decoded in SFEC while, under the channel coding approach, both the channel
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encoder and the channel decoder have to wait for at least k packets of a segment.

Similar to channel coding, the disadvantages of SFEC are: (1) an increase in the trans-

mission rate, and (2) inflexible to varying loss characteristics. However, such inflexibility

to varying loss characteristics can also be improved through feedback [16]. That is, if the

receiver conveys the loss characteristics to the source, the SFEC encoder can adjust the

redundancy accordingly. Note that this requires a closed loop rather than an open loop in

the original SFEC coding scheme.

3.3.1.3 Joint Source/Channel Coding

Due to Shannon’s separation theorem [115], the coding world was generally divided into

two camps: source coding and channel coding. The camp of source coding was concerned

with developing efficient source coding techniques while the camp of channel coding was

concerned with developing robust channel coding techniques [56]. In other words, the camp

of source coding did not take channel coding into account and the camp of channel coding

did not consider source coding. However, Shannon’s separation theorem is not strictly

applicable when the delay is bounded, which is the case for such real-time services as video

over the Internet [27]. The motivation of joint source/channel coding for video comes from

the following observations:

• Case A: According to the rate-distortion theory (shown in Fig. 16(a)) [33], the lower

the source-encoding rate R for a video unit, the larger the distortion D of the video

unit. That is, R ↓⇒ D ↑.

• Case B: Suppose that the total rate (i.e., the source-encoding rate R plus the channel-

coding redundancy rate R′) is fixed and channel loss characteristics do not change.

The higher the source-encoding rate for a video unit is, the lower the channel-coding

redundancy rate would be. This leads to a higher probability Pc of the event that the

video unit gets corrupted, which translates into a larger distortion of the video unit.

That is, R ↑⇒ R′ ↓⇒ Pc ↑⇒ D ↑.
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Figure 16: (a) Rate-distortion relation for source coding. (b) Rate-distortion relation for
the case of joint source/channel coding with fixed R + R′.

Combining Cases A and B, it can be argued that there exists an optimal source-encoding

rate Ro that achieves the minimum distortion Do (see Fig. 16(b)), given a constant total

rate.

The objective of joint source/channel coding is to find the optimal point shown in

Fig. 16(b) and design source/channel coding schemes to achieve the optimal point. In other

words, finding an optimal point in joint source/channel coding is to make an optimal rate

allocation between source coding and channel coding.

Basically, joint source/channel coding is accomplished by three tasks:

• Task 1: finding an optimal rate allocation between source coding and channel coding

for a given channel loss characteristic,

• Task 2: designing a source coding scheme (including specifying the quantizer) to

achieve its target rate,

• Task 3: designing/choosing channel codes to match the channel loss characteristic

and achieve the required robustness.

For the purpose of illustration, Fig. 17 shows an architecture for joint source/channel

coding. Under the architecture, a QoS monitor is kept at the receiver side to infer the
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Figure 17: An architecture for joint source/channel coding.

channel loss characteristics. Such information is conveyed back to the source side through

the feedback control protocol. Based on such feedback information, the joint source/channel

optimizer makes an optimal rate allocation between the source coding and the channel

coding (Task 1) and conveys the optimal rate allocation to the source encoder and the

channel encoder. Then the source encoder chooses an appropriate quantizer to achieve its

target rate (Task 2) and the channel encoder chooses a suitable channel code to match the

channel loss characteristic (Task 3).

An example of joint source/channel coding is the scheme introduced by Davis and Dan-

skin [35] for transmitting images over the Internet. In this scheme, source and channel

coding bits are allocated in a way that can minimize an expected distortion measure. As a

result, more perceptually important low frequency sub-bands of images are shielded heavily

using channel codes while higher frequencies are shielded lightly. This unequal error protec-

tion reduces channel coding overhead, which is most pronounced on bursty channels where

a uniform application of channel codes is expensive.

3.3.2 Delay-constrained Retransmission: A Transport Approach

A conventional retransmission scheme, ARQ, works as follows: when packets are lost, the

receiver sends feedback to notify the source; then the source retransmits the lost packets.

The conventional ARQ is usually dismissed as a method for transporting real-time video
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since a retransmitted packet arrives at least 3 one-way trip time after the transmission of the

original packet, which might exceed the delay required by the application. However, if the

one-way trip time is short with respect to the maximum allowable delay, a retransmission-

based approach, called delay-constrained retransmission, is a viable option for error control

[100, 101].

Typically, one-way trip time is relatively small within the same local area network

(LAN). Thus, even delay sensitive interactive video applications could employ delay-constrained

retransmission for loss recovery in an LAN environment [37]. Delay-constrained retransmis-

sion may also be applicable to streaming video, which can tolerate relatively large delay due

to a large receiver buffer and relatively long delay for display. As a result, even in wide area

network (WAN), streaming video applications may have sufficient time to recover from lost

packets through retransmission and thereby avoid unnecessary degradation in reconstructed

video quality.

In the following, we present various delay-constrained retransmission schemes for unicast

(Section 3.3.2.1) and multicast (Section 3.3.2.2), respectively.

3.3.2.1 Unicast

Based on who determines whether to send and/or respond to a retransmission request,

we design three delay-constrained retransmission mechanisms for unicast, namely, receiver-

based, sender-based, and hybrid control.

Receiver-based control. The objective of the receiver-based control is to minimize the

requests of retransmission that will not arrive timely for display. Under the receiver-based

control, the receiver executes the following algorithm.

When the receiver detects the loss of packet N :

if (Tc + RTT + Ds < Td(N))

send the request for retransmission of

packet N to the sender;
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where Tc is the current time, RTT is an estimated round trip time, Ds is a slack term,

and Td(N) is the time when packet N is scheduled for display. The slack term Ds could

include tolerance of error in estimating RTT , the sender’s response time to a request,

and/or the receiver’s processing delay (e.g., decoding). If Tc +RTT +Ds < Td(N) holds, it

is expected that the retransmitted packet will arrive timely for display. The timing diagram

for receiver-based control is shown in Fig. 18.

Sender-based control. The objective of the sender-based control is to suppress retrans-

mission of packets that will miss their display time at the receiver. Under the sender-based

control, the sender executes the following algorithm.

When the sender receives a request for retransmission

of packet N :

if (Tc + To + Ds < T ′
d(N))

retransmit packet N to the receiver

where To is the estimated one-way trip time (from the sender to the receiver), and T ′
d(N)

is an estimate of Td(N). To obtain T ′
d(N), the receiver has to feedback Td(N) to the

sender. Then, based on the differences between the sender’s system time and the receiver’s

system time, the sender can derive T ′
d(N). The slack term Ds may include error terms

in estimating To and T ′
d(N), as well as tolerance in the receiver’s processing delay (e.g.,

decoding). If Tc + RTT + Ds < T ′
d(N) holds, it can be expected that retransmitted packet

will reach the receiver in time for display. The timing diagram for sender-based control is
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shown in Fig. 19.

Hybrid control. The objective of the hybrid control is to minimize the request of retrans-

missions that will not arrive for timely display, and to suppress retransmission of the packets

that will miss their display time at the receiver. The hybrid control is a simple combination

of the sender-based control and the receiver-based control. Specifically, the receiver makes

decisions on whether to send retransmission requests while the sender makes decisions on

whether to disregard requests for retransmission. The hybrid control could achieve better

performance at the cost of higher complexity.

3.3.2.2 Multicast

In the multicast case, retransmission has to be restricted within closely located multicast

members. This is because one-way trip times between these members tend to be small,

making retransmissions effective in timely recovery. In addition, feedback implosion of

retransmission requests is a problem that must be addressed under the retransmission-

based approach. Thus, methods are required to limit the number or scope of retransmission

requests.

Typically, a logical tree is configured to limit the number/scope of retransmission re-

quests and to achieve local recovery among closely located multicast members [79, 90, 159].

The logical tree can be constructed by statically assigning Designated Receivers (DRs) at

each level of the tree to help with retransmission of lost packets [79]. Or it can be dy-

namically constructed through the protocol used in STructure-Oriented Resilient Multicast
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(STORM) [159]. By adapting the tree structure to changing network traffic conditions and

group memberships, the system could achieve higher probability of receiving retransmission

timely.

Similar to the receiver-based control for unicast, receivers in a multicast group can

make decisions on whether to send retransmission requests. By suppressing the requests

for retransmission of those packets that cannot be recovered in time, bandwidth efficiency

can be improved [79]. Besides, using a receiving buffer with appropriate size could not only

absorb the jitter but also increase the likelihood of receiving retransmitted packets before

their display time [79].

To address heterogeneity problem, a receiver-initiated mechanism for error recovery can

be adopted as done in STORM [159]. Under this mechanism, each receiver can dynamically

select the best possible DR to achieve good trade-off between desired latency and the degree

of reliability.

3.3.3 Error-resilience: A Compression Approach

Error-resilient schemes address loss recovery from the compression perspective. Specifically,

they attempt to prevent error propagation or limit the scope of the damage (caused by

packet losses) on the compression layer. The standardized error-resilient tools include re-

synchronization marking, data partitioning, and data recovery (e.g., reversible variable

length codes (RVLC)) [64, 126]. However, re-synchronization marking, data partitioning,

and data recovery are targeted at error-prone environments like wireless channels and may

not be applicable to the Internet. For Internet video, the boundary of a packet already

provides a synchronization point in the variable-length coded bit-stream at the receiver

side. On the other hand, since a packet loss may cause the loss of all the motion data

and its associated shape/texture data, mechanisms such as re-synchronization marking,

data partitioning, and data recovery may not be useful for Internet video applications.

Therefore, we do not intend to present the standardized error-resilient tools. Instead, we

present two techniques which are promising for robust Internet video transmission, namely,
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optimal mode selection and multiple description coding.

3.3.3.1 Optimal Mode Selection

In many video coding schemes, a block, which is a video unit, is coded by reference to

a previously coded block so that only the difference between the two blocks needs to be

coded, resulting in high coding efficiency. This is called inter mode. Constantly referring

to previously coded blocks has the danger of error propagation. By occasionally turning

off this inter mode, error propagation can be limited. But it will be more costly in bits to

code a block all by itself, without any reference to a previously coded block. Such a coding

mode is called intra mode. Intra-coding can effectively stop error propagation at the cost

of compression efficiency while inter-coding can achieve compression efficiency at the risk

of error propagation. Therefore, there is a trade-off in selecting a coding mode for each

block (see Fig. 20). How to optimally make these choices is the subject of many research

investigations [31, 149, 166].

For video communication over a network, a block-based coding algorithm such as H.263

or MPEG-4 [64] usually employs rate control to match the output rate to the available

network bandwidth. The objective of rate-controlled compression algorithms is to maximize

the video quality under the constraint of a given bit budget. This can be achieved by

choosing a mode that minimizes the quantization distortion between the original block

and the reconstructed one under a given bit budget [98, 123], which is the so-called R-D

optimized mode selection. We refer such R-D optimized mode selection as the classical
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approach. The classical approach is not able to achieve global optimality under the error-

prone environment since it does not consider the network congestion status and the receiver

behavior.

To address this problem, an end-to-end approach to R-D optimized mode selection

was proposed [149]. Under the end-to-end approach, three factors were identified to have

impact on the video presentation quality at the receiver: (1) the source behavior, e.g.,

quantization and packetization, (2) the path characteristics, and (3) the receiver behavior,

e.g., error concealment (see Fig. 21). Based on the characterizations, a theory [149] for

globally optimal mode selection was developed. By taking into consideration of the network

congestion status and the receiver behavior, the end-to-end approach is shown to be capable

of offering superior performance over the classical approach for Internet video applications

[149].

3.3.3.2 Multiple Description Coding

Multiple description coding (MDC) is another way to achieve trade-off between compres-

sion efficiency and robustness to packet loss [142]. With MDC, a raw video sequence is

compressed into multiple streams (referred to as descriptions). Each description provides

acceptable visual quality; more combined descriptions provide a better visual quality. The

advantages of MDC are: (1) robustness to loss: even if a receiver gets only one description
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(other descriptions being lost), it can still reconstruct video with acceptable quality; and

(2) enhanced quality: if a receiver gets multiple descriptions, it can combine them together

to produce a better reconstruction than that produced from any single description.

However, the advantages do not come for free. To make each description provide ac-

ceptable visual quality, each description must carry sufficient information about the original

video. This will reduce the compression efficiency compared to conventional single descrip-

tion coding (SDC). In addition, although more combined descriptions provide a better

visual quality, a certain degree of correlation between the multiple descriptions has to be

embedded in each description, resulting in further reduction of the compression efficiency.

Current research effort is to find a good trade-off between the compression efficiency and

the reconstruction quality from one description.

3.3.4 Error Concealment: A Compression Approach

When packet loss is detected, the receiver can employ error concealment to conceal the lost

data and make the presentation more pleasing to human eyes. Since human eyes can tolerate

a certain degree of distortion in video signals, error concealment is a viable technique to

handle packet loss [143].

There are two basic approaches for error concealment, namely, spatial and temporal

interpolation. In spatial interpolation, missing pixel values are reconstructed using neigh-

boring spatial information, whereas in temporal interpolation, the lost data is reconstructed

from data in the previous frames. Typically, spatial interpolation is used to reconstruct miss-

ing data in intra-coded frames while temporal interpolation is used to reconstruct missing

data in inter-coded frames.

In recent years, numerous error-concealment schemes have been proposed in the lit-

erature (refer to [143] for a good survey). Examples include maximally smooth recovery

[141], projection onto convex sets [124], and various motion vector and coding mode recov-

ery methods such as motion compensated temporal prediction [50]. However, most error

concealment techniques discussed in [143] are only applicable to either ATM or wireless
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environments, and require substantial additional computation complexity, which is accept-

able for decoding still images but not tolerable in decoding real-time video. Therefore,

we only describe simple error concealment schemes that are applicable to Internet video

communication.

We describe three simple error concealment (EC) schemes as follows.

EC-1: The receiver replaces the whole frame (where some blocks are corrupted due to

packet loss) with the previous reconstructed frame.

EC-2: The receiver replaces a corrupted block with the block at the same location from

the previous frame.

EC-3: The receiver replaces the corrupted block with the block from the previous frame

pointed by a motion vector. The motion vector is copied from its neighboring block

when available, otherwise the motion vector is set to zero.

EC-1 and EC-2 are special cases of EC-3. If the motion vector of the corrupted block

is available, EC-3 can achieve better performance than EC-1 and EC-2 while EC-1 and

EC-2 have less complexity than that of EC-3.

3.4 Summary

Transporting video over the Internet is an important component of many multimedia appli-

cations. Lack of QoS support in the current Internet, and the heterogeneity of the networks

and end-systems pose many challenging problems for designing video delivery systems. In

this chapter, we identified four problems for video delivery systems: bandwidth, delay,

loss, and heterogeneity, and surveyed the end system-based approach to addressing these

problems.

Over the past several years, extensive research based on the end system-based approach

has been conducted and various solutions have been proposed. To depict a big picture, we
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Table 1: Taxonomy of the Design Space

Transport perspective Compression perspective

Congestion control Rate control Source-based
Receiver-based
Hybrid

Rate adaptive encoding Altering quantizer
Altering frame rate

Rate shaping Selective frame discard Dynamic rate shaping

Error control FEC Channel coding SFEC
Joint channel/source coding

Delay-constrained retransmission Sender-based control
Receiver-based control
Hybrid control

Error resilience Optimal mode selection
Multiple description coding

Error concealment EC-1, EC-2, EC-3

took a holistic approach from both transport and compression perspectives. With the holis-

tic approach, we presented a framework for transporting real-time Internet video, which con-

sisted of two components: congestion control and error control. We have described various

approaches and schemes for the two components. All the possible approaches/schemes for

the two components can form a design space. As shown in Table 1, the approaches/schemes

in the design space can be classified along two dimensions: the transport perspective and

the compression perspective.

To give the reader a clear picture of this design space, we summarize the advantages

and disadvantages of the approaches and schemes as follows.

1. Congestion control. There are three mechanisms for congestion control: rate control,

rate adaptive video encoding, and rate shaping. Rate control schemes can be classified

into three categories: source-based, receiver-based, and hybrid. As shown in Table 2,

rate control schemes can follow either the model-based approach or the probe-based

approach. Source-based rate control is primarily targeted at unicast and can follow

either the model-based approach or the probe-based approach. If applied in multicast,

source-based rate control can only follow the probe-based approach. Source-based

rate control needs another component to enforce the rate on the video stream. This

component could be either rate adaptive video encoding or rate shaping. Examples of

combining source-based rate control with rate adaptive video encoding can be found
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in [128, 150]. Examples of combining source-based rate control with rate shaping

include [66]. Receiver-based and hybrid rate control were proposed to address the

heterogeneity problem in multicast video. The advantage of receiver-based control

over sender-based control is that the burden of adaptation is moved from the sender

to the receivers, resulting in enhanced service flexibility and scalability. Receiver-based

rate control can follow either the model-based approach or the probe-based approach.

Hybrid rate control combines some of the best features of receiver-based and sender-

based control in terms of service flexibility and bandwidth efficiency. But it can only

follow the probe-based approach. For video multicast, one advantage of the model-

based approach over the probe-based approach is that it does not require exchange of

information among the group as is done under the probe-based approach. Therefore,

it eliminates processing at each receiver and the bandwidth usage associated with

information exchange.

2. Error control. It takes the form of FEC, delay-constrained retransmission, error-

resilience or error concealment. There are three kinds of FEC: channel coding,

source coding-based FEC, and joint source/channel coding. The advantage of all

FEC schemes over TCP is reduction in video transmission latency. Source coding-

based FEC can achieve lower delay than channel coding while joint source/channel

coding could achieve optimal performance in a rate-distortion sense. The disadvan-

tages of all FEC schemes are: increase in the transmission rate, and inflexibility to

varying loss characteristics. A feedback mechanism can be used to improve FEC’s

inflexibility. Unlike FEC, which adds redundancy to recover from loss that might not

occur, a retransmission-based scheme only re-sends the packets that are lost. Thus, a

retransmission-based scheme is adaptive to varying loss characteristics, resulting in ef-

ficient use of network resources. But delay-constrained retransmission-based schemes

may become useless when the round trip time is too large. Optimal mode selection

and multiple description coding are two error-resilient mechanisms recently proposed.

Optimal mode selection achieves the best trade-off between compression efficiency and
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Table 2: Rate Control

Model-based approach Probe-based approach
Rate control Source-based Unicast Unicast/Multicast

Receiver-based Multicast Multicast
Hybrid Multicast

error resilience in an R-D sense. The cost of optimal mode selection is its complex-

ity, which is similar to that of motion compensation algorithms. Multiple description

coding is another way of trading off compression efficiency with robustness to packet

loss. The advantage of MDC is its robustness to loss and enhanced quality. The

cost of MDC is reduction in compression efficiency. Finally, as the last stage of a

video delivery system, error concealment can be used in conjunction with any other

techniques (i.e., congestion control, FEC, retransmission, and error-resilience).

This chapter surveyed general end-system-based techniques and these techniques are also

applicable (with modifications if necessary) to video transport over networks with wireless

segments.
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CHAPTER 4

EFFECTIVE CAPACITY CHANNEL MODELING

From this chapter through Chapter 7, we will be concerned with network-centric QoS pro-

visioning.

4.1 Introduction

To provide explicit QoS guarantees such as a data rate, delay bound, and delay-bound

violation probability triplet, it is necessary to analyze a QoS provisioning system in terms

of these QoS measures. This task requires characterization of the service (channel modeling),

and queueing analysis of the system. Specifically, a general methodology of designing QoS

provisioning mechanisms at a network node, involves four steps:

1. Channel measurement: e.g., measure the channel capacity process [71]. It requires

channel estimation at the receiver side and feedback of channel estimates to the trans-

mitter.

2. Channel modeling: e.g., use a Markov-modulated Poisson process to model the chan-

nel capacity process [71].

3. Deriving QoS measures: e.g., analyze the queue of the system and derive the delay

distribution, given the Markov-modulated Poisson process as the service model and

assuming a certain Markovian traffic model [71].

4. Relating the control parameters of QoS provisioning mechanisms to the derived QoS

measures: e.g., relate the amount of allocated resource to the QoS measures. If such a

relationship is known, given the QoS requirements specified by a user, we can calculate

how much resource needs to be allocated to satisfy the QoS.
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Steps 1 to 3 are intended to analyze the QoS provisioning mechanisms, whereas step 4 is

aimed at designing the QoS provisioning mechanisms.

However, the main obstacle of applying the four steps in QoS provisioning, is high

complexity in characterizing the relation between the control parameters and the calculated

QoS measures, based on existing channel models, i.e., physical-layer channel models (refer

to Section 2.5). This is because the physical-layer channel models (e.g., Rayleigh fading

model with a specified Doppler spectrum) do not explicitly characterize a wireless channel

in terms of the link-level QoS metrics specified by users, such as data rate, delay and delay-

violation probability. To use the physical-layer channel models for QoS support, we first

need to estimate the parameters for the channel model, and then extract the link-level QoS

metrics from the model. This two-step approach is obviously complex, and may lead to

inaccuracies due to possible approximations in extracting QoS metrics from the models.

Recognizing that the limitation of physical-layer channel models in QoS support, is the

difficulty in analyzing queues using them, we propose moving the channel model up the

protocol stack, from the physical-layer to the link-layer. We call the resulting model an

effective capacity (EC) channel model, because it captures a generalized link-level capacity

notion of the fading channel. Figure 4 (in Section 2.5) illustrates the difference between

the conventional physical-layer channels and the link-layer channel.1 In this chapter, we

consider small-scale fading [109] in the radio-layer channel.

To summarize, the effective capacity channel model that we propose, aims to charac-

terize wireless channels in terms of functions that can be easily mapped to link-level QoS

metrics, such as delay-bound violation probability. Furthermore, we propose a novel chan-

nel estimation algorithm that allows practical and accurate measurements of the effective

capacity model functions. The EC model captures the effect of channel fading on the queue-

ing behavior of the link, using a computationally simple yet accurate model, and thus, is a

critical tool for designing efficient QoS provisioning mechanisms.

1In Figure 4, we use Shannon’s channel capacity to represent the instantaneous channel capacity. In
practical situations, the instantaneous channel capacity is log(1 + SNR/Γlink), where Γlink is determined

by the modulation scheme and the channel code used.
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The remainder of this chapter is organized as follows. In Section 4.2, we elaborate on

the QoS guarantees that motivate us to search for a link-layer model. We describe usage

parameter control (UPC) traffic characterization, and its dual, the service curve (SC) net-

work service characterization. We show that these concepts, borrowed from networking

literature, lead us to consider the effective capacity model of wireless channels. In Sec-

tion 4.3, we formally define the effective capacity channel model, in terms of two functions,

probability of non-empty buffer and QoS exponent. We then describe an estimation algo-

rithm, which accurately estimates these functions, with very low complexity. Section 4.4

shows simulation results that demonstrate the advantage of using the EC channel model

to accurately predict QoS, under a variety of conditions. This leads to efficient admission

control and resource reservation. In Section 4.5, we extend our EC model to the case of

frequency selective fading channels. In Section 4.6, we use the effective capacity technique

to derive QoS measures for more general situations, i.e., networks with multiple wireless

links, variable-bit-rate sources, packetized traffic, and wireless channels with non-negligible

propagation delay. Section 4.7 summarizes this chapter. Table 3 lists the notations used in

the rest of the dissertation.

4.2 Motivation for Using Link-layer Channel Models

Physical-layer channel models have been extremely successful in wireless transmitter/receiver

design, since they can be used to predict physical-layer performance characteristics such as

bit/frame error rates as a function of SNR. These are very useful for circuit switched ap-

plications, such as cellular telephony. However, future wireless systems will need to handle

increasingly diverse multimedia traffic, which are expected to be primarily packet switched.

For example, the new Wideband Code Division Multiple Access (W-CDMA) specifications

make explicit provisions for 3G networks to evolve over time, from circuit switching to

packet switching. The key difference between circuit switching and packet switching, from

a link-layer design viewpoint, is that packet switching requires queueing analysis of the link.

Thus, it becomes important to characterize the effect of the data traffic pattern, as well as

the channel behavior, on the performance of the communication system.
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Table 3: Notations.

Pr{·} : probability of the event {·}.
Γ(t) : a traffic envelope.
Ψ(t) : a network service curve.
A(t) : the amount of source data over the time interval [0, t).
S(t) : the actual service of a channel in bits, over the time interval [0, t).
r(t) : the instantaneous capacity of a channel at time t.
S̃(t) : the service provided by a channel, i.e., S(t) =

∫ t
0 r(τ)dτ .

λ
(s)
p : the peak rate of a source.

λ
(s)
s : the sustainable rate of a source.

σ(s) : the leaky-bucket size for the source model.
λ

(c)
s : the channel sustainable rate.

σ(c) : the maximum fade duration of a channel.
r : the service rate of a queue.
B : the buffer size of a queue.
Λ(u) : the asymptotic log-moment generating function of a stochastic process.
α(s)(u) : the effective bandwidth of a source.
α(u) : the effective capacity of a channel.
Q(t) : the length of a queue at time t.
D(t) : the delay experienced by a packet arriving at time t.
Dmax : the delay bound required by a connection.
ε : the target QoS violation probability for a connection.
θ : the QoS exponent of a connection.
γ : probability of the event that a queue is non-empty.
S(f) : the Doppler spectrum (power spectral density) of a channel.
fm : the maximum Doppler frequency for a mobile terminal.
fc : the carrier frequency.
det(.) : the determinant of a matrix.
rawgn : the capacity of an additive white Gaussian noise (AWGN) channel.
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Figure 22: A queueing system model.

QoS guarantees have been heavily researched in the wired networks (e.g., Asynchronous

Transfer Mode (ATM) and Internet Protocol (IP) networks). These guarantees rely on

the queueing model shown in Figure 22. This figure shows that the source traffic and the

network service are matched using a First-In-First-Out (FIFO) buffer (queue). Thus, the

queue prevents loss of packets that could occur when the source rate is more than the service

rate, at the expense of increasing the delay. Queueing analysis, which is needed to design

appropriate admission control and resource reservation algorithms [5, 116], requires source

traffic characterization and service characterization. The most widely used approach for

traffic characterization, is to require that the amount of data (i.e., bits as a function of time

t) produced by a source conform to an upper bound, called the traffic envelope Γ(t). The

service characterization for guaranteed service is a guarantee of a minimum service (i.e., bits

communicated as a function of time) level, specified by a service curve Ψ(t) [54]. Functions

Γ(t) and Ψ(t) are specified in terms of certain traffic and service parameters respectively.

Examples include the UPC parameters used in ATM [5] for traffic characterization, and

the traffic specification T-SPEC and the service specification R-SPEC fields used with the

resource reservation protocol (RSVP) [20, 54] in IP networks.

To elaborate on this point, a traffic envelope Γ(t) characterizes the source behavior in

the following manner: over any window of size t, the amount of actual source traffic A(t)

does not exceed Γ(t) (see Figure 23). For example, the UPC parameters specify Γ(t) by,

Γ(t) = min{λ(s)
p t, λ(s)

s t + σ(s)} (16)

where λ
(s)
p is the peak data rate, λ

(s)
s the sustainable rate, and σ(s) the leaky-bucket size

[54]. As shown in Figure 23, the curve Γ(t) consists of two segments; the first segment has
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a slope equal to the peak source data rate λ
(s)
p , while the second segment, has a slope equal

to the sustainable rate λ
(s)
s , with λ

(s)
s < λ

(s)
p . σ(s) is the Y-axis intercept of the second

segment. Γ(t) has the property that A(t) ≤ Γ(t) for any time t.

Just as Γ(t) upper bounds the source traffic, a network service curve Ψ(t) lower bounds

the actual service S(t) that a source will receive. Ψ(t) has the property that Ψ(t) ≤ S(t) for

any time t. Both Γ(t) and Ψ(t) are negotiated during the admission control and resource

reservation phase. An example of a network service curve is the R-SPEC curve used for

guaranteed service in IP networks,

Ψ(t) = [λ(c)
s (t − σ(c))]+ (17)

where [x]+ = max{x, 0}, λ
(c)
s is the constant service rate and σ(c) the delay error term (due

to propagation delay, link sharing and so on). This curve is illustrated in Figure 23. Ψ(t)

consists of two segments; the horizontal segment indicates that no packet is being serviced

due to propagation delay, etc., for a time interval equal to the delay error term σ(c), while

the second segment has a slope equal to the service rate λ
(c)
s . In the figure, we also observe

that (1) the horizontal difference between A(t) and S(t), denoted by D(τ), is the delay

experienced by a packet departing at time τ ; (2) the vertical difference between the two
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curves, denoted by Q(τ), is the queue length built up at time τ , due to packets that have

not been served yet.

In contrast to packet-switched wireline networks, providing QoS guarantees in packet-

switched wireless networks is a challenging problem. This is because wireless channels

have low reliability, and time varying capacities, which may cause severe QoS violations.

Unlike wireline links, which typically have a constant capacity, the capacity of a wireless

channel depends upon such random factors as multipath fading, co-channel interference,

and noise disturbances. Consequently, providing QoS guarantees over wireless channels

requires accurate models of their time-varying capacity , and effective utilization of these

models for QoS support.

The simplicity of the service curves discussed earlier motivates us to define the time-

varying capacity of a wireless channel as in (17). Specifically, we hope to lower bound the

channel service using two parameters, the channel sustainable rate λ
(c)
s , and the maximum

fade duration σ(c).2 However, physical-layer wireless channel models do not explicitly

characterize the channel in terms of such link-layer QoS metrics as data rate, delay and

delay-violation probability. For this reason, we are forced to look for alternative channel

models.

A tricky issue that surfaces, is that a wireless channel has a capacity that varies randomly

with time. Thus, an attempt to provide a strict lower bound (i.e., the deterministic service

curve Ψ(t), used in IP networks) will most likely result in extremely conservative guarantees.

For example, in a Rayleigh or Ricean fading channel, the only lower bound that can be

deterministically guaranteed is a capacity3 of zero! This conservative guarantee is clearly

useless. Therefore, we propose to extend the concept of deterministic service curve Ψ(t), to

a statistical version, specified as the pair {Ψ(t), ε}. The statistical service curve {Ψ(t), ε}

2λ
(c)
s and σ(c) are meant to be in a statistical sense. The maximum fade duration σ(c) is a parameter that

relates the delay constraint to the channel service; it determines the probability supt Pr{S(t) < Ψ(t)}. We

will see later that σ(c) is specified by the source with σ(c) = Dmax, where Dmax is the delay bound required

by the source.
3The capacity here is meant to be delay-limited capacity, which is the maximum rate achievable with a

prescribed delay bound (see [57] for details).
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specifies that the service provided by the channel, denoted as S̃(t), will always satisfy the

property that supt Pr{S̃(t) < Ψ(t)} ≤ ε. In other words, ε is the probability that the

wireless channel will not be able to support the pledged service curve Ψ(t). For most

practical values of ε, a non-zero service curve Ψ(t) can be guaranteed.

To summarize, we propose to extend the QoS mechanisms used in wired networks to

wireless links, by using the traffic and service characterizations popularly used in wired

networks; namely the traffic envelope Γ(t) and the service curve Ψ(t) respectively. However,

recognizing that the time-varying wireless channel cannot deterministically guarantee a

useful service curve, we propose to use a statistical service curve {Ψ(t), ε}.

As mentioned earlier, it is hard to extract a statistical service curve using the existing

physical-layer channel models. In fact, in Section 4.3.4, we show how physical-layer channel

models can be used to derive {Ψ(t), ε}, in an integral form. There, the reader will see

that 1) it is not always possible to extract {Ψ(t), ε} from the physical-layer model (such

as, when only the Doppler spectrum, but not the higher-order statistics are known), and

2) even if it is possible, the computation involved may make the extraction extremely hard

to implement. This motivates us to consider link-layer modeling, which we describe in

Section 4.3. The philosophy here is that, we want to model the wireless channel at the layer

in which we intend to use the model.

4.3 Effective Capacity Model of Wireless Channels

Section 4.2 argued that QoS guarantees can be achieved if a statistical service curve can be

calculated for the given wireless channel. Thus, we need to calculate a service curve Ψ(t),

such that for a given ε > 0, the following probability bound on the channel service S̃(t) is

satisfied,

sup
t

Pr{S̃(t) < Ψ(t)} ≤ ε (18)
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Further, Ψ(t) is restricted to being specified by the parameters {λ(c)
s , σ(c)}, as below ((17),

which we reproduce, for convenience),

Ψ(t) = [λ(c)
s (t − σ(c))]+ (19)

Therefore, the statistical service curve specification requires that we relate its parameters

{λ(c)
s , σ(c), ε} to the fading wireless channel. Note that a (non-fading) AWGN channel of

capacity rawgn can be specified by the triplet {rawgn, 0, 0}. i.e., an AWGN channel can

guarantee constant data rate.

At first sight, relating {λ(c)
s , σ(c), ε} to the fading wireless channel behavior seems to be

a hard problem. However, at this point, we use the idea that the service curve Ψ(t) is a

dual of the traffic envelope Γ(t). A rich body of literature exists on the so-called theory of

effective bandwidth [23], which models the statistical behavior of traffic. In particular, the

theory shows that the relation

sup
t

Pr{Q(t) ≥ B} ≤ ε (20)

is satisfied for large B, by choosing two parameters (which are functions of the channel rate

r) that depend on the actual data traffic; namely, the probability of non-empty buffer, and

the effective bandwidth of the source. Thus, a source model defined by these two functions

fully characterizes the source from a QoS viewpoint. The duality between (18) and (20)

indicates that it may be possible to adapt the theory of effective bandwidth to service curve

characterization. This adaptation will point to a new channel model, which we call the

effective capacity (EC) channel model. Thus, the EC channel model can be thought of as

the dual of the effective bandwidth source model, which is commonly used in networking.

The rest of this section is organized as follows. In Section 4.3.1, we present the theory

of effective bandwidth using the framework of Chang and Thomas [23]. An accurate and

efficient source traffic estimation algorithm exists [88], which can be used to estimate the

functions of the effective bandwidth source model. Therefore, we use a dual estimation

algorithm to estimate the functions of the proposed effective capacity channel model in

Section 4.3.2. In Section 4.3.3, we provide physical interpretation of our channel model.
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Section 4.3.4 shows that in the special case of Rayleigh fading channel at low SNRs, it is

possible to extract the service curve from a physical-layer channel model. For Rayleigh

fading channels at high SNRs, the extraction is complicated, whereas the extraction may

not even be possible for other types of fading. Therefore, our link-layer EC model has

substantial advantage over physical-layer models, in specifying service curves, and hence

QoS.

4.3.1 Theory of Effective Bandwidth

For convenience, we reproduce the definition of effective bandwidth presented in Sec-

tion 2.2.1. The stochastic behavior of a source traffic process can be modeled asymptotically

by its effective bandwidth. Consider an arrival process {A(t), t ≥ 0} where A(t) represents

the amount of source data (in bits) over the time interval [0, t). Assume that the asymptotic

log-moment generating function of a stationary process A(t), defined as

Λ(u) = lim
t→∞

1
t

log E[euA(t)], (21)

exists for all u ≥ 0. Then, the effective bandwidth function of A(t) is defined as

α(s)(u) =
Λ(u)

u
, ∀ u > 0. (22)

Consider a queue of infinite buffer size served by a channel of constant service rate r (see

Figure 22), such as an AWGN channel. Due to the possible mismatch between A(t) and

S(t), the queue length Q(t) (see Figure 23) could be non-zero. Denote D(∞) the steady

state of Q(t). Using the theory of large deviations, it can be shown that the probability of

Q(∞) exceeding a threshold B satisfies [23, 24]

Pr{Q(∞) ≥ B} ∼ e−θB(r)B as B → ∞, (23)

where f(x) ∼ g(x) means that limx→∞ f(x)/g(x) = 1. However, it is found that for smaller

values of B, the following approximation is more accurate [28]

Pr{Q(∞) ≥ B} ≈ γ(s)(r)e−θB(r)B , (24)
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where both γ(s)(r) and θB(r) are functions of channel capacity r. According to the theory,

γ(s)(r) = Pr{Q(∞) ≥ 0} is the probability that the buffer is non-empty, while the QoS

exponent θB is the solution of α(s)(θB) = r. Thus, the pair of functions {γ(s)(r), θB(r)}
model the source. Note that θB(r) is simply the inverse function corresponding to the

effective bandwidth function α(s)(u).

If the quantity of interest is the delay D(t) experienced by a source packet departing at

time t (see Figure 23), then the probability of D(t) exceeding a delay bound Dmax satisfies

sup
t

Pr{D(t) ≥ Dmax} = Pr{D(∞) ≥ Dmax} ≈ γ(s)(r)e−θ(s)(r)Dmax , (25)

where D(∞) denotes the steady state of D(t). Note that θ(s)(r) in (25) is different from

θB(r) in (24). The relationship between them is θ(s)(r) = θB(r) × r [167, page 57].

Thus, the key point is that, for a source modeled by the pair {γ(s)(r), θ(s)(r)}, which has

a communication delay bound of Dmax, and can tolerate a delay-bound violation probability

of at most ε, the effective bandwidth concept shows that the constant channel capacity

should be at least r, where r is the solution to ε = γ(s)(r)e−θ(s)(r)Dmax . In terms of the

traffic envelope Γ(t) (Figure 23), the slope λ
(s)
s = r and σ(s) = rDmax.
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Figure 24: (a) Effective bandwidth function α(s)(u) and (b) Effective capacity function
α(u).

Figure 24(a) shows a typical effective bandwidth function. It can be easily proved that
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α(s)(0) is equal to the average data rate of the source, while α(s)(∞) is equal to the peak

data rate. From (25), note that a source that has a more stringent QoS requirement (i.e.,

smaller Dmax or smaller ε), will need a larger QoS exponent θ(s)(r).

Ref. [88] shows a simple and efficient algorithm to estimate the source model functions

γ(s)(r) and θ(s)(r). In the following section, we use the duality between traffic modeling

({γ(s)(r), θ(s)(r)}), and channel modeling to propose an effective capacity channel model,

specified by a pair of functions {γ(µ), θ(µ)}. It is clear that we intend {γ(µ), θ(µ)} to be the

channel duals of the source functions {γ(s)(r), θ(s)(r)}. Just as the constant channel rate

r is used in source traffic modeling, we use the constant source traffic rate µ in modeling

the channel. Furthermore, we adapt the source estimation algorithm in [88] to estimate the

channel model functions {γ(µ), θ(µ)}.

4.3.2 Effective Capacity Channel Model

Let r(t) be the instantaneous channel capacity at time t. Define S̃(t) =
∫ t
0 r(τ)dτ , which

is the service provided by the channel. Note that the channel service S̃(t) is different from

the actual service S(t) received by the source; S̃(t) only depends on the instantaneous

channel capacity and thus is independent of the arrival A(t). Paralleling the development

in Section 4.3.1, we assume that,

Λ(−u) = lim
t→∞

1
t

log E[e−uS̃(t)] (26)

exists for all u ≥ 0. This assumption is valid, for example, for a stationary Markov fading

process r(t). Then, the effective capacity function of r(t) is defined as

α(u) =
−Λ(−u)

u
, ∀ u > 0. (27)

That is,

α(u) = − lim
t→∞

1
ut

log E[e−u
∫ t
0 r(τ)dτ ], ∀ u > 0. (28)

Consider a queue of infinite buffer size supplied by a data source of constant data rate µ

(see Figure 22). The theory of effective bandwidth presented in Section 4.3.1 can be easily

adapted to this case. The difference is that whereas in Section 4.3.1, the source rate was
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Figure 25: Relation between service curve and delay-bound violation.

variable while the channel capacity was constant, in this section, the source rate is constant

while the channel capacity is variable. Similar to (25), it can be shown that the probability

of D(t) exceeding a delay bound Dmax satisfies

sup
t

Pr{D(t) ≥ Dmax} = Pr{D(∞) ≥ Dmax} ≈ γ(µ)e−θ(µ)Dmax . (29)

where {γ(µ), θ(µ)} are functions of source rate µ. The approximation in (29) is accurate

for large Dmax, but we will show later, in the simulations, that this approximation is also

accurate even for smaller values of Dmax.

For a given source rate µ, γ(µ) = Pr{Q(∞) ≥ 0} is again the probability that the buffer

is non-empty, while the QoS exponent θ(µ) is defined as

θ(µ) = µα−1(µ), (30)

where α−1(·) is the inverse function of α(u). Thus, the pair of functions {γ(µ), θ(µ)} model

the channel.

So, when using a link that is modeled by the pair {γ(µ), θ(µ)}, a source that requires a

communication delay bound of Dmax, and can tolerate a delay-bound violation probability

of at most ε, needs to limit its data rate to a maximum of µ, where µ is the solution to
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ε = γ(µ)e−θ(µ)Dmax . In terms of the service curve Ψ(t) (Figure 23), the channel sustainable

rate λ
(c)
s = µ and σ(c) = Dmax. It is clear that when the buffer is empty, the extra service

(S̃(t) − S(t)) will be lost, i.e., not used for data transmission (see Figure 25). So, we have

S̃(t) ≥ S(t) for any time t. Furthermore, we know that the event {D(t) > Dmax} and the

event {S(t) < Ψ(t)} are the same. This can be illustrated by Figure 25: whenever the curve

S(t) is below Ψ(t), the horizontal line D(t) will cross the line Ψ(t), i.e., we have an event

{D(t) > Dmax}, since the horizontal distance between A(t) and Ψ(t) is Dmax. Then, we

have

sup
t

Pr{D(t) > Dmax} (a)
= sup

t
Pr{S(t) < Ψ(t)}

(b)

≥ sup
t

Pr{S̃(t) < Ψ(t)} (31)

where (a) follows from the fact that {D(t) > Dmax} and {S(t) < Ψ(t)} are the same

event, and (b) from the fact that S̃(t) ≥ S(t) for any t. From (31), it can be seen that

supt Pr{D(t) > Dmax} ≤ ε implies supt Pr{S̃(t) < Ψ(t)} ≤ ε.

Figure 24(b) shows that the effective capacity α(u) decreases with increasing QoS ex-

ponent u; that is, as the QoS requirement becomes more stringent, the source rate that

a wireless channel can support with this QoS guarantee, decreases. The channel sustain-

able rate λ
(c)
s is upper bounded by the AWGN capacity rawgn, and lower bounded by the

minimum rate 0. Figures 24(a) and 24(b) together illustrate the duality of the effective

bandwidth source model and the effective capacity channel model.

The function pair {γ(µ), θ(µ)} defines our proposed effective capacity channel model.

The definition of these functions shows that the EC model is a link-layer model, because

it directly characterizes the queueing behavior at the link-layer. From (29), it is clear that

the QoS metric can be easily extracted from the EC channel model.

Now that we have shown that QoS metric calculation is trivial, once the EC channel

model is known, we need to specify a simple (and hopefully, accurate) channel estimation

algorithm. Such an algorithm should estimate the functions {γ(µ), θ(µ)} from channel

measurements, such as the measured SNR or channel capacity r(t).
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Let us take a moment to think about how we could use the existing physical-layer

channel models to estimate {γ(µ), θ(µ)}. An obvious fact that emerges is that if a channel

model specifies only the marginal Probability Density Function (PDF) at any time t (such

as Ricean PDF), along with the Doppler spectrum (such as Gans Doppler spectrum), which

is second order statistics, then the model does not have enough information to calculate

the effective capacity function (27)! Indeed, such a calculation would need higher order

joint statistics, which cannot be obtained merely from the Doppler spectrum. Thus, only

approximations can be made in this case. For a Rayleigh fading distribution, the joint PDF

of channel gains will be complex Gaussian, and hence the Doppler spectrum is enough to

calculate the effective capacity. This result is presented in Section 4.3.4. However, it will

be shown there, that even in the Rayleigh fading case, the calculation is complicated, and

therefore, not likely to be practical.

Assume that the channel fading process r(t) is stationary and ergodic. Then, a simple

algorithm to estimate the functions {γ(µ), θ(µ)} is the following (adapted from [42, 88]),

γ(µ)
θ(µ)

= E[D(∞)] (32)

= τs(µ) +
E[Q(∞)]

µ
, and (33)

γ(µ) = Pr{D(∞) > 0} (34)

where τs(µ) is the average remaining service time of a packet being served. Note that τs(µ)

is zero for a fluid model (assuming infinitesimal packet size). The intuition in (32) is that,

since the distribution of D(∞) is approximately exponential for large D (see (29)), then

E[D(∞)] is given by (32). Now, the delay D(∞) is the sum of the delay incurred due to

the packet already in service, and the delay in waiting for the queue Q(∞) to clear. This

results in equation (33), using Little’s theorem. Substituting Dmax = 0 in (29) results in

(34).

Solving (33) for θ(µ), we obtain,

θ(µ) =
γ(µ) × µ

µ × τs(µ) + E[Q(∞)]
. (35)

Eqs. (34) and (35) show that the functions γ and θ can be estimated by estimating
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Pr{D(∞) > 0}, τs(µ), and E[Q(∞)]. The latter can be estimated by taking a number

of samples, say NT , over an interval of length T , and recording the following quantities

at the n-th sampling epoch (n = 1, 2, · · · , NT ): S(n) the indicator of whether a packets

is in service (S(n) ∈ {0, 1}), Q(n) the number of bits in the queue (excluding the packet

in service), and τ(n) the remaining service time of the packet in service (if there is one in

service). The following sample means are computed,

γ̂ =
1

NT

NT∑
t=1

S(n), (36)

q̂ =
1

NT

NT∑
t=1

Q(n). (37)

and

τ̂s =
1

NT

NT∑
t=1

τ(n). (38)

Then, from Eq. (35), we have,

θ̂ =
γ̂ × µ

µ × τ̂s + q̂
(39)

Eqs. (36) through (39) constitute our channel estimation algorithm, to estimate the EC

channel model functions {γ(µ), θ(µ)}. They can be used to predict the QoS by approximat-

ing Eq. (29) with

Pr{D(∞) ≥ Dmax} ≈ γ̂e−θ̂Dmax . (40)

Furthermore, if the ultimate objective of EC channel modeling is to compute an appropriate

service curve Ψ(t), then as mentioned earlier, given the delay bound Dmax and the target

delay-bound violation probability ε of a connection, we can find Ψ(t) = {σ(c), λ
(c)
s } by, 1)

setting σ(c) = Dmax, 2) solving Eq. (40) for µ and setting λ
(c)
s = µ. A fast binary search

procedure that estimates λ
(c)
s for a given Dmax and ε, is shown in Appendix A.1.

This section introduced the effective capacity channel model, which is parameterized by

the pair of functions {γ(µ), θ(µ)}. It was shown that these functions can be easily used to
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derive QoS guarantees (29), such as a bound that uses {Dmax, ε}. Furthermore, this section

specified a simple and efficient algorithm ((36) through (39)) to estimate {γ(µ), θ(µ)}, which

can then be used in (29). This completes the specification of our link-layer model.

The EC channel model and its application are summarized below.

1. {γ(µ), θ(µ)} is the EC channel model, which exists if the log-moment generating

function Λ(−u) in (26) exists (e.g., for a stationary Markov fading process r(t)).

2. In addition to its stationarity, if r(t) is also ergodic, then {γ(µ), θ(µ)} can be estimated

by Eqs. (36) through (39).

3. Given the EC channel model, the QoS {µ,Dmax, ε} can be computed by Eq. (40),

where ε = Pr{D(∞) ≥ Dmax}.

4. The resulting QoS {µ,Dmax, ε} corresponds directly to the service curve specification

{λ(c)
s , σ(c), ε′} with λ

(c)
s = µ, σ(c) = Dmax, and ε′ ≤ ε.

4.3.3 Physical Interpretation of Our Model {γ(µ), θ(µ)}

We stress that the model presented in the previous section, {γ(µ), θ(µ)}, is not just a result

of mathematics (i.e., large deviation theory). But rather, the model has direct physical

interpretation, i.e., {γ(µ), θ(µ)} corresponds to marginal Cumulative Distribution Function

(CDF) and Doppler spectrum of the underlying physical-layer channel. This correspondence

can be illustrated as follows.

• The probability of non-empty buffer, γ(µ), is similar to the concept of marginal CDF

(e.g., Rayleigh/Ricean distribution), or equivalently, outage probability (the proba-

bility that the received SNR falls below a certain specified threshold). As shown later

in Figure 29, different marginal CDF of the underlying physical-layer channel, cor-

responds to different γ(µ). However, the two functions, marginal CDF (i.e., outage

probability) and γ(µ), are not equal. The reason is that the probability of non-empty

buffer takes into account the effect of packet accumulation in the buffer, while the out-

age probability does not (i.e., an arrival packet will be immediately discarded if the
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SNR falls below a threshold). Therefore, the probability of non-empty buffer is larger

than the outage probability, because buffering causes longer busy periods, compared

with the non-buffered case.

From Figure 29, we observe that γ(µ) and marginal CDF have similar behavior, i.e.,

1) both increases with the source rate µ; 2) a large outage probability at the physical

layer results in a large γ(µ) at the link layer. Thus, γ(µ) does reflect the marginal

CDF of the underlying wireless channel.

• θ(µ), defined as the decay rate of the probability Pr{D(∞) ≥ Dmax}, corresponds

to the Doppler spectrum. This can be seen from Figure 30. As shown in the figure,

different Doppler rates give different θ(µ). In addition, the figure shows that θ(µ)

increases with the Doppler rate. The reason for this is the following. As the Doppler

rate increases, the degree of time diversity of the channel also increases. This implies

lower delay-violation probability Pr{D(∞) ≥ Dmax}, which leads to a larger decay

rate θ(µ). Therefore, θ(µ) does reflect the Doppler spectrum of the underlying physical

channel.

Note that a stationary Markov fading process (as is commonly assumed, for a physical

wireless channel), r(t), will always have a log-moment generating function Λ(u). Therefore,

the EC channel model is applicable to such a case. On the other hand, in Section 4.4.2,

the simulation results show that the delay-violation probability Pr{D(∞) ≥ Dmax} does

decrease exponentially with the delay bound Dmax (see Figures 31 to 33). Therefore, our

channel model is reasonable, not only from a theoretical viewpoint (i.e., Markovian property

of fading channels) but also from an experimental viewpoint (i.e., the actual delay-violation

probability decays exponentially with the delay bound).

4.3.4 QoS Guarantees Using Physical-layer Channel Models

In this section, we show that in contrast to our approach, which uses a link-layer model, the

existing physical-layer channel models cannot be easily used to extract QoS guarantees. In

Ref. [165], the authors attempt to model the wireless physical-layer channel using a discrete
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state representation. For example, Ref. [165] approximates a Rayleigh flat fading channel as

a multi-state Markov chain, whose states are characterized by different bit error rates. With

the multi-state Markov chain model, the performance of the link layer can be analyzed, but

only at expense of enormous complexity. In this section, we outline a similar method for

the Rayleigh flat fading channel at low SNRs.

As mentioned earlier, {γ(µ), θ(µ)} cannot be calculated using (27), in general, if only

the marginal PDF at any time t and the Doppler spectrum are known. However, such an

analytical calculation is possible for a Rayleigh flat fading channel in AWGN, albeit at very

high complexity.

Suppose that the wireless channel is a Rayleigh flat fading channel in AWGN with

Doppler spectrum S(f). Assume that we have perfect causal knowledge of the channel

gains. For example, the Doppler spectrum S(f) from the Gans model [109] is the following

S(f) =
1.5

πfm

√
1 − ( F

fm
)2

, (41)

where fm is the maximum Doppler frequency; fc is the carrier frequency; and F = f − fc.

We show how to calculate the effective capacity for this channel. Denote a sequence of

Nt measurements of the channel gain over the duration [0, t], spaced at a time-interval δ

apart, by x = [x(0), x(1), · · · , x(Nt−1)], where x(n) (n = 0, 1, · · · , Nt−1) are the complex-

valued channel gains (|x(n)| are therefore Rayleigh distributed). Without loss of generality,

we have absorbed the constant noise variance into the definition of x(n). The measurement

x(n) is a realization of a random variable sequence denoted by X(n), which can be written

as the vector X = [X(0),X(1), · · · ,X(Nt − 1)]. The PDF of a random vector X for the

Rayleigh fading channel is

fX(x) =
1

πNtdet(R)
e−xHR−1x, (42)

where R is the covariance matrix of the random vector X, det(R) the determinant of matrix

R, and xH the conjugate of x. Now, to calculate the effective capacity, we first need to
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calculate,

E[e−uS̃(t)] = E[e−u
∫ t
0 r(τ)dτ ]

(a)≈
∫

e−u(
∑Nt−1

n=0 δ×r(τn))fX(x)dx

(b)
=
∫

e−u(
∑Nt−1

n=0 δ log(1+|x(n)|2))fX(x)dx

(c)
=
∫

e−u(
∑Nt−1

n=0 δ log(1+|x(n)|2)) 1
πNtdet(R)

e−xHR−1xdx (43)

where (a) approximates the integral by a sum, (b) from the standard result on Gaussian

channel capacity (i.e., r(τn) = log(1 + |x(n)|2), where τn is the nth sampling epoch, and

|x(n)| is the modulus of x(n)), and (c) from Eq. (42). This gives the effective capacity (27)

as,

α(u) =
−1
u

lim
t→∞

1
t

log
∫

e−u(
∑Nt−1

n=0 δ log(1+|x(n)|2)) 1
πNtdet(R)

e−xHR−1xdx (44)

In general, the integral in (44) is of high dimension (i.e., 2Nt dimensions) and it does

not reduce to a simple form, except for the case of low SNR, where approximation can be

made. Next, we show a simple form of (44), for the case of low SNR. We first simplify (43)

as follows.

E[e−uS̃(t)]
(a)≈
∫

e−uδ(
∑Nt−1

n=0 |x(n)|2) 1
πNtdet(R)

e−xHR−1xdx

(b)
=
∫

e−uδ||x||2 1
πNtdet(R)

e−xHR−1xdx

(c)
=

1
πNtdet(R)

∫
e−x∗(R−1+uδI)xdx

=
1

πNtdet(R)
× πNtdet((R−1 + uδI)−1)

=
1

det(uδR + I)
(45)

where (a) using the approximation log(1 + |x(n)|2) ≈ |x(n)|2 for Eq. (43) (if |x(n)| is small,

that is, low SNR), (b) by the definition of the norm of the vector x, and (c) by the relation

||x||2 = x∗x (where I is identity matrix). We consider three cases of interest for Eq. (45):

• Case 1 (special case): Suppose R = rI, where r = E|x(n)|2 is the average channel

capacity. This case happens when a mobile moves very fast with respect to the sample
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period. From Eq. (45), we have

E[e−uS̃(t)] ≈ 1
det(uδR + I)

=
1

(urδ + 1)Nt

(a)
=

1
(ur × t

Nt
+ 1)Nt

(46)

where (a) follows from the fact that the sample period δ is t
Nt

.

As the number of samples Nt → ∞, we have,

lim
Nt→∞

E[e−uS̃(t)] ≈ lim
Nt→∞

1
(ur × t

Nt
+ 1)Nt

= e−urt (47)

Thus, in the limiting case, the Rayleigh fading channel reduces to an AWGN channel.

Note that this result would not apply at high SNRs, because of the concavity of the

log(·) function. Since Case 1 has the highest degree of diversity, it is the best case

for guaranteeing QoS, i.e., it provides the largest effective capacity among all the

Rayleigh fading processes with the same marginal PDF. It is also the best case for

high SNR.

• Case 2 (special case): Suppose R = r1 ·1T , where (.)T denotes matrix transpose, and

1 = [1, 1, · · · , 1]T . Thus, all the samples are fully correlated, which could occur if the

wireless terminal is immobile. From Eq. (45), we have,

E[e−uS̃(t)] ≈ 1
det(uδR + I)

=
1

urδNt + 1
=

1
ur × t

Nt
× Nt + 1

=
1

1 + urt
(48)

Since Case 2 has the lowest degree of diversity, it is the worst case. Specifically, Case

2 provides zero effective capacity because a wireless terminal could be in a deep fade

forever, making it impossible to guarantee any non-zero capacity. It is also the worst

case for high SNR.

• Case 3 (general case): Denote the eigenvalues of matrix R by λn (n = 0, 1, · · · , Nt−1).

Since R is symmetric, we have R = UΣUH , where U is a unitary matrix; UH is its

Hermitian; and the diagonal matrix Σ = diag(λ0, λ1, · · · , λNt−1). From Eq. (45), we
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have,

E[e−uS̃(t)] ≈ 1
det(uδR + I)

=
1

det(uδUΣUH + UUH)

=
1

det( U diag(uδλ0 + 1, uδλ1 + 1, · · · , uδλNt−1 + 1) UH )

=
1

Πn(uδλn + 1)

= e−
∑

n log(uδλn+1) (49)

Case 3 is the general case for a Rayleigh flat fading channel at low SNRs.

We now use the calculated E[e−uS̃(t)] to derive the log-moment generating function as,

Λ(−u) = lim
t→∞

1
t

log E[e−uS̃(t)]

(a)≈ lim
t→∞

1
t

log e−
∑

n log(uδλn+1)

(b)
= lim

∆f→0
−∆f

∑
n

log(u
λn

Bw
+ 1)

(c)
= −

∫
log(uS(f) + 1)df (50)

where (a) follows from Eq. (49), (b) follows from the fact that the frequency interval ∆f =

1/t and the bandwidth Bw = 1/δ, and (c) from the fact that the power spectral density

S(f) = λn/Bw and that the limit of a sum becomes an integral. This gives the effective

capacity (27) as,

α(u) =
∫

log(uS(f) + 1)df
u

(51)

Thus, the Doppler spectrum allows us to calculate α(u). The effective capacity function

(51) can be used to guarantee QoS using Eq. (29).

Remark 4.1 We argue that even if we have perfect knowledge about the channel gains,

it is hard to extract QoS metrics from the radio-layer channel model, in the general case.

The effective capacity function (51) is valid only for a Rayleigh flat fading channel, at low

SNR. At high SNR, the effective capacity for a Rayleigh fading channel is specified by the
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Figure 26: The queueing model used for simulations.

complicated integral in (44). To the best of our knowledge, a closed-form solution to (44)

does not exist. It is clear that a numerical calculation of effective capacity is also very

difficult, because the integral has a high dimension. Thus, it is difficult to extract QoS

metrics from a radio-layer channel model, even for a Rayleigh flat fading channel. The

extraction may not even be possible for more general fading channels. In contrast, the

EC channel model that we have proposed can be easily translated into QoS metrics for a

connection, and we have shown a simple estimation algorithm to estimate the EC model

functions.

4.4 Simulation Results

In this section, we simulate a queueing system and demonstrate the performance of our

algorithm for estimating the functions of the effective capacity link model. Section 4.4.1

describes the simulation setting, while Section 4.4.2 illustrates the performance of our esti-

mation algorithm.

4.4.1 Simulation Setting

We simulate the discrete-time system depicted in Figure 26. In this system, the data source

generates packets at a constant rate µ. Generated packets are first sent to the (infinite)

buffer at the transmitter, whose queue length is Q(n), where n refers to the n-th sample-

interval. The head-of-line packet in the queue is transmitted over the fading channel at

data rate r(n). The fading channel has a random power gain g(n). We use a fluid model,

that is, the size of a packet is infinitesimal. In practical systems, the results presented here
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will have to be modified to account for finite packet sizes.

We assume that the transmitter has perfect knowledge of the current channel gains g(n)

at each sample-interval. Therefore, it can use rate-adaptive transmissions and ideal channel

codes, to transmit packets without decoding errors. Thus, the transmission rate r(n) is

equal to the instantaneous (time-varying) capacity of the fading channel, as below,

r(n) = Bc log2(1 + g(n) × P0/σ
2
n) (52)

where Bc denotes the channel bandwidth, and the transmission power P0 and noise variance

σ2
n are assumed to be constant.

The average SNR is fixed in each simulation run. We define rawgn as the capacity of an

equivalent AWGN channel, which has the same average SNR, i.e.,

rawgn = Bc log2(1 + SNRavg) (53)

where SNRavg = E[g(n) × P0/σ
2] = P0/σ

2. We set E[g(n)] = 1. Then, we can eliminate

Bc using Eqs. (52) and (53) as,

r(n) =
rawgn log2(1 + g(n) × SNRavg)

log2(1 + SNRavg)
. (54)

In all the simulations, we set rawgn = 100 kb/s.

In our simulations, the sample interval is set to 1 milli-second. This is not too far from

reality, since 3G WCDMA systems already incorporate rate adaptation on the order of 10

milli-second [60].

Most simulation runs are 1000-second long; some simulation runs are 10000-second long

in order to obtain good estimate of the actual delay-violation probability Pr{D(∞) ≥
Dmax} by the Monte Carlo method.

Denote h(n) the voltage gain in the nth sample interval. We generate Rayleigh flat-

fading voltage-gains h(n) by a first-order auto-regressive (AR(1)) model as below. We first

generate h̄(n) by

h̄(n) = κ × h̄(n − 1) + ug(n), (55)
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Table 4: Simulation parameters.

Channel Maximum Doppler rate fm 5 to 30 Hz
AWGN channel capacity rawgn 100 kb/s

Average SNR 0/15 dB
Sampling-interval Ts 1 ms

Source Constant bit rate µ 30 to 85 kb/s

where ug(n) are i.i.d. complex Gaussian variables with zero mean and unity variance per

dimension. Then, we normalize h̄(n) and obtain h(n) by

h(n) = h̄(n)/

√
2

1 − κ2
= h̄(n) ×

√
1 − κ2

2
. (56)

It is clear that (56) results in E[g(n)] = E[|h(n)|2] = 1. The coefficient κ determines the

Doppler rate, i.e., the larger the κ, the smaller the Doppler rate. Specifically, the coefficient

κ can be determined by the following procedure: 1) compute the coherence time Tc by [109,

page 165]

Tc ≈ 9
16πfm

, (57)

where the coherence time is defined as the time, over which the time auto-correlation func-

tion of the fading process is above 0.5; 2) compute the coefficient κ by4

κ = 0.5Ts/Tc . (58)

For Ricean fading, the voltage-gains h(n) are generated by adding a constant to Rayleigh-

fading voltage-gains (see [104] for detail).

Table 4 lists the parameters used in our simulations.

4.4.2 Performance of the Estimation Algorithm

We organize this section as follows. In Section 4.4.2.1, we estimate the functions {γ(µ), θ(µ)}
of the effective capacity link model, from the measured xn. Section 4.4.2.2 provides simula-

tion results that demonstrate the relation between the physical channel and our link model.

4The auto-correlation function of the AR(1) process is κm, where m is the number of sample intervals.

Solving κTc/Ts = 0.5 for κ, we obtain (58).
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Figure 27: Estimated function γ̂(µ) vs. source rate µ.

In Section 4.4.2.3, we show that the estimated EC functions accurately predict the QoS

metric, under a variety of conditions.

4.4.2.1 Effective Capacity Model {γ̂, θ̂} Estimation

In the simulations, a Rayleigh flat fading channel is assumed. We simulate four cases: 1)

SNRavg = 15 dB and the maximum Doppler rate fm = 5 Hz, 2) SNRavg = 15 dB and

fm = 30 Hz, 3) SNRavg = 0 dB and fm = 5 Hz, and 4) SNRavg = 0 dB and fm = 30

Hz. Figures 27 and 28 show the estimated EC functions γ̂(µ) and θ̂(µ). As the source rate

µ increases from 30 kb/s to 85 kb/s, γ̂(µ) increases, indicating a higher buffer occupancy,

while θ̂(µ) decreases, indicating a slower decay of the delay-violation probability. Thus,

the delay-violation probability is expected to increase, with increasing source rate µ. From

Figure 27, we also observe that SNR has a substantial impact on γ̂(µ). This is because

higher SNR results in larger channel capacity, which leads to smaller probability that a

packet will be buffered, i.e., smaller γ̂(µ). In contrast, Figure 27 shows that fm has little

effect on γ̂(µ). The reason is that γ̂(µ) reflects the marginal CDF of the underlying fading

process, rather than the Doppler spectrum.
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Figure 28: Estimated function θ̂(µ) vs. source rate µ.

4.4.2.2 Physical Interpretation of Link Model {γ̂, θ̂}

To illustrate that different physical channel induces different parameters {γ̂, θ̂}, we simulate

two kinds of channels, i.e., a Rayleigh flat fading channel and a Ricean flat fading channel.

For the Rayleigh channel, we set the average SNR to 15 dB. For the Ricean channel, we

set the K factor5 to 3 dB. We simulate two scenarios: A) changing the source rate while

fixing the Doppler rate at 30 Hz, and B) changing the Doppler rate while fixing the source

rate, i.e., µ = 85 kb/s.

The result for scenario A is shown in Figure 29. For comparison, we also plot the

marginal CDF (i.e., Rayleigh/Ricean CDF) of the physical channel in the same figure.

The marginal CDF for Rayleigh channel, i.e., the probability that the SNR falls below a

threshold SNRth, is

Pr{SNR ≤ SNRth} = 1 − e−SNRth/SNRavg (59)

5The K factor is defined as the ratio between the deterministic signal power A2 and the variance of the

multipath 2σ2
m, i.e., K = A2/(2σ2

m).
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Figure 29: Marginal CDF and γ(µ) vs. source rate µ.

Similar to (54), we have the source rate

µ =
rawgn log2(1 + SNRth)

log2(1 + SNRavg)
(60)

Solving (60) for SNRth, we obtain

SNRth = (1 + SNRavg)
µ

rawgn − 1 (61)

Using (59) and (61), we plot the marginal CDF of the Rayleigh channel, as a function of

source rate µ. Similarly, we plot the marginal CDF of the Ricean channel, as a function of

source rate µ.

As shown in Figure 29, different marginal CDF at the physical layer yields different

γ̂(µ) at the link layer. We observe that γ̂(µ) and marginal CDF have similar behavior, i.e.,

1) both increases with the source rate µ; 2) if one channel has a larger outage probability

than another channel, it also has a larger γ̂(µ) than the other channel. For example, in

Figure 29, the Rayleigh channel has a larger outage probability and a larger γ̂(µ) than the

Ricean channel. Thus, the probability of non-empty buffer, γ̂(µ), is similar to marginal

CDF, i.e., outage probability.
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Figures 30 and 31 show the result for scenario B. From Figure 30, it can be seen that

different Doppler rate at the physical layer leads to different θ̂(µ) at the link layer. In

addition, the figure shows that θ̂(µ) increases with the Doppler rate. This is reasonable

since the increase of the Doppler rate leads to the increase of time diversity, resulting in a

larger decay rate θ̂(µ) of the delay-violation probability. Therefore, θ̂(µ) corresponds to the

Doppler spectrum of the physical channel.

Figure 31 shows the actual delay-violation probability Pr{D(∞) ≥ Dmax} vs. the delay

bound Dmax, for various Doppler rates. It can be seen that the actual delay-violation

probability decreases exponentially with the delay bound Dmax, for all the cases. This

justifies the use of an exponential bound (40) in predicting QoS, thereby justifying our link

model {γ̂, θ̂}.

4.4.2.3 Accuracy of the QoS Metric Predicted by γ̂ and θ̂

In the previous section, the simulation results have justified the use of {γ̂, θ̂} in predicting

QoS. In this section, we evaluate the accuracy of such a prediction. To test the accuracy,

we use γ̂ and θ̂ to calculate the delay-bound violation probability Pr{D(∞) ≥ Dmax}
(using (40)), and then compare the estimated probability with the actual (i.e., measured)
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Figure 31: Actual delay-violation probability vs. Dmax, for various Doppler rates: (a)
Rayleigh fading and (b) Ricean fading.
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Figure 32: Prediction of delay-violation probability, when the average SNR is (a) 15 dB
and (b) 0 dB.
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Figure 33: Prediction of delay-violation probability, when fm = 5 Hz.

Pr{D(∞) ≥ Dmax}.

To show the accuracy, we simulate three scenarios. In the first scenario, the source rates

µ are 75/80/85 kb/s, which loads the system as light/moderate/heavy, respectively. For

all three cases, we simulate a Rayleigh flat fading channel with SNRavg = 15 dB, rawgn =

100 kb/s and fm = 30 Hz. Figure 32(a) plots the actual and the estimated delay-bound

violation probability Pr{D(∞) ≥> Dmax} as a function of Dmax. As predicted by (40),

the delay-violation probability follows an exponential decrease with Dmax. Furthermore,

the estimated Pr{D(∞) ≥ Dmax} is close to the actual Pr{D(∞) ≥ Dmax}.

In the second scenario, we also set rawgn = 100 kb/s and fm = 30 Hz, but change the

average SNR to 0 dB. Figure 32(b) shows that the conclusions drawn from the first scenario

still hold. Thus, our estimation algorithm gives consistent performance over different SNRs

also.

In the third scenario, we set SNRavg = 15 dB and rawgn = 100 kb/s, but we change

the Doppler rate fm to 5 Hz. Figure 33 shows that the conclusions drawn from the first

scenario still hold. Thus, our estimation algorithm consistently predicts the QoS metric
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under different Doppler rate fm.

In summary, the simulations illustrate that our EC link model, together with the esti-

mation algorithm, predict the actual QoS accurately.

4.5 Modeling for Frequency Selective Fading Channels

In Section 4.3, we modeled the wireless channel in terms of two ‘effective capacity’ functions;

namely, the probability of non-empty buffer γ(µ) and the QoS exponent θ(µ). Furthermore,

we developed a simple and efficient algorithm to estimate the EC functions {γ(µ), θ(µ)}.
For flat-fading channels (e.g., Rayleigh fading with a specified Doppler spectrum), the

simulation results have shown that the actual QoS metric is closely approximated by the

QoS metric predicted by the EC channel model and its estimation algorithm, under various

scenarios. On the other hand, for frequency selective fading channels with high degrees of

frequency diversity, a refinement is useful to characterize γ(µ) further. The technique we

use is large deviations theory for many sources.

In this section, we use the duality between the distribution of a queue with superposition

of N i.i.d. sources, and the distribution of a queue with a frequency-selective fading channel

that consists of N i.i.d. sub-channels, to propose a channel model, specified by three

functions {β(c)(µ), η(c)(µ), θ1(µ)}.

The remainder of this section is organized as follows. Section 4.5.1 presents large devia-

tion results for a queue with many inputs, which provide us the method to model frequency-

selective fading channels. In Section 4.5.2, we describe a modified effective capacity model

for frequency-selective fading channels. Section 4.5.3 shows simulation results that demon-

strate the accuracy of the proposed channel model.

4.5.1 Large Deviation Results for a Queue with Many Inputs

In [18], Botvich and Duffield obtained a large deviation result for the queue at a multiplexer

with N inputs. To state their results, let QN (∞) be the length of the steady-state queue

due to a superposition of N i.i.d. stationary sources, served at constant rate N ×r (r fixed).
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Denote by AN (t) (t ≥ 0) the amount of aggregate traffic from the N sources over the time

interval [0, t). Assume that the many-source-asymptotic6 log-moment generating function

of AN (t), defined as

Λt(u) = lim
N→∞

1
Nt

log E[eu(AN (t)−Nrt)], (62)

exists for all u > 0 and t > 0.

Define Λ∗
t the Legendre-Fenchel transform of Λt, through

Λ∗
t (B) = sup

u
(B × u − Λt(u)). (63)

Under appropriate conditions, paralleling (23) for large buffer asymptotic, Botvich and

Duffield’s result for many source asymptotic [18] is

Pr{QN (∞) ≥ B} ∼ e−N×I(B/N) as N → ∞, (64)

where I(B) = inft>0 tΛ∗
t (B/t), and f(x) ∼ g(x) means that limx→∞ f(x)/g(x) = 1. Eq. (64)

yields the approximation

Pr{QN (∞) ≥ B} ≈ e−N×I(B/N), (65)

By introducing a prefactor β(s)(r), a more accurate approximation was proposed in [28] as

below,

Pr{QN (∞) ≥ B} ≈ β(s)(r) × e−N×I(B/N) (66)

≈ β(s)(r) × e−η(s)(r)×N × e−θB(N,r)×B , (67)

where β(s)(r) and η(s)(r) are functions of r, θB(N, r) is a function of N and r, and η(s)(r)

and θB(N, r) satisfy [18]

lim
B→∞

(I(B) − θB(N, r) × B) = η(s)(r), (68)

and

η(s)(r) = − lim
t→∞ tΛt(θB(N, r)), (69)

6Many source asymptotic is for the case where the number of sources N goes to ∞ while large buffer
asymptotic is for the case where the buffer size B goes to ∞.
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under appropriate conditions. The quantity β(s)(r) × e−η(s)(r)×N can be regarded as the

probability that the buffer is non-empty; this probability decays exponentially as the number

of sources N increases, which is different from γ(r) in Section 4.3.1.

If the quantity of interest is the steady-state delay DN (∞), then the probability of

DN (∞) exceeding a delay bound Dmax satisfies

Pr{DN (∞) ≥ Dmax} ≈ β(s)(r) × e−η(s)(r)×N × e−θ(s)(N,r)×Dmax , (70)

where θ(s)(N, r) = θB(N, r) × N × r. Thus, the triplet {β(s)(r), η(s)(r), θ(s)(N, r)} models

the aggregate source.

In the following section, we use the duality between traffic modeling ({β(s)(r), η(s)(r), θ(s)(N, r)})
and channel modeling to propose a link-layer model for frequency selective fading channels,

specified by a triplet {β(c)(µ), η(c)(µ), θN (µ)}. It is clear that we intend {β(c)(µ), η(c)(µ), θN (µ)}
to be the channel duals of the source functions {β(s)(r), η(s)(r), θ(s)(N, r)}. Just as the con-

stant channel rate r is used in source traffic modeling, we use the constant source traffic

rate µ in modeling the channel.

4.5.2 Channel Modeling

Consider a queue of infinite buffer size supplied by a data source of constant data rate

µ, served by 1/N fraction of a frequency-selective fading channel that consists of N i.i.d.

sub-channels. The queue is served by 1/N fraction of the channel to keep the system load7

constant as N increases. The large deviation results in Section 4.5.1 can be easily adapted to

this case. The difference is that whereas in Section 4.5.1, the source rate was variable while

the channel capacity per source was constant, in this section, the source rate is constant

while the channel capacity is variable. Similar to (70), it can be shown that the probability

of D(∞) exceeding a delay bound Dmax satisfies

Pr{D(∞) ≥ Dmax} ≈ γN (µ) × e−θN (µ)×Dmax (71)

7The system load is defined as the ratio of the expected source rate to the ergodic channel capacity.
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where the functions {γN (µ), θN (µ)} characterize the frequency-diversity channel with N

independent sub-channels, and the function γN (µ) can be approximated by

γN (µ) ≈ β(c)(µ) × e−η(c)(µ)×N (72)

Assuming equality in (72), we can easily derive a method to estimate η(c)(µ) and β(c)(µ) as

below

η(c)(µ) = − log(γN (µ)/γ1(µ))/(N − 1), (73)

and

β(c)(µ) = γ1(µ) × eη(c)(µ). (74)

where γ1(µ) and γN (µ) can be estimated by Eq. (36).

For the case where the sub-channels are i.i.d., a simplification occurs. Let rN (t) be the

instantaneous channel capacity of 1/N fraction of a frequency-selective fading channel with

N i.i.d. sub-channels, at time t. Then, the effective capacity function of rN (t) is defined as

αN (u) = − lim
t→∞

1
ut

log E[e−u
∫ t
0

rN (τ)dτ ], ∀ u > 0, (75)

if it exists. Let r1(t) be the instantaneous channel capacity of one sub-channel of the

frequency-selective fading channel, at time t. Then, the effective capacity function of r1(t)

is defined as

α1(u) = − lim
t→∞

1
ut

log E[e−u
∫ t
0 r1(τ)dτ ], ∀ u > 0. (76)

According to Eq. (30), the QoS exponents θN(µ) and θ1(µ) are defined as

θN(µ) = µα−1
N (µ), (77)

and

θ1(µ) = µα−1
1 (µ), (78)

respectively, and the two QoS exponents have a relation specified by Proposition 4.1.

Proposition 4.1 The QoS exponents θN (µ) and θ1(µ) satisfy

θN (µ) = N × θ1(µ). (79)

100



For a proof of Proposition 4.1, see Appendix A.2.

From (71), (72), and (79), we have

Pr{D(∞) ≥ Dmax} ≈ β(c)(µ) × e−η(c)(µ)×N × e−N×θ1(µ)×Dmax . (80)

So, the functions {β(c)(µ), η(c)(µ), θ1(µ)} sufficiently characterize the QoS Pr{D(∞) ≥
Dmax} for a frequency-selective fading channel, consisting of arbitrary N i.i.d. sub-channels.

There is no need to directly estimate γN (µ) and θN(µ) for arbitrary N , using Eq. (36)

through (39).

The EC channel model for frequency-selective fading channels and its application are

summarized below.

1. {β(c)(µ), η(c)(µ), θ1(µ)} is the EC channel model.

2. {β(c)(µ), η(c)(µ), θ1(µ)} can be estimated by (74), (73), and (36) through (39), respec-

tively.

3. Given the EC channel model, the QoS {µ,Dmax, ε} can be computed by Eq. (80),

where ε = Pr{D(∞) ≥ Dmax}.

4.5.3 Simulation Results

The simulation settings are the same as that in Section 4.4.1 except that the flat fading

channel is replaced by a frequency selective fading channel. That is, the channel voltage

gain hi(n) of each sub-channel i (i = 1, 2, · · · , N) in a frequency selective fading channel,

is assumed to be Rayleigh-distributed and is generated by an AR(1) model as below. We

first generate h̄i(n) by

h̄i(n) = κ × h̄i(n − 1) + vi(n), (81)

where vi(n) are i.i.d. complex Gaussian variables with zero mean and unity variance per

dimension. Then, we normalize h̄i(n) and obtain hi(n) by

hi(n) = h̄i(n) ×
√

1 − κ2

2
. (82)
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Figure 34: Actual and estimated θN vs. N .

We simulate the discrete-time system depicted in Figure 26. In this system, the data

source generates packets at a constant rate µ. Generated packets are first sent to the

(infinite) buffer at the transmitter, whose queue length is Q(n), where n refers to the n-

th sample-interval. The head-of-line packet in the queue is transmitted over the fading

channel at data rate r(n). Since the transmission rate r(n) is equal to 1/N of the sum of

the instantaneous capacities of the N sub-channels, we have

r(n) =
1
N

N∑
i=1

ri(n) =
∑N

i=1 rawgn log2(1 + |hi(n)|2 × SNRavg)
N log2(1 + SNRavg)

. (83)

In all the simulations in this section, we fix the following parameters: rawgn = 100 kb/s,

κ = 0.98, and SNRavg = 0 dB. The sample interval Ts is set to 1 milli-second and each

simulation run is 1000-second long in all scenarios.

In the next section, we use simulation results to show the accuracy of the channel model

{β(c)(µ), η(c)(µ), θ1(µ)}.

4.5.3.1 Accuracy of Channel Model {β(c)(µ), η(c)(µ), θ1(µ)}

In the simulations, we first directly estimate γN and θN for various number of sub-channels

N , using Eqs. (36) through (39); then we estimate {β(c)(µ), η(c)(µ), θ1(µ)} by (74), (73),

and (36) through (39), respectively.
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Figure 35: Actual and estimated γN vs. N : (a) µ = 40 kb/s, (b) µ = 60 kb/s, and (c)
µ = 85 kb/s.
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Figure 36: Actual and estimated delay-bound violation probability for µ = 85 kb/s and
N = 1.

Figure 34 shows the actual and estimated θN vs. N for µ = 85 kb/s. The actual θN

is meant to be the θN directly measured by Eqs. (36) through (39) for the case with N

sub-channels; the estimated θN is meant to be N × θ1, i.e., Eq. (79), where θ1 is measured

by Eqs. (36) through (39) for the case with one sub-channel. The figure indicates that 1)

the actual θN linearly increase with N , justifying the linear relation in (79), and 2) the

estimated θN can serve as a rough estimate of the actual θN .

Figure 35 shows the actual and estimated γN vs. N for various source rate µ. The

actual γN is meant to be the γN directly measured by Eqs. (36) through (39) for the case

with N sub-channels; the estimated γN is obtained by Eq. (72), where η(c)(µ) and β(c)(µ)

are estimated by (73) and (74), respectively. The figure demonstrates that 1) the actual

γN decrease exponentially with N , justifying the exponential relation in (72), and 2) the

estimated γN is close to the actual γN .

Figures 36 and 37 show the actual and estimated delay-bound violation probability

Pr{D(∞) ≥ Dmax} vs. the delay bound Dmax, for various N and µ = 85 kb/s. The

actual Pr{D(∞) ≥ Dmax} is obtained by directly measuring the queue; the estimated

Pr{D(∞) ≥ Dmax} is obtained by Eq. (80), where {β(c)(µ), η(c)(µ), θ1(µ)} are estimated

by (74), (73), and (36) through (39), respectively. The figures illustrate that the estimated

Pr{D(∞) ≥ Dmax} agrees with the actual Pr{D(∞) ≥ Dmax}. It is clear that as the
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Figure 37: Actual and estimated delay-bound violation probability for µ = 85 kb/s and
various N : (a) N = 2, (b) N = 4, (c) N = 8, (d) N = 16, (e) N = 32, and (f) N = 64.
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Figure 38: Actual and estimated delay-bound violation probability for N = 4 channels: (a)
µ = 20 kb/s, (b) µ = 40 kb/s, and (c) µ = 60 kb/s.
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Figure 39: Actual and simply estimated delay-bound violation probability for N = 4
channels: (a) µ = 20 kb/s, (b) µ = 40 kb/s, and (c) µ = 60 kb/s.
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number of sub-channels N increases, Pr{D(∞) ≥ Dmax} decreases for a fixed Dmax. This

indicates that frequency diversity improves the delay performance of a wireless channel. We

will show how to utilize frequency diversity to improve delay performance in Chapter 6.

Figure 38 shows the actual and estimated Pr{D(∞) ≥ Dmax} vs. the delay bound

Dmax, for various µ and N = 4. The actual and estimated Pr{D(∞) ≥ Dmax} are obtained

by the same ways as Figure 37. Figure 38 indicates that the estimated Pr{D(∞) ≥ Dmax}
gives good agreement with the actual Pr{D(∞) ≥ Dmax} for various data rates µ.

Figure 39 shows the actual and estimated Pr{D(∞) ≥ Dmax} vs. the delay bound

Dmax, for various µ and N = 4, with a simplified estimation method. The actual Pr{D(∞) ≥
Dmax} is obtained by the same way as Figure 37. Different from Eq. (80), the estimated

Pr{D(∞) ≥ Dmax} is obtained by a simplified estimate as below,

Pr{D(∞) ≥ Dmax} = γ1(µ) × e−N×θ1(µ)×Dmax , (84)

where γ1(µ) and θ1(µ) are estimated by Eqs. (36) through (39) for the case with one sub-

channel. Compared with Figure 38, Figure 39 indicates that if γN (µ) in (71) is replaced by

γ1(µ), the estimated Pr{D(∞) ≥ Dmax} would be very conservative. Hence, the estimation

of γN (µ) is necessary.

In summary, by estimating functions {β(c)(µ), η(c)(µ), θ1(µ)} and using Eq. (80), we can

obtain the QoS Pr{D(∞) ≥ Dmax} for a frequency-selective fading channel, consisting of

arbitrary N i.i.d. sub-channels, with reasonable accuracy.

4.6 Effective Capacity-based QoS Measures

The following property is needed in the propositions in this section.

Property 4.1 (i) The asymptotic log-moment generation function Λ(u) defined in (26) is

finite for all u ∈ R. (ii) Λ(u) is differentiable for all u ∈ R.
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4.6.1 QoS Measures for Wireless Networks

In this section, we consider two basic network structures for wireless networks: one with

only tandem wireless links (see Figure 40) and the other with only parallel wireless links

(see Figure 41). In the following, Propositions 4.2 and 4.3 give QoS measures for these two

network structures, respectively.

Denote rk(t) (k = 1, · · · ,K) the instantaneous capacity of channel k at time t. For a

network with K tandem links, define the service S̃(t0, t), for t ≥ 0 and any t0 ∈ [0, t], by

S̃(t0, t) = inf
t0≤t1≤···≤tK−1≤tK=t

{
K∑

k=1

∫ tk

tk−1

rk(τ)dτ

}
, (85)

and the asymptotic log-moment generating function

Λtandem(−u) = lim
t→∞

1
t

log E[e−uS̃(0,t)] (86)

where S̃(0, t) is defined by (85); also define the effective capacity of channel k by

αk(u) = − lim
t→∞

1
ut

log E[e−u
∫ t
0

rk(τ)dτ ], ∀ u > 0. (87)

Proposition 4.2 Assume that the log-moment generating function Λtandem(u) defined by

(86) satisfies Property 4.1. Given the effective capacity functions {αk(u), k = 1, · · · ,K} of

K tandem links and an external arrival process with constant rate µ, the end-to-end delay

D(∞) experienced by the traffic traversing the K tandem links satisfies

lim sup
Dmax→∞

1
Dmax

log Pr{D(∞) > Dmax} ≤ −θ, if α(θ/µ) > µ, (88)

and

lim
Dmax→∞

1
Dmax

log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/µ) = µ, (89)

where α(u) = −Λtandem(−u)/u. Moreover, the effective capacity α(u) satisfies

α(u) ≤ min
k

αk(u). (90)
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For a proof of Proposition 4.2, see Appendix A.3. Note that the capacity processes of the

tandem channels are not required to be independent in Proposition 4.2.

Proposition 4.3 Assume that the log-moment generating function Λk(u) of each channel

k in the network satisfies Property 4.1. Given the effective capacity functions {αk(u), k =

1, · · · ,K} of K independent parallel links and an external arrival process with constant

rate µ, the end-to-end delay D(∞) experienced by the traffic traversing the K parallel links

satisfies

lim sup
Dmax→∞

1
Dmax

log Pr{D(∞) > Dmax} ≤ −θ, if α(θ/µ) > µ, (91)

and

lim
Dmax→∞

1
Dmax

log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/µ) = µ, (92)

where α(u) =
∑K

k=1 αk(u).

For a proof of Proposition 4.3, see Appendix A.4.

Propositions 4.2 and 4.3 suggest the following approximation

Pr{D(∞) > Dmax} ≈ e−θ∗×Dmax , (93)

for large Dmax. In addition, α(u) specified in Propositions 4.2 and 4.3 can be regarded as

the effective capacity of the equivalent channel of the network, which consists of tandem

links only or independent parallel links only. In Sections 4.6.2 to 4.6.4, we will use α(u) to

characterize the equivalent channel of the network; and we will use (92) only since (92) is

tighter than (91).
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4.6.2 QoS Measures for Variable-Bit-Rate Sources

In this section, we develop QoS measures for the case where the sources generate traffic at

variable bit-rates (VBR). We consider two classes of VBR sources: leaky-bucket constrained

arrival (see Section 2.2) and exponential process with its effective bandwidth function known

(see Section 2.2.1). Propositions 4.4 and 4.5 provide QoS measures for these two classes of

VBR sources, respectively.

Proposition 4.4 Assume that a wireless network consists of tandem links only or inde-

pendent parallel links only; the effective capacity function of the equivalent channel of the

wireless network is characterized by α(u); and the log-moment generating function Λk(u) of

each channel k in the network satisfies Property 4.1. Given an external arrival process con-

strained by a leaky bucket with bucket size σ(s) and token generating rate λ
(s)
s , the end-to-end

delay D(∞) experienced by the traffic traversing the network satisfies

lim
Dmax→∞

1

Dmax − σ(s)/λ
(s)
s

log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/λ(s)
s ) = λ

(s)
s . (94)

For a proof of Proposition 4.4, see Appendix A.5. Eq. (94) suggests the following

approximation

Pr{D(∞) > Dmax} ≈ e−θ∗×(Dmax−σ(s)/λ
(s)
s ), (95)

for large Dmax.

Proposition 4.5 Assume that a wireless network consists of tandem links only or inde-

pendent parallel links only; the effective capacity function of the equivalent channel of the

wireless network is characterized by α(u); an external arrival process is characterized by its

effective bandwidth function α(s)(u); and the log-moment generating function Λk(u) of each

channel k in the network and the log-moment generating function Λ(s)(u) of the external

arrival process satisfy Property 4.1. Denote u∗ the unique solution of the following equation

α(s)(u) = α(u). (96)
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The end-to-end delay D(∞) experienced by the traffic traversing the network satisfies

lim
Dmax→∞

1
Dmax

log Pr{D(∞) > Dmax} = −θ∗, where θ∗ = u∗ × α(s)(u∗). (97)

For a proof of Proposition 4.5, see Appendix A.6.

Note that a single-link network is a special case in Propositions 4.4 and 4.5.

4.6.3 QoS Measures for Packetized Traffic

In previous sections, we assumed fluid traffic. In this section, we extend the QoS measures

obtained previously for the fluid model to the case with packetized traffic. This is important

since in practical situations, the packet size is not negligible (not infinitesimal as in fluid

model).

We assume the propagation delay of a wireless link is negligible, and the service at

a network node is non-cut-through, i.e., no packet is eligible for service until its last bit

has arrived. We also assume a wireless network consists of tandem links only or parallel

links only. For a network with tandem links only, the number of hops in the network is

determined by the number of tandem links in the network; for a network with parallel links

only, the number of hops in the network is one. We consider two cases: 1) a constant-bit-

rate source with constant packet size, and 2) a variable-bit-rate source with variable packet

size. Propositions 4.6 and 4.7 give QoS measures for these two cases, respectively.

Proposition 4.6 Assume that a wireless network consists of tandem links only or inde-

pendent parallel links only; the effective capacity function of the equivalent channel of the

wireless network is characterized by α(u); the log-moment generating function Λk(u) of

each channel k in the network satisfies Property 4.1; and the network consists of N hops.

Given an external arrival process with constant bit rate µ and constant packet size Lc, the

end-to-end delay D(∞) experienced by the traffic traversing the network satisfies

lim
Dmax→∞

1
Dmax − N × Lc/µ

log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/µ) = µ. (98)
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For a proof of Proposition 4.6, see Appendix A.7. Eq. (98) suggests the following approxi-

mation

Pr{D(∞) > Dmax} ≈ e−θ∗(Dmax−N×Lc/µ), (99)

for large Dmax.

Proposition 4.7 Assume that a wireless network consists of tandem links only or inde-

pendent parallel links only; the effective capacity function of the equivalent channel of the

wireless network is characterized by α(u); the log-moment generating function Λk(u) of each

channel k in the network satisfies Property 4.1; and the network consists of N hops. Given

a traffic flow having maximum packet size Lmax and constrained by a leaky bucket with

bucket size σ(s) and token generating rate λ
(s)
s , the end-to-end delay D(∞) experienced by

the traffic traversing the network satisfies

lim
Dmax→∞

1

Dmax − N × Lmax/λ
(s)
s − σ(s)/λ

(s)
s

log Pr{D(∞) > Dmax} = −θ∗, (100)

where α(θ∗/λ(s)
s ) = λ

(s)
s .

For a proof of Proposition 4.7, see Appendix A.8. Eq. (98) suggests the following approxi-

mation

Pr{D(∞) > Dmax} ≈ e−θ∗(Dmax−N×Lmax/λ
(s)
s −σ(s)/λ

(s)
s ), (101)

for large Dmax.

Note that a single-link network is a special case in Propositions 4.6 and 4.7.

4.6.4 QoS Measures for Wireless Channels with Non-negligible Propagation
Delay

In previous sections, we assumed the propagation delay of a wireless link is negligible. In

this section, we extend the QoS measures obtained previously to the situation where the

propagation delay of a wireless link is not negligible. We consider two cases: 1) a fluid

source with a constant rate, and 2) a variable-bit-rate source with variable packet size.

Propositions 4.8 and 4.9 give QoS measures for these two cases, respectively.
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Proposition 4.8 Assume that a wireless network consists of tandem links only or inde-

pendent parallel links only; the effective capacity function of the equivalent channel of the

wireless network is characterized by α(u); the log-moment generating function Λk(u) of each

channel k in the network satisfies Property 4.1; the network consists of N hops; and the

i-th hop (i = 1, · · · , N) incurs a constant propagation delay di. Given a fluid traffic flow

with constant rate µ, the end-to-end delay D(∞) experienced by the traffic traversing the

network satisfies

lim
Dmax→∞

1
Dmax −∑N

i=1 di

log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/µ) = µ. (102)

For a proof of Proposition 4.8, see Appendix A.9. Eq. (102) suggests the following approx-

imation

Pr{D(∞) > Dmax} ≈ e−θ∗(Dmax−∑N
i=1 di), (103)

for large Dmax.

Proposition 4.9 Assume that a wireless network consists of tandem links only or inde-

pendent parallel links only; the effective capacity function of the equivalent channel of the

wireless network is characterized by α(u); the log-moment generating function Λk(u) of each

channel k in the network satisfies Property 4.1; the network consists of N hops; and the

i-th hop (i = 1, · · · , N) incurs a constant propagation delay di. Given a traffic flow hav-

ing maximum packet size Lmax and constrained by a leaky bucket with bucket size σ(s) and

token generating rate λ
(s)
s , the end-to-end delay D(∞) experienced by the traffic traversing

the network satisfies

lim
Dmax→∞

1

Dmax − N × Lmax/λ
(s)
s − σ(s)/λ

(s)
s −∑N

i=1 di

log Pr{D(∞) > Dmax} = −θ∗,

(104)

where α(θ∗/λ(s)
s ) = λ

(s)
s .

For a proof of Proposition 4.9, see Appendix A.10. Eq. (104) suggests the following approx-

imation

Pr{D(∞) > Dmax} ≈ e−θ∗(Dmax−N×Lmax/λ
(s)
s −σ(s)/λ

(s)
s −∑N

i=1 di), (105)

for large Dmax.
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4.7 Summary

Efficient bandwidth allocation and QoS provisioning over wireless links, demand a simple

and effective wireless channel model. In this chapter, we modeled a wireless channel from the

perspective of the communication link-layer. This is in contrast to existing channel models,

which characterize the wireless channel at the physical-layer. Specifically, we modeled the

wireless link in terms of two ‘effective capacity’ functions; namely, the probability of non-

empty buffer γ(µ) and the QoS exponent θ(µ). The QoS exponent is the inverse of a function

which we call effective capacity (EC). The EC channel model is the dual of the effective

bandwidth source traffic model, used in wired networks. Furthermore, we developed a simple

and efficient algorithm to estimate the EC functions {γ(µ), θ(µ)}. Simulation results show

that the actual QoS metric is closely approximated, by the QoS metric predicted by the EC

channel model and its estimation algorithm, under various scenarios.

We have provided key insights about the relations between the EC channel model and the

physical-layer channel, i.e., γ(µ) corresponds to the marginal CDF (e.g., Rayleigh/Ricean

distribution) while θ(µ) is related to the Doppler spectrum. The EC channel model has been

justified not only from a theoretical viewpoint (i.e., Markov property of fading channels)

but also from an experimental viewpoint (i.e., the delay-violation probability does decay

exponentially with the delay).

In this chapter, we have obtained link-layer QoS measures for various scenarios: flat-

fading channels, frequency-selective fading channels, multi-link wireless networks, variable-

bit-rate sources, packetized traffic, and wireless channels with non-negligible propagation

delay. The QoS measures obtained can be easily translated into traffic envelope and service

curve characterizations, which are popular in wired networks, such as ATM and IP, to

provide guaranteed services. Therefore, we believe that the EC channel model, which

was specifically constructed keeping in mind these link-layer QoS measures, will find wide

applicability in future wireless networks that need QoS provisioning.

In summary, our EC channel model has the following features: simplicity of implemen-

tation, efficiency in admission control, and flexibility in allocating bandwidth and delay for
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connections. In addition, our channel model provides a general framework, under which

physical-layer fading channels such as AWGN, Rayleigh fading, and Ricean fading channels

can be studied.

Armed with the new channel model, we investigate its use in designing admission control,

resource reservation, and scheduling algorithms, for efficient support of QoS guarantees, in

Chapters 5 and 6.
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CHAPTER 5

QOS PROVISIONING: A SINGLE SHARED CHANNEL

5.1 Introduction

Providing quality of service (QoS), such as delay and rate guarantees, is an important

objective in the design of future packet cellular networks [60]. However, this requirement

poses a challenge in wireless network design, because wireless channels have low reliability,

and time varying signal strength, which may cause severe QoS violations. Further, the

capacity of a wireless channel is severely limited, making efficient bandwidth utilization a

priority.

An effective way to increase the outage capacity [13] of a time-varying channel is the

use of diversity. The idea of diversity is to create multiple independent signal paths between

the transmitter and the receiver so that higher outage capacity can be obtained. Diversity

can be achieved over time, space, and frequency. These traditional diversity methods are

essentially applicable to a single-user link. Recently, however, Knopp and Humblet [72]

introduced another kind of diversity, which is inherent in a wireless network with multiple

users sharing a time-varying channel. This diversity, termed multiuser diversity [52], comes

from the fact that different users usually have independent channel gains for the same shared

medium. With multiuser diversity, the strategy of maximizing the total Shannon (ergodic)

capacity is to allow at any time slot only the user with the best channel to transmit. This

strategy is called Knopp and Humblet’s (K&H) scheduling. Results [72] have shown that

the K&H scheduling can increase the total (ergodic) capacity dramatically, in the absence

of delay constraints, as compared to the traditionally used (weighted) round robin (RR)

scheduling where each user is a priori allocated fixed time slots.

The K&H scheduling intends to maximize ergodic capacity, which pertains to situations
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of infinite tolerable delay. However, under this scheme, a user in a fade of an arbitrarily

long period will not be allowed to transmit during this period, resulting in an arbitrarily

long delay; therefore, this scheme provides no delay guarantees and thus is not suitable for

delay-sensitive applications, such as voice or video. To mitigate this problem, Bettesh and

Shamai [9] proposed an algorithm, which strikes a balance between throughput and delay

constraints. This algorithm combines the K&H scheduling with an RR scheduling, and it

can achieve lower delay than the K&H scheduling while obtaining a capacity gain over a

pure RR scheduling. However, it is very complex to theoretically relate the QoS obtained

by this algorithm to the control parameters of the algorithm, and thus cannot be used

to guarantee a specified QoS. Furthermore, a direct (Monte Carlo) measurement of QoS

achieved, using the queueing behavior resulting from the algorithm, requires an excessively

large number of samples, so that it becomes practically infeasible.

Another typical approach is to use dynamic programming [10] to design a scheduler

that can increase capacity, while also maintaining QoS guarantees. But this approach

suffers from the curse of dimensionality, since the size of the dynamic program state space

grows exponentially with the number of users and with the delay requirement.

To address these problems, this chapter proposes an approach, which simplifies the task

of explicit provisioning of QoS guarantees while achieving efficiency in utilizing wireless

channel resources. Specifically, we design our scheduler based on the K&H scheduling, but

shift the burden of QoS provisioning to the resource allocation mechanism, thus simplifying

the design of the scheduler. Such a partitioning would be meaningless if the resource

allocation problem now becomes complicated. However, we are able to solve the resource

allocation problem efficiently using the method of effective capacity developed in Chapter 4.

Effective capacity captures the effect of channel fading on the queueing behavior of the link,

using a computationally simple yet accurate model, and thus, is the critical device we need

to design an efficient resource allocation mechanism.

Our results show that compared to the RR scheduling, our approach can substantially

increase the statistical delay-constrained capacity (defined later) of a fading channel, when
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Figure 42: Downlink scheduling architecture for multiple users sharing a wireless channel.

delay requirements are not very tight. For example, in the case of low signal-to-noise-ratio

(SNR) and ergodic Rayleigh fading, our scheme can achieve approximately
∑K

k=1
1
k gain

for K users with loose-delay requirements, as expected from [72]. But more importantly,

when the delay bound is not loose, so that simple-minded K&H scheduling does not directly

apply, our scheme can achieve a capacity gain, and yet meet the QoS requirements.

The remainder of this chapter is organized as follows. In Section 5.2, we discuss multiuser

diversity, which is our key technique to increase capacity. Section 5.3 presents efficient QoS

provisioning mechanisms and shows how to use multiuser diversity and effective capacity to

achieve a performance gain while yet satisfying QoS constraints. In Section 5.4, we present

the simulation results that demonstrate the performance gain of our scheme. In Section 5.5,

we summarize this chapter.

5.2 Multiuser Diversity with QoS Constraints

We organize this section as below. In Section 5.2.1, we discuss the technique of multiuser

diversity. Section 5.2.2 describes statistical QoS and its relation with effective capacity. In

Section 5.2.3, we illustrate the limitation of traditional QoS provisioning methods through

an example.
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5.2.1 Multiuser Diversity

We first describe the model. Figure 42 shows the architecture for scheduling multiuser traffic

over a fading (time-varying) time-slotted wireless channel. A cellular wireless network is

assumed, and the downlink is considered, where a base station transmits data to K mobile

user terminals, each of which requires certain QoS guarantees. The channel fading processes

of the users are assumed to be stationary, ergodic and independent of each other. A single

cell is considered, and interference from other cells is modeled as background noise with

constant variance. In the base station, packets destined to different users are put into

separate queues. We assume a block fading channel model [13], which assumes that user

channel gains are constant over a time duration of length Ts (Ts is assumed to be small

enough that the channel gains are constant, yet large enough that ideal channel codes can

achieve capacity over that duration). Therefore, we partition time into ‘frames’ (indexed as

t = 0, 1, 2, . . .), each of length Ts. Thus, each user k has a time-varying channel power gain

gk(t), k = 1, . . . ,K, which varies with the frame index t; and gk(t) = |hk(t)|2, where hk(t)

is the voltage gain of the channel for the kth user. The base station is assumed to know the

current and past values of gk(t). The capacity of the channel for the kth user, ck(t), is

ck(t) = log2(1 + gk(t) × P0/σ
2
n) bits/symbol (106)

where the maximum transmission power P0 and noise variance σ2
n are assumed to be con-

stant and equal for all users. We divide each frame of length Ts into infinitesimal time slots,

and assume that the channel can be shared by several users, in the same frame. Further,

we assume a fluid model for packet transmission, where the base station can allot variable

fractions of a channel frame to a user, over time. The system described above could be,

for example, an idealized time-division multiple access (TDMA) system, where the frame of

each channel consists of TDMA time slots which are infinitesimal. Note that in a practical

TDMA system, there would be a finite number of finite-length time slots in each frame.

To provide QoS guarantees, we propose an architecture, which consists of scheduling,

admission control, and resource allocation (presented in Section 5.3). Since the chan-

nel fading processes of the users are assumed to be independent of each other, we can
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potentially utilize multiuser diversity to increase capacity, as mentioned in Section 5.1.

Thus, to maximize the ergodic capacity (i.e., in the absence of delay constraints), the (op-

timal) K&H schedule at any time instant t, is to transmit the data of the user with the

largest gain gk(t) [72]. The ergodic channel capacity achieved by such a K&H scheduler

is cmax = E[max[c1(t), c2(t), · · · , cK(t)]]. The ergodic channel capacity gain of the K&H

scheduler over a RR scheduler is cmax/E[c1(t)]. The following proposition specifies the

ergodic channel capacity gain achieved by the K&H scheduler.

Proposition 5.1 Assume that the K users in the system have channel gains, which are

i.i.d. in user k (k = 1, · · · ,K) and are stationary in time t. For Rayleigh fading chan-

nels (i.e., having exponentially-distributed channel power gains), at low SNR, we have the

approximation, cmax/E[c1(t)] ≈
∑K

k=1
1
k ≈ log(K + 1) for large K.

For a proof of Proposition 5.1, see Appendix A.11. At high SNR, the ergodic channel

capacity gain is smaller.

Notice that K&H scheduling can result in a user experiencing an arbitrarily long dura-

tion of outage, because of its failure to obtain the channel. Thus, it becomes important to

efficiently compute the QoS obtained by the user, in a K&H scheduled system. A direct

approach may be to model each gk(t) as a Markov process, and analyze the Markov process

resulting from the K&H scheduler. It is apparent that this direct approach is computa-

tionally intractable, since the large state space of the joint Markov process of all the users

would need to be analyzed and the complexity of this queueing analysis is exponential in

the number of users. We will show an example to illustrate this point in Section 5.2.3. In

essence, the main contribution of this chapter is to show that we can compute the QoS ob-

tained by the user, in a K&H scheduled system, efficiently and accurately, using the concept

of effective capacity.
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5.2.2 Statistical QoS and Effective Capacity

We first formally define statistical QoS, which characterizes the user requirement. First,

consider a single-user system, where the user is allotted a single time varying channel (thus,

there is no scheduling involved). Assume that the user source has a fixed rate rs and a

specified delay bound Dmax, and requires that the delay-bound violation probability is not

greater than a certain value ε, that is,

Pr{D(∞) > Dmax} ≤ ε, (107)

where D(∞) is the steady-state delay experienced by a flow, and Pr{D(∞) > Dmax} is

the probability of D(∞) exceeding a delay bound Dmax. Then, we say that the user is

specified by the (statistical) QoS triplet {rs,Dmax, ε}. Even for this simple case, it is not

immediately obvious as to which QoS triplets are feasible, for the given channel, since a

rather complex queueing system (with an arbitrary channel capacity process) will need to

be analyzed. The key contribution of Chapter 4 was to introduce a concept of statistical

delay-constrained capacity termed effective capacity, which allows us to obtain a simple

and efficient test, to check the feasibility of QoS triplets for a single time-varying channel.

Chapter 4 did not deal with scheduling and the channel processes resulting from it.

In this chapter, we show that the effective capacity concept can be applied to the

K&H scheduled channel, and is precisely the critical device that we need to solve the QoS

constrained multiuser diversity problem. Next, we describe the relation between statistical

QoS and effective capacity.

Let r(t) be the instantaneous channel capacity at time t. The effective capacity function

α(u) of r(t) is defined by (28). Consider a queue of infinite buffer size supplied by a data

source of constant data rate µ. From Chapter 4, we know that if α(u) exists, then the

probability of D(∞) exceeding a delay bound Dmax satisfies

Pr{D(∞) > Dmax} ≈ e−θ(µ)Dmax , (108)

where the QoS exponent function θ(µ) is related to α(u) via (30), and θ(µ) depends only

on the channel capacity process r(t). Note that (108) is a simplified version of (108), where
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γ(µ) is negligible for large Dmax. Once θ(µ) has been measured for a given channel, it can

be used to check the feasibility of QoS triplets. Specifically, a QoS triplet {rs,Dmax, ε}
is feasible if θ(rs) ≥ ρ, where ρ

.= − log ε/Dmax. Thus, we can use the effective capacity

model α(u) (or equivalently, the function θ(µ)) to relate the channel capacity process r(t)

to statistical QoS. Since our effective capacity method predicts an exponential dependence

(108) between ε and Dmax, we can henceforth consider the QoS pair {rs, ρ} to be equivalent

to the QoS triplet {rs,Dmax, ε}, with the understanding that ρ = − log ε/Dmax.

In Section 4.3.2, we presented a simple and efficient algorithm to estimate θ(µ) by direct

measurement on the queueing behavior resulting from r(t). In Section 5.4.2.1, we show that

the estimation algorithm converges quickly, as compared with directly measuring the QoS.

5.2.3 Limitation of Traditional QoS Provisioning

As mentioned in Section 4.1, to explicitly enforce QoS guarantees in a system such as

the K&H scheduler, a typical procedure involves four steps: 1) channel measurement, 2)

channel modeling, 3) deriving QoS measures, and 4) relating the control parameters of

QoS provisioning mechanisms to the derived QoS measures. However, the traditional QoS

provisioning approach uses physical-layer channel models, which incurs high complexity in

characterizing the relation between the control parameters and the calculated QoS measures.

Next, we show an example to illustrate this.

Example 5.1 Our objective here is to use the K&H scheduler to provide explicit QoS guar-

antees. The setting is the same as that in Section 5.2.1, i.e., one wireless channel is shared

by K users, which require identical QoS specified by a QoS triplet {rs,Dmax, ε}; the users

have independent channel gains; the K&H scheduler at the base station knows the current

and past channel gains perfectly; the K&H scheduler allots the channel to the user with

largest channel gain.

The problem is: given the QoS requirement {rs,Dmax, ε}, what is the minimum fraction

of a channel frame that can satisfy this QoS requirement? Denote β (β ∈ (0, 1]) the fraction

of a channel frame allocated to the users. The solution by the traditional approach is the
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following:

1. Model each users channel capacity ck(t) by a discrete-time Markov chain Xk(t), where

k is the index of a user.

2. Model the capacity assigned by the K&H scheduler to user 1. We denote this capacity

by c̃1(t). The capacity c̃1(t) is equal to β×c1(t) if user 1 has the largest channel power

gain; otherwise, c̃1(t) is equal to zero. That is,

c̃1(t) =




β × c1(t) if X1(t) = maxk=1,··· ,K Xk(t)

0 otherwise
(109)

From (108), it is clear that c̃1(t) depends on the channel gains of all the K users and

hence c̃1(t) is characterized by a Markov chain with K-dimensional state, which is

specified by {X1(t), · · · ,XK(t)}.

3. Derive the QoS measure Pr{D(∞) > Dmax}. From queueing theory, we know that if

the service is a Markov chain with K-dimensional state, then obtaining the distribution

of the queue has an exponential complexity, that is, in the order of MK , where M is

the number of states in Xk(t). Once we derive the distribution of the queue, we can

obtain Pr{D(∞) > Dmax}.

4. Find the minimum β such that the resulting delay-bound violation probability Pr{D(∞) >

Dmax} ≤ ε. If no feasible β ∈ (0, 1] is found, which means there is not enough re-

source to support the requested QoS, then reject the connection request. Otherwise,

the minimum feasible βmin = minβ is allocated for the K&H scheduler to use. Here,

βmin is the control parameter of the K&H scheduler.

Note that the queueing analysis does not result in a closed-form relation between the control

parameter βmin and the QoS requirement {rs,Dmax, ε}. One may suggest to 1) solve the

queueing problem off-line (having an exponential complexity), 2) store the relation

{rs,Dmax, ε;PK ;βmin} in a table where PK is the K-dimensional transition probability

matrix for {X1(t), · · · ,XK(t)}, and 3) look up the table when a connection request arrives.
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Figure 43: QoS provisioning architecture in a base station.

However, the size of the table is exponential in the number of users K since the number of

all possible PK is in the order of MK .

Example 5.1 shows that the traditional approach incurs a complexity that is exponential

in the number of users, to determine what percentage of the channel resource should be

allocated to the K&H scheduler, so that a specified QoS can be satisfied. The reason of

the high complexity is that the traditional approach employs physical-layer channel models,

which use high-dimensional Markov chains. To address this problem, in the next section,

we describe how to apply the effective capacity technique to designing simple and efficient

QoS provisioning in a K&H scheduled system.

5.3 QoS Provisioning with Multiuser Diversity

The key problem is, how to utilize multiuser diversity while yet satisfying the individual

QoS constraints of the K users. To cope with this problem, we design a QoS provisioning

architecture, which utilizes multiuser diversity and effective capacity.

We assume the same setting as in Section 5.2.1. Figure 43 shows our QoS provisioning

architecture in a base station, consisting of three components, namely, admission control,

resource allocation, and scheduling. When a new connection request comes, we first use
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a resource allocation algorithm to compute how much resource is needed to support the

requested QoS. Then the admission control module checks whether the required resource

can be satisfied. If yes, the connection request is accepted; otherwise, the connection request

is rejected. For admitted connections, packets that belong to different connections1 are put

into separate queues. The scheduler decides, in each frame t, how to schedule packets for

transmission, based on the current channel gains gk(t) and the amount of resource allocated.

In the following sections, we describe our schemes for scheduling, admission control and

resource allocation in detail. In Section 5.3.1, we consider the homogeneous case, in which

all users have the same QoS requirements {rs,Dmax, ε} or equivalently the same QoS pair

{rs, ρ = − log ε/Dmax} and also the same channel statistics (e.g., similar Doppler rates),

so that all users need to be assigned equal channel resources. Section 5.3.2 addresses the

heterogeneous case, in which users have different QoS pairs {rs, ρ} and/or different channel

statistics.

5.3.1 Homogeneous Case

5.3.1.1 Scheduling

As explained in Section 5.1, we simplify the scheduler, by shifting the burden of guaranteeing

user QoS to the resource allocation module. Therefore, our scheduler is a simple combination

of the K&H and the RR scheduling.

Section 5.2 explained that in any frame t, the K&H scheduler transmits the data of the

user with the largest gain gk(t). However, the QoS of a user may be satisfied by using only a

fraction of the frame β ≤ 1. Therefore, it is the function of the resource allocation algorithm

to allot the minimum required β to the user. This will be described in Section 5.3.1.2. It

is clear that the K&H scheduling attempts to utilize multiuser diversity to maximize the

throughput.

On the other hand, the RR scheduler allots to every user k, a fraction ζ ≤ 1/K of each

frame, where ζ again needs to be determined by the resource allocation algorithm. Thus

1We assume that each mobile user is associated with only one connection.
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the RR scheduling attempts to provide tight QoS guarantees, at the expense of decreased

throughput, in contrast to the K&H scheduling.

Our scheduler is a joint K&H/RR scheme, which attempts to maximize the throughput,

while yet providing QoS guarantees. In each frame t, its operation is the following. First,

find the user k∗(t) such that it has the largest channel gain among all users. Then, schedule

user k∗(t) with β + ζ fraction of the frame; schedule each of the other users k �= k∗(t) with

ζ fraction of the frame. Thus, a fraction β of the frame is used by the K&H scheduling,

while simultaneously, a total fraction Kζ of the frame is used by the RR scheduling. The

total usage of the frame is β + Kζ ≤ 1.

5.3.1.2 Admission Control and Resource Allocation

The scheduler described in Section 5.3.1.1 is simple, but it needs the frame fractions {ζ, β}
to be computed and reserved. This function is performed at the admission control and

resource allocation phase.

Since Section 5.3.1 addresses the homogeneous case with K users, without loss of gener-

ality, denote αK,ζ,β(u) the effective capacity function of user k = 1 under the joint K&H/RR

scheduling (henceforth called ‘joint scheduling’), with frame shares ζ and β respectively, i.e.,

denote the capacity process allotted to user 1 by the joint scheduler as the process r(t) and

then compute αK,ζ,β(u) using (28). The corresponding QoS exponent function θK,ζ,β(µ)

can be found via (30). Note that θK,ζ,β(µ) is a function of number of users K. Then, the

admission control and resource allocation scheme for users requiring the QoS pair {rs, ρ} is

as below,

minimize
{ζ,β}

Kζ + β (110)

subject to θK,ζ,β(rs) ≥ ρ, (111)

Kζ + β ≤ 1, (112)

ζ ≥ 0, β ≥ 0 (113)

The minimization in (110) is to minimize the total frame fraction used. (111) ensures
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that the QoS pair {rs, ρ} of each user is feasible. Furthermore, Eqs. (111)–(113) also serve

as an admission control test, to check availability of resources to serve this set of users.

Actually, we only need to measure the θK,ζ,β(·) functions for different ratios of ζ/β due to

Proposition 5.2.

Proposition 5.2 For λ > 0, the following equation holds

θK,ζ,β(µ) = θK,λζ,λβ(λµ). (114)

For a proof of Proposition 5.2, see Appendix A.12.

To summarize, given the fading channel and QoS of K homogeneous users, we use the

following procedure to achieve multiuser diversity gain with QoS provisioning:

1. Estimate θK,ζ,β(µ), directly from the queueing behavior, for various values of {ζ, β}.

2. Determine the optimal {ζ, β} pair that satisfies users’ QoS, while minimizing frame

usage.

3. If admission control is passed, provide the joint scheduler with the optimal ζ and β,

for simultaneous RR and K&H scheduling, respectively.

This summary indicates that our approach needs to address the following issues. Chap-

ter 4 showed the usefulness of the effective capacity concept, only for a single-user system.

But, it is not obvious that the θK,ζ,β(µ) estimate will converge quickly in the multiuser

scenario, or even that θK,ζ,β(µ) can accurately predict QoS via (108) (although, theoret-

ically, the prediction is accurate asymptotically for large Dmax). Further, it needs to be

seen whether the QoS can be controlled by {ζ, β}. Last, we also need to show that our

scheme can provide a substantial capacity gain, over the RR scheduling. These issues will

be addressed via simulations in Section 5.4.

5.3.1.3 Improvement

The aforementioned admission control and resource allocation, i.e., Eqs. (110)–(113), may

not be efficient in terms of resource usage, when K is large and ρ takes a medium value. The
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reason is that for a large number of users K, the K&H scheduling causes large delays and

thus the joint K&H/RR will reduce to the RR only. Partitioning the K users into groups,

each group scheduled separately using the K&H/RR, can improve channel utilization. In

the following, we show a modified K&H/RR that accomplishes this effect.

Before describing the scheme, we need to introduce some notations. Suppose that the

K users are partitioned into M groups (obviously, 1 ≤ M ≤ K). Each group m (m =

1, 2, · · · ,M) has Km users with channel characterization (i.e., QoS exponent function)

θKm,ζm,βm(µ), where {ζm, βm} are the frame shares assigned to group m, for the joint

K&H/RR scheduling. Obviously,
∑M

m=1 Km = K.

Next, we describe scheduling and resource allocation/admission control, respectively.

Scheduling

For each group m, we use the joint K&H/RR scheduler with frame shares {ζm, βm}. In

each frame t, it works as follows. First, find the user k∗
m(t) such that it has the largest

channel gain among Km users of group m (not among K users). Then, schedule user

k∗
m(t) with βm + ζm fraction of the frame; schedule each of other group-m users k �= k∗

m(t)

with ζm fraction of the frame. Thus, the total usage of the frame by all M group is∑M
m=1(Kmζm + βm) ≤ 1.

Admission Control and Resource Allocation

The scheduler described above requires the frame fractions {ζm, βm} to be computed

and reserved. This function is performed at the admission control and resource allocation

phase. With dividing users into M groups, the admission control and resource allocation
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scheme for K users requiring the QoS pair {rs, ρ} is as below,

minimize
{M,Km,ζm,βm}

M∑
m=1

(Kmζm + βm) (115)

subject to θKm,ζm,βm(rs) ≥ ρ, ∀m (116)
M∑

m=1

(Kmζm + βm) ≤ 1, (117)

ζm ≥ 0, βm ≥ 0, ∀m, (118)

M ∈ {1, 2, · · · ,K},
M∑

m=1

Km = K (119)

Eq. (115) is to minimize the total frame fraction used. (116) ensures that the QoS pair

{rs, ρ} of each user is feasible. Furthermore, Eqs. (116)–(119) also serve as an admission

control test, to check availability of resources to serve the K users. If M = 1, Eqs. (115)–

(119) reduced to Eqs. (110)–(113). Therefore, the optimal solution in Eqs. (110)–(113) is a

feasible solution of Eqs. (115)–(119). As a result, the resource allocation/admission control

in Eqs. (115)–(119) is at least as efficient as that in Eqs. (110)–(113), if not more efficient.

Note that the improvement on efficiency achieved in Eqs. (115)–(119) is at the cost of

complexity.

5.3.2 Heterogeneous Case

For the heterogeneous case, in which users have different QoS pairs {rs, ρ} and/or different

channel statistics, the admission control/resource allocation problem can also be formulated,

similar to Eqs. (115)–(119), as minimizing the resource usage over M , partitioning of the K

users, ζm and βm. But solving this minimization problem has an exponential complexity,

i.e., O(KK), since we have to try all the possible combinations. To reduce the complexity,

we design a sub-optimal algorithm, which has a complexity of O(K log K). We consider the

following two cases.

Case 1: the K users have different channel statistics but the same {rs, ρ}.

Figure 44 shows the flow chart of our algorithm for the resource allocation. The basic

operations of this algorithm are sorting and partitioning. Sorting the users is to facili-

tate partitioning the users. Partitioning is achieved through tests, which recursively check
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whether adding a user to a K&H scheduled group can reduce the channel usage.

Next we describe the algorithm. According to Figure 44, we first measure the function

µk(θ = ρ) for each user k, where µk(θ) is the inverse function of θ(µ) defined in (30); note

that there is no scheduling involved in (30). Then we sort the users in descending order of

µk(θ = ρ), which results in an ordered list denoted by Luser. We set a variable m to count

the number of groups, each of which uses the K&H scheduling with a fraction βm. Denote

S(m) the set that contains the users in group m.

We partition the K users recursively, starting from group m = 1. Each time when we

form a new group m, we first remove the head element of list Luser and put it into an empty

set S(m); if Luser is not empty, we again remove the head ν of list Luser and put ν into

S(m); now we have two users and can apply the K&H scheduling to the two users; if the

resulting channel usage is greater than or equal to that due to applying the RR scheduling

to the two users, we move the user ν from S(m) back to the head of Luser, i.e., the new

user ν should not be added to the group m and group m will only have one user; otherwise,

we recursively continue this procedure, that is, adding a new user and testing whether the

resulting channel usage is reduced, i.e., βm(S(m)) < βm(S ′(m)) + rs/µν(θ = ρ), where

βm(S(m)) is the channel usage of set S(m) and set S ′(m) is the difference S(m)−{ν}, and

rs/µν(θ = ρ) is the channel usage for user ν if the RR scheduling is used. We continue the

partitioning until Luser is empty.

In the process of partitioning, we determine ζm and βm for scheduling as below. If group

m has only one user, say user k, we only use the RR scheduling with ζm = rs/µk(θ = ρ),

and set βm = 0; if group m has more than one user, we only use the K&H scheduling with

the βm obtained in the test for S(m), and set ζm = 0. The joint K&H/RR scheduling is

not used, in order to reduce complexity.

The outputs of the algorithm are 1) a partition of the K users, say, M groups, and 2)

{ζm, βm} (m = 1, · · · ,M). After running the resource allocation algorithm, we do admission

control by testing whether the total channel usage of the M groups is not greater than unity.

If the admission control is passed, we schedule each of the M groups as follows. If group

131



µ(θ)Measure             of each user

Luser

Luser
empty?

Stop

Luser

Luser

Luser

µ(θ)

resulting in an ordered list

Sort K users descendingly w.r.t.           

Channel usage 

reduced?

No

Yes

Yes

No

ν

ν

m=0

m=m+1

Move the head of               to an empty set S(m)

Move the head      of               to set S(m)

Apply K&H scheduling to all the users in S(m)

Move      from set S(m) to the head of 

Figure 44: Flow chart of resource allocation for the heterogeneous case.
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m has only one user, we use the RR scheduling with ζm; if group m has more than one user,

we apply the K&H scheduling with βm to all the users in group m.

Our algorithm reduces complexity at the cost of optimality. Specifically, the resource

allocation algorithm achieves O(K log K) complexity due to sorting. Note that we only

have to try at most K tests in partitioning the K users. The performance of the algorithm

may not be optimal but our simulations show that for practical range of Doppler rates, our

algorithm improves the performance, compared to the RR scheduling.

Case 2: the K users have different {rs, ρ} and different channel statistics.

We classify the users into N classes so that the users in the same class have the same

QoS pair {rs, ρ}. Then apply the resource allocation algorithm to each class. The admission

control is simply to check whether the total channel usage of the N classes is not greater

than unity.

To summarize, given the fading channel and QoS of K users, we use the following

procedure to achieve multiuser diversity gain with QoS provisioning:

1. Use the resource allocation algorithm to partition the K users and determine {ζm, βm}
that satisfies users’ QoS.

2. If admission control is passed, provide the scheduler with ζm and βm, for the RR or

K&H scheduling.

5.4 Simulation Results

5.4.1 Simulation Setting

We simulate the system depicted in Figure 43, where K connections are set up and each

mobile user is associated with one connection. Each connection is simulated as plotted in

Figure 26. The data source of user k generates packets at a constant rate r
(k)
s . Generated

packets are first sent to the (infinite) buffer at the transmitter. The head-of-line packet in

the queue is transmitted over the fading channel at data rate rk(t). The fading channel has

a random power gain gk(t). We use a fluid model, that is, the size of a packet is infinitesimal.
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In practical systems, the results presented here will have to be modified to account for finite

packet sizes.

We assume that the transmitter has perfect knowledge of the current channel gains

gk(t) in frame t. Therefore, it can use rate-adaptive transmissions, and ideal channel codes,

to transmit packets without decoding errors. For the homogeneous case, under the joint

scheduling, the transmission rate rk(t) of user k is equal to a fraction of its instantaneous

capacity, as below,

rk(t) =




(ζ + β)ck(t) if k = arg max
i∈{1,··· ,K}

gi(t);

ζck(t) otherwise.
(120)

where the instantaneous channel capacity ck(t) is

ck(t) = Bc log2(1 + gk(t) × P0/σ
2
n) (121)

where Bc denotes the channel bandwidth, and the transmission power P0 and noise variance

σ2
n are assumed to be constant. For the heterogeneous case, the rate rk(t) is computed within

each class as described in Section 5.3.2.

The average SNR is fixed in each simulation run. We define rawgn as the capacity of an

equivalent AWGN channel, which has the same average SNR, i.e.,

rawgn = Bc log2(1 + SNRavg) (122)

where SNRavg = E[gk(t) × P0/σ
2] = P0/σ

2. We set E[gk(t)] = 1.

The sample interval (frame length) Ts is set to 1 milli-second. Most simulation runs

are 1000-second long; some simulation runs are 10000-second long in order to obtain good

estimate of the actual delay-violation probability Pr{D(∞) ≥ Dmax} by the Monte Carlo

method.

As described in Section 4.4.1, Rayleigh flat-fading voltage-gains hk(t) are generated by

an AR(1) model as below. We first generate h̄k(t) by

h̄k(t) = κ × h̄k(t − 1) + uk(t), (123)
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Figure 45: Convergence of estimates.

where uk(t) are i.i.d. complex Gaussian variables with zero mean and unity variance per

dimension. Then, we normalize h̄k(t) and obtain hk(t) by

hk(t) = h̄k(t) ×
√

1 − κ2

2
. (124)

For Ricean fading, the voltage-gains hk(t) are generated by adding a constant to Rayleigh-

fading voltage-gains (see [104] for detail).

5.4.2 Performance Evaluation

We organize this section as follows. Section 5.4.2.1 shows the convergence of our estima-

tion algorithm. In Section 5.4.2.2, we assess the accuracy of our QoS estimation (108).

Section 5.4.2.3 investigates the effectiveness of the resource allocation scheme in QoS pro-

visioning. In these sections (5.4.2.1 to 5.4.2.3), we only consider the homogeneous case,

i.e., all users have the same QoS requirements {rs, ρ} and also the same channel statistics.

In Sections 5.4.2.4 through 5.4.2.6, we evaluate the performance of our scheduler in the

homogeneous and the heterogeneous case, respectively.
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Figure 46: Actual and estimated delay-bound violation probability for (a) different source
rates, and (b) different SNRavg .

5.4.2.1 Convergence of Estimates

This experiment is to show the convergence behavior of estimates. We do simulations with

the following parameters fixed: rawgn = 1000 kb/s, K = 10, κ = 0.8, and SNRavg = −40

dB.

Figure 45 shows the convergence of the estimate of θ (θ(µ) for µ = 200 kb/s) for the

queue. It can be seen that the estimate of θ converges within 2 × 104 samples/frames (20

sec). The same figure shows the (lack of) convergence of direct (Monte Carlo) estimates

of delay-bound-violation probabilities, measured for the same queue (the two probability

estimates eventually converge to 10−3 and 10−4, respectively). This precludes using the

direct probability estimate to predict the user QoS, as alluded to in Section 5.1. The reason

for the slow convergence of the direct probability estimate is that the K&H scheduling results

in a user being allotted the channel in a bursty manner, and thus increases the correlation

time of D(t) substantially. Therefore, even 106 samples are not enough to obtain an accurate

estimate of a probability as high as 10−3.
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Figure 47: Actual and estimated delay-bound violation probability for (a) AR(2) channel,
and (b) Ricean channel.

5.4.2.2 Accuracy of Channel Estimation

The experiments in this section are to show that the estimated effective capacity can indeed

be used to accurately predict QoS.

We do experiments under five different settings: 1) AR(1) Rayleigh fading channel with

changing source rate and fixed SNRavg, 2) AR(1) Rayleigh fading channel with changing

SNRavg and fixed source rate, 3) AR(2) Rayleigh fading channel, 4) Ricean fading channel,

and 5) Nakagami-m fading channel (chi-distribution) [118, page 22].

Under the first setting, we do simulations with the following parameters fixed: rawgn =

1000 kb/s, K = 10, κ = 0.8, and SNRavg = −40 dB. By changing the source rate µ,

we simulate three cases, i.e., µ =100, 200, and 300 kb/s. Figure 46(a) shows the actual

delay-bound violation probability Pr{D(∞) > Dmax} vs. the delay bound Dmax. From

the figure, it can be observed that the actual delay-bound violation probability decreases

exponentially with Dmax, for all the cases. This confirms the exponential dependence shown

in (108).

In addition, we use the estimation scheme, i.e., Eqs. (36) through (40), to obtain an

estimated θ; with the resulting θ, we predict the probability Pr{D(∞) > Dmax} (using
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(108)). As shown in Figure 46(a), the estimated Pr{D(∞) > Dmax} is quite close to

the actual Pr{D(∞) > Dmax}. This demonstrates that our estimation is accurate, which

justifies the use of (111) by the resource allocation algorithm to guarantee QoS.

Notice that the (negative) slope of the Pr{D(∞) > Dmax} plot increases with the

decrease of the source rate µ. This is because the smaller the source rate, the smaller the

probability of delay-bound violation, resulting in a sharper slope (i.e., a larger decaying

rate θ).

Under the second setting, we do simulations with the following parameters fixed: rawgn =

1000 kb/s, K = 10, κ = 0.8, and µ = 100 kb/s. By changing SNRavg, we simulate three

cases, i.e., SNRavg = -40, 0, and 15 dB. Figure 46(b) shows that the conclusions drawn

from the first set of experiments still hold. Thus, our estimation scheme gives consistent

performance over different SNRs also.

In the third setting, AR(2) Rayleigh fading voltage-gains hk(t) are generated as below:

hk(t) = κ1 × hk(t − 1) + κ2 × hk(t − 2) + vk(t), (125)

where vk(t) are zero-mean i.i.d. complex Gaussian variables. The parameters of the simu-

lation are rawgn = 1000 kb/s, κ1 = 0.7, κ2 = 0.2, K = 10, µ =100 kb/s and SNRavg = −40

dB. Figure 47(a) shows that the conclusions drawn from the first set of experiments still

hold. Thus, our estimation scheme consistently predicts the QoS metric under different

autoregressive channel fading models.

Under the fourth setting, the parameters of the simulation are Ricean factor2 = 7 dB,

rawgn = 1000 kb/s, K = 10, κ = 0.8, and µ = 100 kb/s. Figure 47(b) shows that the

conclusions drawn from the first set of experiments also hold for Ricean fading channels.

In the fifth setting, Nakagami-m fading power gains gk(t) are generated as below:

gk(t) =
m∑

i=1

ĝi(t), (126)

2Ricean factor is defined as the ratio between the deterministic signal power A2 and the variance of the

multipath 2σ2
m, i.e., Ricean factor = A2/(2σ2

m).
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Figure 48: Actual and estimated delay-bound violation probability for Nakagami-m channel
(m = 32).

where m is the parameter of Nakagami-m distribution and takes values of positive integers,

ĝi(t) are AR(1) Rayleigh fading power gains. The parameters of the simulation are m = 32,

rawgn = 1000 kb/s, K = 10, κ = 0.8, SNRavg = −40 dB, and µ =90 kb/s. Figure 48 shows

that the estimate does not give a good agreement with the actual Pr{D(∞) > Dmax}. The

reason is that the high diversity in high-order Nakagami fading models averages out the

randomness in the fading process. The higher diversity a fading channel has, the more like

an AWGN channel the fading channel is. It is known that for an AWGN channel, the actual

Pr{D(∞) > Dmax} does not decay exponentially with Dmax but takes values of 0 or 1.

Therefore, the higher diversity a fading channel possesses, the less accurate the exponential

approximation (108) is, hence the less accurate the estimate is.

In summary, the results for Rayleigh/Ricean flat-fading channels have shown the expo-

nential behavior of the actual Pr{D(∞) > Dmax} and the accurateness of our estimation.

We caution however that such a strong agreement between the estimate and the actual QoS

may not occur in all situations with practical values of Dmax (although the theory predicts

the agreement asymptotically for large Dmax). We have shown that in the case of high-

diversity channel fading models (e.g., high-order Nakagami fading models), the estimation

is not accurate.
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Figure 49: (a) θ vs. ζ and (b) θ vs. β.

5.4.2.3 Effectiveness of Resource Allocation in QoS Provisioning

The experiments here are to show that a QoS pair {rs, ρ} can be achieved (within limits) by

choosing ζ or β appropriately. In the experiments, we fix the following parameters: K = 10,

κ = 0.8, and SNRavg = −40 dB. We simulate three data rates, i.e., µ =50, 60, and 70 kb/s,

respectively. We do two sets of experiments: one for the RR scheduling and the other for

the K&H scheduling.

In the first set of experiments, only the RR scheduling is used; we change ζ from 0.1

to 1 and estimate the resulting θ for a given µ, using Eqs. (36) through (40). Figure 49(a)

shows that θ increases with ζ. Thus, Figure 49 can be used to allot ζ to a user to satisfy

its QoS requirements when using RR scheduling.

In the second set of experiments, only the K&H scheduling is used; we change β from

0.1 to 1 and estimate the resulting θ, for a given µ. Figure 49(b) shows that θ increases

with the increase of β, and thus the figure can be used to allot β to a user to satisfy its QoS

requirements when using K&H scheduling.
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Figure 50: θ(µ) vs. µ for (a) κ = 0.8, SNRavg = −40 dB, (b) κ = 0.8, SNRavg = 15 dB,
and (c) κ = 0.95, SNRavg = −40 dB.
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5.4.2.4 Performance Gains of Scheduling: Homogeneous Case

Under the setting of identical QoS requirements {rs, ρ} and i.i.d. channel gain processes, the

experiments here demonstrate the performance gain of joint scheduling over RR schedul-

ing, using the optimum {ζ, β} values specified by the resource allocation algorithm, i.e.,

Eqs. (110)–(113). In particular, the experiments show that for loose delay constraints, the

large capacity gains promised by the K&H scheme can indeed be approached.

To evaluate the performance of the scheduling schemes under different SNRs and differ-

ent Doppler rates (i.e., different κ), we simulate three cases: 1) κ = 0.8, and SNRavg = −40

dB, 2) κ = 0.8, and SNRavg = 15 dB, and 3) κ = 0.95, and SNRavg = −40 dB. In all the

experiments, we set rawgn = 1000 kb/s and K = 10.

In Figure 50, we plot the function θ(µ) achieved by the joint, K&H, and RR schedulers,

for a range of source rate µ, when the entire frame is used (i.e., Kζ + β = 1). The function

θ(µ) in the figure is obtained by the estimation scheme, i.e., Eqs. (36) through (40). In

the case of the joint scheduling, each point in the figure corresponds to a specific optimum

{ζ, β}, while for the RR and the K&H scheduling, we set Kζ = 1 and β = 1 respectively.

The curve of θ(µ) can be directly used to check for feasibility of a QoS pair {rs, ρ}, by

checking whether θ(rs) > ρ is satisfied. Furthermore, for a given θ, the ratio of µ(θ) of the

joint scheduler to the µ(θ) of the RR scheduler (both obtained from the figure), represents

the delay-constrained capacity gain that can be achieved by using joint scheduling.

Four important observations can be made from the figure. First, the range of θ can

be divided into three segments: small, medium, and large θ, which correspond to three

categories of the QoS constraints: loose-delay, medium-delay, and tight-delay requirements.

For small θ, our joint scheduler achieves substantial gain, e.g., approximately
∑K

k=1
1
k ca-

pacity gain for Rayleigh fading channels at low SNR. For example, in Figure 50(a), when

θ = 0.001, the capacity gain for the joint scheduler is 2.9, which is close to
∑10

k=1
1
k = 2.929.

For medium θ, our joint scheduler also achieves gain. For example, in Figure 50(a), when

θ = 0.01, the capacity gain for the joint scheduler is 2.6. For large θ, such as θ = 0.1, our

joint scheduler does not give any gain. Thus, the curve of θ(µ) shows the range of θ (delay
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Figure 51: θ(µ) vs. µ for splitting the channel between the best two users.

constraints) for which a K&H type scheme can provide a performance gain. When the

scheduler is provided with the optimum {ζ, β} values, the QoS pair {µ, θ(µ)} guaranteed to

a user is indeed satisfied; the simulation result that shows this fact, is similar to Figure 46,

and therefore, is not shown.

Second, we observe that the joint scheduler has a larger effective capacity than both the

K&H and the RR for a rather small range of θ. Therefore, in practice, it may be sufficient

to use either K&H or RR scheduling, depending on whether θ is small or large respectively,

and dispense with the more complicated joint scheduling. However, we have designed more

sophisticated joint schedulers, such as splitting the channel between the best two users in

every slot, which perform substantially better than either K&H and RR scheduling, for

medium values of θ. This is shown in Figure 51. This indicates that more sophisticated

joint schedulers may squeeze out more channel capacity gain. We leave this for future study.

Third, the figure of θ(µ) can be used to satisfy the QoS constraint (111), even though it

only represent the Kζ+β = 1 case, as follows. For the QoS pair {rs, ρ}, we compute the ratio

λ
.= rs

µ(θ=ρ) using the µ(θ) function in the figure. Suppose the µ(θ = ρ) point in the figure

corresponds to the optimum pair {ζ̄ , β̄}. Since we have the relation θζ̄,β̄(µ) = θλζ̄,λβ̄(λµ),

i.e., Eq. (114), we assert that instead of using the entire frame (as in the figure), if we use a

total fraction λ of the frame, then we can achieve the desired QoS {rs, ρ}. The joint scheduler
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then needs to use the {λζ̄, λβ̄} pair to do RR and K&H scheduling respectively. This

indicates a compelling advantage of our QoS provisioning scheme over direct-measurement

based schemes, which require experiments for different λ, even if the ratio ζ/β is fixed.

Fourth, we observe that if θ is larger than a certain value, the corresponding data rate

µ(θ) achieved by the K&H, approaches zero. This is because the probability that a user will

be allowed to transmit is 1/K since there are K identical users share the channel; hence, on

average, a user has to wait K−1 frames before its next packet is scheduled for transmission,

making a guarantee of tight-delay requirements (large θ) impossible.

5.4.2.5 Performance Improvement due to Partitioning

This experiment demonstrates the performance improvement due to partitioning of users as

mentioned in Section 5.3.1.3. In particular, the experiment indicates the trade-off between

performance improvement and complexity.

Again, the setting of this experiment is i.i.d. channel gain processes and identical

QoS requirements {rs, ρ}. We divide K users into groups and see how much gain can

be achieved, compared with non-partitioning. The parameters of the experiment is the

following: rawgn = 1000 kb/s, κ = 0.8, SNRavg = −40 dB, rs = 100 kb/s, ρ = 0.03.

The simulation result shows that the channel can support at most 13 users if the set of

users is not partitioned. If users are allowed to be partitioned, solving Eqs. (115)–(119), we

find the maximum number of users that the channel can support increases to 16, where the

16 users are partitioned into two groups, each of which consists of 8 users. Note that this

performance improvement is at the cost of complexity of solving Eqs. (115)–(119).

5.4.2.6 Performance Gains of Scheduling: Heterogeneous Case

The experiments here show the performance gain of the K&H/RR scheduling over the

RR scheduling, using the {ζm, βm} values specified by the resource allocation algorithm

in Figure 44, under the setting of identical QoS requirements {rs, ρ} and non-identical,

independent channel gain processes.
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We do two sets of experiments. The first set of experiments is to show the performance

gain of the algorithm in Figure 44 under different number of users, while the second set

of experiments is to show the performance gain of the algorithm under different types

of channels. In the experiments, we fix the following parameters: rawgn = 1000 kb/s,

SNRavg = −40 dB, rs = 30 kb/s, ρ = 0.01.

The first set of experiments is done under three different settings: 1) K = 10, 2)

K = 19, 3) K = 37. We use AR(1) Rayleigh fading channel and each user has different

κ, i.e., different Doppler rate. We let κ change from 0.6 to 0.99 with equal spacing for

the three settings, that is, user 1 has κ = 0.6, the last user (10th, 19th, or 37th user) has

κ = 0.99, and other users’ κ are determined by equal spacing between 0.6 and 0.99.

In the first setting (K = 10), the resource allocation algorithm in Figure 44 results in a

partition with two groups, where the number of users in each group are K1 = 8 and K2 = 2,

respectively. The total channel usage under the K&H/RR scheduling is 0.195, while the

total channel usage under the RR scheduling is 0.319.

In the second setting (K = 19), the resource allocation algorithm leads to a partition

with three groups, where K1 = 14, K2 = 4, and K3 = 1. The total channel usage under

the K&H/RR scheduling is 0.344, while the total channel usage under the RR scheduling

is 0.597.

In the third setting (K = 37), the resource allocation algorithm obtains a partition with

five groups, where K1 = 27, K2 = 6, K3 = 2, K4 = 1, and K5 = 1. The total channel

usage under the K&H/RR scheduling is 0.69, while the total channel usage under the RR

scheduling is 1.15, which is rejected by admission control.

The objective of these experiments is to see the performance gain of the algorithm in

Figure 44 under different number of users.

The second set of experiments is done under the following setting. We have K = 10

users in the system. Among the ten users, four users have AR(1) Rayleigh fading channels

and each of them has different κ. We let κ change from 0.6 to 0.99 with equal spacing,
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Table 5: Parameters for AR(2) Rayleigh fading channels.

User 1 User 2 User 3 User 4 User 5 User 6
κ1 0.8 0.75 0.7 0.6 0.5 0.45
κ2 0.1 0.05 0.2 0.2 0.3 0.4

that is, user 1 has κ = 0.6, the fourth user has κ = 0.99, and other users’ κ are determined

by equal spacing between 0.6 and 0.99. The other six users have AR(2) Rayleigh fading

channels, specified by (125). Table 5 lists the parameters for the AR(2) Rayleigh fading

channels of the six users. From the simulation, the resource allocation algorithm obtains a

partition with two groups, where K1 = 9 and K2 = 1. The total channel usage under the

K&H/RR scheduling is 0.1842, while the total channel usage under the RR scheduling is

0.3215.

Hence, our resource allocation algorithm in Figure 44 achieves smaller channel usage

than that using the RR scheduling; as a result, the system can admit more users.

In summary, the K&H/RR scheduler achieves performance gain when delay requirements

are not very tight, while yet guaranteeing QoS at any delay requirement.

5.5 Summary

In this chapter, we examined the problem of QoS provisioning for K users sharing a single

time-slotted fading downlink channel. We developed simple and efficient schemes for ad-

mission control, resource allocation, and scheduling, to obtain a gain in delay-constrained

capacity. Multiuser diversity obtained by the well-known K&H scheduling is the key that

gives rise to this performance gain. However, the unique feature of this chapter is explicit

support of the statistical QoS requirement {rs,Dmax, ε}, for channels utilizing K&H schedul-

ing. The concept of effective capacity is the key that explicitly guarantees the QoS. Thus,

this chapter combines crucial ideas from the areas of communication theory and queueing

theory to provide the tools to increase capacity and yet satisfy QoS constraints. The statis-

tical QoS requirement is satisfied by the channel assignments {ζ, β}, which are determined
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by the resource allocation module at the admission phase. Then, the joint scheduler uses

the channel assignments {ζ, β} in scheduling data at the transmission phase, with guaran-

teed QoS. Simulation results have shown that our approach can substantially increase the

delay-constrained capacity of a fading channel, compared with the RR scheduling, when

delay requirements are not very tight.

In the next chapter, we will extend the work in this chapter and focus on the design

of scheduling, admission control and resource allocation, for multiple users sharing multiple

channels.
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CHAPTER 6

QOS PROVISIONING: MULTIPLE SHARED CHANNELS

6.1 Introduction

In Chapter 5, we recognized that the key difficulty in explicit QoS provisioning, is the lack

of a method that can easily relate the control parameters of a QoS provisioning system

to the QoS measures, and hence we proposed an approach to simplify the task of explicit

provisioning of QoS guarantees. Specifically, we simplify the design of joint K&H/RR

scheduler by shifting the burden to the resource allocation mechanism. Furthermore, we

are able to solve the resource allocation problem efficiently, thanks to the method of effective

capacity we developed in Chapter 4. Effective capacity captures the effect of channel fading

on the queueing behavior of the link, using a computationally simple yet accurate model,

and thus, is the critical device we need to design an efficient resource allocation mechanism.

Chapter 5 presented QoS provisioning mechanisms for multiple users sharing one chan-

nel. This chapter is intended to extend our QoS provisioning mechanisms to the setting

of multiple users sharing multiple parallel channels, by utilizing both multiuser diversity

and frequency diversity. Due to the frequency diversity inherent in multiple wireless chan-

nels, the joint K&H/RR scheduler in the new setting can achieve higher capacity gain than

that in Chapter 5. Moreover, when users’ delay requirements are stringent, wherein the

joint K&H/RR reduces to the RR scheduling, the high capacity gain associated with K&H

scheduling vanishes. To squeeze out more capacity in this case, a possible solution is to

design a scheduler, which dynamically selects the best channel among multiple channels for

a user to transmit. In other words, this scheduler is intended to find a channel-assignment

schedule, at each time-slot, which minimizes the channel usage while yet satisfying users’

QoS requirements.
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We formulate this scheduling problem as a linear program, in order to avoid the ‘curse

of dimensionality’ associated with optimal dynamic programming solutions. The key idea

that allows us to do this, is what we call the ‘Reference Channel’ approach, wherein the

QoS requirements of the users, are captured by resource allocation (channel assignments).

The scheduler obtained, as a result of the Reference Channel approach, is sub-optimal.

Therefore, we analyze the performance of this scheduler, by comparing its performance

gain with a bound we derived. We show by simulations, that the performance of our sub-

optimal scheduler is quite close to the bound. This demonstrates the effectiveness of our

scheduler. The performance gain is obtained, as a result of dynamically choosing the best

channel to transmit.

The remainder of this chapter is organized as follows. In Section 6.2, we present effi-

cient QoS provisioning mechanisms and show how to use multiuser diversity and frequency

diversity to achieve a capacity gain while yet satisfying QoS constraints. Section 6.3 de-

scribes our reference-channel-based scheduler that provides a performance gain when delay

requirements are tight. In Section 6.4, we present the simulation results that illustrate the

performance improvement of our scheme over that in Chapter 5. Section 6.6 summarizes

the chapter.

6.2 QoS Provisioning with Multiuser Diversity and Fre-
quency Diversity

This section is organized as below. Section 6.2.1 describes the assumptions and the QoS pro-

visioning architecture we use. In Section 6.2.2, we present efficient schemes for guaranteeing

QoS.

6.2.1 Architecture

Figure 52 shows the architecture for transporting multiuser traffic over time-slotted fading

channels. A cellular wireless network is assumed, and the downlink is considered, where

a base station transmits data over N parallel, independent channels to K mobile user
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Figure 52: QoS provisioning architecture for multiple channels.

terminals, each of which requires certain QoS guarantees. The channel fading processes of

the users are assumed to be stationary, ergodic and independent of each other. (Compare

Figure 52 to Figure 42 in Chapter 5, which assumes a single channel only.) A single

cell is considered, and interference from other cells is modelled as background noise with

constant variance. We assume a block fading channel model [13], which assumes that user

channel gains are constant over a time duration of length Ts (Ts is assumed to be small

enough that the channel gains are constant, yet large enough that ideal channel codes can

achieve capacity over that duration). Therefore, we partition time into ‘frames’ (indexed

as t = 0, 1, 2, . . .), each of length Ts. Thus, each user k has time-varying channel power

gains gk,n(t), for each of the N independent channels, which vary with the frame index t.

Here n ∈ {1, 2, . . . , N} refers to the nth channel. The base station is assumed to know the

current and past values of gk,n(t). The capacity of the nth channel for the kth user, ck,n(t),

is

ck,n(t) = log2(1 + gk,n(t) × P0/σ
2) bits/symbol (127)

where the transmission power P0 and noise variance σ2 are assumed to be constant and

equal for all users. We divide each frame of length Ts into infinitesimal time slots, and

assume that the same channel n can be shared by several users, in the same frame. This is
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illustrated in Figure 52, where data from buffers 1 to K can be simultaneously transmitted

over channel 1. Further, we assume a fluid model for packet transmission, where the base

station can allot variable fractions of a channel frame to a user, over time. Thus, the model

differs from that in Chapter 5, in that multiple parallel time-varying channels are assumed

here. The system described above could be, for example, an idealized FDMA-TDMA1

system, where the N parallel, independent channels represent N frequencies, which are

spaced apart (FDMA), and where the frame of each channel consists of TDMA time slots

which are infinitesimal. Note that in a practical FDMA-TDMA system, there would be a

finite number of finite-length time slots in each frame, rather than the infinite number of

infinitesimal time slots, assumed here.

As shown in Figure 52, our QoS provisioning architecture consists of three components,

namely, admission control, resource allocation, and scheduling. When a new connection

request comes, we first use a resource allocation algorithm to compute how much resource

is needed to support the requested QoS. Then the admission control module checks whether

the required resource can be satisfied. If yes, the connection request is accepted; otherwise,

the connection request is rejected. For admitted connections, packets destined to different

mobile users2 are put into separate queues. The scheduler decides, in each frame t, how

to schedule packets for transmission, based only on the current channel gains gk,n(t) and

the amount of resource allocated.

In the next section, we describe QoS provisioning schemes under the aforementioned

architecture.

6.2.2 QoS Provisioning Schemes

6.2.2.1 Scheduling

As explained in Section 6.1, we simplify the scheduler, by shifting the burden of guaranteeing

users’ QoS to resource allocation. Therefore, our scheduler is a simple combination of K&H

1FDMA is frequency-division multiple access and TDMA is time-division multiple access.
2We assume that each mobile user is associated with only one connection.
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and RR scheduling.

We first explain K&H and RR scheduling separately. In any frame t, the K&H scheduler

transmits the data of the user with the largest gain gk,n(t) (k = 1, 2, · · · ,K), for each

channel n. However, the QoS of a user may be satisfied by using only a fraction of the

frame β ≤ 1. Therefore, it is the function of the resource allocation algorithm to allot the

minimum required β to the user. This will be described in Section 6.2.2.2. It is clear that

K&H scheduling attempts to utilize multiuser diversity to maximize the throughput of each

channel. Compared to the K&H scheduling over single channel as described in [158], the

K&H scheduling here achieves higher throughput when delay requirements are loose. This

is because, for fixed ratio3 N/K, as the number of channel N increases, the number of

users K increases, resulting in a larger capacity gain, which is approximately
∑K

k=1 1/k.

On the other hand, for each channel n, the RR scheduler allots to every user k, a fraction

ζ ≤ 1/K of each frame, where ζ again needs to be determined by the resource allocation

algorithm. Thus RR scheduling attempts to provide tight QoS guarantees, at the expense

of decreased throughput, in contrast to K&H scheduling. Compared to the RR scheduling

over single channel as described in [158], the RR scheduling here utilizes frequency diversity

(each user’s data simultaneously transmitted over multiple channels), thereby increasing

effective capacity when delay requirements are tight.

Our scheduler is a joint K&H/RR scheme, which attempts to maximize the throughput,

while yet providing QoS guarantees. In each frame t and for each channel n, its operation is

the following. First, find the user k∗(n, t) such that it has the largest channel gain among all

users, for channel n. Then, schedule user k∗(n, t) with β+ζ fraction of frame t in channel n;

schedule each of the other users k �= k∗(n, t) with ζ fraction of frame t in channel n. Thus,

for each channel, a fraction β of the frame is used by K&H scheduling, while simultaneously,

a total fraction Kζ of the frame is used by RR scheduling. Then, for each channel n, the

total usage of the frame is β + Kζ ≤ 1.

3We fix the ratio N/K so that each user is allotted the same amount of channel resource, for fair

comparison.
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6.2.2.2 Admission Control and Resource Allocation

The scheduler described in Section 6.2.2.1 is simple, but it needs the frame fractions {β, ζ}
to be computed and reserved. This function is performed at the admission control and

resource allocation phase.

Since we only consider the homogeneous case, without loss of generality, denote αζ,β(u)

the effective capacity function of user k = 1 under the joint K&H/RR scheduling (henceforth

called ‘joint scheduling’), with frame shares ζ and β respectively, i.e., denote the capacity

process allotted to user 1 by the joint scheduler as the process r(t) and then compute αζ,β(u)

using (28). The corresponding QoS exponent function θζ,β(µ) can be found via (30). Note

that since the capacity process r(t) depends on the number of users K and the number of

channels N , θζ,β(µ) is actually a function of K and N . However, since we assume K and

N are fixed, there is no need to put the extra arguments K and N in the function θζ,β(µ).

With this simplified notation, the admission control and resource allocation scheme for users

requiring the QoS pair {rs, ρ} is given as below,

minimize
{ζ,β}

Kζ + β (128)

subject to θζ,β(rs) ≥ ρ, (129)

Kζ + β ≤ 1, (130)

ζ ≥ 0, β ≥ 0. (131)

The minimization in (128) is to minimize the total frame fraction used. (129) ensures that

the QoS pair {rs, ρ} of each user is feasible. Furthermore, Eqs. (129)–(131) also serve as

an admission control test, to check availability of resources to serve this set of users. Since

we have the relation θζ,β(µ) = θλζ,λβ(λµ) (Proposition 5.2), we only need to measure the

θζ,β(·) functions for different ratios of ζ/β.

To summarize, given N fading channels and QoS of K homogeneous users, we use the

following procedure to achieve multiuser/frequency diversity gain with QoS provisioning:

1. Estimate θζ,β(µ), directly from the queueing behavior, for various values of {ζ, β}.
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2. Determine the optimal {ζ, β} pair that satisfies users’ QoS, while minimizing frame

usage.

3. Provide the joint scheduler with the optimal ζ and β, for simultaneous RR and K&H

scheduling, respectively.

It can be seen that the above joint K&H/RR scheduling, admission control and resource

allocation schemes utilize both multiuser diversity and frequency diversity. We will show,

in Section 6.4, that such a QoS provisioning achieves higher effective capacity than the one

described in Chapter 5, which utilizes multiuser diversity only.

On the other hand, we observe that when users’ delay requirements are stringent, the

joint K&H/RR reduces to the RR scheduling (fixed slot assignment) (see Figure 55). Then

the high capacity gain associated with the K&H scheduling cannot be achieved (see Fig-

ure 55). Can the scheduling be modified, so that even with stringent delay requirements,

gains over simple RR scheduling can be achieved? To answer this question, we provide an

analogy to diversity techniques used in physical layer designs. The careful reader may notice

that the RR scheduler proposed in Section 6.2.2.1 has a similar flavor to equal power dis-

tribution used in multichannel transmission, since the RR scheduler equally distributes the

traffic of a user over multiple channels in each frame. Since transmitting over the best chan-

nel often achieves better performance than equal power distribution, one could ask whether

choosing the best channel for each user to transmit (as opposed to choosing the best user

for each channel as in Section 6.2.2.1), would bring about performance gain in the case

of tight delay requirements. This is the motivation of designing a reference-channel-based

scheduler for tight delay requirements, which we present next.

6.3 Reference-channel-based Scheduling

Section 6.2 basically extends the K&H/RR scheduling technique of Chapter 5, to the case

with multiple parallel channels. The drawback of this straight-forward extension was that,

although the capacity gain is high for loose delay requirements (see Section 6.4.2.2), the

gain vanishes when delay requirements become stringent. This section therefore proposes a
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scheduler, which squeezes more out of frequency diversity, to provide capacity gains under

stringent delay requirements.

This section is organized as follows. We first formulate the downlink scheduling prob-

lem in Section 6.3.1. Then in Section 6.3.2, we propose a reference channel approach to

addressing the problem and with this approach we design the scheduler by posing it as a

linear program. In Section 6.3.3, we investigate the performance of the scheduler.

6.3.1 The Problem of Optimal Scheduling

The scheduling problem is to find, for each frame t, the set of {wk,n(t)} that minimizes

the time-averaged expected channel usage 1
τ

∑τ−1
t=0 E[

∑K
k=1

∑N
n=1 wk,n(t)] (where τ is the

connection life time), given the QoS constraints, as below,

minimize
{wk,n(t)}

1
τ

τ−1∑
t=0

E[
K∑

k=1

N∑
n=1

wk,n(t) ] (132)

subject to Pr{Dk(∞) ≥ D(k)
max} ≤ εk, for a fixed rate r

(k)
s , ∀ k (133)

K∑
k=1

wk,n(t) ≤ 1, ∀ n, ∀ t (134)

wk,n(t) ≥ 0, ∀ k, ∀ n, ∀ t (135)

The constraint (133) represents statistical QoS constraints, that is, each user k specifies its

QoS by a triplet {r(k)
s ,D

(k)
max, εk}, which means that each user k, transmitting at a fixed data

rate r
(k)
s , requires that the probability of its steady-state packet delay Dk(∞) exceeding the

delay bound D
(k)
max, is not greater than εk. The constraint (134) arises because the total

usage of any channel n cannot exceed unity. The intuition of the formulation (132) through

(135) is that, the less is the channel usage in supporting QoS for the K users, the more

is the bandwidth available for use by other data, such as Best-Effort or Guaranteed Rate

traffic [49].

We call any scheduler, which achieves the minimum in (132), as the optimal scheduler.

To meet the statistical QoS requirements of the K users, an optimal scheduler needs to keep

track of the queue length, for each user, using a state variable. It would make scheduling

decisions (i.e., allocation of {wk,n(t)}), based on the current state. Dynamic programming
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often turns out to be a natural way to solve such an optimization problem [30, 43]. However,

the dimensionality of the state variable is typically proportional to the number of users

(at least), which results in very high (exponential in number of users) complexity for the

associated dynamic programming solution [8]. Simpler approaches, such as [4], which use

the state variable sub-optimally, do not enforce a given QoS, but rather seek to optimize

some form of a QoS parameter.

This motivates us to seek a simple (sub-optimal) approach, which can enforce the spec-

ified QoS constraints explicitly, and yet achieve an efficient channel usage. This idea is

elaborated in the next section.

6.3.2 ‘Reference Channel’ Approach to Scheduling

The key idea in the scheduler design is to specify the QoS constraints, using (what we call)

the ‘Reference Channel’ approach. In the original optimal scheduling problem (132), the

statistical QoS constraints (133) are specified by triplets {r(k)
s ,D

(k)
max, εk}. However, we map

these constraints into a new form, based on the actual time-varying channel capacities of

the K users. To elaborate, we assume that the base station can measure the statistics of the

time-varying channel capacities (specifically, the QoS exponent function θ(µ)). Further, it

is assumed that an appropriate admission control and resource allocation algorithm (such

as that in Section 6.2.2.2), allots a fraction ξk,n (ξk,n are real numbers in the interval [0, 1])

of channel n, to user k, for the duration of the connection time. In other words, the key

idea of the admission control and resource allocation algorithm is that, if a given user k

were allotted the fixed channel assignment {ξk,n} during the entire connection period, then

the time-varying capacity
∑N

n=1 ξk,nck,n(t), which it would obtain, would be sufficient to

fulfill its QoS requirements specified by {r(k)
s ,D

(k)
max, εk}. A necessary condition on ξk,n is

that,

K∑
k=1

ξk,n ≤ 1, ∀ n (136)

Thus, our approach shifts the complexity of satisfying the QoS requirements (133), from

the scheduler to the admission control algorithm, which needs to ensure that its choice of
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channel assignment {ξk,n}, meets the QoS requirements of all the users. Since the QoS

constraint (133) is embedded in the channel assignment {ξk,n}, hence we call our approach

to scheduling as a ‘Reference Channel’ approach. The careful reader may note a similarity

of this approach, to other virtual reference approaches [162, 169], which are used to handle

source randomness in wireline scheduling. Our motivation, on the other hand, is to han-

dle channel randomness in wireless scheduling. This point is discussed in more detail in

Section 6.5.

Thus, with the QoS constraints embedded in the {ξk,n}, the QoS constraint (133) can

be replaced by the specific set of constraints,

N∑
n=1

wk,n(t)ck,n(t) ≥
N∑

n=1

ξk,nck,n(t), ∀ k (137)

Note that the channel fractions wk,n(t) and ξk,n perform different functions. The fractions

wk,n(t) are assigned by a scheduler, depending on the channel gains it observes, and they

specify the actual fractions of the N channel frames used by different users at time t. Thus,

they will (in general) vary with time. On the other hand, the fractions ξk,n are assigned

by an admission control and resource allocation algorithm, and they represent the channel

resources reserved for different users, rather than the actual fractions of the N channel

frames used by the users. Thus, ξk,n are fixed during the life time of a connection. Note

that setting wk,n(t) = ξk,n,∀ t ensures feasibility of (137) under all circumstances. This is

simply the RR scheduling of Section 6.2.2.1! However, the enhanced scheduler we propose

can satisfy (137), while (hopefully) also provide a capacity gain by minimizing the channel

usage
∑K

k=1

∑N
n=1 wk,n(t).

It is clear that (137) ensures that in every frame t, the scheduler will allot each user k

a capacity, which is not less than the capacity specified by the ξk,n. Thus, a scheduler that

satisfies (137) is guaranteed to satisfy the QoS requirements of all the K users. However,

in the process of replacing the QoS constraint (133), by the constraint (137), we have

conceivably tightened the constraints on the scheduler (since the latter constraint needs to

be at least as tight as the former), which means that the scheduler we will derive will be

sub-optimal, with respect to the optimal scheduler (132) through (135). However, as will
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be shown, this modification results in a simpler scheduler, which achieves a performance

close to a bound we derived.

To summarize, we derive a sub-optimal scheduler, which we call Reference Channel (RC)

scheduler, based on the optimization problem below: for each frame t,

minimize
{wk,n(t)}

K∑
k=1

N∑
n=1

wk,n(t) (138)

subject to
N∑

n=1

wk,n(t)ck,n(t) ≥
N∑

n=1

ξk,nck,n(t), ∀ k (139)

K∑
k=1

wk,n(t) ≤ 1, ∀ n (140)

wk,n(t) ≥ 0, ∀ k, ∀ n (141)

Notice that the cost function in (138) is different from the one in (132), since we have

dispensed with the expectation and time-averaging in (138). This can be done, because the

fractions wk,n(t) at time t, can be optimally chosen independent of future channel gains,

thanks to the Reference Channel formulation. Thus, interestingly, whereas the optimal

scheduler state would need to incorporate the channel states of the N ×K fading channels

(if they are correlated between different frames t), our sub-optimal scheduler does not need

to do so, since the correlations in the channel fading process have been already accounted

for by the admission control algorithm!

It is obvious that our sub-optimal scheduling problem (i.e., the minimization problem

(138)) is simply a linear program. The solution (scheduler) can be found with low complex-

ity, by either the simplex method or interior-point methods [97, pp. 362–417].

The constraint (139) is for the case of fixed channel assignment (associated with RR

scheduling). If the admission control and resource allocation algorithm in Section 6.2.2.2 is

used, the constraint (139) becomes

N∑
n=1

wk,n(t)ck,n(t) ≥
N∑

n=1

(ζ + β × 1(k = k∗(n, t)))ck,n(t), ∀ k (142)

where k∗(n, t) is the index of the user whose capacity ck,n(t) is the largest among K users,

for channel n, and 1(·) is an indicator function such that 1(k = a) = 1 if k = a, and
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1(k = a) = 0 if k �= a. Note that if ζ = 0, i.e., the admission control algorithm allocates

channel resources to K&H scheduling only, then the RC scheduler is equivalent to the K&H

scheduling. This is because we then have

wk,n(t) = β × 1(k = k∗(n, t))), ∀ k,∀n, (143)

which means for each channel, the best user is chosen to transmit, and this is exactly

the same as the K&H scheduling. So the relation between the joint K&H/RR scheduling

and the RC scheduling is that 1) if the admission control allocates channel resources to

the RR scheduling due to tight delay requirements, then the RC scheduler can be used to

minimize channel usage; 2) if the admission control allocates channel resources to the K&H

scheduling only with β = 1, due to loose delay requirements, then there is no need to use

the RC scheduler. The second statement is formally presented in the following proposition.

Proposition 6.1 Assume K users share N parallel channels and the K users are scheduled

by the K&H scheduling specified in Section 6.2.2.1. If β = 1, then there does not exist a

channel assignment {wk,n(t) : k = 1, · · · ,K;n = 1, · · · , N} such that
∑K

k=1

∑N
n=1 wk,n(t) <

N .

For a proof of Proposition 6.1, see Appendix A.13. Proposition 6.1 states that if the

K users are scheduled by the K&H scheduler with β = 1, then no channel assignment

{wk,n(t) : k = 1, · · · ,K;n = 1, · · · , N} can reduce the channel resource usage.

Next we show a toy example of the capacity gain achieved by the RC scheduler over

the RR scheduler. Suppose K = N = 2 and the channel capacities at frame t are listed in

Table 6. Also assume that channel allocation ξ1,1 = ξ1,2 = ξ2,1 = ξ2,2 = 1/2 so that the

two channels are completely allocated. Then, using the RC scheduler, at frame t, user 1

will be assigned with 2/3 of channel 1 and user 2 will be assigned with 3/5 of channel 2.

Hence, the resulting channel usage is 2/3 + 3/5 = 19/15 < 2. So the channel usage of the

RC scheduler is reduced, as compared to the RR scheduler.

In the next section, we investigate the performance of our RC scheduler. In particular,

since the optimal scheduler (based on dynamic programming) is very complex, we present
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Table 6: Channel capacities ck,n(t).

Channel 1 Channel 2
User 1 9 3
User 2 1 5

a simple bound for evaluating the performance of the RC scheduler. Then, in Section 6.4

we show that the performance of the RC scheduler is close to the bound.

6.3.3 Performance Analysis

To evaluate the performance of the RC scheduling algorithm, we introduce two metrics,

expected channel usage η(K,N) and expected gain L(K,N) defined as below,

η(K,N) =
1
τ

∑τ−1
t=0 E[

∑K
k=1

∑N
n=1 wk,n(t)]

N
, (144)

where the expectation is over gk,n(t), and

L(K,N) =
1

η(K,N)
(145)

The quantity 1−η(K,N) represents average free channel resource (per channel), which can

be used for supporting the users, other than the QoS-assured K users. For example, the

frame fractions {1 −∑k wk,n(t)} of each channel n, which are unused after the K users

have been supported, can be used for either Best Effort (BE) or Guaranteed Rate (GR)

traffic [49]. It is clear that the smaller the channel usage η(K,N) (the larger the gain

L(K,N)), the more free channel resource is available to support BE or GR traffic. The

following proposition shows that minimizing η(K,N) or maximizing L(K,N) is equivalent

to maximizing the capacity available to support BE/GR traffic.

Proposition 6.2 Assume that the unused frame fractions {1 − ∑K
k=1 wk,n(t)} are used

solely by KB BE/GR users (indexed by K + 1,K + 2, · · · ,K + KB), whose channel gain

processes are i.i.d. (in user k and channel n), strict-sense stationary (in time t) and

independent of the K QoS-assured users. If the BE/GR scheduler allots each channel to
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the contending user with the highest channel gain among the KB users, then the ‘available

expected capacity’,

Cexp = E

[
N∑

n=1

(1 −
K∑

k=1

wk,n(t))ck∗(n,t),n(t)

]
, (146)

is maximized by any scheduler that minimizes η(K,N) or maximizes L(K,N). Here, k∗(n, t)

denotes the index of the BE/GR user with the highest channel gain among the KB BE/GR

users, for the nth channel in frame t.

For a proof of Proposition 6.2, see Appendix A.14.

Next, we present bounds on η(K,N) and L(K,N), which will be used to evaluate the

performance of the RC scheduler.

Computing (144) for the optimal scheduler (132) through (135) is complex, because the

optimal scheduler itself has high complexity. For this reason, we seek to derive a lower

bound on η(K,N) of the RC scheduler. We consider the case where K users have i.i.d.

channel gains which are stationary processes in frame t. The following proposition specifies

a lower bound on η(K,N) of the RC scheduler.

Proposition 6.3 Assume that K users have N i.i.d. channel gains which are strict-sense

stationary processes in frame t. Each user k has channel assignments {ξk,n} (for the RR

scheduling only), where ξk,n = ζk,∀k, n. Assume that the N channels are fully assigned to

the K users, i.e.,
K∑

k=1

N∑
n=1

ξk,n = N (147)

Then a lower bound on η(K,N) of the RC scheduler specified by (138) through (141), is

η(K,N) ≥ E[cmean/cmax], (148)

where cmean =
∑N

n=1 c1,n/N and cmax = max{c1,1, c1,2, · · · , c1,N}. The time index has been

dropped here, due to the assumption of stationarity of the channel gains. Hence, an upper

bound on L(K,N) of the RC scheduler specified by (138) through (141), is

L(K,N) ≤ 1
E[cmean/cmax]

. (149)
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Figure 53: Queueing model used for multiple fading channels.

For a proof of Proposition 6.3, see Appendix A.15.

Furthermore, the following proposition states that the upper bound on L(K,N) in (149)

monotonically decreases as average SNR increases.

Proposition 6.4 The lower bound on η(K,N) in (148), i.e., E[cmean/cmax], monotonically

increases to 1 as SNRavg increases from 0 to ∞, where SNRavg = P0/σ
2 [see Eq. (127)].

Hence, the upper bound on L(K,N) in (149), i.e., 1/E[cmean/cmax], monotonically decreases

to 1 as SNRavg increases from 0 to ∞.

For a proof of Proposition 6.4, see Appendix A.16. Proposition 6.4 shows that for large

SNRavg, there is not much gain to be expected by using the RC scheduler.

So far, we have considered the effect of η(K,N) and L(K,N) on the available expected

capacity, and derived bounds on η(K,N) and L(K,N). In the next section, we evaluate the

performance of the RC scheduler and the joint K&H/RR scheduler through simulations.

6.4 Simulation Results

6.4.1 Simulation Setting

We simulate the system depicted in Figure 52, in which each connection4 is simulated

as plotted in Figure 53. In Figure 53, the data source of user k generates packets at a

4Assume that K connections are set up and each mobile user is associated with only one connection.
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constant rate r
(k)
s . Generated packets are first sent to the (infinite) buffer at the transmitter.

The head-of-line packet in the queue is transmitted over N fading channels at data rate∑N
n=1 rk,n(t). Each fading channel n has a random power gain gk,n(t). We use a fluid model,

that is, the size of a packet is infinitesimal. In practical systems, the results presented here

will have to be modified to account for finite packet sizes.

We assume that the transmitter has perfect knowledge of the current channel gains

gk,n(t) in frame t. Therefore, it can use rate-adaptive transmissions, and ideal channel

codes, to transmit packets without decoding errors. Under the joint K&H/RR scheduling

of Section 6.2, the transmission rate rk,n(t) of user k over channel n, is given as below,

rk,n(t) = (ζ + β × 1(k = k∗(n, t)))ck,n(t), (150)

where the instantaneous channel capacity ck,n(t) is

ck,n(t) = Bc log2(1 + gk,n(t) × P0/σ
2) (151)

where Bc is the channel bandwidth. On the other hand, for the combination of joint

K&H/RR and RC scheduling (Section 6.3), the transmission rate rk,n(t) of user k over

channel n, is given as below,

rk,n(t) = wk,n(t)ck,n(t). (152)

where {wk,n(t)} is a solution to the linear program specified by (138), (140), (141) and

(142).

The average SNR is fixed in each simulation run. We define rawgn as the capacity of an

equivalent AWGN channel, which has the same average SNR. That is,

rawgn = Bc log2(1 + SNRavg) (153)

where SNRavg = E[gk,n(t) × P0/σ
2] = P0/σ

2, assuming that the transmission power P0

and noise variance σ2 are constant and equal for all users, in a simulation run. We set

E[gk,n(t)] = 1 and rawgn = 1000 kb/s in all the simulations.

The sample interval (frame length) Ts is set to 1 milli-second and each simulation run

is 100-second long in all scenarios. Denote hk,n(t) the voltage gain of the nth channel for
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the kth user. As described in Section 4.4.1, we generate Rayleigh flat-fading voltage-gains

hk,n(t) by a first-order auto-regressive (AR(1)) model as below. We first generate h̄k,n(t)

by

h̄k,n(t) = κ × h̄k,n(t − 1) + uk,n(t), (154)

where uk,n(t) are i.i.d. complex Gaussian variables with zero mean and unity variance per

dimension. Then, we normalize h̄k,n(t) and obtain hk,n(t) by

hk,n(t) = h̄k,n(t) ×
√

1 − κ2

2
. (155)

In all the simulations, we set κ = 0.8, which roughly corresponds to a Doppler rate of 58

Hz.

We only consider the homogeneous case, i.e., each user k has the same QoS requirements

{r(k)
s , ρk}, and the channel gain processes {gk,n(t)} are i.i.d in channel n and user k (note

that gk,n(t) is not i.i.d. in t).

6.4.2 Performance Evaluation

We organize this section as follows. In Section 6.4.2.1, we assess the accuracy of our QoS

estimation (108). In Section 6.4.2.2, we evaluate the performance of our joint K&H/RR

scheduler. In Section 6.4.2.3, we evaluate the performance of our RC scheduler.

6.4.2.1 Accuracy of Channel Estimation

The experiments in this section are to show that the estimated effective capacity can indeed

be used to accurately predict QoS.

In the experiments, the following parameters are fixed: K = 40, N = 4, and SNRavg =

−40 dB. By changing the source rate µ, we simulate three cases, i.e., µ =200, 300, and 400

kb/s. Figure 54 shows the actual delay-bound violation probability Pr{D(∞) > Dmax} vs.

the delay bound Dmax. From the figure, it can be observed that the actual delay-bound

violation probability decreases exponentially with Dmax, for all the cases. This confirms

the exponential dependence shown in (108). In addition, the estimated Pr{D(∞) > Dmax}
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Figure 54: Actual and estimated delay-bound violation probability.

is quite close to the actual Pr{D(∞) > Dmax}, which demonstrates the effectiveness of our

channel estimation algorithm.

6.4.2.2 Performance Gain of Joint K&H/RR Scheduling

The experiments here are intended to show the performance gain of the joint K&H/RR

scheduler in Section 6.2.2.1 due to utilization of multiple channels. This can be compared

with Section 5.4 where only a single channel was assumed.

We set SNRavg = −40 dB. The experiments use the optimum {ζ, β} values specified by

the resource allocation algorithm, i.e., Eqs. (128)–(131). For a fair comparison, we fix the

ratio N/K so that each user is allotted the same amount of channel resource for different

{K,N} pairs. We simulate three cases: 1) K = 10, N = 1, 2) K = 20, N = 2, 3) K = 40,

N = 4. For Case 1, the joint K&H/RR scheduler in Section 6.2.2.1 reduces to the joint

scheduler presented in Chapter 5.

In Figure 55, we plot the function θ(µ) achieved by the joint, K&H, and RR schedulers

under Case 3, for a range of source rate µ, when the entire frame of each channel is used

(i.e., Kζ + β = 1). The function θ(µ) in the figure is obtained by the estimation scheme

described in [158]. In the case of joint scheduling, each point in the curve of θ(µ) corresponds

to a specific optimum {ζ, β}, while Kζ = 1 and β = 1 are set for RR and K&H scheduling
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Figure 55: θ(µ) vs. µ for K&H, RR, and joint scheduling (K = 40, N = 4).
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Figure 57: Gain for joint K&H/RR scheduling over RR scheduling.

respectively. The curve of θ(µ) can be directly used to check for feasibility of a QoS pair

{rs, ρ}, by checking whether θ(rs) > ρ is satisfied. From the figure, we observe that the

joint scheduler has a larger effective capacity than both the K&H and the RR for a rather

small range of θ. Therefore, in practice, it may be sufficient to use either K&H or RR

scheduling, depending on whether θ is small or large respectively, and dispense with the

more complicated joint scheduling. Cases 1 and 2 have similar behavior to that plotted in

Figure 55.

Figure 56 plots the function θ(µ) achieved by the joint K&H/RR scheduler in three

cases, for a range of source rate µ, when the entire frame is used (i.e., Kζ + β = 1).

This figure shows that the larger N is, the higher capacity the joint K&H/RR scheduler

in Section 6.2.2.1 achieves, given each user allotted the same amount of channel resource.

This is because the larger N is, the higher diversity the scheduler can achieve. For small θ,

the capacity gain is due to multiuser diversity, i.e., there are more users as N increases for

fixed N/K; for large θ, the capacity gain is achieved by frequency diversity, i.e., there are

more channels to be simultaneously utilized as N increases.

On the other hand, using the RR scheduler for single channel as a benchmark, we plot

the capacity gain achieved by the joint K&H/RR scheduler in Figure 57. The capacity

gain of the joint scheduler is the ratio of µ(θ) of the joint scheduler to the µ(θ) of the
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Figure 58: Expected channel usage η(K,N) vs. θ.

RR scheduler. For N ≥ 2, the figure shows that 1) in the range of small θ, the capacity

gain decreases with the increase of θ, which is due to the fact that multiuser diversity is

less effective as θ increases, 2) in the range of large θ, the capacity gain increases with the

increase of θ, which is due to the fact that the effect of frequency diversity kicks in as θ

increases, 3) in the middle range of θ, the capacity gain is the least since both multiuser

diversity and frequency diversity are less effective.

The simulation results in this section demonstrate that the joint K&H/RR scheduler

can significantly increase the delay-constrained capacity of fading channels, compared with

the RR scheduling, for any delay requirement; and the joint K&H/RR scheduler for the

multiple channel case achieves higher capacity gain than that for the single channel case.

6.4.2.3 Performance Gain of RC Scheduling

The experiments in this section are aimed to show the performance gain achieved by the

RC scheduler.

We simulate three scenarios for the experiments. In the first scenario, we change the QoS

requirement θ while fixing other source/channel parameters. We fix the data rate r
(k)
s = 30

kb/s to compare the difference in channel usage achieved by different schedulers. In this

scenario, the N channels are not fully allocated by the admission control. Figure 58 shows
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Figure 59: (a) Performance gain L(K,N) vs. average SNR, and (b) η(K,N) vs. average
SNR.

the expected channel usage η(K,N) vs. θ for the RR scheduler, joint K&H/RR scheduler

(denoted by “joint” in the figure), and the combination of joint K&H/RR and the RC

scheduler (denoted by “joint+RC” in the figure). It is noted that for N ≥ 2, the joint

K&H/RR scheduler uses less channel resources than the RR scheduler for any θ, and the

combination of the joint K&H/RR and the RC scheduler further reduces the channel usage,

for large θ. We also observe that 1) for small θ, the K&H scheduler suffices to minimize the

channel usage (the RC scheduling does not help since the RC scheduling only improves over

the RR scheduling); 2) for large θ, the RC scheduler with fixed channel assignment achieves

the minimum channel usage (the K&H scheduler does not help since the K&H scheduler is

not applicable for large θ).

In the second and third scenarios, we only simulate the RC scheduler with fixed channel

assignment. In the experiments, we choose {r(k)
s , ρk} so that θζ,β(r(k)

s ) = ρk, where ζ = 1/K

and β = 0. Hence, the N channels are fully allocated to K users by the admission control,

and we have fixed channel assignment ξk,n = ζ, ∀k,∀n. We set K = N since the performance

gain L(K,N) will remain the same for the same N and any K ≥ N , if the channels are

fully allocated to the K users by the admission control.

In the second scenario, we change the average SNR of the channels while fixing other
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source/channel parameters. Figure 59(a) shows performance gain L(K,N) vs. average

SNR. Just as Proposition 6.4 indicates, the gain L(K,N) monotonically decreases as the

average SNR increases from –40 dB to 15 dB. Intuitively, this is caused by the concavity

of the capacity function c = log2(1 + g). For high average SNR, a higher channel gain does

not result in a substantially higher capacity. Thus, for a high average SNR, scheduling by

choosing the best channels (with or without QoS constraints) does not result in a large

L(K,N), unlike the case of low average SNR. In addition, Figure 59(a) shows that the gain

L(K,N) falls more rapidly for larger N . This is because a larger N results in a larger

L(K,N) at low SNR while at high SNR, L(K,N) goes to 1 no matter what N is (see

Proposition 6.4). Figure 59(b) shows the corresponding expected channel usage vs. average

SNR.

In the third scenario, we change the number of channels N while fixing other source/channel

parameters. Figure 60 shows the performance gain L(K,N) versus number of channels N ,

for different average SNRs. It also shows the upper bound (149). From the figure, we

observe that as the number of channels increases from 2 to 16, the gain L(K,N) increases.

This is because a larger number of channels in the system, increases the likelihood of using

channels with large gains, which translates into higher performance gain. Another inter-

esting observation is that the performance gain L(K,N) increases almost linearly with the

increase of loge N (note that the X-axis in the figure is in a log scale). We also plot the

corresponding expected channel usage η(K,N) vs. number of channels in Figure 61. The

lower bound in Figure 61 is computed by (148). One may notice that the gap between the

bound and the actual metric in Figs. 60 and 61 reduces as the number of channels increases.

This is because the more channels there is, the less the channel usage is, and hence the more

likely each user chooses its best channel to transmit, so that the actual performance gets

closer to the bound.5

For all the simulations, we verify that the actual QoS achieved by the RC scheduler meets

the users’ requirements. The actual delay-bound violation probability curve is similar to

5In the proof of Proposition 6.3, we show that the bound corresponds to the case where each user chooses

its best channel to transmit.
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Figure 60: L(K,N) vs. number of channels N for average SNR = (a) –40 dB, (b) 0 dB,
and (c) 15 dB.
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Figure 61: η(K,N) vs. number of channels N for average SNR = (a) –40 dB, (b) 0 dB,
and (c) 15 dB.
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that in Figure 46 and is upper-bounded by the requested delay-bound violation probability.

These observations are not shown here.

In summary, the joint K&H/RR scheduler for the multiple channel case achieves higher

capacity gain than that for the single channel case; the RC scheduler further squeezes out

the capacity from multiple channels, when the delay requirements are tight.

6.5 Related Work

There have been many proposals on QoS provisioning in wireless networks. Since our work

is centered on scheduling, we will focus on the literature on scheduling with QoS constraints

in wireless environments. Besides K&H scheduling and Bettesh & Shamai’s scheduler that

we discussed in Section 5.1, previous works on this topic also include wireless fair queueing

[87, 94, 106], modified largest weighted delay first (M-LWDF) [4], opportunistic transmission

scheduling [83] and lazy packet scheduling [102].

Wireless fair queueing schemes [87, 94, 106] are aimed at applying Fair Queueing [99]

to wireless networks. The objective of these schemes is to provide fairness, while providing

loose QoS guarantees. However, the problem formulation there does not allow explicit QoS

guarantees (e.g., explicit delay bound or rate guarantee), unlike our approach. Further,

their problem formulation stresses fairness, rather than efficiency, and hence, does not

utilize multiuser diversity to improve capacity.

The M-LWDF algorithm [4] and the opportunistic transmission scheduling [83] implicitly

utilize multiuser diversity, so that higher efficiency can be achieved. However, the schemes

do not provide explicit QoS, but rather optimize a certain QoS parameter.

The lazy packet scheduling [102] is targeted at minimizing energy, subject to a delay

constraint. The scheme only considers AWGN channels and thus allows for a deterministic

delay bound, unlike fading channels and the general statistical QoS considered in our work.

Static fixed channel assignments, primarily in the wireline context, have been considered

[61], in a multiuser, multichannel environment. However, these do not consider channel
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fading, or general QoS guarantees.

Time-division scheduling has been proposed for 3-G WCDMA [60, page 226]. The pro-

posed time-division scheduling is similar to the RR scheduling in this chapter and Chapter 5.

However, their proposal did not provide methods on how to use time-division scheduling to

support statistical QoS guarantees explicitly. With the notion of effective capacity, we are

able to make explicit QoS provisioning with our joint scheduling.

As mentioned in Section 6.3.2, the RC scheduling approach has similarities to the var-

ious scheduling algorithms, which use a ‘Virtual time reference’, such as Virtual Clock,

Fair Queueing (and its packetized versions), Earliest Deadline Due, etc. These schedul-

ing algorithms handle source randomness, by prioritizing the user transmissions, using an

easily-computed sequence of transmission times. A scheduler that follows the transmission

times, is guaranteed to satisfy the QoS requirements of the users. Similarly, in our work,

channel randomness is handled by allotting users an easily-computed ‘Virtual channel ref-

erence’, i.e., the channel assignment {ξk,n}. A scheduler (of which the RC scheduler is the

optimum version) that allots the time-varying capacities specified by {ξk,n}, at each time

instant, is guaranteed to satisfy the QoS requirements of the users (assuming an appropriate

admission control algorithm was used in the calculation of {ξk,n}).

6.6 Summary

In this chapter, we examined the problem of providing QoS guarantees to K users over

N parallel time-varying channels. We designed simple and efficient admission control, re-

source allocation, and scheduling algorithms for guaranteeing requested QoS. We developed

two sets of scheduling algorithms, namely, joint K&H/RR scheduling and RC scheduling.

The joint K&H/RR scheduling utilizes both multiuser diversity and frequency diversity to

achieve capacity gain, and is an extension of Chapter 5. The RC scheduling is formulated

as a linear program, which minimizes the channel usage while satisfying users’ QoS con-

straints. The relation between the joint K&H/RR scheduling and the RC scheduling is that

1) if the admission control allocates channel resources to the RR scheduling due to tight
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delay requirements, then the RC scheduler can be used to minimize channel usage; 2) if

the admission control allocates channel resources to the K&H scheduling only, due to loose

delay requirements, then there is no need to use the RC scheduler.

The key features of the RC scheduler are,

• High efficiency. This is achieved by dynamically selecting the best channel to transmit.

• Simplicity. Dynamic programming is often required to provide an optimal solution

to the scheduling problem. However, the high complexity of dynamic programming

(exponential in the number of users) prevents it from being used in practical imple-

mentations. On the other hand, the RC scheduler has a low complexity (polynomial

in the number of users), and yet performs very close to the bound we derived. This

indicates that the RC scheduler is simple and efficient.

• Statistical QoS support. The RC scheduler is targeted at statistical QoS support.

The statistical QoS requirements are represented by the channel assignments {ξk,n},
which appear in the constraints of the linear program of the scheduler.

Simulation results have demonstrated that substantial gain can be achieved by the joint

K&H/RR scheduler and the RC scheduler, and have validated our analysis of the RC

scheduler performance.
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CHAPTER 7

PRACTICAL ASPECTS OF EFFECTIVE CAPACITY

APPROACH

In Chapters 4 to 6, we made some ideal assumptions on the system under consideration

such as ergodic, stationary channel gain processes and ideal channel codes. In practical

situations, non-ideal conditions could potentially impact the performance of our effective

capacity approach. In this chapter, we address the following practical aspects.

• Modulation and channel coding

In Chapters 4 to 6, we used Shannon’s channel capacity to represent the instanta-

neous maximum error-free data rate, which is typically not achievable by practical

modulation and channel coding schemes. Hence, for practical QoS provisioning, we

need to consider the effect of modulation and channel coding.

• Robustness against non-stationary channel gain processes

Our estimation algorithm was developed under the assumption of ergodic, stationary

channel gain processes. In practice, the average power may change over time due to

changes in the distance between the transmitter and the receiver and due to shad-

owing, while the Doppler rate may change over time due to changes in the velocity

of the source/receiver (i.e., non-stationary small scale fading). Such non-stationary

behavior, which is possible in practical channels, can cause severe QoS violations. So,

it is important to design QoS provisioning mechanisms than can mitigate large scale

changes as well as non-stationary small scale fading, using our channel estimation

algorithm.
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Table 7: QoS requirements for different wired/wireless applications.

Class Application Data rate Delay bound BER
Interactive Voice 2.4 – 64 kb/s 30 – 60 ms 10−3

real-time Video-conference 128 kb/s – 6 Mb/s 40 – 90 ms 10−3

Non-interactive Streaming audio 5 kb/s – 1.4 Mb/s 1 s – 10 minutes 10−5

real-time Streaming video 10 kb/s – 10 Mb/s 1 s – 10 minutes 10−5

Web browsing None None 10−8

Non-real-time File transfer None None 10−8

Email None None 10−8

To familiarize the reader with practical situations, we list typical QoS requirements for

different wired/wireless applications in Table 7 [41, 46, 60]; for a carrier frequency of 1.9

GHz, the Doppler rate is between 0 and 350 Hz if the velocity of a mobile terminal is

between 0 and 200 km/h.

The rest of this chapter is organized as below. Section 7.1 discusses the effect of mod-

ulation and channel coding on the effective capacity approach to QoS provisioning. In

Section 7.2, we identify the trade-off between power control and the utilization of time

diversity, and propose a novel time-diversity dependent power control scheme to leverage

time diversity. Section 7.3 describes our power control and scheduling scheme, which is

robust in QoS provisioning against large scale fading and non-stationary small scale fading.

In Section 7.4, we show simulation results to demonstrate the effectiveness of our power

control and scheduling scheme under various practical situations. Section 7.5 summarizes

the chapter.

7.1 Effect of Modulation and Channel Coding

In Chapters 4 to 6, we used Shannon’s channel capacity (52) to represent the instantaneous

maximum error-free data rate, which is typically not achievable by practical modulation

and channel coding schemes. For practical modulation and channel coding schemes, the

instantaneous data rate r(t), which results in negligible decoding error probability (as com-

pared to the target Ploss, an upper bound on Pr{D(∞) ≥ Dmax}), would have to be used.
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For example, for quadrature amplitude modulation (QAM), the rate r(t) as a function of

the received SNR can be given by

r(t) = Bc log2

(
1 +

P0 × g(t)
Γlink × (σ2

n + PI(t))

)
, (156)

where Γlink is determined by the target decoding error probability and the channel code

used, g(t) is the channel power gain at frame t, σ2
n is the noise variance and PI(t) is the

instantaneous interference power.

To illustrate how to obtain Γlink, we use M-ary QAM as the modulation scheme, where

M is the number of symbols used in the QAM. The channel code can be any practical code,

e.g., Reed-Solomon codes, convolutional codes, Turbo codes, or low density parity check

(LDPC) codes. For generality purpose, we do not specify the channel code to be used but

only assume the coding gain γcode is given. For M-ary QAM and a specified channel code,

the symbol error probability Pe is upper-bounded as [103, page 280]

Pe ≤ 4 × Q

(√
3 × P0 × g(t) × γcode

(M − 1) × (σ2
n + PI(t))

)
, (157)

where the Q function is given by

Q(x) =
1√
2π

∫ ∞

x
e−x2/2dx. (158)

Let

βmod =
3 × P0 × g(t) × γcode

(M − 1) × (σ2
n + PI(t))

. (159)

Denote Ploss the packet loss probability due to buffer overflow at the transmitter. Let

4Q(
√

βmod) be equal to a value, denoted by εerror, which is much smaller than Ploss. So,

the dominant impairment in the transmission is caused by buffer overflow, while the symbol

error is negligible. For a given εerror, from 4Q(
√

βmod) = εerror, we can obtain βmod by

βmod =
(
Q−1(εerror/4)

)2
, (160)

where Q−1(·) is the inverse of the Q function. Representing M by 2b, we get

b = log2

(
1 +

3 × P0 × g(t) × γcode

βmod × (σ2
n + PI(t))

)
bits/s/Hz. (161)
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Hence, the rate r(t) is given by

r(t) = Bc log2

(
1 +

3 × P0 × g(t) × γcode

βmod × (σ2
n + PI(t))

)
. (162)

So, in this case, Γlink is given by

Γlink = βmod/(3γcode). (163)

Similarly, we can obtain the rate r(t) as a function of the received SNR for phase shift

keying (PSK). For M-ary PSK, the rate r(t) can be given by

r(t) = Bc log2


 π

arcsin
(
βmod ×

√
(σ2

n+PI(t))
2×P0×g(t)×γcode

)

 , (164)

where

βmod = Q−1(εerror/2). (165)

To summarize, for practical modulation and channel coding schemes, we use the instan-

taneous data rate r(t), which results in negligible decoding error probability. Generally

speaking, the rate r(t) is some function of the received SNR, which could differ from the

specific form as (52). With this r(t), we can apply the effective capacity approach developed

in Chapters 4 to 6.

7.2 Trade-off between Power Control and Time Diversity

It is well known that ideal power control can completely eliminate fading and convert the

fading channel to an AWGN channel, so that deterministic QoS (zero queueing delay and

zero delay-bound violation probability) can be guaranteed. However, fast fading (time

diversity) is actually useful. From the link-layer perspective, as mentioned in Section 4.3.3,

the higher the degree of time diversity, the larger the QoS exponent θ(µ) for a fixed µ,

and the larger the effective capacity α(u) for a fixed u. But for a slow fading channel,

we know that the effective capacity α(u) can be very small due to the stringent delay

requirement, and therefore power control may be needed to provide the required QoS.
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Hence, it is conceivable that there is a trade-off between power control and the utilization

of time diversity, depending on the degree of time diversity and the QoS requirements.

To identify this trade-off, we compare the following three schemes through simulations:

• Ideal power control: In order to keep the received SINR constant at a target value

SINRtarget, the transmit power at frame t is determined as below

P0(t) =
SINRtarget

g̃(t)
, (166)

where the channel power gain g̃(t) (absorbing the noise variance plus interference) is

given by

g̃(t) =
g(t)

σ2
n + PI(t)

(167)

Denote Pavg the time average of P0(t) specified by (166); the time average is over the

entire simulation duration. Note that the fast power control used in 3G networks is

an approximation of ideal power control, in that the fast power control in 3G has a

peak power constraint and in that the power change (in dB) in each interval can only

be a fixed integer, say 1 dB, rather than an arbitrary real number as in (166).

• Fixed power: The transmit power P0(t) is kept constant and is equal to Pavg . The

objective of this scheme is to use time diversity only.

• Time-diversity dependent power control: To utilize time diversity, the transmit

power at frame t is determined as below

P0(t) =
γcoeff

gavg(t)
, (168)

where γcoeff is so determined that the time average of P0(t) in (168) is equal to Pavg ;

and gavg(t) is given by an exponential smoothing of g̃(t) as below

gavg(t) = (1 − ηg) × gavg(t − 1) + ηg × g̃(t) (169)

where ηg ∈ [0, 1] is a fixed parameter, chosen depending on the time diversity desired.

It is clear that if ηg = 0, the time-diversity dependent power control reduces to the

fixed power scheme; if ηg = 1, the time-diversity dependent power control reduces to
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ideal power control. Hence, by optimally selecting ηg ∈ [0, 1], we expect to trade-off

time diversity against power control.

The three schemes have been so specified that they use the same amount of average

power Pavg , for fairness of comparison. In all of the three schemes, the transmission rate at

frame t is given as

r(t) = Bc log2

(
1 +

P0(t) × g̃(t)
Γlink

)
, (170)

with the assumption that g̃(t) is perfectly known at the transmitter.

From the simulations in Section 7.4.2.2 and Figure 62, we have the following observa-

tions:

1. Power control vs. using time diversity. If the degree of time diversity is low, ideal

power control provides a substantial capacity gain as opposed to the fixed power

scheme, which only uses time diversity; otherwise, schemes utilizing time diversity

can provide a higher effective capacity than ideal power control. The reason is as

follows. When the degree of time diversity is low, which implies that the probability

of having long deep fades is high, then ideal power control can keep the error-free

data rate r(t) constant at a high value even during deep fades, while the fixed power

scheme suffers from low data rate r(t) during deep fades. On the other hand, when

the degree of time diversity is high and hence the probability of having long deep fades

is small, one can leverage time diversity by buffering data during deep fades (limited

by the delay bound Dmax) and transmitting at a high data rate when the channel

conditions are good.

2. The maximum data rate µ, with Pr{D(∞) > Dmax} ≤ ε satisfied, denoted by

µ̂(Dmax, ε), under both the fixed power control and the time-diversity dependent

power control, increases with the degree of time diversity. The reason is as given

above.

3. The time-diversity dependent power control, which jointly utilizes power control and

time diversity, is the best among the three schemes. This is because the fixed power
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scheme and ideal power control are special cases of the time-diversity dependent power

control, when ηg = 0 and 1, respectively. Hence, by optimally selecting ηg ∈ [0, 1], the

time-diversity dependent power control can achieve the largest µ̂(Dmax, ε).

4. As the degree of time diversity increases, the capacity gain provided by the time-

diversity dependent power control increases as compared to ideal power control; the

capacity gain provided by the time-diversity dependent power control decreases as

compared to the fixed power scheme. This is because, as the degree of time diversity

increases, the effect of time diversity on µ̂(Dmax, ε) increases, while the effect of power

control on µ̂(Dmax, ε) does not change.

In this section, we identified the tradeoff between power control and the utilization of

time diversity, and designed a novel scheme called time-diversity dependent power control,

which achieves the largest data rate µ̂(Dmax, ε), among the three schemes. In the next

section, we present QoS provisioning algorithms that utilize time-diversity dependent power

control.

7.3 Power Control and Scheduling

In this section, we present schemes to achieve robustness in QoS provisioning against large

scale path loss, shadowing, non-stationary small scale fading, and very low mobility. The

basic elements of the schemes are channel estimation, power control, dynamic channel allo-

cation, and adaptive transmission.

7.3.1 Downlink Transmission

We first describe the schemes for the case of downlink transmissions, i.e., a base station

(BS) transmits data to a mobile station (MS).

Assume that a connection requesting a QoS triplet {rs,Dmax, ε} or equivalently {rs, ρ =

− log ε/Dmax}, is accepted by the admission control (described later in Algorithm 7.2). In

the transmission phase, the following tasks are performed.
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1. SINR estimation at the MS: The MS estimates instantaneous received SINR at

frame t, denoted by SINR(t), which is given by

SINR(t) =
P0(t) × g(t)
σ2

n + PI(t)
. (171)

Then the MS conveys the value of SINR(t) to the BS. Since the value of SINR(t) is

typically within a range of 30 dB, e.g., from -19 to 10 dB, five bits should be enough

to represent the value of SINR(t) to within 1 dB. If the estimation frequency is 200

Hz, the signaling overhead is only 1 kb/s, which is low. Note that 3G allows for a

1500-Hz power control loop.

2. Time-diversity dependent power control at the BS: Since the BS knows the

transmit power P0(t), upon receiving SINR(t), it can derive the channel power gain

g̃(t) as below

g̃(t) =
SINR(t)

P0(t)
=

g(t)
σ2

n + PI(t)
(172)

Denote Ppeak the peak transmit power at the BS. The BS determines the transmit

power for frame t + 1 by

P0(t + 1) = min
{

SINRtarget

gavg(t)
, Ppeak

}
, (173)

where gavg(t) is given by (169). Note that ηg in (169) is time-diversity dependent;

based on the current mobile speed vs(t), the value of ηg is specified by a table, similar

to Table 9.

Note that the downlink power control described here is different from the downlink

power control in 3G systems, in that in our scheme, the BS initiates the power control

while in 3G systems, the MS initiates the power control. Specifically, in our system,

the BS determines the transmit power ‘value’ based on the value of SINR(t) sent by

the MS, while in 3G systems, the power control signal (i.e., power-up or power-down

signal) is sent from the MS to the BS. In 3G systems, the power-up signal requests an

increase of transmit power by a preset value, e.g., 1 dB, and the power-down signal

requests a decrease of transmit power by a preset value, e.g., 1 dB.
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3. Estimation of QoS exponent θ at the BS: The BS measures the queueing delay

D(t) at the transmit buffer, and estimates the average queueing delay Davg(t) at frame

t by

Davg(t) = (1 − ηd) × Davg(t − 1) + ηd × D(t) (174)

where ηd ∈ (0, 1) is a preset constant. Then, the BS estimates the QoS exponent θ at

frame t, denoted by θ̂(t), as below

θ̂(t) =
1

0.5 + Davg(t)
(175)

Note that the estimation in Eq. (175) is different from the estimation in Eqs. (36)

through (39), in that the expected queueing delay in (35) is approximated by the

exponentially smoothed Davg(t) in (175), while the expected queueing delay in (35)

is approximated by the time-averaged queueing delay in (39).1

4. Scheduling (dynamic channel allocation) at the BS:

From Figure 62, we know that as the degree of time diversity, or equivalently the

mobile speed, increases (resp., decreases), the data rate µ̂(Dmax, ε) increases (resp.,

decreases) and the QoS exponent θ(µ = rs) increases (resp., decreases), hence re-

quiring less (resp., more) channel resource to support the QoS. This motivates us to

design a dynamic channel allocation mechanism that can adapt to changes in channel

statistics, to achieve both efficiency and QoS guarantees.

The basic idea of dynamic channel allocation is to use the QoS measures θ̂(t) and

D(t) in deciding channel allocation. Specifically, the BS allocates a fraction λ(t + 1)

of frame t + 1, to the connection, as below

λ(t + 1) =




min{λ(t) + ∆λ, 1} if θ̂(t) < γinc × ρ and D(t) > Dh;

max{λ(t) − ∆λ, 0} if θ̂(t) > γdec × ρ and D(t) < Dl;

λ(t) otherwise.

(176)

where ∆λ ∈ (0, 1), γinc ≥ 1, γdec ≥ γinc, low threshold Dl ∈ (0,Dmax), and high

threshold Dh ∈ (Dl,Dmax) are preset constants.

1The expected queueing delay is equal to the expected queue length divided by the source rate.
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It is clear that the control in (176) has hysteresis (due to Dh > Dl and γdec ≥ γinc),

which helps reduce the variation in λ(t) and hence reduce the signaling overhead for

dynamic channel allocation. The condition θ̂ < γinc×ρ means that the measured QoS

exponent θ̂ does not meet the required ρ, scaled by γinc ≥ 1 to allow a safety margin;

the condition D(t) > Dh means that the delay D(t) is larger than the high threshold

Dh; the two conditions jointly trigger an increase in λ(t). Similarly, the condition

{θ̂ > γdec × ρ and D(t) < Dl} causes a decrease in λ(t).

In practice, λ(t) can be interpreted in different ways, depending on the type of the

system. For CDMA, TDMA, and FDMA systems, λ(t) can be implemented by us-

ing variable spreading codes, variable number of mini-slots, and variable number of

frequency carriers, respectively.

For ease of implementation, one can set ∆λ = 0.1 so that λ(t) only takes discrete

values from the set {0, 0.1, 0.2, · · · , 0.9, 1}. Then, in a TDMA system, if a frame

consists of ten mini-slots, λ(t) = 0.3 would mean using three mini-slots to transmit

the data at frame t; the remaining seven mini-slots in the frame can be used by other

users, e.g., best-effort users.

5. Adaptive transmission at the BS: Once the channel allocation λ(t + 1) is given,

the BS determines the transmission rate at frame t + 1 as below

r(t + 1) = λ(t + 1) × �∗ × Bc × log2

(
1 +

P0(t + 1) × g(t)
(σ2

n + PI(t)) × Γlink × γsafe

)
(177)

= λ(t + 1) × �∗ × Bc × log2

(
1 +

P0(t + 1) × SINR(t)
P0(t) × Γlink × γsafe

)
(178)

where �∗ denotes the amount of channel resource allocated by the admission control

(described later in Algorithm 7.2), Γlink characterizes the effect of practical modu-

lation and coding and γsafe introduces a safety margin to mitigate the effect of the

SINR estimation error at the MS. The BS uses (178) to compute r(t + 1) since all

variables in (178) are known.

The values of Γlink and γsafe are so chosen that transmitting at the rate r(t + 1)

specified by (178) will result in negligible bit error rate (w.r.t. Ploss). So, r(t + 1)
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specified by (178) can be regarded as an error-free data rate. Since (178) takes into

account the effect of the physical layer (i.e., practical modulation, channel coding,

and SINR estimation error), we can focus on the queueing behavior and link-layer

performance.

Once r(t + 1) is determined, an M-ary QAM can be used for the transmission, where

M = 2b and b is given by

b = floor

(
log2

(
λ(t + 1) × �∗ × log2

(
1 +

P0(t + 1) × SINR(t)
P0(t) × Γlink × γsafe

)))
(179)

where floor(x) is the largest integer that is not larger than x.

The above tasks are summarized in Algorithm 7.1.

Algorithm 7.1 Downlink power control, channel allocation, and adaptive trans-

mission

In the transmission phase, the following tasks are performed.

1. SINR estimation at the MS: The MS estimates the received SINR(t) and conveys

the value of SINR(t) to the BS.

2. Power control at the BS: The BS derives the channel power gain g̃(t) using (172),

estimates gavg(t) using (169), and then determines the transmit power P0(t+1) using

(173).

3. Estimation of QoS exponent θ at the BS: The BS measures the queueing delay

D(t), estimates Davg(t) using (174), and estimates the QoS exponent θ̂(t) using (175).

4. Scheduling at the BS: The BS allocates a fraction of frame λ(t + 1) to the connec-

tion, using (176).

5. Adaptive transmission at the BS: The BS determines the transmission rate

r(t + 1) using (178).
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The key elements in Algorithm 7.1 are power control and scheduling. The power control

is intended to mitigate large scale path loss, shadowing, and low mobility. The scheduler

specified by (176) is targeted at achieving both efficiency and QoS guarantees.

In Algorithm 7.1, the power control allocates the power resource, while the scheduler

allocates the channel resource; their effects on the ‘error-free’ transmission rate r(t) in (178)

are different: r(t) is linear in channel allocation λ(t), but is a log-function of power P0(t).

Remark 7.1 Power control vs. channel allocation in QoS provisioning

From (178), we see that the error-free data rate r(t) is determined by the channel resource

allocated λ(t) and power P0(t). A natural question is how to optimally allocate the channel

and power resource to satisfy the required QoS.

There are two extreme cases. First, if the transmit power P0(t) is fixed and we suppose

λ(t) ∈ [0,∞), then given arbitrary channel gain g(t) (which includes the effect of the noise

and interference), we can obtain arbitrary r(t) ∈ [0,∞) by choosing appropriate λ(t) ∈
[0,∞). Second, if the channel resource allocated λ(t) is fixed and we suppose P0(t) ∈ [0,∞),

then given arbitrary channel gain g(t), we can obtain arbitrary r(t) ∈ [0,∞) by choosing

appropriate P0(t) ∈ [0,∞).

However, in practical situations, we have both a peak power constraint P0(t) ≤ Ppeak

and a peak channel usage constraint λ(t) ≤ 1, assuming that λ(t) is the fraction of allotted

channel resource. Hence, we cannot obtain arbitrary r(t) ∈ [0,∞), given arbitrary channel

gain g(t). Since applications can tolerate a certain delay and there is a buffer at the link

layer, r(t) is allowed to be less than the arrival rate, with a small probability. Therefore,

there could be feasible solutions {P0(t), λ(t)} that satisfy the QoS constraint, peak power

constraint, and peak channel usage constraint. If such feasible solutions do exist, the next

question is which one is the optimal solution, given a certain criterion. If we want to

minimize average power usage (resp., average channel usage) under the QoS constraint,

peak power constraint, and peak channel usage constraint, an optimal solution must have

λ(t) = 1 (resp., P0(t) = Ppeak). Hence, we cannot simultaneously minimize both average
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power or average channel usage; and we are facing a multi-objective optimization problem.

A classical multi-objective optimization method is to convert a multi-objective optimization

problem to a single-objective optimization problem by a weighted sum of multiple objectives,

the solution of which is Pareto optimal [36, page 49]. Using this method, we formulate an

optimization problem as follows

maximize
{P0(t),λ(t):t=0,1,··· ,τ−1}

1
τ

τ−1∑
t=0

E[βweight × P0(t) + (1 − βweight) × λ(t)] (180)

subject to Pr{D(∞) ≥ Dmax} ≤ ε, for a fixed rate rs (181)

0 ≤ P0(t) ≤ Ppeak (182)

0 ≤ λ(t) ≤ 1 (183)

where τ is the connection life time, and βweight ∈ [0, 1]. Dynamic programming often turns

out to be a natural way to solve (180). However, the complexity of solving the dynamic

program is high. If the statistics of the channel gain process are unpredictable (due to large

scale fading and time-varying mobile speed), we cannot use dynamic programming to solve

(180). This motivates us to seek a simple (sub-optimal) approach, which can enforce the

specified QoS constraints explicitly, and yet achieve an efficient channel and power usage.

Our scheme is based on the tradeoff between power and time diversity: we use the time-

diversity dependent power control to maximize the data rate µ̂(Dmax, ε), and use scheduling

to determine the minimum amount of resource that satisfies the required QoS, given the

choice of power control. This leads to two separate optimization problems, which simplifies

the complexity, while achieving good performance. Algorithm 7.1 is designed according to

this idea.

Now, we get to the issue of admission control. Assume that a user initiates a connec-

tion request, requiring a QoS triplet {rs,Dmax, ε}. In the connection setup phase, we use

Algorithm 7.2 (see below) to test whether the required QoS can be satisfied. Specifically,

the algorithm measures the QoS that the link-layer channel can provide; if the measured

QoS satisfies the required QoS, the connection request is accepted; otherwise, it is rejected.

Algorithm 7.2 uses the methods in Algorithm 7.1. The key difference between the two
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algorithms is that in Algorithm 7.2, the BS creates a fictitious queue, that is, the BS uses rs

as the arrival rate and r(t) as the service rate to ‘simulate’ a fictitious queue, but no actual

packet is transmitted over the wireless channel. In the admission test, there is no need for

the BS to transmit actual data in order to obtain QoS measures of the link-layer channel.

This is because 1) the MS can use the common pilot channel [60, page 103] to measure

the received SINR(t), and 2) the simulated fictitious queue provides the same queueing

behavior as if actual data was transmitted over the wireless channel.

To facilitate resource allocation, we simulate Nfic fictitious queues, each of which is

allocated with different amount of resource �i (i = 1, · · · , Nfic). Assume that �i represents

the proportion of the resource allocated to queue i, to the total resource, and �i (i =

1, · · · , Nfic) takes a discrete value in (0, 1]. If the connection is accepted, the BS allocates

the minimum amount of resource (denoted by �∗) that satisfies the QoS requirements,

to the connection. That is, �∗ is the minimum of all feasible �i that satisfy the QoS

requirements. The algorithm for admission control and resource allocation is as below.

Algorithm 7.2 Downlink admission control and resource allocation:

Upon the receipt of a connection request requiring a QoS triplet {rs,Dmax, ε}, the following

tasks are performed.

1. SINR estimation at the MS: The MS estimates the received SINR(t) using the

common pilot channel, and conveys the value of SINR(t) to the BS.

2. Power control at the BS: The BS derives the channel power gain g̃(t) using (172),

where P0(t) is meant to be the actual transmit power for the common pilot channel

at frame t. Then, the BS estimates gavg(t) by computing (169). Finally, the BS

determines the fictitious transmit power P̃0(t + 1) using (173).

3. Estimation of QoS exponent θ at the BS: For each fictitious queue i (i =

1, · · · , Nfic), the BS generates fictitious arrivals with data rate rs, measures the queue-

ing delay Di(t), estimates D
(i)
avg(t) using (174), and estimates the QoS exponent θ̂i(t)

using (175).
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4. Scheduling at the BS: For each fictitious queue i (i = 1, · · · , Nfic), the BS allocates

a fraction of frame λi(t + 1), using (176).

5. Adaptive transmission at the BS: For each fictitious queue i (i = 1, · · · , Nfic),

the BS determines the transmission rate ri(t + 1) as below

ri(t + 1) = λi(t + 1) × �i × Bc × log2

(
1 +

P̃0(t + 1) × SINR(t)
P̃0(t) × Γlink × γsafe

)
(184)

6. Admission control and resource allocation: If there exists a queue ĩ such that

its QoS exponent average θ̂
(̃i)
avg(t) = 1

t+1

∑t
τ=0 θ̂ĩ(τ) is not less than a preset threshold

θth, accept the connection request; otherwise, reject it. If the connection is accepted,

the BS allocates the minimum amount of resource �∗ = minĩ �ĩ, to the connection.

Note that in Algorithm 7.2, the MS needs to convey SINR(t) to the BS in the connection

setup phase, which is different from the current 3G standard.

It is required that Algorithm 7.2 be fast and accurate in order to implement it in practice.

Our simulation results in Section 7.4.2.8 show that θ̂avg(t) is a reliable QoS measure for the

purpose of admission control; moreover, within a short period of time, say two seconds, the

system can obtain a reasonably accurate θ̂avg(t) and hence can make a quick and accurate

admission decision.

As long as the large scale path loss and shadowing can be mitigated by the power control

in (173), the required QoS can be guaranteed. It is known that the large scale path loss

within a coverage area can be mitigated by the power control. To mitigate shadowing more

effectively as compared to power control, our scheme can be improved by macro-diversity,

which employs the collaboration of multiple base stations. We leave this for future study.

7.3.2 Uplink Transmission

For uplink transmissions, i.e., an MS transmits data to a BS, the design methodology

for QoS provisioning is the same as that for downlink transmissions. Specifically, we use

Algorithms 7.3 and 7.4, which are modifications of Algorithms 7.2 and 7.1. Algorithms 7.3
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uses the common random access channel [60, page 106] instead of the common pilot channel

as in Algorithm 7.2.

Algorithm 7.3 Uplink admission control and resource allocation:

Upon the receipt of a connection request requiring a QoS triplet {rs,Dmax, ε}, the following

tasks are performed.

1. SINR estimation at the BS: The MS transmits a signal of constant power PMS

over the common random access channel to the BS. The value of PMS is known to the

BS. The BS estimates received SINR(t) from the common random access channel.

2. Power control at the BS: The BS derives the channel power gain g̃(t) by (172),

where P0(t) is equal to PMS. Then the BS estimates gavg(t) by computing (169).

Finally, the BS determines the fictitious transmit power P̃0(t + 1) by (173), where

Ppeak is with respect to the MS and is specified in the 3G standard.

3. Estimation of QoS exponent θ at the BS: For each fictitious queue i (i =

1, · · · , Nfic), the BS generates fictitious arrivals with data rate rs, measures the queue-

ing delay Di(t), estimates D
(i)
avg(t) using (174), and estimates the QoS exponent θ̂i(t)

using (175).

4. Scheduling at the BS: For each fictitious queue i (i = 1, · · · , Nfic), the BS allocates

a fraction of frame λi(t + 1), using (176).

5. Adaptive transmission at the BS: For each fictitious queue i (i = 1, · · · , Nfic),

the BS determines the transmission rate ri(t + 1) using (184).

6. Admission control and resource allocation: If there exists a queue ĩ such that

its QoS exponent average θ̂
(̃i)
avg(t) = 1

t+1

∑t
τ=0 θ̂ĩ(τ) is not less than a preset threshold

θth, accept the connection request; otherwise, reject it. If the connection is accepted,

the BS allocates the minimum amount of resource �∗ = minĩ �ĩ, to the connection.
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Algorithm 7.4 Uplink power control, channel allocation, and adaptive transmis-

sion

In the transmission phase, the following tasks are performed.

1. SINR estimation at the BS: The BS estimates received SINR(t) and conveys the

value of SINR(t) to the MS.

2. Power control at the MS: The MS derives the channel power gain g̃(t) by (172)

and estimates gavg(t) by computing (169). Then, the MS determines the transmit

power P0(t + 1) by (173).

3. Estimation of QoS exponent θ at the MS: The MS measures the queueing delay

D(t), estimates Davg(t) by (174), and estimates the QoS exponent θ̂(t) using (175).

4. Renegotiation of channel allocation: The MS computes λ(t+1), using (176). The

MS sends a renegotiation request to the BS, asking for a fraction of frame λ(t + 1)

for the connection. Based on the resource availability, the BS determines the value of

λ(t + 1), and then notifies the MS of the final value of λ(t + 1), which will be used by

the MS in frame t + 1.

5. Adaptive transmission at the MS: The MS determines the transmission rate

r(t + 1) by (178).

7.3.3 Multiuser Case

Sections 7.3.1 and 7.3.2 address the case of a single user. In this section, we consider the

case of multiple users. Our objective is to extend the results in Chapters 5 and 6. So, we

address two cases as below.

Case 1: multiple users sharing a single channel

We consider downlink transmission only and assume the same architecture as that in

Chapter 5. Assume that K users have different QoS requirements and are classified into

M classes, each of which has the same QoS pair {rs, ρ}. For example, voice applications

typically have similar QoS pair {rs, ρ}. We list some typical traffic classes in Table 7.
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We would like to apply the joint K&H/RR scheduling in Section 5.3.2 to each of the

M classes. Assume that for each class m, channel allocation {ζm, βm} is determined by

the resource allocation algorithm (refer to Section 5.3.2). To schedule the K users, we only

need to modify the adaptive transmission (178) in Algorithm 7.1 as follows.

For user k in class m, the BS determines the transmission rate at frame t + 1 as below

rk(t + 1) = λk(t + 1) × �∗
m(t) × Bc × log2

(
1 +

P
(k)
0 (t + 1) × SINRk(t)

P
(k)
0 (t) × Γlink × γsafe

)
(185)

where the index k denotes user k. The value of �∗
m(t) is determined as follows: if user k has

the largest channel gain g̃k(t) among all the users in class m, then we set �∗
m(t) = ζm +βm;

otherwise, we set �∗
m(t) = ζm. It is clear that (185) reflects the joint K&H/RR scheduling

in Section 5.3.2.

Case 2: multiple users sharing multiple channels

We consider downlink transmission only and assume the same architecture as that in

Chapter 6, i.e., K users requiring the same QoS {rs,Dmax, ε} or equivalently {rs, ρ}, share

N independent channels.

We would like to apply the joint K&H/RR scheduling in Section 6.2.2 to the K users.

Assume that channel allocation {ζ, β} is determined by the resource allocation algorithm

(refer to Section 6.2.2). To schedule the K users, we only need to modify the adaptive

transmission (178) in Algorithm 7.1 as follows.

For each user k (k = 1, · · · ,K) and each channel n (n = 1, · · · , N), the BS determines

the transmission rate at frame t + 1 as below

rk,n(t + 1) = λk,n(t + 1) × �∗
k,n(t) × Bc × log2

(
1 +

P
(k,n)
0 (t + 1) × SINRk,n(t)

P
(k,n)
0 (t) × Γlink × γsafe

)
(186)

where the index k and n denote user k and channel n, respectively. The value of �∗
k,n is

determined as follows: for channel n, if user k has the largest channel gain g̃k,n(t) among

all the users, then we set �∗
k,n = ζ + β; otherwise, we set �∗

k,n = ζ. It is clear that (186)

reflects the joint K&H/RR scheduling in Section 6.2.2.

If the RC scheduler is used, then for each user k and each channel n, the BS determines
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the transmission rate rk,n(t + 1) at frame t + 1, using (186) with �∗
k,n = w∗

k,n, where {w∗
k,n}

is the optimal solution of (138).

7.4 Simulation Results

In this section, we simulate the discrete-time wireless communication system as depicted in

Figure 26, and demonstrate the performance of our algorithms. We focus on Algorithm 7.1

for downlink transmission of a single connection, since the performance of Algorithm 7.4 for

uplink transmission would be the same as that for Algorithm 7.1 if the simulation parameters

are the same and fast feedback of channel gains is assumed. Section 7.4.1 describes the

simulation setting, while Section 7.4.2 illustrates the performance of our algorithms.

7.4.1 Simulation Setting

7.4.1.1 Mobility Pattern Generation

We simulate the speed behavior of the MS using the model described in Ref. [11]. Under

the model, an MS moves away from the BS, at a constant speed vs for a random duration;

then a new target speed v∗ is randomly generated; the MS linearly accelerates or decelerates

until this new speed v∗ is reached; following which, the MS moves at the constant speed v∗,

and the procedure repeats again.

The speed behavior of an MS at frame t can be described by three parameters:

• its current speed vs(t) ∈ [0, vmax] in units of m/s

• its current acceleration as(t) ∈ [amin, amax] in m/s2

• its current target speed v∗(t) ∈ [0, vmax]

where vmax denotes the maximum speed, amin the minimum acceleration (which is negative),

and amax the maximum acceleration.

At the beginning of the simulation, the MS is assigned an initial speed vs(0), which is
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generated by a probability density function fv(vs), given by

fv(vs) =




p0 × δ(vs) if vs = 0;

pmax × δ(vs − vmax) if vs = vmax;

1−p0−pmax

vmax
if 0 < vs < vmax;

0 otherwise.

(187)

where p0 +pmax < 1. That is, the random speed has high probabilities at speed 0 (imitating

stops due to red lights or traffic jams) and at the maximum speed vmax (a preferred speed

when driving); and it is uniformly distributed between 0 and vmax.

The speed change events are modeled as a Poisson process. That is, the time between

two consecutive speed changes is exponentially distributed with mean mv∗ . Note that a

speed change event happens at an epoch determined by the Poisson process but it does not

include the speed changes during acceleration/deceleration periods.

Now, we know the epochs of speed change events follow a Poisson process and the new

target speed v∗ follows the PDF fv(vs). Denote t∗ the time at which a speed change event

occurs and v∗ = v∗(t∗) the associated new target speed. Then, an acceleration as(t∗) �= 0

is generated by the PDF

fa(as) =




1
amax

if 0 < as ≤ amax;

0 otherwise.
(188)

if v∗(t∗) > vs(t∗), or by the PDF

fa(as) =




1
|amin| if amin ≤ as < 0;

0 otherwise.
(189)

if v∗(t∗) < vs(t∗). Obviously, as is set to 0 if v∗(t∗) = vs(t∗). If as(t) �= 0, the speed

continuously increases or decreases; at frame t, a new speed vs(t) is computed according to

vs(t) = vs(t − 1) + as(t) × Ts (190)

until vs(t) reaches v∗(t); Ts is the frame length in units of second. Then, we set as = 0 and

the MS moves at constant speed vs(t) = v∗(t∗) until the next speed change event occurs.

Figure 64 shows a trace of the speed behavior of an MS.
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7.4.1.2 Channel Gain Process Generation

The channel power gain process g(t) is given by

g(t) = gsmall(t) × glarge(t) × gshadow(t) (191)

where gsmall(t), glarge(t), and gshadow(t) denote channel power gains due to small-scale

fading, large scale path loss, and shadowing, respectively.

Non-stationary small scale fading

Given the mobile speed vs(t), the Doppler rate fm(t) can be calculated by [109, page

141]

fm(t) = vs(t) × cos ϕ × fc/c, (192)

where ϕ is the angle between the direction of motion of the MS and the direction of arrival

of the electromagnetic waves, fc is the carrier frequency and c is the speed of light, which

is 3 × 108 m/sec. We choose ϕ = 0 in all the simulations.

We assume Rayleigh flat-fading for the small scale fading. As described in Section 4.4.1,

Rayleigh flat-fading voltage-gains h(t) are generated by an AR(1) model as below. We first

generate h̄(t) by

h̄(t) = κ(t) × h̄(t − 1) + ug(t), (193)

where ug(t) are i.i.d. complex Gaussian variables with zero mean and unity variance per

dimension. Then, we normalize h̄(t) and obtain h(t) by

h(t) = h̄(t) ×
√

1 − [κ(t)]2

2
. (194)

κ(t) is determined by 1) computing the Doppler rate fm(t) for given mobile speed vs(t),

using (192), 2) computing the coherence time Tc by (57), and 3) calculating (58). Then we

obtain gsmall(t)) = |h(t)|2.

Large scale path loss

Next, we describe the generation of large scale path loss. Denote {xt, yt, zt} and

{xr, yr, zr} the 3-dimensional locations of the transmit antenna and the receive antenna,

196



respectively. Specifically, zt and zr are the heights of the transmit antenna and the receive

antenna, respectively. The initial distance d0 between the MS and BS is given by

d0 =
√

(xt − xr)2 + (yt − yr)2. (195)

Denote dtr(t) the distance between the BS (transmitter) and the MS (receiver) at t. Hence,

we have dtr(0) = d0. Assume that the MS moves directly away from the BS. Then, for

t > 0, we have

dtr(t) = dtr(t − 1) + vs(t) × Ts. (196)

We use two path loss models: Friis free space model and the ground reflection model.

Friis free space model is given by [109, page 70]

glarge(t) =
(

c

fc × 4 × π × dtr(t)

)2

, (197)

where c is light speed, and fc is carrier frequency. The ground reflection (two-ray) model

[109, page 89] is given as below

glarge(t) =
z2
t × z2

r

[dtr(t)]4
. (198)

We need to compute the cross-over distance dcross to determine which model to use.

dcross is given by [109, page 89]

dcross =
20 × π × zt × zr × fc

3 × c
. (199)

If dtr(t) ≤ dcross, we choose Friis free space model (197) to generate glarge(t); otherwise, we

use the ground reflection model (198) to generate glarge(t).

Shadowing

We generate the shadow fading process g̃shadow(t) in units of dB by an AR(1) model as

below [53]

g̃shadow(t) = κ
vs(t)×Ts/Dshadow

shadow × g̃shadow(t − 1) + σshadow × ũg(t) (200)

where κshadow is the correlation between two locations separated by a fixed distance Dshadow,

ũg(t) are i.i.d. Gaussian variables with zero mean and unity variance, σshadow is a constant
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in units of dB, vs(t) is obtained from the above mobility pattern generation, and hence

vs(t)×Ts is the distance that the MS traverses in frame t. It is obvious that the shadowing

gain gshadow(t) = 10g̃shadow(t)/10 follows a log-normal distribution with standard deviation

σshadow.

7.4.1.3 Simulation Parameters

Table 8 lists the parameters used in our simulations. Since we target at interactive real-

time applications, we set the QoS triplet as below: rs = 50 kb/s, Dmax = 50 msec, and

ε = 10−3. In addition, we set the values of γinc, γdec, Dl, and Dh in (176) in such a way

that can reduce the signaling overhead for dynamic channel allocation, while meeting the

QoS requirements {rs, ρ = − loge ε/Dmax}. Further, we set the values of σshadow, κshadow,

and Dshadow according to Ref. [53]. The maximum speed vmax = 15.6 m/s corresponds to

35 miles per hour. We set Ppeak = 24 dBm according to the specification of 3G systems on

mobile stations [60, page 159], so that our results are also applicable to uplink transmissions.

We assume total intra-cell and inter-cell interference PI(t) is constant over time.

Assume that the random errors in estimating SINR(t) are i.i.d. Gaussian variables

with zero mean and variance σ2
est. Denote the random estimation error in dB by g̃est(t).

Then, the estimated SINR(t) is given by

SINR(t) =
P0(t) × g(t) × 10g̃est(t)/10

σ2
n + PI(t)

(201)

To be realistic, the power P0(t + 1) specified in (173) only takes integer values in units

of dB and can only change 1 dB in each frame except in Section 7.4.2.2.

We assume that M-ary QAM is used for modulation. Hence, the transmit data rate r(t)

is given by (160) and (162), where σ2
n is replaced by σ2

n + PI(t).

Each simulation run is 100-second long.

198



Table 8: Simulation parameters.

QoS requirement Constant bit rate rs 50 kb/s
Delay bound Dmax 50 msec

Delay-bound violation probability ε 10−3

Channel Bandwidth Bc 300 kHz
Sampling-interval (frame length) Ts 1 msec

Noise plus interference power σ2
n + PI(t) -100 dBm

Mobility pattern Maximum speed vmax 15.6 m/s
Minimum acceleration amin -4 m/s2

Maximum acceleration amax 2.5 m/s2

Probability p0 0.3
Probability pmax 0.3

Mean time between speed change mv∗ 25 sec
Shadowing Standard deviation σshadow 7.5 dB

Correlation κshadow 0.82
Distance Dshadow 100 m

Receive antenna xr 100 m
yr 100 m

Height zr 1.5 m
Transmit antenna xt 0

yt 0
Height zt 50 m

BS Carrier frequency fc 1.9 GHz
Channel coding gain γcode 3 dB
Target bit error rate εerror 10−6

Smoothing weight for average delay ηd 0.0005
Standard deviation of estimation error σest 1 dB

Safety margin γsafe 1 dB
Power control Peak transmission power Ppeak 24 dBm

SINRtarget 5 dB
Scheduling Step size ∆λ 0.1

γinc 1
γdec 1

Low threshold Dl 0.1 × Dmax

High threshold Dh 0.5 × Dmax
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7.4.2 Performance Evaluation

We organize this section as follows. In Section 7.4.2.1, we investigate the effect of modulation

and channel coding. Section 7.4.2.2 identifies the trade-off between power control and time

diversity. In Section 7.4.2.3, we show the accuracy of the exponentially smoothed estimate

of θ. Sections 7.4.2.4 to 7.4.2.7 evaluates the performance of Algorithm 7.1 under four cases,

namely, a time-varying mobile speed, large scale path loss, shadowing, and very low mobility.

In Section 7.4.2.8, we investigate whether our admission control test in Algorithms 7.2 and

7.3 is quick and accurate.

7.4.2.1 Effect of Modulation and Channel Coding

This experiment is to show the effect of modulation and channel coding.

In the simulation, we use M-ary QAM as the modulation scheme, and assume that

certain channel code is employed and it provides a channel coding gain γcode = 3 dB. Our

objective is to achieve the symbol error probability not greater than εerror = 10−6. After

computing (160) and (163), we obtain Γlink = 6.3 dB. Hence, we have 6.3 dB loss due to

practical modulation and channel coding, as compared to the channel capacity. Then, given

Bc = 300 kHz, P0 = 20 dBm, g(t) = −120 dB, and σ2
n = −100 dBm, the error-free data

rate r(t) in (156) is 91 kb/s, while the channel capacity in (52) is 300 kb/s. This shows

that the data rate is reduced by a factor of 3.3 due to the practical modulation and channel

coding.

7.4.2.2 Power Control vs. Time Diversity

This experiment is to identify the trade-off between power control and time diversity.

We compare the three schemes, namely, ideal power control, the fixed power scheme,

and the time-diversity dependent power control, defined in Section 7.2.

All the three schemes use the same amount of average power Pavg , for the purpose of

fair comparison. Assuming that the channel power gain g̃(t) is perfectly known by the
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Table 9: Simulation parameters.

Speed vs (m/s) 0.011 0.11 0.23 0.57 1.1 5.7 11 56
Speed vs (km/h) 0.041 0.41 0.81 2 4.1 20 41 204

Doppler rate fm (Hz) 0.072 0.72 1.4 3.6 7.2 36 72 358
Coherence time Tc (s) 2.5 0.25 0.125 0.05 0.025 0.005 0.0025 0.0005

Dmax/Tc 0.02 0.2 0.4 1 2 10 20 100
ηg 0.2 0.08 0.08 0.04 0.04 0.02 0.02 0

transmitter, all the three schemes determine the transmission rate at frame t using (170).

In each simulation, we generate Rayleigh fading with fixed mobile speed vs specified in

Table 9. We do not simulate large scale path loss and shadowing. For the time-diversity

dependent power control, the smoothing factor ηg in (169) is given by Table 9. Note that

for different mobile speeds vs in Table 9, we use different ηg; the value of ηg is chosen so as

to maximize the data rate µ̂(Dmax, ε).

Table 9 lists the parameters used in our simulations, where Dmax = 50 ms. The range

of speed vs is from 0.011 to 56 m/s, which covers both downtown and highway speeds.

Doppler rate fm is computed from vs using (192) and coherence time Tc is computed from

fm by (57). There is no need to simulate the case for vs = 0 since for vs = 0, the theory

gives µ̂(Dmax, ε) = 200, 0, and 200 kb/s under ideal power control, the fixed power scheme,

and the time-diversity dependent power control, respectively. For vs = 0, we have ηg = 1

and hence the time-diversity dependent power control reduces to ideal power control.

Figure 62 shows data rate µ̂(Dmax, ε) vs. time diversity index Dmax/Tc for the three

schemes. It is clear that the larger the index Dmax/Tc is, the higher degree of time diversity

the channel possesses.

From the figure, we have the following observations besides those mentioned in Sec-

tion 7.2:

• Under ideal power control, the data rate µ̂(Dmax, ε) is independent of the degree

of time diversity, since ideal power control converts a fading channel to an AWGN

channel.

201



10
−2

10
−1

10
0

10
1

10
2

0

100

200

300

400

500

600

700

800

900

1000

Time diversity index D
max

/T
c

D
at

a 
ra

te
 µ

  (
kb

/s
)

Ideal power control
Fixed power
Time−diversity dependent power control

Figure 62: Data rate µ̂(Dmax, ε) vs. time diversity index Dmax/Tc.

• If the time diversity index Dmax/Tc is less than a threshold (its value is 10 in Fig-

ure 62), the data rate µ̂(Dmax, ε) under the time-diversity dependent power control is

larger than that under the fixed power control. This is because when the degree of time

diversity is not high, and hence the probability of having long deep fades is not very

small, power control (with appropriate smoothing factor ηg) can increase the error-free

instantaneous data rate r(t) during deep fades, resulting in higher µ̂(Dmax, ε). On the

other hand, if Dmax/Tc is greater than the threshold, the time-diversity dependent

power control and the fixed power control achieve almost the same rate for µ̂(Dmax, ε).

This is because there is enough time diversity and the probability of having long deep

fades is very small, and hence power control does not give much gain.

• The two curves of ideal power control and the fixed power control intersect at Dmax/Tc =

0.4, i.e., Tc = Dmax/0.4 = 125 ms. This indicates that if Dmax/Tc > 0.4, time di-

versity takes effect and we should not use ideal power control; otherwise, ideal power

control can achieve a larger µ̂(Dmax, ε) as compared to the fixed power control.

• Compared to ideal power control, for speed vs = 5.7 m/s, both the time-diversity

dependent power control and the fixed power scheme produce a factor of 3 capacity

gain; for vs = 56 m/s, both the time-diversity dependent power control and the fixed

power scheme provide a factor of 4.7 capacity gain.
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• Compared to ideal power control, the time-diversity dependent power control can

achieve a factor of 2 to 4.7 capacity gain for mobile speeds between 0.11 m/s and 56

m/s.

7.4.2.3 Accuracy of Exponentially Smoothed Estimate of θ

This experiment is to show the accuracy of the exponentially smoothed estimate of θ via

(174) and (175).

We do experiments with three constant mobile speeds, i.e., vs = 5, 10, and 15 m/s,

respectively. For each mobile speed, we do simulations under three values of smoothing

factor ηd in (174), i.e., ηd = 5× 10−4, 10−4, and 5× 10−5, respectively. Since the objective

is to test the accuracy of the estimator of θ, we do not use power control and scheduling;

that is, we keep both the power and the channel allocation constant during the simulations.

We set the following parameters: source data rate rs = 50 kb/s, Bc = 300 kHz, P0 = 20

dBm, E[g(t)] = −120 dB, σ2
n + PI(t) = −100 dBm, and Γlink = 6.3 dB. Assume that the

transmitter has a perfect knowledge about the channel power gain g(t). The error-free data

rate r(t) is calculated by (156).

Figure 63 shows the estimate θ̂(t) vs. time t under different mobile speed vs and different

smoothing factor ηd. The reference θ in the figure is obtained by computing Eqs. (36)

through (39) at t = 105. It can be observed that for ηd = 5 × 10−5, the estimate θ̂(t) gives

the best agreement with the reference θ, as compared to other values of ηd; for ηd = 5×10−4,

the estimate θ̂(t) reaches the reference θ in the shortest time (within 2 seconds), as compared

to other values of ηd.

Hence, for the admission control in Algorithms 7.2 and 7.3, which requires quick estimate

of θ, we suggest to use ηd = 5×10−4; the estimate takes less than 2 seconds, which is tolerable

in practice. For Algorithms 7.1 and 7.4, we also suggest to use ηd = 5× 10−4 since we want

the estimate θ̂(t) to be more adaptive to time-varying mobile speed vs(t) and the resulting

queueing behavior.
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Figure 63: θ̂(t) vs. time t for speed vs = (a) 5 m/s, (b) 10 m/s, and (c) 15 m/s.
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Figure 64: Speed behavior vs(t) of a mobile station in downtown.
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Figure 65: Delay D(t) vs. time t.

7.4.2.4 Performance under a Time-varying Mobile Speed

This experiment is to evaluate the performance of Algorithm 7.1 under a time-varying

mobile speed, i.e., under non-stationary small scale fading. Our objective is to see whether

the power control and the scheduler in Algorithm 7.1 can achieve the required QoS. Note

that the efficiency of our time-diversity dependent power control has been addressed in

Section 7.4.2.2.

For the channel gain process g(t), we only simulate small scale fading; that is, there are
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Figure 66: θ̂(t) vs. time t for varying mobile speed.
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Figure 67: Channel allocation λ(t) vs. time t.
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Figure 68: Transmit power P0(t) vs. time t for large scale path loss.

no large scale path loss and shadowing. We set E[g(t)] = −100 dB. Other parameters are

listed in Table 8.

Figure 64 shows the speed vs(t) of an MS vs. time t, which is the mobility pattern used

in the simulation. Figure 65 depicts the delay D(t) vs. time t. The simulation gives zero

delay-bound violation for Dmax = 50 ms, and hence the required QoS is met. Figure 66

plots QoS exponent θ̂(t) vs. time t. Since we set γinc = 1 and γdec = 1, the resulting QoS

exponent θ̂(t) fluctuates around the required ρ = − loge ε/Dmax = 0.1382. Figures 65 and

66 demonstrates the effectiveness of our scheduler in utilizing QoS exponent θ̂(t) and the

delay D(t) for QoS provisioning.

Figure 67 illustrates how the channel allocation λ(t) varies with time t. The average

channel usage is 0.54.

In summary, Algorithm 7.1 can achieve the required QoS, under non-stationary small

scale fading.

7.4.2.5 Performance under Large Scale Path Loss

This experiment is to evaluate the performance of Algorithm 7.1 under large scale path loss.

We would like to see how the scheduler and the power control coordinate under large scale

path loss.
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Figure 69: Channel allocation λ(t) vs. time t for large scale path loss.
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Figure 70: SINR(t) vs. time t for large scale path loss.
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In the simulation, we use the same mobility pattern as shown in Figure 64 and generate

large scale path loss according to Section 7.4.1.2. We do not simulate the shadowing effect

here, which will be addressed in Section 7.4.2.6. The simulation parameters are listed in

Table 8.

Figure 68 shows how the transmit power P0(t) evolves over time. The average transmit

power is -7.4 dB. The power control is fast with a frequency of 1000 Hz, so that it can utilize

time diversity. It is observed that as time elapses, the distance between the transmitter and

the receiver increases and hence the expectation of the transmit power increases in order to

mitigate the path loss.

Figure 69 depicts how the scheduler allocates the channel resource λ(t) over time. The

simulation gives zero delay-bound violation for Dmax = 50 ms, and hence the required

QoS is met. This demonstrates the good coordination between the power control and the

scheduler; that is, the power control mitigates large scale path loss, while the scheduler

utilizes time diversity in QoS provisioning. The average channel usage is 0.5. Figure 70

plots the received SINR(t) vs. time t.

In summary, we observe the concerted efforts of the scheduler and the power control

for QoS provisioning; the power control handles the effects of large scale path loss, while

both the power control and the scheduler utilize time diversity. Different from ideal power

control, our power control does not eliminate small scale fading, so that time diversity in

small scale fading can be utilized.

7.4.2.6 Performance under Shadowing

This experiment is to evaluate the performance of Algorithm 7.1 under shadowing.

In the first simulation, we use the same mobility pattern as shown in Figure 64 and

generate large scale path loss and AR(1) shadowing process according to Section 7.4.1.2.

The simulation parameters are listed in Table 8. Figure 71 depicts the transmit power P0(t)

vs. time t. The simulation gives zero delay-bound violation for Dmax = 50 ms, and hence

the required QoS is met. This demonstrates that the power control can mitigate both large
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Figure 71: Transmit power P0(t) vs. time t for AR(1) shadowing.
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Figure 72: Transmit power P0(t) vs. time t for the case of sudden shadowing.
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Figure 73: Speed behavior vs(t) of a mobile station in downtown.

scale path loss and shadowing effectively for QoS provisioning.

In the second simulation, we intentionally generate a shadowing of -10 dB at the 50-th

second (which may happen when a car suddenly moves into the ‘shadow’ of a building) and

see whether our power control can adapt and mitigate the shadowing effect. We use the

same mobility pattern as shown in Figure 64 and generate large scale path loss according to

Section 7.4.1.2. Figure 72 depicts the transmit power P0(t) vs. time t. It is observed that

the power can quickly adapt to the sudden power change caused by the shadowing at the

50-th second in the figure. The simulation gives zero delay-bound violation for Dmax = 50

ms, and hence the required QoS is met. Therefore, our time-diversity dependent power

control can also mitigate the sudden shadowing effect.

In summary, Algorithm 7.1 is able to achieve good performance under shadowing.

7.4.2.7 Performance under Very Low Mobility

This experiment is to evaluate the performance of Algorithm 7.1 under very low mobility,

especially when the mobile speed is zero (due to red lights or traffic jams). Since our

effective capacity approach and the scheduler require time diversity, they are not applicable

to the case where the mobile speed is zero. Note that the effective capacity is zero when

the mobile speed is zero. Hence, we rely on the power control to provide the required QoS.
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Figure 74: Transmit power P0(t) vs. time t for the case of very low mobility.
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Figure 75: SINR(t) vs. time t for the case of very low mobility.
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Figure 73 shows the mobility pattern used in the simulation. We generate large scale

path loss but do not simulate the shadowing effect. We assume perfect estimation of

SINR(t). The simulation parameters are listed in Table 8.

Figure 74 shows how the transmit power P0(t) varies over time. Figure 75 plots the

received SINR(t) vs. time t; this demonstrates that the power control converts the channel

to an AWGN channel when the speed is zero between 57-th second and 100-th second. The

simulation gives zero delay-bound violation for Dmax = 50 ms, and hence the required QoS

is met.

In summary, our power control can mitigate the effect of very low mobility and Algo-

rithm 7.1 is able to guarantee the required QoS.

7.4.2.8 Admission Control

This experiment is to investigate whether our admission control in Algorithms 7.2 and 7.3

can be done quickly and accurately.

We use previous results in Sections 7.4.2.4 to 7.4.2.7. Define QoS exponent average

θ̂avg(t) = 1
t+1

∑t
τ=0 θ̂(τ). Figure 76 plots θ̂avg(t) vs. t for the four cases, namely, a time-

varying mobile speed, large scale path loss, shadowing with the AR(1) model, and very

low mobility, which we investigated in Sections 7.4.2.4 to 7.4.2.7. We set the threshold

θth = 0.9 × ρ. Since we are only concerned with the quickness of the estimation, we only

plot the first ten seconds of the simulations. Figure 76 shows that θ̂avg(t) is roughly an

increasing function of t. Hence, θ̂avg(t) is a reliable QoS measure for admission control

purpose. Moreover, the figure shows that for all the four cases, the system can obtain a

reasonably accurate θ̂avg(t) ≥ θth within two seconds. Therefore, the system can make a

quick and accurate admission decision.

7.4.2.9 An Example for W-CDMA systems

This experiment is to show an example of applying the K&H/RR scheduler to W-CDMA

systems [60], and compare this scheduler to the QoS provisioning schemes used in 3G
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Figure 76: QoS exponent average θ̂avg(t) vs. t for (a) time-varying mobile speed, (b) large
scale path loss, (c) shadowing, and (d) very low mobility.

Table 10: Simulation parameters.

Channel Noise plus interference power σ2
n + PI(t) -100 dBm

Path loss 100 dB
BS Carrier frequency fc 1.9 GHz

Channel coding gain γcode 3 dB
Target bit error rate εerror 10−5

Power control Peak transmission power Ppeak 24 dBm
SINRtarget 12.5 dB
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systems, i.e., ideal power control with the round robin scheduler.

A cellular wireless network is assumed, and the downlink is considered, where a base

station transmits data to 5 voice mobile terminals and 5 streaming video mobile terminals.

The voice users have the same QoS requirements: constant data rate rs = 12.2 kb/s, delay

bound Dmax = 50 msec, and delay-bound violation probability ε = 10−3. The streaming

video users have the same QoS requirements: rs = 144 kb/s, Dmax = 500 msec, and

ε = 10−3. We set the required BER for all the ten users to be not greater than 10−5 and

hence the required SNR per bit is 9.5 dB [103, page 270]. Since QPSK is specified for

downlink modulation in 3G W-CDMA systems [60, page 85], the required SNR per symbol

is 12.5 dB. Assume all users have i.i.d. channel gain processes and the channel gain processes

are Rayleigh flat-fading. As described in Section 4.4.1, Rayleigh flat-fading voltage-gains

hk(t) of user k are generated by an AR(1) model as below. We first generate h̄k(t) by

h̄k(t) = κ × h̄k(t − 1) + u(k)
g (t), (202)

where u
(k)
g (t) are i.i.d. complex Gaussian variables with zero mean and unity variance per

dimension. Then, we normalize h̄k(t) and obtain hk(t) by

hk(t) = h̄k(t) ×
√

1 − κ2

2
. (203)

κ is determined by the velocity of the mobiles v = 15 m/s, assuming that all the mobiles

have the same velocity.

The chip rate of 3G W-CDMA systems is 3.84 MHz [60]. Hence, the processing gain

γproc is 3.84 × 106/rs. The frame size is set to be 1 ms. Table 10 lists the parameters used

in this experiment.

The mobile terminals need to convey the values of SINR(t) to the base station for

adaptive transmission. Since the value of SINR(t) is typically within a range of 30 dB,

e.g., from -19 to 10 dB, five bits should be enough to represent the value of SINR(t) to

within 1 dB. Since the estimation frequency in this experiment is 1000 Hz, the signaling

overhead is 5 kb/s. Furthermore, in this experiment, the time-diversity dependent power

control reduces to the fixed power scheme since the channels have high degree of time
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diversity.

We do two sets of simulations. In the first simulation, we simulate ideal power control

with the round robin scheduler. Since the total rate of the ten users is 144×5+12.2×5 = 781

kb/s, we set the processing gain γproc = floor(3840/781) = 4. We generate the channel

power gain gk(t) for each user k and obtain the ideal power control by

P
(k)
0 (t) =

SINRtarget × (σ2
n + PI(t))

gk(t) × γproc
. (204)

Denote P
(k)
avg the time average of P

(k)
0 (t). For this simulation, the channel usage of ideal

power control with the round robin scheduler is simply 781/(3840/γproc) = 0.81.

In the second simulation, we simulate the K&H/RR scheduler and each user k has its

transmit power fixed at P
(k)
avg for fair comparison. Since the voice users and the video users

have quite different QoS requirements, we apply the K&H/RR scheduler to the two groups

separately like in Section 5.3.2. Assume {ζvoice, βvoice} and {ζvideo, βvideo} are allocated to

the voice users and the video users, respectively. For simplicity, we employ either the K&H

or the RR scheduler, depending on which one gives a smaller channel usage.

We use the sample path of the channel power gain gk(t) generated in the first simulation,

also for fair comparison. At each frame t, we determine the processing gain γproc(t) by

γ(k)
proc(t) = ceiling

(
SINRtarget × (σ2

n + PI(t))

gk(t) × P
(k)
avg

)
. (205)

where ceiling(x) is the least integer that is not less than x. Then the transmission rate for

a voice user k at frame t is given by � × 3.84 × 106/γ
(k)
proc(t), where � = ζvoice or βvoice,

depending on the type of the scheduler. This rate adaptation also applies to the video

users. From the simulation, the minimum channel usage is achieved when the voice users

are scheduled by the RR while the video users are scheduled by the K&H; the channel

usages are 0.03 and 0.2, respectively. Hence, the total channel usage is 0.23, which is much

smaller than that obtained in the case with ideal power control and the RR. This shows

that substantial gain can be achieved by utilizing time diversity (the fixed power scheme)

and multiuser diversity (the K&H), as opposed to the ideal power control and the RR, used

in 3G systems.
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7.5 Summary

In this chapter, we addressed some of the practical aspects of the effective capacity approach,

namely, the effect of modulation and channel coding, and robustness against non-stationary

channel gain processes.

We showed how to quantify the effect of practical modulation and channel coding on

the effective capacity approach to QoS provisioning. We identified the important trade-off

between power control and time diversity in QoS provisioning over fading channels, and

proposed a novel time-diversity dependent power control scheme to leverage time diversity.

Compared to ideal power control, an approximation of which is applied to the 3G wireless

systems, our time-diversity dependent power control can achieve a factor of 2 to 4.7 capacity

gain for mobile speeds between 0.11 m/s and 56 m/s.

Since time-varying mobile speeds, large scale path loss, shadowing, and very low mobil-

ity can cause severe QoS violations, it is essential to design QoS provisioning mechanisms

to mitigate these channel conditions. Equipped with the newly developed time-diversity

dependent power control and the effective capacity approach, we designed a power control

and scheduling mechanism, which is robust in QoS provisioning against large scale fading

and non-stationary small scale fading. With this mechanism, we proposed QoS provision-

ing algorithms for downlink and uplink transmissions, respectively. We also considered

QoS provisioning for multiple users. Simulation results demonstrated the effectiveness and

efficiency of our proposed algorithms in providing QoS guarantees under various channel

conditions.
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CHAPTER 8

ADAPTIVE QOS CONTROL FOR WIRELESS VIDEO

COMMUNICATION

8.1 Introduction

With technological advances and the emergence of personal communication era, the demand

for wireless video communication is increasing rapidly. Compared with wired links, wireless

channels are typically much more noisy and have both small-scale and large-scale fades

[119], making the bit error rate very high. The resulting bit errors could have devastating

effects on the video presentation quality. Thus, robust transmission of real-time video over

wireless channels is a critical problem.

To address the above problem, we introduce adaptive QoS control for video communi-

cation over wireless channels. The objective of our adaptive QoS control is to achieve good

perceptual quality and utilize network resources efficiently through adaptation to time-

varying wireless channels. Our adaptive QoS control consists of optimal mode selection

and delay-constrained hybrid ARQ. Optimal mode selection provides QoS support (i.e., er-

ror resilience) on the compression layer while delay-constrained hybrid ARQ provides QoS

support (i.e., bounded delay and reliability) on the link layer. The main contributions of

this chapter are: (1) an optimal mode selection algorithm which provides the best trade-off

between compression efficiency and error resilience in rate-distortion (R-D) sense, and (2)

delay-constrained hybrid ARQ which is capable of providing reliability for the compression

layer while guaranteeing delay bound and achieving high throughput.

To facilitate the discussion of our adaptive QoS control, we first present an overall

transport architecture for real-time video transmission over the wireless channel, which

includes source rate adaptation, packetization, adaptive QoS control, and modulation. Since
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a wireless link is typically bandwidth-limited, it is essential for the source to adjust its

transmission rate to the available bandwidth in the wireless channel. Therefore, source rate

adaptation must be in place. Since bit-oriented syntax of a compressed video stream has to

be converted into packets for transport over wireless channel, packetizing the compressed-

video bit-stream is required. Adaptive QoS control is our primary weapon to combat bit

errors under wireless environments. Finally, since modulation is required by any wireless

communication, modulation is also an indispensable component of our architecture.

Under the above transport architecture, we discuss our adaptive QoS control. The

first component is optimal mode selection. As we know, the effect of bit errors on the

perceptual quality depends on the compression scheme used at the source, the wireless

channel conditions and the error concealment scheme used at the receiver. High-compression

coding algorithms usually employ inter-coding (i.e., prediction) and variable length coding

to achieve efficiency. Variable length coding is very susceptible to bit errors since a single bit

error can corrupt a whole segment between two resynchronization markers in the compressed

bit-stream [64], making the whole segment undecodable and resulting in discard of the video

segment. For inter-coded video, discard of a video segment due to bit errors may degrade

video quality over a large number of frames, until the next intra-coded frame is received.

Intra-coding effectively stops error propagation, but at the cost of losing efficiency; inter-

coding achieves compression efficiency, but at the risk of error propagation. Therefore, an

optimal mode selection algorithm should be in place to achieve the best trade-off between

efficiency and robustness.

The problem of mode selection has been well studied under the R-D framework [98,

123]. The previous approach to mode selection is to choose a mode that minimizes the

quantization distortion between the original frame/macroblock and the reconstructed one

under a given bit budget [98, 123], which is the so-called R-D optimized mode selection. We

refer such R-D optimized mode selection as the classical approach. The classical approach

is not able to achieve global optimality under the error-prone environment since it does not

consider the channel characteristics and the receiver behavior. To remedy the drawback of
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the classical approach, we propose an end-to-end approach to R-D optimized mode selection.

Different from the classical approach, our approach also considers the channel characteristics

and the receiver behavior (i.e., error concealment), in addition to quantization. Such an

end-to-end approach was first introduced in [149] for Internet video communication. In this

chapter, we show that such a methodology is also applicable to wireless environments with

some modifications.

Previous work on optimal mode selection that considered wireless channel characteristics

and error concealment has been reported in Ref. [32]. However, the distortion metrics

introduced there are not accurate since the derivation of the distortion metrics was done at

the block level. In addition, the wireless channel characteristics is dynamically changing,

that is, the BER is varying from time to time. The scheme in Ref. [32] assumes that the

BER is fixed and known a priori, which may not reflect the error behavior in the wireless

channel. Thus, the scheme in Ref. [32] may not achieve optimality for dynamic wireless

environments. This chapter addresses these problems by deriving the distortion metrics

at the pixel level and employing feedback mechanism to deal with the time-varying nature

of the wireless channel. We will show how to formulate the globally R-D optimized mode

selection and how to derive accurate global distortion metrics under our architecture. Along

the same direction, Zhang et al. [166] also derived distortion metrics at the pixel level. Our

distortion metrics are similar to theirs but are different.

Besides the QoS support on the compression layer provided by optimal mode selection,

QoS support for video communication can be provided on the link layer as well.

The second component of our adaptive QoS control is delay-constrained hybrid ARQ,

which is an error-control mechanism on the link layer. There are two kinds of error-control

mechanisms on the link layer, namely, FEC and ARQ. The principle of FEC is to add

redundant information so that original message can be recovered in the presence of bit

errors. The use of FEC is primarily because throughput can be kept constant and delay can

be bounded under FEC. However, the redundancy ratio (the ratio of redundant bit number

to total bit number) should be made large enough to guarantee target QoS requirements
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under the worst channel conditions. In addition, FEC is not adaptive to varying wireless

channel condition and it works best only when the BER is stable. If the number of bit errors

exceeds the FEC code’s recovery capability, the FEC code cannot recover any portion of

the original data. In other words, FEC is useless when the short-term BER exceeds the

recovery capability of the FEC code. On the other hand, when the wireless channel is

in good state (i.e., the BER is very small), using FEC will cause unnecessary overhead

and waste bandwidth. Different from FEC, ARQ is adaptive to varying wireless channel

condition. When the channel is in good state, no retransmissions are required and no

bandwidth is wasted. Only when the channel condition becomes poor, the retransmissions

will be used to recover the errors. However, adaptiveness and efficiency of ARQ come with

the cost of unbounded delay. That is, in the worst case, a packet may be retransmitted in

unlimited times to recover bit errors.

To deal with the problems associated with FEC and ARQ, truncated type-II hybrid

ARQ schemes have been proposed [82, 164]. Different from conventional type-II hybrid

ARQ [55, 70, 81, 140], the truncated type-II hybrid ARQ has the restriction of maximum

number of transmissions for a packet. Due to the maximum number of transmissions, delay

can be bounded. The truncated type-II hybrid ARQ combines the good features of FEC

and ARQ: bounded delay and adaptiveness. However, the maximum number of transmis-

sions Nm is assumed to be fixed and known a priori [82, 164], which may not reflect the

time-varying nature of delay. If Nm is set too large, retransmitted packets may arrive too

late for play-out and thereby be discarded, resulting in waste of bandwidth; if Nm is set

too small, the perceptual quality will be reduced due to unrecoverable errors that could

have been corrected with more retransmissions. We address this problem by introducing

delay-constrained hybrid ARQ. In our delay-constrained hybrid ARQ, the receiver makes

retransmission requests in an intelligent way: when errors in the received packet are de-

tected, the receiver decides whether to send a retransmission request according to the delay

bound of the packet. Our delay-constrained hybrid ARQ is shown to be capable of achieving

bounded delay, adaptiveness, and efficiency.
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Our adaptive QoS control is aimed at providing good visual quality under time-varying

wireless channels. By combining the best features of error-resilient source encoding, FEC

and delay-constrained retransmission, the proposed adaptive QoS control is shown to be

capable of achieving better quality for real-time video under varying wireless channel con-

ditions while utilizing network resources efficiently.

The remainder of this chapter is organized as follows. Section 8.2 sketches the overall

transport architecture for real-time video communication over the wireless channel. In

Section 8.3, we describe our optimal mode selection algorithm. Section 8.4 presents the

delay-constrained hybrid ARQ. In Section 8.5, we use simulation results to demonstrate the

effectiveness of our adaptive QoS control. Section 8.6 concludes this chapter.

8.2 An Architecture for Real-time Video Communication
over a Wireless Channel

In this section, we describe an architecture for real-time video communication over a wireless

channel. We organize this section as follows. In Section 8.2.1, we overview our architecture.

From Sections 8.2.2 through 8.2.4, we briefly describe key components in our architecture.

8.2.1 Overview

Figure 77 shows our architecture for one-to-one video communication over the wireless

channel. On the sender side, raw bit-stream of live video is encoded by a rate-adaptive video

encoder, which also employs optimal mode selection. After this stage, the compressed video

bit-stream is first packetized and then passed to CRC & RCPC encoder. Cyclic redundancy

check (CRC) code and rate-compatible punctured convolutional (RCPC) codes are used as

the error detection and correction codes. After modulation, packets are transmitted over a

wireless channel. At the receiver, the video sequence is reconstructed in the reverse manner

shown in Fig. 77.

Under our architecture, a QoS monitor is kept at the receiver side to infer channel status

based on the behavior of the arriving packets, e.g., bit errors on the link layer, delay, and
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Figure 77: An architecture for MPEG-4 video over the wireless channel.

macroblock error ratio (MER). Link-layer bit errors and delay are used by hybrid ARQ

to decide whether a retransmission should be requested. In addition, MER is periodically

sent back to the source; the video encoder makes the optimal mode selection based on

the returned MER. The feedback channel conveys two kinds of messages to the source:

retransmission request and MER.

We use rate-adaptive video encoder [150] so that the rate of compressed video (denoted

by Rs(t)) can match the available bandwidth of the wireless link (denoted by Ra(t)), which

is time-varying due to probabilistic bit errors and retransmissions. In [150], we described

how to adapt Rs(t) to the target Ra(t). Here, Ra(t) is meant to be the maximum data rate

that a video source can transmit at time t without error. It does not include the overheads

due to ARQ and channel codes.

Next, we briefly describe three key components in our system: optimal mode selection,

resynchronization markers, and delay-constrained hybrid ARQ.
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8.2.2 Optimal Mode Selection

The problem of classical R-D optimized mode selection is to find the mode that minimizes

the quantization distortion Dq for a given macroblock (MB), subject to a constraint. The

classical R-D optimized mode selection is optimal with respect to quantization distortion.

However, under wireless environments, where packets may get discarded due to unrecover-

able errors, the classical R-D optimized mode selection is not optimal with respect to the

distortion Dr, which measures the difference between the original MB at the source and

the reconstructed one at the receiver. This is because the classical R-D optimized mode

selection does not consider the channel characteristics and receiver behavior, which also

affect the distortion Dr.

In Section 8.3, we will present an optimal mode selection algorithm for MPEG-4 video

over wireless channels. Our algorithm is capable of achieving best trade-off between error

resilience and efficiency in an R-D sense.

8.2.3 Resynchronization Markers

Resynchronization markers are used to prevent error propagation in the bit-stream when

errors occur [135]. Resynchronization markers are specially designed bit patterns that are

usually placed at approximately regular intervals in the video bit stream. The function

of these markers is to divide the compressed video bit stream into segments that are as

independent of each other as possible. By searching for these markers, the decoder can

reliably locate each segment without actually decoding the packet, and thereby prevent

error propagation across different segments separated by markers. Each data segment of

the bit stream should generally contain one or several complete logical entities of video

information (e.g., MB’s) so that the decrease in coding efficiency (due to lack of exploiting

dependencies between segments) can be minimized. The length of each segment is usually

chosen to achieve a good trade-off between the overhead introduced by the markers, and

reliability of the detection of markers when errors occur.

Our resynchronization scheme takes the video packet approach adopted by MPEG-4
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[135]. Under the video packet approach, resynchronization markers are inserted to the bit-

stream periodically. Specifically, if the number of bits after the current resynchronization

marker exceeds a predetermined threshold, a new resynchronization marker is inserted at

the start of the next MB.

After insertion of resynchronization markers, the bit-stream is passed to packetizer. We

use a fixed packet size for packetization. After packetization, the video packet is passed to

the link layer (CRC & RCPC encoder). For each video packet, the CRC & RCPC encoder

generates a link-layer packet by using CRC/RCPC codes.

8.2.4 Delay-constrained Hybrid ARQ

To provide adaptive QoS control on the link layer, delay-constrained hybrid ARQ is per-

formed in our architecture. Like other hybrid ARQ schemes [82, 164], our hybrid ARQ is

also a combination of FEC and ARQ. In our hybrid ARQ, CRC and RCPC are employed

as the FEC codes and RCPC offers variable rates to adapt to the time-varying wireless

channel.

Our hybrid ARQ works as follows. When errors in the received link-layer packet is

detected, the receiver decides whether to send a retransmission request according to the

delay bound of the packet. If the delay requirement cannot be met, the request will not be

sent. That is, the retransmission is truncated, instead of repeating retransmissions until a

successful reception occurs. If the delay requirement can be met, a retransmission request

will be sent to the source. Upon a retransmission request, the source only transmits the

necessary incremental redundancy bits.

In Section 8.4, we will present our delay-constrained hybrid ARQ that is capable of

providing reliability while achieving high throughput.

Table 11 lists the notations used in this chapter. Under QCIF format, Nf is 99 and Nh

is 98.
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Table 11: Notations.

Nf : the total number of MBs in a frame
Nh : the highest location number of MBs in a frame (Nh = Nf − 1)
NG : the number of MBs in a group of blocks (GOB)
Fn

i : the MB at location i in frame n
F̄n

i : the coded MB at location i in frame n.
Fn

ī : the MB (at location ī in frame n) which is above Fn
i , if it exists.

Fn
ĩ

: the MB (at location ĩ in frame n) which is below Fn
i , if it exists.

Gn : the set of macroblocks Fn
i (i ∈ [0, Nh]) that does not have Fn

ī
or does not have Fn

ĩ
.†

fn
ij : the original value of pixel j in Fn

i (raw data).
f̃n

ij : the value of reconstructed pixel j in Fn
i at the encoder.

f̂n
ij : the value of reconstructed pixel j in Fn

i at the receiver.
en

ij : the prediction error of pixel j in inter-coded Fn
i .

ẽn
ij : the reconstructed prediction error of pixel j in inter-coded Fn

i .
f̃n−1

uv : the value of reconstructed pixel v in Fn−1
u for prediction of fn

ij .
f̂n−1

ml : the value of reconstructed pixel l in Fn−1
m to replace f̂n

ij due to the error concealment.
I : the set of coding modes (i.e., I = {intra, inter}).
Mn

i : the mode selected to code macroblock Fn
i (Mn

i ∈ I).
λ̃ : the Lagrange multiplier.

† For example, in QCIF, an MB in the first GOB does not have an MB above it; an MB in the last
GOB does not have an MB below it.

8.3 Optimal Mode Selection

As discussed in Section 8.2.2, the classical approach to mode selection is not able to achieve

global optimality under the error-prone environment since it does not consider the channel

conditions and the receiver behavior. In this section, we present an optimal mode selection

algorithm.

We organize this section as follows. Section 8.3.1 discusses global distortion from an

end-to-end perspective and set a stage for derivation of the global distortion metrics. In

Sections 8.3.2, we derive the global distortion metrics. In Section 8.3.3, we design an

algorithm for optimal mode selection based on the global distortion metrics.

8.3.1 An End-to-End Perspective

An end-to-end approach to R-D optimized mode selection was introduced in Ref. [149] for

Internet video communication. With the end-to-end approach, the distortion Dr is assumed

to be the difference between the original MB at the source and the reconstructed one at the
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receiver. Under wireless environments, the distortion Dr is a random variable, which may

take the value of either (1) the quantization distortion Dq plus the distortion Dep caused

by error propagation, or (2) distortion Dc caused by errors due to error concealment. We

define the global distortion D as the expectation of the random variable Dr. That is,

D = E{Dr}, (206)

where Dr takes the value of (Dq + Dep) or Dc with certain probability, which is determined

by channel error characteristics.

Then, the problem of globally R-D optimized mode selection is to find the mode that

minimizes the global distortion D for a given MB, subject to a constraint Rc on the number

of bits used. For the MB at location i in frame n (denoted by Fn
i ), this constrained problem

reads as follows:

min
Mn

i

D(Mn
i ) subject to R(Mn

i ) ≤ Rc, (207)

where D(Mn
i ) and R(Mn

i ) denote the global distortion and bit budget for macroblock Fn
i

with a particular mode Mn
i , respectively.

In terms of mean squared error (MSE), we define the global distortion metric for mac-

roblock Fn
i as follows:

MSE(Fn
i ) =

E
{∑256

j=1(f
n
ij − f̂n

ij)
2
}

256
(208)

where fn
ij is the original value of pixel j in Fn

i (raw data), and f̂n
ij is the value of reconstructed

pixel j in Fn
i at the receiver.

The global distortion is affected by three factors: source behavior, channel characteris-

tics, and receiver behavior, which are described in Sections 8.3.1.1 to 8.3.1.3, respectively.

8.3.1.1 Source Behavior

The source behavior, i.e., quantization, have impact on global distortion. This is because

quantization error can cause image distortion.

A block diagram of the video encoder is depicted in Fig. 78. The switches represent the

two different paths for the intra- and inter-mode.
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Figure 78: Block diagram of the video encoder working under the inter mode.

Under the intra mode, the raw video fn
ij is transformed by discrete cosine transform

(DCT), quantized and coded by run length coding (RLC). The resulting information, as

well as coding parameters such as the coding mode and the quantization parameter (QP), is

coded by variable length coding (VLC). Then the compressed video stream is formed by the

multiplexer. At the same time, the pixel is reconstructed at the encoder for the prediction

used by the next frame. The value of the reconstructed pixel is f̃n
ij.

Figure 78 also illustrates the case when the encoder is operating under the inter-mode.

Under such mode, the raw video fn
ij is first predicted from the motion-compensated pixel

in the previous frame, f̃n−1
uv , resulting in the prediction error, en

ij . The prediction error,

en
ij , is DCT-transformed, quantized and coded by RLC. The resulting information, as well

as coding parameters such as the coding mode, the motion vector and the QP, is coded

by VLC. Then the compressed video stream is formed by the multiplexer. At the same

time, the pixel is reconstructed at the encoder for the prediction used by the next frame.

There are two steps for the reconstruction at the encoder. First, the prediction error is

reconstructed, resulting in ẽn
ij . Second, ẽn

ij is added to the predicted value f̃n−1
uv , resulting

in the reconstructed value, f̃n
ij. That is, the pixel is reconstructed by f̃n

ij = ẽn
ij + f̃n−1

uv .
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8.3.1.2 Wireless Channel Characteristics

Wireless channel characteristics (i.e., error characteristics) has great impact on the global

distortion. Since only MB error ratio is relevant in deriving our global distortion metrics, we

are primarily concerned with compression-layer error characteristics rather than link-layer

error characteristics.

Under our architecture, delay-constrained hybrid ARQ is used to recover link-layer bit

errors. If the bit errors in a link-layer packet cannot be completely recovered before its

delay bound, the corrupted packet will be discarded. Then the MPEG-4 decoder uses error

concealment to conceal the MB’s associated with the corrupted link-layer packet. We will

address error concealment in Section 8.3.1.3.

There are two ways to obtain MER, namely, analysis and measurement. We can use

analysis like Ref. [164] to derive MER. But the analysis is very complicated and we can

only get an approximation of MER (e.g., an upper bound). The approximation is typically

only applicable to a certain channel model and a certain modulation method. For example,

the upper bound on packet error ratio in Ref. [164] is only applicable to Rayleigh fading

channel model and π/4-DQPSK modulation with coherent detection.

Due to the complexity and inflexibility of the analytical method, we choose a measure-

ment approach in our system. That is, we measure the numbers of erroneous/discarded

MB’s and correct MB’s at the receiver. That is, MER, denoted by pd, is given by

MER = pd =
Nd

Nd + Nc
, (209)

where Nd is the number of erroneous/discarded MB’s and Nc the number of correct MB’s.

8.3.1.3 Receiver Behavior

Receiver behavior, i.e., error concealment, also affects the global distortion. In our system,

we only consider such an error concealment scheme: the corrupted MB is replaced with the

MB from the previous frame pointed by a motion vector. The motion vector of the corrupted

MB is copied from one of its neighboring MB (which is above or below the corrupted MB)
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Figure 79: Block diagram of the video decoder.

when available, otherwise the motion vector is set to zero. Specifically, if the MB above the

corrupted MB is received correctly, the motion vector of the corrupted MB is copied from

the MB above it; if the MB above the corrupted MB is also damaged and the MB below

the corrupted MB is received correctly, the motion vector of the corrupted MB is copied

from the MB below it; otherwise the motion vector is set to zero.

Figure 79 shows a block diagram of the video decoder, in which three switches represent

different scenarios as follows.

• Switch SW1: represents the two different paths for the intra- and inter-mode.

• Switch SW2: represents the two different paths for the two cases as follows.

– the case where the coded MB at location i in frame n (denoted by F̄n
i ) is received

correctly.

– the case where F̄n
i is corrupted.

• Switch SW3: represents the two different paths for the two cases as follows.

– the case where the estimated motion vector of the corrupted Fn
i is set to zero.

– the case where the estimated motion vector of the corrupted Fn
i is copied from

its neighboring macroblock Fn
ī

or Fn
ĩ
, where Fn

ī
denotes the MB (at location ī

in frame n) which is above Fn
i and Fn

ĩ
denotes the MB (at location ĩ in frame

n) which is below Fn
i .
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The compressed video stream is first demultiplexed by the demultiplexer and decoded

by variable length decoding (VLD). The resulting coding mode information will control

switch SW1. The resulting QP will control the inverse quantizer (IQ). The resulting motion

vector is used for motion compensation. The information containing DCT coefficient will

be decoded by run length decoding (RLD), then inversely quantized, and inversely DCT-

transformed.

There are three cases for the reconstructed pixel at the receiver as follows.

• Case (i): F̄n
i is received correctly. If Fn

i is intra-coded, then we have f̂n
ij = f̃n

ij, which

is illustrated in Fig. 79 with state {SW1: Intra, SW2: No loss, SW3: don’t care}. If

Fn
i is inter-coded, then we have

f̂n
ij = ẽn

ij + f̂n−1
uv , (210)

which is illustrated in Fig. 79 with state {SW1: Inter, SW2: No loss, SW3: don’t

care}.

• Case (ii): F̄n
i is corrupted and the neighboring MB (F̄n

ī
or F̄n

ĩ
) has been received

correctly. Then we have f̂n
ij = f̂n−1

ml , which is illustrated in Fig. 79 with state {SW1:

don’t care, SW2: Loss, SW3: MV�=0}.

• Case (iii): F̄n
i , F̄n

ī
, and F̄n

ĩ
are all corrupted. Then we have f̂n

ij = f̂n−1
ij , which is

illustrated in Fig. 79 with state {SW1: don’t care, SW2: Loss, SW3: MV=0}.

So far we have examined three key components that affect the global distortion. In the

next section, we derive the global distortion metrics based on the three factors discussed in

this section.

8.3.2 Global Distortion Metrics

This section derives the global distortion metrics, which will be used by our optimal mode

selection in Section 8.3.3.
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Without loss of generality, we consider the distortion for macroblock s in frame N ,

where s (s ∈ [0, Nh]) is the location number and N (N ≥ 0) is the frame number. Note

that the sequence number for both frame and packet start from zero. Denote Gn the set

of macroblocks Fn
i that does not have Fn

ī
or does not have Fn

ĩ
. For example, in QCIF, an

MB in the first GOB does not have an MB above it; an MB in the last GOB does not have

an MB below it.

The following proposition shows how to compute MSE for the intra-coded MB under

our architecture.

Proposition 8.1 Assume the packet loss at the compression layer follows Bernoulli dis-

tribution with probability pd. Under our architecture, the MSE for the intra-coded MB at

location s of frame N (N > 0) is given by

MSE(FN
s ,intra) =

∑256
j=1

((
fN

sj

)2
− 2 × fN

sj × E{f̂N
sj } + E

{(
f̂N

sj

)2
})

256
, (211)

where

E{f̂n
ij} =




(1 − pd) × f̃n
ij + pd × (1 − pd) × E{f̂n−1

ml } + p2
d × E{f̂n−1

ij } if Fn
i ∈ Gn

(1 − pd) × f̃n
ij + pd × (1 − p2

d) × E{f̂n−1
ml } + p3

d × E{f̂n−1
ij } if Fn

i /∈ Gn

,

(212)

E

{(
f̂n

ij

)2
}

=




(1 − pd) ×
(
f̃n

ij

)2
+ pd × (1 − pd) × E

{(
f̂n−1

ml

)2
}

+

p2
d × E

{(
f̂n−1

ij

)2
}

if Fn
i ∈ Gn

(1 − pd) ×
(
f̃n

ij

)2
+ pd × (1 − p2

d) × E

{(
f̂n−1

ml

)2
}

+

p3
d × E

{(
f̂n−1

ij

)2
}

if Fn
i /∈ Gn

,

(213)

and E{f̂0
ij} = f̃0

ij and E

{(
f̂0

ij

)2
}

=
(
f̃0

ij

)2
.

For a proof of Proposition 8.1, see Appendix A.18.
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The following proposition shows how to compute MSE for the inter-coded MB under

our architecture.

Proposition 8.2 Assume the packet loss at the compression layer follows Bernoulli dis-

tribution with probability pd. Under our architecture, the MSE for the inter-coded MB at

location s of frame N (N > 0) is given by

MSE(FN
s ,inter) =

∑256
j=1

((
fN

sj

)2 − 2 × fN
sj × E{f̂N

sj } + E

{(
f̂N

sj

)2
})

256
, (214)

where

E{f̂n
ij} =




(1 − pd) × (ẽn
ij + E{f̂n−1

uv }) + pd × (1 − pd) × E{f̂n−1
ml }+

p2
d × E{f̂n−1

ij } if Fn
i ∈ Gn

(1 − pd) × (ẽn
ij + E{f̂n−1

uv }) + pd × (1 − p2
d) × E{f̂n−1

ml }+
p3

d × E{f̂n−1
ij } if Fn

i /∈ Gn

,

(215)

E

{(
f̂n

ij

)2
}

=




(1 − pd) ×
((

ẽn
ij

)2
+ 2 × ẽn

ij × E{f̂n−1
uv } + E

{(
f̂n−1

uv

)2
})

+

pd × (1 − pd) × E

{(
f̂n−1

ml

)2
}

+ p2
d × E

{(
f̂n−1

ij

)2
}

if Fn
i ∈ Gn

(1 − pd) ×
((

ẽn
ij

)2
+ 2 × ẽn

ij × E{f̂n−1
uv } + E

{(
f̂n−1

uv

)2
})

+

pd × (1 − p2
d) × E

{(
f̂n−1

ml

)2
}

+ p3
d × E

{(
f̂n−1

ij

)2
}

if Fn
i /∈ Gn

,

(216)

and E{f̂0
ij} = f̃0

ij and E

{(
f̂0

ij

)2
}

=
(
f̃0

ij

)2
.

For a proof of Proposition 8.2, see Appendix A.19.

8.3.3 Optimal Mode Selection

Given the channel characteristics (obtained from measurement described in Section 8.3.1.2),

we can design a globally R-D optimized mode selection algorithm for our architecture.

Consider a group of blocks (GOB) or slice denoted by Fn
g = (Fn

g , · · · , Fn
g+NG−1), where

NG is the number of MBs in a GOB/slice. Assume each MB in Fn
g can be coded using
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only one of the two modes in set I. Then for a given GOB/slice, the modes assigned to the

MBs in Fn
g are given by the NG-tuple, Mn

g = (Mn
g , · · · ,Mn

g+NG−1) ∈ ING. The problem of

globally R-D optimized mode selection is to find the combination of modes that minimizes

the distortion for a given GOB/slice, subject to a constraint Rc on the number of bits used.

This constrained problem can be formulated as

min
Mn

g

D(Fn
g ,Mn

g ) subject to R(Fn
g ,Mn

g ) ≤ Rc, (217)

where D(Fn
g ,Mn

g ) and R(Fn
g ,Mn

g ) denote the total distortion and bit budget, respectively,

for the GOB/slice Fn
g with a particular mode combination Mn

g .

The constrained minimization problem in (217) can be converted to an unconstrained

minimization problem by Lagrange multiplier technique as follows:

g+NG−1∑
i=g

min
Mn

i

J(Fn
i ,Mn

i ) =
g+NG−1∑

i=g

min
Mn

i

{D(Fn
i ,Mn

i ) + λ̃R(Fn
i ,Mn

i )}, (218)

where the global distortion D(Fn
i ,Mn

i ) can be expressed by the formulae we derived in

Section 8.3.2, according to the coding mode.

The problem of (218) is a standard R-D optimization problem and can be solved by

the approaches described in [77, 107, 117, 144]. Different from these approaches, we use a

simpler method to obtain λ̃.

Since a large λ̃ in the optimization problem of (218) can reduce the bit-count of the

coded frame, we employ this nature in choosing λ̃. To be specific, at the end of frame n,

we adjust λ̃ for frame n + 1 (i.e., λ̃n+1) as follows:

λ̃n+1 =
2 · Bn + (β̃ − Bn)
Bn + 2 · (β̃ − Bn)

· λ̃n (219)

where Bn is the current buffer occupancy at the end of frame n and β̃ is the buffer size.

λ̃n is initialized by a preset value λ̃0. The adjustment in Eq. (219) is to keep the buffer

occupancy at the middle level to reduce the chance of buffer overflow or underflow. In other

word, Eq. (219) also achieves the objective of rate control.
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8.4 Hybrid ARQ

As mentioned in Section 8.1, FEC schemes offer a constant throughput but their reliability

degrades as the channel condition becomes poor. ARQ achieves high efficiency and high

throughput under good channel conditions, but the throughput is shrunken rapidly due to

increase of retransmissions under poor channel conditions. The performance of an ARQ

scheme can be improved by embedding FEC capability in it, which is so-called hybrid ARQ.

The advantage of using FEC with ARQ is that many errors can be corrected by the FEC, and

retransmissions are requested only when errors are unrecoverable by the FEC. This results

in a reduction in the overall retransmission frequency and hence improves throughput during

poor channel conditions.

There are two classes of hybrid ARQ schemes: type-I and type-II [81]. A general type-I

hybrid ARQ scheme uses a block code (e.g., a Reed-Solomon code), which is designed for

simultaneous error correction and error detection. When a received packet is detected in

error, the receiver first attempts to locate and correct the errors. If the number of bit

errors is within the error-correcting capability of the code, the errors will be corrected and

the decoded message will be passed to the user (e.g., compression layer in our system). If

an uncorrectable error pattern is detected, the receiver discards the received packet and

requests a retransmission.

In the following sections, we describe a general type-II hybrid ARQ scheme and our

delay-constrained hybrid ARQ in detail.

8.4.1 General Type II Hybrid ARQ

A general type-II hybrid ARQ scheme uses a family of codes (e.g., RCPC codes), each of

which has different correction capability. Let C1 > C2 > · · · > CM denote the M rates

offered by a family of RCPC codes which are obtained from a low rate CM (e.g., 1/3) code,

called the parent code. The parent code is an ordinary convolutional code. Figure 80 shows

the structure of the RCPC codes with a 1/3 convolution code as a parent code. In Fig. 80,

the puncture period V is 2 and the rates are 1, 1/2, 2/5, and 1/3. The corresponding
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puncturing matrices P are given by

P1/1 =




1 1

0 0

0 0


 , P1/2 =




1 1

1 1

0 0


 , P2/5 =




1 1

1 1

1 0


 , P1/3 =




1 1

1 1

1 1


 . (220)

As shown in Fig. 80, a number nc of CRC bits for error detection are attached to the

information packet (k bits). Tail bits m zeros are also added to properly terminate the

encoder memory and decoder trellis. Each (k + nc + m)-bit segment is encoded with the

parent code CM encoder.

There are three buffers corresponding to three output ports of the 1/3 convolutional

encoder. Each buffer contains (k + nc + m) bits. Each row of the buffers has two bits

since the puncturing period is two. The tables in Fig. 80 are generated from the puncturing

matrices P1/1 to P1/3 in Eq. (220). Specifically, the first row corresponds to P1/1; the first

row and the second row correspond to P1/2; the first three rows correspond to P2/5; the

four rows correspond to P1/3.

In Fig. 80, each row in the tables shows the positions of column bits to be transmitted

by the i-th step. As a result, we get packets γ1, γ2, γ3, and γ4, which correspond to each
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row, respectively. In other words, packet γ1 is generated by code C1; packets γ1 and γ2 are

generated by code C2; packets γ1, γ2, and γ3 are generated by code C3; packets γ1, γ2, γ3

and γ4 are generated by code C4.

After the encoding, the sender first sends packet γ1 to the receiver. If packet γ1 is

received with unrecoverable errors, the receiver generates an ARQ request (note that packet

γ1 is not discarded, which is different from a type-I hybrid ARQ scheme). Then the sender

transmits packet γ2. Upon receipt of packet γ2, the receiver decodes the combination of

packets γ1 and γ2 by using code C2. This procedure of retransmission is continued until

decoding process results in no errors being detected. For a truncated type-II hybrid ARQ

scheme, the procedure of retransmission is continued until decoding process results in no

errors being detected or the maximum number of retransmissions is reached. For our delay-

constrained hybrid ARQ, the procedure of retransmission is continued until decoding process

results in no errors being detected or the delay bound is violated.

8.4.2 Delay-constrained Hybrid ARQ

Unlike data, video transmission can tolerate certain errors, but it has stringent delay re-

quirements. This is because the packets arriving later than their playout time will not be

displayed. Too many retransmissions could incur excessive delay, which exceeds the delay

requirement of real-time video. For this reason, we introduce delay constraint to limit the

number of retransmissions and satisfy the QOS requirements of video communications.

Our delay-constrained hybrid ARQ has the same transmission process as a general

type-II hybrid ARQ scheme described in Section 8.4.1. The difference between them is

the procedure of retransmission. Next, we describe the retransmission mechanisms for our

delay-constrained hybrid ARQ.

Based on who determines whether to send and/or respond to a retransmission request,

we design three delay-constrained retransmission mechanisms, namely, receiver-based, sender-

based, and hybrid control.

Receiver-based control. The objective of the receiver-based control is to minimize the
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requests of retransmission that will not arrive timely for display. Under the receiver-based

control, the receiver executes the following algorithm.

When the receiver detects unrecoverable errors in a link-layer packet (corresponding

to information packet N):

if (Tc + RTT + Ds < Td(N))

send the request for retransmission of a repair packet (corresponding to

information packet N) to the sender;

where Tc is the current time, RTT is an estimated round trip time, Ds is a slack term,

and Td(N) is the time when packet N is scheduled for display. The slack term Ds could

include tolerance of error in estimating RTT , the sender’s response time to a request,

and/or the receiver’s processing delay (e.g., decoding). If Tc +RTT +Ds < Td(N) holds, it

is expected that the retransmitted packet will arrive timely for display. The timing diagram

for receiver-based control is shown in Fig. 18.

Since RTT may not change in wireless environment, RTT can be obtained during set-

up phase through a test. Specifically, the source sends out a packet with a timestamp; the

receiver sends back the packet when the packet is received; when the packet is received by

the source, the source can determine the RTT based on the difference between its current

time and the timestamp embedded in the packet.

Sender-based control. The objective of the sender-based control is to suppress retrans-

mission of packets that will miss their display time at the receiver. Under the sender-based

control, the sender executes the following algorithm.
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When the sender receives a request for retransmission of a repair packet (corresponding

to information packet N):

if (Tc + To + Ds < T ′
d(N))

retransmit a repair packet to the receiver

where To is the estimated one-way trip time (from the sender to the receiver), and T ′
d(N)

is an estimate of Td(N). To obtain T ′
d(N), the receiver has to feedback Td(N) to the

sender. Then, based on the differences between the sender’s system time and the receiver’s

system time, the sender can derive T ′
d(N). The slack term Ds may include error terms

in estimating To and T ′
d(N), as well as tolerance in the receiver’s processing delay (e.g.,

decoding). If Tc + RTT + Ds < T ′
d(N) holds, it can be expected that retransmitted packet

will reach the receiver in time for display. The timing diagram for sender-based control is

shown in Fig. 19.

Hybrid control. The objective of the hybrid control is to minimize the request of retrans-

missions that will not arrive for timely display, and to suppress retransmission of the packets

that will miss their display time at the receiver. The hybrid control is a simple combination

of the sender-based control and the receiver-based control. Specifically, the receiver makes

decisions on whether to send retransmission requests while the sender makes decisions on

whether to disregard requests for retransmission. The hybrid control may achieve better

performance at the cost of higher complexity.

Our delay-constrained hybrid ARQ could use any of the three retransmission mech-

anisms, i.e., receiver-based, sender-based, and hybrid control. In addition, to maximize
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throughput, we use selective-reject ARQ1 rather than stop-and-wait ARQ or go-back-N

ARQ [122]. Under selective-reject ARQ, the receiver responds with an acknowledgment

containing the sequence number (e.g., N) if the Nth packet is received correctly. On the

other hand, if the Nth packet is corrupted (there is no way to decode it and know which

packet it is), the sender retransmits the incremental redundant packet (e.g., γ2) when the

counter times out; before the counter times out, if an acknowledgment for the (N + 1)th

packet rather than the Nth is received, the sender retransmits the incremental redundant

packet for the Nth. To achieve highest throughput for selective-reject ARQ, the sliding-

window size needs to be large enough (with respect to the ratio of RTT to Ttrans, where

Ttrans is the transmission time of the packet) and the time-out counter for a packet needs

to be set to Ttrans + RTT (suppose the transmission time of the acknowledgment packet

and the processing time are negligible) [122].

Like other hybrid ARQ schemes [164], our hybrid ARQ combines the advantages of ARQ

and FEC. Furthermore, our delay-constrained hybrid ARQ is more adaptive to varying

wireless channel conditions while guaranteeing delay bound.

Next, we evaluate the performance of our adaptive QoS control mechanism through

simulations.

8.5 Simulation Results

In this section, we implement the architecture described in Section 8.2 on our simulator

and perform a simulation study of video conferencing with MPEG-4. The purpose of this

section is to demonstrate (1) the performance improvement of our approach over the classical

approach for optimal mode selection, and (2) the performance improvement of our delay-

constrained hybrid ARQ over the truncated Type-II hybrid ARQ.

1Selective-reject ARQ uses sliding-window flow control. Each packet has a sequence number indicating
the position of the packet in the sliding window. Selective-reject ARQ is also called selective-repeat ARQ

[81].
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8.5.1 Simulation Settings

We implement the architecture shown in Fig. 77. At the source side, we use the standard raw

video sequence “Miss America” in QCIF format for the video encoder. The encoder employs

the rate control described in [150] so that the output rate of MPEG-4 encoder can adapt

to the varying available bandwidth Ra(t). The threshold for inserting resynchronization

marker is set to 612 bits to match the link-layer payload size k. After compression, the

video bit-stream is chopped into packets by the packetizer with a fixed size k of 612 bits.

Then the packets are passed to CRC & RCPC encoder. We use 16-bit CRC code to detect

bit errors. The 16-bit CRC error detection code will miss error patterns in packets with a

probability of the order 10−5 of independent identically distributed (i.i.d.) errors. By using

more powerful CRC codes, the probability of undetected error can be made negligible at

the cost of reduced throughput.

RCPC codes are used as the error correction codes. Two sets of RCPC codes are used

with the ARQ schemes. Both sets are generated from a rate 1/4 code with constraint length

K = 5 and puncturing period V = 8 (see Table B.189 in Ref. [48])). The rates of Set A
are 1, 5/6, 5/8, 5/10, 5/12, 5/14, 5/16, 5/17, 5/18, 5/19, and 1/4. The rates of Set B
are 1, 5/10, 5/15, and 1/4. At the receiver side, if an erroneous link-layer packet cannot

be recovered by RCPC at its playout time, the link-layer packet and its retransmitted

redundancy will be discarded. The sliding-window size for ARQ is set to 256 (using 8 bits),

which is large enough (with respect to the ratio of RTT to the packet transmission time,

which is approximately 4). We only use receiver-based control for our delay-constrained

hybrid ARQ. This is because receiver-based control has the same performance as that of

hybrid control when the RTT estimated by the receiver is accurate.

In our simulations, we assume that the feedback channel is error-free. Finite buffers are

available at the transmitter and receiver and are large enough for storing transmitted and

received packets for the link-layer ARQ protocol. For the simulations, we employ two kinds

of wireless channels, namely, additive white Gaussian noise (AWGN) channel and Rayleigh

fading channel. Binary phase shift keying (BPSK) with coherent detection is used as the
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Table 12: Simulation parameters.

MPEG-4 Frame rate 10 frames/s
encoder I-VOP refreshment period 50 frames

Mode Rectangle
λ̃0 1
End-to-end delay bound 100 ms
Resynchronization marker length 17 bits
Threshold for resynchronization marker 612 bits

Packetizer Information packet size k 612 bits
CRC & RCPC Number of bits for packet sequence number 8 bits

encoder Number of CRC bits nc 16 bits
Number of tail bits m 4 bits
Sliding-window size 256 packets

Hybrid ARQ Packet processing delay 0 s
Data transmission rate 64 kb/s

Wireless RTT 10 ms or 30 ms
channel channel model AWGN or Rayleigh fading

modulation/demodulation scheme with a carrier frequency of 1.9 GHz.

Table 12 lists the parameters used in our simulation. Under such simulation settings,

we consider three different encoders for MPEG-4 video as follows.

Encoder A: employs the classical approach for R-D optimized mode selection.

Encoder B: implements the globally R-D optimized mode selection described in Sec-

tion 8.3. However, feedback of MER is not employed.

Encoder C: implements the globally R-D optimized mode selection described in Sec-

tion 8.3. Feedback of MER to the source is employed.

Next, we show our simulation results under an AWGN channel and a Rayleigh fading

channel in Sections 8.5.2 and 8.5.3, respectively. Each simulation is conducted for 100-

second simulation time.
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8.5.2 Performance over an AWGN Channel

In this section, we evaluate the performance of optimal mode selection and hybrid ARQ

under the setting of an AWGN channel.

8.5.2.1 Performance of Optimal Mode Selection

In this simulation, we evaluate the performance of different optimal mode selection schemes,

namely, Encoder A, B, and C. For Encoder B, we set MER=1% for optimal mode selection.

The round-trip time is set to 10 ms. The delay-constrained hybrid ARQ uses the rates of

Set A for RCPC codes and the delay bound is set to be 100 ms since the frame rate of the

MPEG-4 stream is 10 frames/sec. Figure 83 shows the average peak signal-to-noise ratios

(PSNR’s) of Y component (denoted by PSNR-Y) under an AWGN channel with different

channel signal-to-noise ratios (SNR’s).2 We observe that Encoder C achieves the best

performance, Encoder B has the second best performance, and Encoder A performs the

worst. This demonstrates that our approach achieves better performance than the classical

one, even if feedback mechanism is not employed. In addition, feedback-based scheme (i.e.,

Encoder C) achieves better performance than non-feedback-based scheme (i.e., Encoder

B) since Encoder C has more accurate channel information than Encoder B. Moreover,

Figure 83 indicates that the lower the channel SNR, the larger the performance gain achieved

by our proposed scheme (i.e., Encoder C). This feature enables our scheme to improve visual

presentation quality substantially when a mobile device works under low channel SNR (e.g.,

between 0 to 5 dB).

8.5.2.2 Performance of Hybrid ARQ

To compare the performance of the truncated type-II hybrid ARQ [164] and our delay-

constrained hybrid ARQ, we run our simulations under two scenarios where only Encoder

C is employed.

2Specifically, the channel SNR here is Eb/N0, where Eb is the bit energy and N0 is the single-sided power
spectral density of noise.
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Figure 83: Performance of different video encoders.
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Figure 84: Average PSNR-Y for hybrid ARQ schemes: (a) the first scenario, (b) the second
scenario.
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In the first scenario, we set RTT=10 ms and the maximum number of retransmissions

Nm=3 for the truncated hybrid ARQ. The truncated hybrid ARQ uses the rates of Set

B for RCPC codes; our delay-constrained hybrid ARQ uses the rates of Set A for RCPC

codes. Figure 84(a) shows that our delay-constrained hybrid ARQ achieves higher average

PSNR-Y than the truncated hybrid ARQ, when the channel SNR is less than 7 dB. This

is because when the channel SNR is less than 7 dB, an erroneous link-layer packet can

be retransmitted 10 times under our delay-constrained hybrid ARQ without violating the

delay bound (i.e., 100 ms) while the truncated hybrid ARQ only allows 3 retransmissions,

resulting in lower recovery probability. In other words, the truncated hybrid ARQ has

higher probability of packet corruption. When the channel SNR is greater than or equal to

7 dB, at most 3 retransmissions are enough to recover all the bit errors. So, in this case,

the two hybrid ARQ achieve the same average PSNR-Y.

In the second scenario, we set RTT=30 ms and the maximum number of retransmissions

Nm=10 for the truncated hybrid ARQ. Both hybrid ARQ scheme use the rates of Set A for

RCPC codes. Figure 84(b) shows that our delay-constrained hybrid ARQ achieves higher

average PSNR-Y than the truncated hybrid ARQ, when the channel SNR is less than 7 dB.

This is because when the channel SNR is less than 7 dB, an erroneous link-layer packet may

be retransmitted up to 3 times under our delay-constrained hybrid ARQ without violating

the delay bound (i.e., 100 ms) while the truncated hybrid ARQ allows 10 retransmissions,

resulting in waste of bandwidth due to discard of packets that missed their playout time. The

more the bandwidth is wasted by the truncated hybrid ARQ, the less bandwidth MPEG-4

encoder can consume. This translates into lower average PSNR-Y for the truncated hybrid

ARQ, as shown in Fig. 84(b). This is also confirmed by Fig. 85, which shows that the

truncated hybrid ARQ achieves lower throughput than our delay-constrained hybrid ARQ,

when the channel SNR is less than 7 dB. The throughput is defined as the ratio of the

MPEG-4 encoding rate Rs(t) to the link-layer transmission rate 64 kb/s. On the other

hand, when the channel SNR is greater than or equal to 7 dB, at most 3 retransmissions

are enough to recover all the bit errors. Hence, in this case, the two hybrid ARQ achieve

the same throughput and the same average PSNR-Y.
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Figure 85: Throughput for hybrid ARQ schemes.

Table 13: Simulation parameters for a Rayleigh fading channel.

Sampling interval Ts 1/64000 second
Carrier frequency 1.9 GHz
Maximum Doppler rate fm 5.3, 70, 211 Hz

(corresponding to vehicle speed of 3, 40, 120 km/h,
corresponding to coherence time Tc of 33.8, 2.6, 0.8 msec.)

Average SNR 0 to 20 dB

The purpose of using the above two scenarios is to show that the truncated hybrid ARQ

is not adaptive to varying RTT . In contrast, our delay-constrained hybrid ARQ is capable

of adapting to varying RTT and achieving better performance than the truncated hybrid

ARQ, for real-time video transmission over wireless channels.

8.5.3 Performance over a Rayleigh Fading Channel

In this section, we evaluate the performance of optimal mode selection and hybrid ARQ,

under the setting of a Rayleigh fading channel. As compared to an AWGN channel, a

Rayleigh fading channel with a specified Doppler spectrum induces correlated error bursts,

which are more difficult for the hybrid ARQ to recover.
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As described in Section 4.4.1, Rayleigh flat-fading voltage-gains h(t) are generated by

an AR(1) model as below. We first generate h̄(t) by

h̄(t) = κ × h̄(t − 1) + ug(t), (221)

where ug(t) are i.i.d. complex Gaussian variables with zero mean and unity variance per

dimension. Then, we normalize h̄(t) and obtain h(t) by

h(t) = h̄(t) ×
√

1 − κ2

2
. (222)

The Rayleigh fading channel gains are generated using the parameters described in

Table 13.

8.5.3.1 Performance of Optimal Mode Selection

In this simulation, we evaluate the performance of different optimal mode selection schemes,

namely, Encoder A, B, and C. For Encoder B, we set MER=1% for optimal mode selection.

The round-trip time is set to 10 ms. The delay-constrained hybrid ARQ uses the rates

of Set A for RCPC codes and the delay bound is set to be 100 ms. Figure 86 shows the

average PSNR-Y under a Rayleigh fading channel with different average SNR’s and different

Doppler rates. Again, we observe that Encoder C achieves the best performance, Encoder

B has the second best performance, and Encoder A performs the worst. This demonstrates

that our approach achieves better performance than the classical one, for video transmission

over a Rayleigh fading channel. Furthermore, the three figures in Fig. 86 show that as the

Doppler rate increases, the average PSNR-Y achieved also increases. This indicates that

our hybrid ARQ can utilize the time diversity in the underlying fading channel to improve

video presentation quality. This is expected since the delay bound (i.e., 100 ms) is larger

than the coherence time Tc of 33.8, 2.6, and 0.8 ms (see Table 13). That is, our hybrid

ARQ can utilize the time diversity of the underlying fading channel, if the delay constraint

imposed by the video application is larger than the coherence time of the fading channel.
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Figure 86: Performance of different video encoders under the setting of a Rayleigh fading
channel.
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Figure 87: Average average PSNR-Y for hybrid ARQ schemes under the setting of a fading
channel: (a) the first scenario, (b) the second scenario.
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8.5.3.2 Performance of Hybrid ARQ

To compare the performance of the truncated type-II hybrid ARQ and our delay-constrained

hybrid ARQ, we again run our simulations under two scenarios where only Encoder C is

employed.

In the first scenario, we set RTT=10 ms and the maximum number of retransmissions

Nm=3 for the truncated hybrid ARQ. The truncated hybrid ARQ uses the rates of Set B for

RCPC codes; our delay-constrained hybrid ARQ uses the rates of Set A for RCPC codes and

the delay bound is set to be 100 ms. Figure 87(a) shows that our delay-constrained hybrid

ARQ achieves higher average PSNR-Y than the truncated hybrid ARQ, for different average

channel SNR and different Doppler rates. As we mentioned before, the reason is that our

delay-constrained hybrid ARQ has lower probability of packet corruption. Compared with

Figure 84(a), we see that for the same average channel SNR, the average PSNR-Y achieved

under the Rayleigh fading channel is lower than that under the AWGN channel. This is

conceivable since compared to an AWGN channel, a Rayleigh fading channel may cause

long bursts of errors, which are hard to recover.

In the second scenario, we set RTT=30 ms and the maximum number of retransmissions

Nm=10 for the truncated hybrid ARQ. Both hybrid ARQ scheme use the rates of Set A
for RCPC codes. and the delay bound is set to be 100 ms. Figure 87(b) shows that our

delay-constrained hybrid ARQ achieves higher average PSNR-Y than the truncated hybrid

ARQ, for different average channel SNR and different Doppler rates. Again, the reason is

that the truncated hybrid ARQ may waste bandwidth unnecessarily, which translates into

lower average PSNR-Y.

In summary, the simulation results have demonstrated (1) the performance improve-

ment of our approach over the classical approach for optimal mode selection, and (2) the

performance improvement of our delay-constrained hybrid ARQ over the truncated Type-II

hybrid ARQ, for real-time video transmission over wireless channels.
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8.6 Summary

Due to high bit-error-rate in wireless environments, real-time video communication over

wireless channels poses a challenging problem. To address this challenge, this chapter intro-

duced adaptive QoS control to achieve robustness for video transmission over wireless. Our

adaptive QoS control consists of optimal mode selection and delay-constrained hybrid ARQ.

Our optimal mode selection provides QoS support (i.e., error resilience) on the compression

layer; it is adaptive to time-varying channel characteristics due to feedback of macroblock

error ratio. Our delay-constrained hybrid ARQ provides QoS support (i.e., reliability and

bounded delay) on the link layer; it is adaptive to time-varying wireless channel due to

its consideration of the display deadlines of the packets. The main contributions of this

chapter are: (1) an optimal mode selection algorithm which provides the best trade-off

between compression efficiency and error resilience in R-D sense, and (2) delay-constrained

hybrid ARQ which is capable of providing reliability for the compression layer while guar-

anteeing delay bound and achieving high throughput. Simulation results have shown that

the proposed adaptive QoS control outperforms the previous approaches for MPEG-4 video

communications over wireless channels. The reason for this is that our adaptive QoS control

combines the best features of error-resilient source encoding, FEC and delay-constrained

retransmission.
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CHAPTER 9

CONCLUSION

9.1 Summary of the Dissertation

In this section, we summarize the research presented in this dissertation.

We considered the problem of providing QoS guarantees in wireless networks. We ad-

dressed this problem primarily from the network perspective, but also studied it with the

end-system-based approach. In Chapter 1, we introduced and motivated the problem. In

Chapter 2, we overviewed issues in the area of network-centric QoS provisioning in wireless

networks, which include network service models, traffic modeling, scheduling for wireless

transmission, call admission control in wireless networks, and wireless channel modeling.

In Chapter 3, we surveyed end-system-based QoS support techniques, including various

congestion control and error control mechanisms.

In Chapter 4, we presented the effective capacity channel model. We modeled a wireless

channel from the perspective of the communication link-layer. This is in contrast to existing

channel models, which characterize the wireless channel at the physical-layer. Specifically,

we modeled the wireless link in terms of two ‘effective capacity’ functions; namely, the

probability of non-empty buffer γ(µ) and the QoS exponent θ(µ). The QoS exponent is the

inverse of a function which we call effective capacity (EC). The EC channel model is the dual

of the effective bandwidth source traffic model, used in wired networks. Furthermore, we

developed a simple and efficient algorithm to estimate the EC functions {γ(µ), θ(µ)}. We

provided key insights about the relations between the EC channel model and the physical-

layer channel, i.e., γ(µ) corresponds to the marginal CDF (e.g., Rayleigh/Ricean distri-

bution) while θ(µ) is related to the Doppler spectrum. The EC channel model has been

justified not only from a theoretical viewpoint (i.e., Markov property of fading channels)
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but also from an experimental viewpoint (i.e., the delay-violation probability does decay

exponentially with the delay). We obtained link-layer QoS measures for various scenar-

ios: flat-fading channels, frequency-selective fading channels, multi-link wireless networks,

variable-bit-rate sources, packetized traffic, and wireless channels with non-negligible prop-

agation delay. The QoS measures obtained can be easily translated into traffic envelope

and service curve characterizations, which are popular in wired networks, such as ATM

and IP, to provide guaranteed services. In addition, our channel model provides a general

framework, under which physical-layer fading channels such as AWGN, Rayleigh fading,

and Ricean fading channels can be studied.

In Chapters 5 and 6, we investigated the use of our EC channel model in designing

admission control, resource reservation, and scheduling algorithms, for efficient support of

QoS guarantees.

Chapter 5 addresses the problem of QoS provisioning for K users sharing a single time-

slotted fading downlink channel. We developed simple and efficient schemes for admission

control, resource allocation, and scheduling, to obtain a gain in delay-constrained capacity.

Multiuser diversity obtained by the well-known K&H scheduling is the key that gives rise

to this performance gain. However, the unique feature of this work is explicit support of a

statistical QoS requirement, namely, a data rate, delay bound, and delay-bound violation

probability triplet, for channels utilizing K&H scheduling. The concept of effective capacity

is the key that explicitly guarantees the QoS. Thus, this work combines crucial ideas from

the areas of communication theory and queueing theory to provide the tools to increase

capacity and yet satisfy QoS constraints.

In Chapter 6, we examined the problem of providing QoS guarantees to K users over

N parallel time-varying channels. We designed simple and efficient admission control, re-

source allocation, and scheduling algorithms for guaranteeing requested QoS. We developed

two sets of scheduling algorithms, namely, joint K&H/RR scheduling and RC scheduling.

The joint K&H/RR scheduling utilizes both multiuser diversity and frequency diversity to

achieve capacity gain, and is an extension of Chapter 5. The RC scheduling is formulated

253



as a linear program, which minimizes the channel usage while satisfying users’ QoS con-

straints. The relation between the joint K&H/RR scheduling and the RC scheduling is that

1) if the admission control allocates channel resources to the RR scheduling due to tight

delay requirements, then the RC scheduler can be used to minimize channel usage; 2) if

the admission control allocates channel resources to the K&H scheduling only, due to loose

delay requirements, then there is no need to use the RC scheduler. The key features of the

RC scheduler are high efficiency, simplicity, and statistical QoS support.

In Chapter 7, we investigated practical aspects of the effective capacity approach. We

showed how to quantify the effect of practical modulation and channel coding on the ef-

fective capacity approach to QoS provisioning. We identified the fundamental trade-off

between power and time diversity in QoS provisioning over fading channels, and proposed a

novel time-diversity dependent power control scheme to leverage time diversity. Compared

to the power control used in the 3G wireless systems, our time-diversity dependent power

control can achieve a factor of 2 to 4.7 capacity gain for mobile speeds between 0.11 m/s

and 56 m/s. Equipped with the time-diversity dependent power control and the effective

capacity approach, we designed a power control and scheduling mechanism, which is ro-

bust in QoS provisioning against large scale fading and non-stationary small scale fading.

With this mechanism, we proposed QoS provisioning algorithms for downlink and uplink

transmissions, respectively. We also considered QoS provisioning for multiple users.

In Chapter 8, we introduced adaptive QoS control to achieve robustness for real-time

video communication over wireless channels. Our adaptive QoS control consists of optimal

mode selection and delay-constrained hybrid ARQ. Our optimal mode selection provides

QoS support (i.e., error resilience) on the compression layer; it is adaptive to time-varying

channel characteristics due to feedback of macroblock error ratio. Our delay-constrained

hybrid ARQ provides QoS support (i.e., reliability and bounded delay) on the link layer;

it is adaptive to time-varying wireless channel due to its consideration of the display dead-

lines of the packets. The optimal mode selection algorithm provides the best trade-off

between compression efficiency and error resilience in the rate-distortion sense, and the
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delay-constrained hybrid ARQ is capable of providing reliability for the compression layer

while guaranteeing delay bound and achieving high throughput.

The theme of our research is supporting QoS in wireless networks, with simplicity,

efficiency and practicality in mind. In conducting the research, we took both network-

centric and end-system-based approach and demonstrated the advantages of our approaches

through analyses and simulations.

The effective capacity model we proposed captures the effect of channel fading on the

queueing behavior of the link, using a computationally simple yet accurate model, and thus,

is the critical device we need to design efficient QoS provisioning mechanisms. We call such

an approach to channel modeling and QoS provisioning, as effective capacity approach.

The effective capacity approach represents a paradigm fundamentally different from

the conventional approaches to wireless networking, not only in channel modeling, but

also in QoS provisioning. Specifically, we model the wireless channel at the link layer, in

contrast to the conventional modeling at the physical layer; we use the EC channel model

to relate the control parameters of our QoS provisioning mechanisms to connection-level

QoS measures, in contrast to conventional schemes that are unable to directly relate the

control parameters of the schemes to connection-level QoS measures. As a result, our QoS

provisioning mechanisms can explicitly provide QoS guarantees, in contrast to conventional

schemes that only provide implicit QoS.

With the effective capacity approach, we are able to design schemes that efficiently and

explicitly provide statistical QoS guarantees in wireless networks as shown in Chapters 5

and 6. We also have studied the viability of the EC approach in practical situations in

Chapter 7.

Like everything else, the effective capacity approach also has its limitations. First, it

requires estimation of channel gains at the receivers, and hence the system performance

depends on the accuracy of the estimation. Second, the EC approach requires feedback

of channel estimates, which incurs signaling overhead; in addition, the BER condition and

the propagation delay of the feedback channel will degrade the system performance. Third,
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the EC approach is not suitable for AWGN channels or fading channels with low degree

of time diversity. Fourth, non-stationarity of the channel gain process, which is typical in

practical situations, makes the estimate of the QoS exponent θ(µ) inaccurate. Last but not

least, since the EC approach follows the general idea that modeling at a higher layer hides

the complexity of the lower layers, the effect of changes in the lower layers on the effective

capacity is not directly obvious.

In summary, this research introduced a novel effective-capacity approach to modeling

fading channels and provisioning QoS. Although there are still many issues to be resolved,

we believe that our EC channel model, which was specifically constructed keeping in mind

the link-layer QoS measures, will find wide applicability in future wireless networks that

need QoS provisioning.

9.2 Future Work

In this section, we point out future research directions.

Optimization of the Physical Layer Design with the Effective Capacity ap-

proach

In this dissertation, we introduced the notion of effective capacity or statistical delay-

constrained capacity of a fading channel (i.e., the maximum data rate achievable with

the delay-bound violation probability satisfied). The effective capacity can be used to

formulate optimization problems for physical-layer designs, e.g., space-time coding, orthog-

onal frequency division multiplexing (OFDM), LDPC codes, multiple input multiple output

(MIMO) systems, multiuser detection, equalization, etc. For example, one problem is to

choose one physical-layer design among multiple candidate designs so as to maximize the

effective capacity. Another problem is, for a given physical layer design, how to minimize

the transmit power or channel usage subject to the link-layer QoS constraints; the effective

capacity serves as a tool to connect the physical layer design to the link-layer performance.

Hence, based on the effective capacity approach, the physical-layer design may require a

substantial change. An example is our time-diversity dependent power control proposed in
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Chapter 7.

End-to-end Support for Statistical QoS Guarantees

The effective capacity approach and QoS measures developed in Chapter 4, can be used

to design efficient mechanisms to provide end-to-end QoS guarantees in a multihop wireless

network. This will involve developing algorithms for QoS routing, resource reservation, ad-

mission control and scheduling. The problem of QoS routing can be formulated as below:

given a network and the effective capacity function of each link, find all feasible paths that

satisfy the requested link-layer QoS, and then select the least-cost path(s) for resource reser-

vation. The effective capacity function is used to connect the path performance to the QoS

requirements requested by the users. The resource reservation and admission control can be

designed, based on the effective capacity functions of the channels in the network. Since the

existing QoS routing schemes for ad hoc networks are targeted at providing deterministic

QoS, routing for statistical QoS provisioning in ad hoc networks has not been studied, to

the best of our knowledge. We believe that the effective capacity approach will provide a

powerful tool in designing new routing schemes for statistical QoS provisioning in ad hoc

networks.

Joint Optimization for Video Communication over Wireless Channels: a

Multi-layer Approach

In Ref. [149], we presented an end-to-end approach to generalize the classical theory of

R-D optimized mode selection for point-to-point video communication, and introduced a

notion of global (end-to-end) distortion by taking into consideration both the path charac-

teristics (i.e., packet loss) and the receiver behavior (i.e., the error concealment scheme), in

addition to the source behavior (i.e., quantization distortion and packetization). In Chap-

ter 8, we applied this technique to wireless video transmission. The global distortion can

be used to formulate cross-layer optimization problems. For example, one problem is to

minimize the transmit power, subject to a constant global distortion constraint; another

problem is to minimize the global distortion, subject to average/peak power constraint.

The global distortion could be meant for a macroblock, a group of blocks (GOBs), or an
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image frame. The global distortion is a function of the bit error rate; the bit error rate

depends on the transmit power, the modulation scheme, channel coding gain, and the trans-

mission rate. Hence, to solve the cross-layer optimization problems for video transmission

over fading channels, one may use 1) adaptive power control, 2) adaptive modulation and

channel coding, 3) adaptive retransmission, and 4) adaptive source rate control. We believe

that such a joint optimization can achieve better performance than designing each layer

separately.

258



APPENDIX

A.1 A Fast Binary Search Procedure for Channel Estima-
tion

We show that the {γ(c)(µ), θ(c)(µ)} functions that specify our effective capacity channel

model, can be easily used to obtain the service curve specification Ψ(t) = {σ(c), λ
(c)
s }. The

parameter σ(c) is simply equal to the source delay requirement Dmax. Thus, only the channel

sustainable rate λ
(c)
s needs to be estimated. λ

(c)
s is the source rate µ at which the required

QoS (delay-violation probability ε) is achieved.

The following binary search procedure estimates λ
(c)
s for a given (unknown) fading chan-

nel and source specification {Dmax, ε}. In the algorithm, εe is the error between the target

and the estimated supt Pr{D(t) ≥ Dmax}, εt the precision tolerance, µ the source rate, µl

a lower bound on the source rate, and µu an upper bound on the source rate.

Algorithm A.1 (Estimation of the channel sustainable rate λ
(c)
s )

/* Initialization */

Initialize ε, εt, and εe;

/* E.g., ε = 10−3; εt = 10−2; εe = 1; */

µl := 0; /* An obvious lower bound on the rate */

µu := rawgn; /* An obvious upper bound on the rate is the AWGN capacity */

µ := (µl + µu)/2;

/* Binary search to find a λ
(c)
s that is conservative and within εt */

While ((εe/ε > εt) or (εe < 0 )) {
The data source transmits at the output rate µ;

Estimate γ̂ and θ̂ using (36) to (39);

Use Eq. (40) to obtain supt Pr{D(t) ≥ Dmax};
εe := ε − supt Pr{D(t) ≥ Dmax};
if (εe ≥ 0) { /* Conservative */
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if (εe/ε > εt) { /* Too conservative */

µl := µ; /* Increase rate */

µ := (µl + µu)/2;

}
}
else { /* Optimistic */

µu := µ; /* Reduce rate */

µ := (µl + µu)/2;

}
}
λ

(c)
s := µ.

Algorithm A.1 uses a binary search to find the channel sustainable rate λ
(c)
s . An alter-

native approach is to use a parallel search, such as the one described in Ref. [88]. A parallel

search would require more computations, but would converge faster.

A.2 Proof of Proposition 4.1

Denote ri(t) the instantaneous channel capacity of sub-channel i (i = 1, · · · , N) of the

frequency-selective fading channel, at time t. Then for u ≥ 0, we have

αN (u)
(a)
= − lim

t→∞
1
ut

log E[e−u
∫ t
0 rN (τ)dτ ]

(b)
= − lim

t→∞
1
ut

log E[e−u
∫ t
0

1
N

∑N
i=1 ri(τ)dτ ]

(c)
= − lim

t→∞
1
ut

log(E[e−u
∫ t
0

1
N

r1(τ)dτ ])N

= − lim
t→∞

1
t u
N

log E[e−
u
N

∫ t
0 r1(τ)dτ ]

(d)
= α1(

u

N
) (223)

where (a) from (75), (b) since rN (t) = 1
N

∑N
i=1 ri(t), (c) since ri(t) (i = 1, · · · , N) are i.i.d.,

and (d) from (76). Then by αN (u) = α1( u
N ) .= µ, we have

u = α−1
N (µ) (224)
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and
u

N
= α−1

1 (µ). (225)

Removing u in (224) and (225) results in

α−1
N (µ) = N × α−1

1 (µ) (226)

Thus, we have

θ
(c)
N (µ)

(a)
= µα−1

N (µ)

(b)
= µ × N × α−1

1 (µ)

(c)
= N × θ

(c)
1 (µ) (227)

where (a) from (77), (b) from (226), and (c) from (78). This completes the proof.

A.3 Proof of Proposition 4.2

Denote Qk(t) the queue length at time t at node k (k = 1, · · · ,K), Q(t) the end-to-end

queue length at time t, Q(∞) the steady state of the end-to-end queue length, A(t0, t) the

amount of arrival to node 1 (see Figure 40) over the time interval [t0, t]. Define S̃k(t0, t) =∫ t
t0

rk(τ)dτ , which is the service provided by channel k over the time interval [t0, t].

We first prove an upper bound. It can be proved [167, page 81] that

Q(t) =
K∑

k=1

Qk(t) = sup
0≤t0≤t

{
A(t0, t) − S̃(t0, t)

}
(228)

where S̃(t0, t) is defined by (85). Without loss of generality, we consider the discrete time

case only, i.e., t ∈ N, where N is the set of natural numbers. From (228) and Loynes

Theorem [85], we obtain

Q(∞) = sup
t∈N

{
A(0, t) − S̃(0, t)

}
= sup

t∈N

{
µt − S̃(0, t)

}
(229)
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Then, we have

Pr {Q(∞) > q} = Pr

{
sup
t∈N

{
µt − S̃(0, t)

}
> q

}
(230)

(a)

≤ Pr

{⋃
t∈N

{
µt − S̃(0, t) > q

}}
(231)

(b)

≤
∑
t∈N

Pr
{
µt − S̃(0, t) > q

}
(232)

(c)

≤
∑
t∈N

e−uqE[eu(µt−S̃(0,t))] (233)

where (a) since the event
{
supt∈N

{
µt − S̃(0, t)

}
> q
}

⊂ ⋃t∈N

{
µt − S̃(0, t) > q

}
, (b) is

due to the union bound, and (c) from the Chernoff bound. Since α(u) = −Λtandem(−u)/u,

we have

α(u) = − lim
t→∞

1
ut

log E[e−uS̃(0,t)], ∀ u > 0, (234)

Hence, for any ε > 0, there exists a number t̃ > 0 such that for t ≥ t̃, we have

E[e−uS̃(0,t)] ≤ eu(−α(u)+ε)t, ∀u > 0. (235)

If µ + ε < α(u), we have

∑
t∈N

e−uqE[eu(µt−S̃(0,t))]
(a)

≤
∑
t≥t̃

e−uqeu(µ−α(u)+ε)t +
t̃−1∑
t=1

e−uqE[eu(µt−S̃(0,t))] (236)

(b)

≤ e−uq ×

 eu(µ−α(u)+ε)t̃

1 − eu(µ−α(u)+ε)
+

t̃−1∑
t=1

E[eu(µt−S̃(0,t))]


 (237)

where (a) from (235), and (b) from geometric sum. From (233) and (237), we have

Pr {Q(∞) > q} ≤ γ × e−uq, if µ + ε < α(u), (238)

where γ is a constant independent of q. Hence, we obtain

lim sup
q→∞

1
q

log Pr {Q(∞) > q} ≤ −u, if µ + ε < α(u). (239)

Letting ε → 0, we have

lim sup
q→∞

1
q

log Pr {Q(∞) > q} ≤ −u, if µ < α(u). (240)
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Since Q(t) = µ × D(t), ∀t ≥ 0, (240) results in

lim sup
Dmax→∞

1
Dmax

log Pr{D(∞) > Dmax} ≤ −µ × u, if µ < α(u). (241)

Let θ = µ × u. Then (241) becomes (88).

Next we prove a lower bound. Let q = βt where β > 0. Then, we have

lim inf
q→∞

1
q

log Pr {Q(∞) > q} = lim inf
t→∞

1
βt

log Pr {Q(∞) > βt} (242)

= lim inf
t→∞

1
βt

log Pr

{
sup
t∈N

{
µt − S̃(0, t)

}
> βt

}
(243)

≥ lim inf
t→∞

1
βt

log Pr
{
µt − S̃(0, t) > βt

}
(244)

= lim inf
t→∞

1
βt

log Pr

{
−S̃(0, t)

t
> β − µ

}
(245)

(a)

≥ − 1
β

inf
x>β−µ

Λ∗(x) (246)

where (a) from Gärtner-Ellis Theorem [24] since Λtandem(u) satisfies Property 4.1, and the

Legendre-Fenchel transform Λ∗(x) of Λtandem(−u) is defined by

Λ∗(x) = sup
u∈R

{u × x − Λtandem(−u)}. (247)

Since (246) holds for any β > 0, we have

lim inf
q→∞

1
q

log Pr {Q(∞) > q} ≥ sup
β>0

− 1
β

inf
x>β−µ

Λ∗(x) (248)

= − inf
y>−µ

Λ∗(y)
y + µ

(249)

It can be proved [38] that

inf
y>−µ

Λ∗(y)
y + µ

= u∗, where Λtandem(−u∗) = −µ × u∗. (250)

From the definition of effective capacity α(u) in (234), Λtandem(−u∗) = −µ × u∗ implies

α(u∗) = µ. Then, applying (250) to (249) leads to

lim inf
q→∞

1
q

log Pr {Q(∞) > q} ≥ u∗, where α(u∗) = µ. (251)

Due to the continuity of α(u), we have

lim
u→u∗ α(u) = µ (252)
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Hence, letting u → u∗, (240) and (251) result in

u∗ ≤ lim inf
q→∞

1
q

log Pr {Q(∞) > q} ≤ lim sup
q→∞

1
q

log Pr {Q(∞) > q} ≤ u∗ (253)

Hence, we have

lim
q→∞

1
q

log Pr {Q(∞) > q} = u∗, where α(u∗) = µ. (254)

Since Q(t) = µ × D(t), ∀t ≥ 0, (254) results in

lim
Dmax→∞

1
Dmax

log Pr{D(∞) > Dmax} = −µ × u∗, where α(u∗) = µ. (255)

Let θ∗ = µ × u∗. Then (255) becomes (89).

From (85), it is obvious that

S̃(t0, t) ≤ min
k

S̃k(t0, t). (256)

Then we have for u > 0,

α(u) = − lim
t→∞

1
ut

log E[e−uS̃(0,t)] (257)

(a)

≤ − lim
t→∞

1
ut

log E[e−u mink S̃k(0,t)] (258)

≤ min
k

− lim
t→∞

1
ut

log E[e−uS̃k(0,t)] (259)

= min
k

αk(u) (260)

where (a) from (256). This completes the proof.

A.4 Proof of Proposition 4.3

Denote rk(t) (k = 1, · · · ,K) channel capacity of link k at time t. From Figure 41, it is

clear that the network has only one queue and multiple servers, each of which corresponds

to a wireless link. Since the total instantaneous channel capacity r(t) =
∑K

k=1 rk(t), the
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effective capacity function for the aggregate parallel links is

α(u)
(a)
= − lim

t→∞
1
ut

log E[e−u
∫ t
0 r(τ)dτ ]

= − lim
t→∞

1
ut

log E[e−u
∫ t
0

∑K
k=1 rk(τ)dτ ]

(b)
= − lim

t→∞
1
ut

K∑
k=1

log E[e−u
∫ t
0

rk(τ)dτ ]

(c)
=

K∑
k=1

αk(u) (261)

where (a) from (28), (b) since {rk(t), k = 1, · · · ,K} are independent, and (c) from (87).

Given the effective capacity α(u), we can prove (91) and (92) with the same technique

used in proving (88) and (89). This completes the proof.

A.5 Proof of Proposition 4.4

For the traffic of constant rate λ
(s)
s , denote Q̃(∞) the steady state of the end-to-end queue

length and D̃(∞) the end-to-end delay. Using the result in [76, page 30]), we can show

D(∞) − D̃(∞) ≤ σ(s)/λ(s)
s , (262)

Note that D(∞) is the end-to-end delay experienced by the traffic constrained by a leaky

bucket with bucket size σ(s) and token generating rate λ
(s)
s . Hence, we have

D(∞) ≤ D̃(∞) + σ(s)/λ(s)
s , (263)

From (238) and Q̃(∞) = λ
(s)
s × D̃(∞), we have

Pr
{

D̃(∞) > Dmax

}
≤ γ × e−u×λ

(s)
s ×Dmax , if α(u) > λ

(s)
s , (264)

where γ is a constant independent of Dmax. Then, we have

Pr {D(∞) > Dmax} (a)
= Pr

{
D̃(∞) > Dmax − σ(s)/λ(s)

s

}
(b)

≤ γ × e−u×λ
(s)
s ×(Dmax−σ(s)/λ

(s)
s ) (265)

where (a) from (263), and (b) from (264). Hence, we have

lim sup
Dmax→∞

1

Dmax − σ(s)/λ
(s)
s

log Pr{D(∞) > Dmax} ≤ −θ, if α(θ/λ
(s)
s ) > λ

(s)
s . (266)
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Similar to the proof of Proposition 4.2, we can obtain a lower bound

lim inf
Dmax→∞

1

Dmax − σ(s)/λ
(s)
s

log Pr{D(∞) > Dmax} ≥ −θ∗, where α(θ∗/λ(s)
s ) = λ

(s)
s .

(267)

Combining (266) and (267), we obtain (94). This completes the proof.

A.6 Proof of Proposition 4.5

The proof is similar to that of Proposition 4.2.

Denote Q(t) the end-to-end queue length at time t, Q(∞) the steady state of the end-

to-end queue length, A(t0, t) the amount of external arrival to the network over the time

interval [t0, t]. From (228), we know

Q(t) = sup
0≤t0≤t

{
A(t0, t) − S̃(t0, t)

}
(268)

where S̃(t0, t) is defined by (85) for the tandem links, and is defined by S̃(t0, t) =
∫ t
0

∑K
k=1 rk(τ)dτ

for independent parallel links.

We first prove an upper bound. Without loss of generality, we consider the discrete

time case only, i.e., t ∈ N, where N is the set of natural numbers. From (268) and Loynes

Theorem [85], we obtain

Q(∞) = sup
t∈N

{
A(0, t) − S̃(0, t)

}
(269)

Then, we have

Pr {Q(∞) > q} = Pr

{
sup
t∈N

{
A(0, t) − S̃(0, t)

}
> q

}
(270)

≤ Pr

{⋃
t∈N

{
A(0, t) − S̃(0, t) > q

}}
(271)

≤
∑
t∈N

Pr
{
A(0, t) − S̃(0, t) > q

}
(272)

≤
∑
t∈N

e−uqE[eu(A(0,t)−S̃(0,t))] (273)

From the definition of effective capacity in (234), for any ε/2 > 0, there exists a number

t̃ > 0 such that for t ≥ t̃, we have

E[e−uS̃(0,t)] ≤ eu(−α(u)+ε/2)t, ∀u > 0. (274)
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Similarly, from the definition of effective bandwidth in (22), for any ε/2 > 0, there exists a

number t̃ > 0 such that for t ≥ t̃, we have

E[euA(0,t)] ≤ eu(α(s)(u)+ε/2)t, ∀u > 0. (275)

Without loss of generality, here we choose the same t̃ for both (274) and (275), since

we can always choose the maximum of the two to make (274) and (275) hold. Then, if

α(s)(u) + ε < α(u), we have

∑
t∈N

e−uqE[eu(A(0,t)−S̃(0,t))]
(a)

≤
∑
t≥t̃

e−uqeu(α(s)(u)−α(u)+ε)t +
t̃−1∑
t=1

e−uqE[eu(A(0,t)−S̃(0,t))] (276)

≤ e−uq ×

 eu(α(s)(u)−α(u)+ε)t̃

1 − eu(α(s)(u)−α(u)+ε)
+

t̃−1∑
t=1

E[eu(A(0,t)−S̃(0,t))]


 (277)

where (a) from (274) and (275). From (273) and (277), we have

lim sup
q→∞

1
q

log Pr {Q(∞) > q} ≤ −u, if α(s)(u) + ε < α(u). (278)

Letting ε → 0, we have

lim sup
q→∞

1
q

log Pr {Q(∞) > q} ≤ −u, if α(s)(u) < α(u). (279)

Similar to the proof of Proposition 4.2, we can obtain a lower bound

lim inf
q→∞

1
q

log Pr {Q(∞) > q} ≥ −u∗, where α(s)(u∗) = α(u∗). (280)

Combining (279) and (280), we have

lim
q→∞

1
q

log Pr {Q(∞) > q} = −u∗, where α(s)(u∗) = α(u∗). (281)

Since Q(∞) = α(s)(u∗) × D(∞), (281) results in (97). This completes the proof.

A.7 Proof of Proposition 4.6

For the packetized traffic, denote Qk(t) the queue length at time t at node k (k = 1, · · · , N),

Q(t) the end-to-end queue length at time t, and Q(∞) the steady state of the end-to-end

queue length. Correspondingly, for the ‘fluid’ traffic of constant arrival rate µ, denote Q̃k(t)
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the queue length at time t at node k, Q̃(t) the end-to-end queue length at time t, Q̃(∞)

the steady state of the end-to-end queue length, and D̃(∞) the end-to-end delay.

For each node k, we have the sample path relation as below [99]

Qk(t) − Q̃k(t) ≤ Lc, ∀t ≥ 0. (282)

Summing up over k, we obtain

N∑
k=1

[Qk(t) − Q̃k(t)] = Q(t) − Q̃(t) ≤ N × Lc, ∀t ≥ 0. (283)

Hence, for the steady state, we have

Q(∞) − Q̃(∞) ≤ N × Lc. (284)

Since Q(∞) = µ × D(∞) and Q̃(∞) = µ × D̃(∞), we have

D(∞) − D̃(∞) ≤ N × Lc/µ. (285)

Note that D(∞) is the end-to-end delay experienced by the packetized traffic with constant

bit rate µ and constant packet size Lc. Then, we can prove (98) in the same way as we

prove (94) in Proposition 4.4.

A.8 Proof of Proposition 4.7

Denote D̃(∞) the end-to-end delay experienced by the ‘fluid’ traffic with constant arrival

rate λ
(s)
s . Using the sample path relation in [76, page 35]), we obtain

D(∞) − D̃(∞) ≤ N × Lmax/λ(s)
s + σ(s)/λ(s)

s , (286)

Note that D(∞) is the end-to-end delay experienced by the packetized traffic having max-

imum packet size Lmax and constrained by a leaky bucket with bucket size σ(s) and token

generating rate λ
(s)
s . Then, we can prove (100) in the same way as we prove (94) in Propo-

sition 4.4.
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A.9 Proof of Proposition 4.8

Denote D̃(∞) the end-to-end delay experienced by the fluid traffic with constant arrival

rate µ and without propagation delay. Using the sample path relation between the two

cases (with/without propagation delay), it is easy to show

D(∞) − D̃(∞) ≤
N∑

i=1

di, (287)

Then, we can prove (102) in the same way as we prove (94) in Proposition 4.4.

A.10 Proof of Proposition 4.9

Denote D̃(∞) the end-to-end delay experienced by the ‘fluid’ traffic with constant arrival

rate λ
(s)
s and without propagation delay. Using the sample path relation in [76, page 35]),

we obtain

D(∞) − D̃(∞) ≤ N × Lmax/λ(s)
s + σ(s)/λ(s)

s +
N∑

i=1

di, (288)

Then, we can prove (104) in the same way as we prove (94) in Proposition 4.4.

A.11 Proof of Proposition 5.1

In this proof, the time index t for channel gains and capacities is dropped, due to the

assumption of stationarity of the channel gains. Without loss of generality, the expectation

of channel power gain gk can be normalized to one, i.e., E[gk] = 1,∀k. Then, for Rayleigh

fading channels, the CDF of each channel power gain gk is

FG(g) = 1 − e−g. (289)

For low SNR, i.e., very small gk, the channel capacity of the kth user can be approximated

by

ck = log2(1 + gk) ≈ gk. (290)
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Then we have

cmax/E[c1] = E[max[c1, c2, · · · , cK ]]/E[c1] (291)

≈ E[max[g1, g2, · · · , gK ]]/E[g1] (292)

(a)
=
∫ ∞

0
gd(FK

G (g)) (293)

=
∫ ∞

0
(1 − FK

G (g))dg (294)

=
∫ ∞

0
(1 − FG(g))

(1 − FK
G (g))

(1 − FG(g))
dg (295)

=
∫ ∞

0
e−g(FK−1

G (g) + FK−2
G (g) + · · · + 1)dg (296)

=
∫ ∞

0
(FK−1

G (g) + FK−2
G (g) + · · · + 1)dFG(g) (297)

= 1 +
1
2

+ · · · + 1
K

(298)

where (a) follows from the fact that the CDF of the random variable max[g1, g2, · · · , gK ] is

FK
G (g) [112, page 248], and E[g1] = 1. It can be easily proved that

log(K + 1) ≤
K∑

k=1

1
k
≤ 1 + log K. (299)

So for large K, we can approximate
∑K

k=1
1
k by log(K + 1). This completes the proof.

A.12 Proof of Proposition 5.2

We use the notation in Section 5.3.1.2. From (28), we have

αK,ζ,β(u) = − lim
t→∞

1
ut

log E[e−u
∫ t
0

r(τ)dτ ], ∀ u ≥ 0. (300)

In Chapter 5, since t is a discrete frame index, the integral above should be thought of as

a summation.

Since we only consider the homogeneous case, without loss of generality, denote αK,λζ,λβ(u)

the effective capacity function of user k = 1 under K&H/RR scheduling, with frame shares

λζ and λβ respectively (λ > 0). Denote the resulting capacity process allotted to user 1 by
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the joint scheduler as the process r̂(t). Then for u ≥ 0, we have

αK,λζ,λβ(u)
(a)
=

− limt→∞ 1
t log E[e−u

∫ t
0

r̂(τ)dτ ]
u

(b)
=

− limt→∞ 1
t log E[e−u

∫ t
0

λr(τ)dτ ]
u

=
− limt→∞ λ

t log E[e−(λu)
∫ t
0 r(τ)dτ ]

λu
(c)
= λ × αK,ζ,β(λu) (301)

where (a) from (28), (b) using r̂(t) = λr(t), which is obtained via (120), and (c) from (300).

Then by αK,λζ,λβ(u) = λ × αK,ζ,β(λu) .= λµ, we have

u = α−1
K,λζ,λβ(λµ) (302)

and

λu = α−1
K,ζ,β(µ). (303)

Removing u in (302) and (303) results in

α−1
K,ζ,β(µ) = λ × α−1

K,λζ,λβ(λµ) (304)

Thus, we have

θK,ζ,β(µ)
(a)
= µ × α−1

K,ζ,β(µ)

(b)
= µ × λ × α−1

K,λζ,λβ(λµ)

(c)
= θK,λζ,λβ(λµ) (305)

where (a) from (30), (b) from (304), and (c) from (30). This completes the proof.

A.13 Proof of Proposition 6.1

We prove it by contradiction. Suppose there exists a channel assignment {wk,n(t) : k =

1, · · · ,K;n = 1, · · · , N} such that
∑K

k=1

∑N
n=1 wk,n(t) < N and

∑N
n=1 wk,n(t)ck,n(t) ≥∑N

n=1 1(k = k∗(n, t))ck,n(t),∀k where k∗(n, t) is the index of the user whose capacity ck,n(t)

is the largest among K users, for channel n, and 1(·) is an indicator function such that

1(k = a) = 1 if k = a, and 1(k = a) = 0 if k �= a. Since
∑K

k=1

∑N
n=1 wk,n(t) < N and
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∑K
k=1 wk,n(t) ≤ 1,∀n [see (140)], there must exist {w̃k,n(t) : k = 1, · · · ,K;n = 1, · · · , N}

such that
∑K

k=1

∑N
n=1 w̃k,n(t) = N ,

∑K
k=1 w̃k,n(t) = 1,∀n and w̃k,n(t) ≥ wk,n(t). Then, we

have

K∑
k=1

N∑
n=1

w̃k,n(t)ck,n(t) >

K∑
k=1

N∑
n=1

wk,n(t)ck,n(t) (306)

≥
K∑

k=1

N∑
n=1

1(k = k∗(n, t))ck,n(t) (307)

=
N∑

n=1

ck∗(n,t),n(t) (308)

That is,

K∑
k=1

N∑
n=1

w̃k,n(t)ck,n(t) >

N∑
n=1

ck∗(n,t),n(t) (309)

On the other hand, since
∑K

k=1 w̃k,n(t) = 1,∀n, we have
∑K

k=1 w̃k,n(t)ck,n(t) ≤ ck∗(n,t),n(t),∀n.

Hence,

N∑
n=1

K∑
k=1

w̃k,n(t)ck,n(t) ≤
N∑

n=1

ck∗(n,t),n(t) (310)

(309) and (310) are contradictory.

A.14 Proof of Proposition 6.2

By definition of k∗(n, t), the capacities ck∗(n,t),n(t) are independent of {ck,n(t), k ≤ K}, and

hence is independent of {wk,n(t), k ≤ K}. Thus, (146) becomes

Cexp =
N∑

n=1

[(
1 − E

[
K∑

k=1

wk,n(t)

])
Eck∗(n,t),n(t)

]

(a)
= E[ck∗(n,t),n(t)] ×

(
N − E

N∑
n=1

K∑
k=1

wk,n(t)

)

= E[ck∗(n,t),n(t)] × (N − N × η(K,N))

where (a) is due to the fact that ck,n(t) (k = K + 1, · · · ,K + KB) are i.i.d. and strict-

sense stationary, and hence ck∗(n,t),n(t) are i.i.d and strict-sense stationary. Therefore,

minimizing the expected channel usage η(K,N) is equivalent to maximizing the available

expected capacity Cexp.
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A.15 Proof of Proposition 6.3

It is clear that the minimum value of the objective (138) under the constraint of (139) and

(141) is a lower bound on that of (138) under the constraints of (139) through (141). The

solution for (138), (139) and (141), is simply that each user only chooses its best channel to

transmit (even though the total usage of a channel by all users could be more than 1), i.e.,

wk,n(t) =
∑N

m=1 ξk,mck,m(t)
ck,n(t)

× 1(n = n̄(k, t)), ∀k,∀n (311)

where n̄(k, t) is the index of the channel whose capacity ck,n(t) is the largest among N

channels for user k. So we get η(K,N) for the scheduler specified by (138) through (141)

as below,

η(K,N)
(a)
=

E[
∑K

k=1

∑N
n=1 wk,n(t)]

N

(b)

≥
E[
∑K

k=1(
∑N

n=1 ξk,nck,n(t)
ck,n̄(k,t)(t)

)]

N

(c)
=

(
∑K

k=1 Nξk,n)E[
∑N

n=1 ck,n/N
cmax

]
N

(d)
= E[

cmean

cmax
]

where (a) due to the fact that ck,n(t) are stationary, thereby wk,n(t) being stationary, (b)

since the assignment in (311) gives a lower bound, (c) since ck,n(t) are i.i.d. and stationary,

and (d) due to (147). This completes the proof.

A.16 Proof of Proposition 6.4

We first present a lemma and then prove Proposition 6.4.

Let γ = P0/σ
2. Denote g1 and g2 channel power gains of two fading channels, respec-

tively. Lemma A.1 says that for fixed channel gain ratio g1/g2 > 1, the corresponding

capacity ratio log(1 + γ × g2)/ log(1 + γ × g1) monotonically increases from g2/g1 to 1, as

average SNR γ increases from 0 to ∞.

Lemma A.1 If g1 > g2 > 0, then log(1 + γ × g2)/ log(1 + γ × g1) monotonically increases

from g2/g1 to 1, as γ increases from 0 to ∞.
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Proof: We prove it by considering three cases: 1) 0 < γ < ∞, 2) γ = 0, and 3) γ → ∞.

Case 1: 0 < γ < ∞
Define f(γ) = log(1 + γg2)/ log(1 + γg1). To prove the lemma for Case 1, we only need to

show f ′(γ) > 0 for γ > 0. Taking the derivative results in

f ′(γ) =
g2

1+γg2
log(1 + γg1) − g1

1+γg1
log(1 + γg2)

log2(1 + γg1)
(312)

Since log2(1 + γg1) > 0 for γ > 0, we only need to show

g2

1 + γg2
log(1 + γg1) >

g1

1 + γg1
log(1 + γg2) (313)

or equivalently, that,

g2

(1+γg2) log(1+γg2)
g1

(1+γg1) log(1+γg1)

> 1 (314)

Define h(x) = x
(1+γx) log(1+γx) . If h′(x) < 0 for x > 0, then g1 > g2 > 0 implies 0 < h(g1) <

h(g2), i.e., h(g2)/h(g1) > 1, which is the inequality in (314). So we only need to show

h′(x) < 0 for x > 0. Taking the derivative, we have

h′(x) =
1+γx−γx
(1+γx)2

log(1 + γx) − γ
1+γx

x
1+γx

log2(1 + γx)
(315)

=
1

(1+γx)2
(log(1 + γx) − γx)

log2(1 + γx)
(316)

For γ > 0 and x > 0, we have log(1 + γx) − γx < 0, which implies h′(x) < 0.

Case 2: γ = 0

lim
γ→0

f(γ)
(a)
= lim

γ→0

g2

1+γg2
g1

1+γg1

=
g2

g1
(317)

where (a) is from L’Hospital’s rule.

Case 3: γ → ∞
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lim
γ→∞ f(γ)

(a)
= lim

γ→∞

g2

1+γg2
g1

1+γg1

(318)

= lim
γ→∞

g2(1 + γg1)
g1(1 + γg2)

(319)

(b)
=

g2

g1
× g1

g2
(320)

= 1 (321)

where (a) and (b) are from L’Hospital’s rule.

Combining Cases 1 to 3, we complete the proof.

Next, we prove Proposition 6.4.

Proof of Proposition 6.4: From the definition of cmax, we have

cmax = max
n∈{1,2,··· ,N}

c1,n

= max
n∈{1,2,··· ,N}

log(1 + γ × g1,n)

= log(1 + γ × gmax) (322)

where gmax = maxn∈{1,2,··· ,N} g1,n. Also, from the definition of cmean, we get

cmean =
1
N

N∑
n=1

c1,n

=
1
N

N∑
n=1

log(1 + γ × g1,n)

= log(1 + γ × gmean) (323)

where

gmean =
1
γ

(
N∏

n=1

(1 + γ × g1,n)1/N − 1) (324)

It is obvious that gmax > gmean > 0. So from Lemma A.1, we have log(1+γ×gmean)/ log(1+

γ × gmax), i.e., cmean/cmax, monotonically increases from gmean/gmax to 1, as γ increases

from 0 to ∞. Hence, E[cmean/cmax] monotonically increases from E[gmean/gmax] to 1, as γ

increases from 0 to ∞.
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A.17 Facts

Fact A.1 Suppose that events Ai form a partition of event A and events Bij form a par-

tition of Ai. Denote pi the probability of event Ai and qj the conditional probability of an

event Bij assuming Ai. Define a random variable x on A and a random variable yi on Ai.

Then we have

E{x} =
∑

i

(pi · E{yi}). (325)

A.18 Proof of Proposition 8.1

From Eq. (208), one can easily obtain Eq. (211). Note that due to the random nature of the

channel characteristics, f̂N
sj at the receiver is a random variable while fN

sj is not a random

variable.

To see that Eq. (212) holds, we consider the following two cases based on the position

of Fn
i .

• Case 1: Suppose that Fn
i only has Fn

ĩ
or Fn

ī
(e.g., Fn

i is located at the top/bottom

of the frame), i.e., Fn
i ∈ Gn. According to the packet loss behavior, there are three

cases for the random variable f̂n
ij as follows.

– Subcase 1.1: Suppose that F̄n
i is received correctly. Then we have f̂n

ij = f̃n
ij, and

the probability of this event is 1 − pd.

– Subcase 1.2: For simplicity, we only show the situation where Fn
i is located at

the top of the frame. The situation where Fn
i is located at the bottom of the

frame is the same.

Suppose that F̄n
i is corrupted and the MB below (i.e., F̄n

ĩ
) has been received

correctly. Then due to our error concealment scheme, the corrupted pixel j in

Fn
i is concealed by the pixel in frame n−1, which is pointed by the motion vector

of F̄n
ĩ
. Since this pixel is denoted by pixel l in macroblock m of frame n− 1 (see

Table 3), then we have f̂n
ij = f̂n−1

ml , and the probability of this event is pd ·(1−pd).
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Since f̂n−1
ml is also a random variable, from Fact A.1 (see Appendix A.17), the

expectation of f̂n−1
ml should be chosen in computing the expectation of f̂n

ij. So

we have f̂n
ij = E{f̂n−1

ml }.

– Subcase 1.3: For simplicity, we only show the situation where Fn
i is located at

the top of the frame. The situation where Fn
i is located at the bottom of the

frame is the same.

Suppose that F̄n
i and F̄n

ĩ
are all corrupted. Since F̄n

ĩ
is corrupted, the estimated

motion vector of the corrupted Fn
i is set to zero. Then the corrupted pixel j in Fn

i

is concealed by pixel j in Fn−1
i . Thus, we have f̂n

ij = f̂n−1
ij , and the probability

of this event is p2
d. Since f̂n−1

ij is also a random variable, from Fact A.1, the

expectation of f̂n−1
ij should be chosen in computing the expectation of f̂n

ij. So

we have f̂n
ij = E{f̂n−1

ij }.

Based on the analysis of Subcases 1.1 to 1.3, the expectation of f̂n
ij can be given by

E{f̂n
ij} = (1 − pd) · f̃n

ij + pd · (1 − pd) · E{f̂n−1
ml } + p2

d · E{f̂n−1
ij }. (326)

• Case 2: Suppose that Fn
i has both Fn

ī
and Fn

ĩ
(e.g., Fn

i is not located at the

top/bottom of the frame), i.e., Fn
i /∈ Gn.

According to the packet loss behavior, there are three cases for the random variable

f̂n
ij as follows.

– Subcase 2.1: Suppose that F̄n
i is received correctly. Then we have f̂n

ij = f̃n
ij, and

the probability of this event is 1 − pd.

– Subcase 2.2: Suppose that F̄n
i is corrupted and the MB above and/or below

(i.e., F̄n
ī

and/or F̄n
ĩ
) have/has been received correctly. Then due to our error

concealment scheme, the corrupted pixel j in Fn
i is concealed by the pixel in

frame n− 1, which is pointed by the motion vector of F̄n
ī

or F̄n
ĩ
. Since this pixel

is denoted by pixel l in macroblock m of frame n − 1, then we have f̂n
ij = f̂n−1

ml ,

and the probability of this event is pd · (1 − p2
d). Since f̂n−1

ml is also a random
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variable, from Fact A.1, the expectation of f̂n−1
ml should be chosen in computing

the expectation of f̂n
ij. So we have f̂n

ij = E{f̂n−1
ml }.

– Subcase 2.3: Suppose that F̄n
i , F̄n

ī
, and F̄n

ĩ
are all corrupted. Since the MBs

above and below Fn
i are corrupted, the estimated motion vector of the corrupted

Fn
i is set to zero. Then the corrupted pixel j in Fn

i is concealed by pixel j in

Fn−1
i . Thus, we have f̂n

ij = f̂n−1
ij , and the probability of this event is p3

d. Since

f̂n−1
ij is also a random variable, from Fact A.1, the expectation of f̂n−1

ij should

be chosen in computing the expectation of f̂n
ij . So we have f̂n

ij = E{f̂n−1
ij }.

Based on the analysis of Subcases 2.1 to 2.3, the expectation of f̂n
ij can be given by

E[f̂n
ij] = (1 − pd) · f̃n

ij + pd · (1 − p2
d) · E{f̂n−1

ml } + p3
d · E{f̂n−1

ij } (327)

Combining Cases 1 and 2 above, we complete the proof of Eq. (212).

The proof for Eq. (213) is similar to that for Eq. (212).

A.19 Proof of Proposition 8.2

Similar to the derivation of Eq. (211), we have Eq. (214). To see that Eqs. (215) and

(216) hold, we can also use the same way as that to derive Eqs. (212) and (213). The only

difference is the case where F̄n
i is received correctly. In this case, under the inter code, we

have f̂n
ij = ẽn

ij + f̂n−1
uv , which is Eq. (210).
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