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Abstract

An important objective of next-generation wireless networks is to provide quality of service

(QoS) guarantees. This requires a simple and efficient wireless channel model that can easily trans-

late into connection-level QoS measures such as data rate, delay and delay-violation probability. To

achieve this, in [8], we developed a link-layer channel model termed effective capacity, for the setting

of a single hop, constant-bit-rate arrivals, fluid traffic, and wireless channels with negligible prop-

agation delay. In this paper, we apply the effective capacity technique to deriving QoS measures

for more general situations, namely, 1) networks with multiple wireless links, 2) variable-bit-rate

sources, 3) packetized traffic, and 4) wireless channels with non-negligible propagation delay.
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Figure 1: A wireless communication system.

1 Introduction

Providing QoS guarantees is crucial in the development of next-generation packet-based

wireless communication networks [4]. To support QoS guarantees, QoS provisioning mecha-

nisms are required. A major problem in designing QoS provisioning mechanisms is the high

complexity in characterizing the relation between the control parameters of QoS provision-

ing mechanisms, and the calculated QoS measures, based on existing channel models, i.e.,

physical-layer channel models (see Fig. 1). This is because the physical-layer channel models

(e.g., Rayleigh fading model with a specified Doppler spectrum) do not explicitly character-

ize a wireless channel in terms of the link-level QoS metrics specified by users, such as data

rate, delay and delay-violation probability. To use the physical-layer channel models for QoS

support, we first need to estimate the parameters for the channel model, and then extract

the link-level QoS metrics from the model. This two-step approach is obviously complex,

and may lead to inaccuracies due to possible approximations in extracting QoS metrics from

the models.

Recognizing that the limitation of physical-layer channel models in QoS support, is the
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difficulty in analyzing queues using them, in [8], we proposed moving the channel model up

the protocol stack, from the physical-layer to the link-layer. We call the resulting model an

effective capacity (EC) channel model [8], because it captures a generalized link-level capacity

notion of the fading channel. Figure 1 illustrates the difference between the conventional

physical-layer channel and the link-layer channel. In [8], we presented the EC channel model

under the setting of a single hop, constant-bit-rate arrivals, fluid traffic, and wireless channels

with negligible propagation delay; in this paper, we use the effective capacity technique to

derive QoS measures for more general situations, namely, 1) networks with multiple wireless

links, 2) variable-bit-rate sources, 3) packetized traffic, and 4) wireless channels with non-

negligible propagation delay.

The remainder of this paper is organized as follows. In Section 2, we present preliminary

results to familiarize the reader with the effective capacity technique. Sections 3 to 6 present

effective capacity-based QoS measures for networks with multiple wireless links, variable-bit-

rate sources, packetized traffic, and wireless channels with non-negligible propagation delay,

respectively. Section 7 concludes the paper.

2 Preliminaries

We first formally define statistical QoS, which characterizes the requirement of a user. First,

consider a single-hop system, where the user is allotted a single time varying channel. Assume

that the user source has a fixed rate rs and a specified delay bound Dmax, and requires that

the delay-bound violation probability is not greater than a certain value ε, that is,

Pr{D(∞) > Dmax} ≤ ε, (1)

where D(∞) is the steady-state delay experienced by a flow, and Pr{D(∞) > Dmax} is the

probability of D(∞) exceeding a delay bound Dmax. Then, we say that the user is specified

by the (statistical) QoS triplet {rs, Dmax, ε}. Even for this simple case, it is not immediately

obvious as to which QoS triplets are feasible, for the given channel, since a rather complex

queueing system (with an arbitrary channel capacity process) will need to be analyzed. The

key contribution of [8] was to introduce a concept of statistical delay-constrained capacity
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Figure 2: A queueing system model.

termed effective capacity, which allows us to obtain a simple and efficient test, to check the

feasibility of QoS triplets for a single time-varying channel. That paper did not deal with

general situations, e.g., networks with multiple wireless links and multi-hops, variable-bit-

rate sources, packetized traffic, and wireless channels with non-negligible propagation delay,

which we consider in this paper.

Next, we briefly explain the concept of effective capacity, and refer the reader to [8] for

details.

Let r(t) be the instantaneous channel capacity at time t. Assume that, the asymptotic

log-moment generation function of r(t)

Λ(−u) = lim
t→∞

1

t
log E[e−u

∫ t
0 r(τ)dτ ] (2)

exists for all u ≥ 0. Then, the effective capacity function of r(t) is defined as

α(u) =
−Λ(−u)

u
, ∀ u > 0. (3)

That is,

α(u) = − lim
t→∞

1

ut
log E[e−u

∫ t
0

r(τ)dτ ], ∀ u > 0. (4)

Consider a queue of infinite buffer size supplied by a data source of constant data rate

µ (see Fig. 2). It can be shown [8] that if α(u) indeed exists (e.g., for ergodic, stationary,

Markovian r(t)), then the probability of D(∞) exceeding a delay bound Dmax satisfies

Pr{D(∞) > Dmax} ≈ e−θ(µ)Dmax , (5)
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where the function θ(µ) of source rate µ depends only on the channel capacity process r(t).

θ(µ) can be considered as a “channel model” that models the channel at the link layer (in

contrast to “physical layer” models specified by Markov processes, or Doppler spectra). The

approximation (5) is accurate for large Dmax.

In terms of the effective capacity function (4) defined earlier, the QoS exponent function

θ(µ) can be written as [8]

θ(µ) = µα−1(µ) (6)

where α−1(·) is the inverse function of α(u). Once θ(µ) has been measured for a given

channel, it can be used to check the feasibility of QoS triplets. Specifically, a QoS triplet

{rs, Dmax, ε} is feasible if θ(rs) ≥ ρ, where ρ
.
= − log ε/Dmax. Thus, we can use the effective

capacity model α(u) (or equivalently, the function θ(µ) via (6)) to relate the channel capacity

process r(t) to statistical QoS. Since our effective capacity method predicts an exponential

dependence (5) between ε and Dmax, we can henceforth consider the QoS pair {rs, ρ} to be

equivalent to the QoS triplet {rs, Dmax, ε}, with the understanding that ρ = − log ε/Dmax.

In the following sections, we extend the effective capacity technique to more general

situations. The following property is needed in the propositions in the rest of this paper.

Property 1 (i) The asymptotic log-moment generation function Λ(u) defined in (2) is finite

for all u ∈ R. (ii) Λ(u) is differentiable for all u ∈ R.

3 QoS Measures for Wireless Networks

In this section, we consider two basic network structures for wireless networks: one with

only tandem wireless links (see Figure 3) and the other with only parallel wireless links (see

Figure 4). In the following, Propositions 1 and 2 give QoS measures for these two network

structures, respectively.

Denote rk(t) (k = 1, · · · , K) the instantaneous capacity of channel k at time t. For a
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Figure 3: A network with tandem wireless links.

network with K tandem links, define the service S̃(t0, t), for t ≥ 0 and any t0 ∈ [0, t], by

S̃(t0, t) = inf
t0≤t1≤···≤tK−1≤tK=t

{
K∑

k=1

∫ tk

tk−1

rk(τ)dτ

}
, (7)

and the asymptotic log-moment generating function

Λtandem(−u) = lim
t→∞

1

t
log E[e−uS̃(0,t)] (8)

where S̃(0, t) is defined by (7); also define the effective capacity of channel k by

αk(u) = − lim
t→∞

1

ut
log E[e−u

∫ t
0

rk(τ)dτ ], ∀ u > 0. (9)

Proposition 1 Assume that the log-moment generating function Λtandem(u) defined by (8)

satisfies Property 1. Given the effective capacity functions {αk(u), k = 1, · · · , K} of K

tandem links and an external arrival process with constant rate µ, the end-to-end delay

D(∞) experienced by the traffic traversing the K tandem links satisfies

lim sup
Dmax→∞

1

Dmax
log Pr{D(∞) > Dmax} ≤ −θ, if α(θ/µ) > µ, (10)

and

lim
Dmax→∞

1

Dmax
log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/µ) = µ, (11)

where α(u) = −Λtandem(−u)/u. Moreover, the effective capacity α(u) satisfies

α(u) ≤ min
k

αk(u). (12)
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For a proof of Proposition 1, see the Appendix. Note that the capacity processes of the

tandem channels are not required to be independent in Proposition 1.

Proposition 2 Assume that the log-moment generating function Λk(u) of each channel k in

the network satisfies Property 1. Given the effective capacity functions {αk(u), k = 1, · · · , K}
of K independent parallel links and an external arrival process with constant rate µ, the end-

to-end delay D(∞) experienced by the traffic traversing the K parallel links satisfies

lim sup
Dmax→∞

1

Dmax
log Pr{D(∞) > Dmax} ≤ −θ, if α(θ/µ) > µ, (13)

and

lim
Dmax→∞

1

Dmax
log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/µ) = µ, (14)

where α(u) =
∑K

k=1 αk(u).

For a proof of Proposition 2, see the Appendix.

Propositions 1 and 2 suggest the following approximation

Pr{D(∞) > Dmax} ≈ e−θ∗×Dmax , (15)

for large Dmax. In addition, α(u) specified in Propositions 1 and 2 can be regarded as the

effective capacity of the equivalent channel of the network, which consists of tandem links
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only or independent parallel links only. In Sections 4 to 6, we will use α(u) to characterize

the equivalent channel of the network; and we will use (14) only since (14) is tighter than

(13).

4 QoS Measures for Variable-Bit-Rate Sources

In this section, we develop QoS measures for the case where the sources generate traffic at

variable bit-rates (VBR). We consider two classes of VBR sources: leaky-bucket constrained

arrival [2][9, page 15] and exponential process with its effective bandwidth function known

[1][9, page 16]. Propositions 3 and 4 provide QoS measures for these two classes of VBR

sources, respectively.

Proposition 3 Assume that a wireless network consists of tandem links only or independent

parallel links only; the effective capacity function of the equivalent channel of the wireless

network is characterized by α(u); and the log-moment generating function Λk(u) of each

channel k in the network satisfies Property 1. Given an external arrival process constrained

by a leaky bucket with bucket size σ(s) and token generating rate λ
(s)
s , the end-to-end delay

D(∞) experienced by the traffic traversing the network satisfies

lim
Dmax→∞

1

Dmax − σ(s)/λ
(s)
s

log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/λ(s)
s ) = λ

(s)
s . (16)

For a proof of Proposition 3, see the Appendix. Eq. (16) suggests the following approxi-

mation

Pr{D(∞) > Dmax} ≈ e−θ∗×(Dmax−σ(s)/λ
(s)
s ), (17)

for large Dmax.

For convenience, we replicate the definition of the effective bandwidth [1] here. Consider

an arrival process {A(t), t ≥ 0} where A(t) represents the amount of source data (in bits)

over the time interval [0, t). Assume that the asymptotic log-moment generating function
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of a stationary process A(t), defined as

Λ(u) = lim
t→∞

1

t
log E[euA(t)], (18)

exists for all u ≥ 0. Then, the effective bandwidth function of A(t) is defined as

α(s)(u) =
Λ(u)

u
, ∀ u > 0. (19)

Proposition 4 Assume that a wireless network consists of tandem links only or independent

parallel links only; the effective capacity function of the equivalent channel of the wireless

network is characterized by α(u); an external arrival process is characterized by its effective

bandwidth function α(s)(u); and the log-moment generating function Λk(u) of each channel k

in the network and the log-moment generating function Λ(s)(u) of the external arrival process

satisfy Property 1. Denote u∗ the unique solution of the following equation

α(s)(u) = α(u). (20)

The end-to-end delay D(∞) experienced by the traffic traversing the network satisfies

lim
Dmax→∞

1

Dmax
log Pr{D(∞) > Dmax} = −θ∗, where θ∗ = u∗ × α(s)(u∗). (21)

For a proof of Proposition 4, see the Appendix. Note that a single-link network is a special

case in Propositions 3 and 4.

5 QoS Measures for Packetized Traffic

In previous sections, we assumed fluid traffic. In this section, we extend the QoS measures

obtained previously for the fluid model to the case with packetized traffic. This is important

since in practical situations, the packet size is not negligible (not infinitesimal as in fluid

model).
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We assume the propagation delay of a wireless link is negligible, and the service at

a network node is non-cut-through, i.e., no packet is eligible for service until its last bit

has arrived. We also assume a wireless network consists of tandem links only or parallel

links only. For a network with tandem links only, the number of hops in the network is

determined by the number of tandem links in the network; for a network with parallel links

only, the number of hops in the network is one. We consider two cases: 1) a constant-bit-rate

source with constant packet size, and 2) a variable-bit-rate source with variable packet size.

Propositions 5 and 6 give QoS measures for these two cases, respectively.

Proposition 5 Assume that a wireless network consists of tandem links only or independent

parallel links only; the effective capacity function of the equivalent channel of the wireless

network is characterized by α(u); the log-moment generating function Λk(u) of each channel

k in the network satisfies Property 1; and the network consists of N hops. Given an external

arrival process with constant bit rate µ and constant packet size Lc, the end-to-end delay

D(∞) experienced by the traffic traversing the network satisfies

lim
Dmax→∞

1

Dmax − N × Lc/µ
log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/µ) = µ. (22)

For a proof of Proposition 5, see the Appendix. Eq. (22) suggests the following approximation

Pr{D(∞) > Dmax} ≈ e−θ∗(Dmax−N×Lc/µ), (23)

for large Dmax.

Proposition 6 Assume that a wireless network consists of tandem links only or independent

parallel links only; the effective capacity function of the equivalent channel of the wireless

network is characterized by α(u); the log-moment generating function Λk(u) of each channel

k in the network satisfies Property 1; and the network consists of N hops. Given a traffic

flow having maximum packet size Lmax and constrained by a leaky bucket with bucket size

σ(s) and token generating rate λ
(s)
s , the end-to-end delay D(∞) experienced by the traffic

traversing the network satisfies

lim
Dmax→∞

1

Dmax − N × Lmax/λ
(s)
s − σ(s)/λ

(s)
s

log Pr{D(∞) > Dmax} = −θ∗, (24)
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where α(θ∗/λ(s)
s ) = λ

(s)
s .

For a proof of Proposition 6, see the Appendix. Eq. (22) suggests the following approximation

Pr{D(∞) > Dmax} ≈ e−θ∗(Dmax−N×Lmax/λ
(s)
s −σ(s)/λ

(s)
s ), (25)

for large Dmax. Note that a single-link network is a special case in Propositions 5 and 6.

6 QoS Measures for Wireless Channels with

Non-negligible Propagation Delay

In previous sections, we assumed the propagation delay of a wireless link is negligible. In

this section, we extend the QoS measures obtained previously to the situation where the

propagation delay of a wireless link is not negligible. We consider two cases: 1) a fluid

source with a constant rate, and 2) a variable-bit-rate source with variable packet size.

Propositions 7 and 8 give QoS measures for these two cases, respectively.

Proposition 7 Assume that a wireless network consists of tandem links only or independent

parallel links only; the effective capacity function of the equivalent channel of the wireless

network is characterized by α(u); the log-moment generating function Λk(u) of each channel

k in the network satisfies Property 1; the network consists of N hops; and the i-th hop

(i = 1, · · · , N) incurs a constant propagation delay di. Given a fluid traffic flow with constant

rate µ, the end-to-end delay D(∞) experienced by the traffic traversing the network satisfies

lim
Dmax→∞

1

Dmax −
∑N

i=1 di

log Pr{D(∞) > Dmax} = −θ∗, where α(θ∗/µ) = µ. (26)

For a proof of Proposition 7, see the Appendix. Eq. (26) suggests the following approximation

Pr{D(∞) > Dmax} ≈ e−θ∗(Dmax−∑N
i=1 di), (27)

for large Dmax.
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Proposition 8 Assume that a wireless network consists of tandem links only or independent

parallel links only; the effective capacity function of the equivalent channel of the wireless

network is characterized by α(u); the log-moment generating function Λk(u) of each channel

k in the network satisfies Property 1; the network consists of N hops; and the i-th hop

(i = 1, · · · , N) incurs a constant propagation delay di. Given a traffic flow having maximum

packet size Lmax and constrained by a leaky bucket with bucket size σ(s) and token generating

rate λ
(s)
s , the end-to-end delay D(∞) experienced by the traffic traversing the network satisfies

lim
Dmax→∞

1

Dmax − N × Lmax/λ
(s)
s − σ(s)/λ

(s)
s − ∑N

i=1 di

log Pr{D(∞) > Dmax} = −θ∗, (28)

where α(θ∗/λ(s)
s ) = λ

(s)
s .

For a proof of Proposition 8, see the Appendix. Eq. (28) suggests the following approximation

Pr{D(∞) > Dmax} ≈ e−θ∗(Dmax−N×Lmax/λ
(s)
s −σ(s)/λ

(s)
s −∑N

i=1 di), (29)

for large Dmax.

7 Concluding Remarks

The design of QoS provisioning mechanisms in wireless networks calls for a simple and

effective wireless channel model. In [8], we proposed and developed such a simple and

effective channel model, called effective capacity, for the setting of a single hop, constant-

bit-rate arrivals, fluid traffic, and wireless channels with negligible propagation delay. In this

paper, we employed the effective capacity technique to derive QoS measures for more general

situations, i.e., networks with multiple wireless links, variable-bit-rate sources, packetized

traffic, and wireless channels with non-negligible propagation delay.

In our future work, the QoS measures developed in this paper will be used to design

efficient mechanisms to provide end-to-end QoS guarantees in a multihop wireless network.

This will involve developing algorithms for QoS routing, resource reservation, admission

control and scheduling.
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Appendix

Proof of Proposition 1

Denote Qk(t) the queue length at time t at node k (k = 1, · · · , K), Q(t) the end-to-end queue

length at time t, Q(∞) the steady state of the end-to-end queue length, A(t0, t) the amount

of arrival to node 1 (see Figure 3) over the time interval [t0, t]. Define S̃k(t0, t) =
∫ t

t0
rk(τ)dτ ,

which is the service provided by channel k over the time interval [t0, t].

We first prove an upper bound. It can be proved [10, page 81] that

Q(t) =

K∑
k=1

Qk(t) = sup
0≤t0≤t

{
A(t0, t) − S̃(t0, t)

}
(30)

where S̃(t0, t) is defined by (7). Without loss of generality, we consider the discrete time case

only, i.e., t ∈ N, where N is the set of natural numbers. From (30) and Loynes Theorem [6],

we obtain

Q(∞) = sup
t∈N

{
A(0, t) − S̃(0, t)

}
= sup

t∈N

{
µt − S̃(0, t)

}
(31)

12



Then, we have

Pr {Q(∞) > q} = Pr

{
sup
t∈N

{
µt − S̃(0, t)

}
> q

}
(32)

(a)

≤ Pr

{⋃
t∈N

{
µt − S̃(0, t) > q

}}
(33)

(b)

≤
∑
t∈N

Pr
{
µt − S̃(0, t) > q

}
(34)

(c)

≤
∑
t∈N

e−uqE[eu(µt−S̃(0,t))] (35)

where (a) since the event
{

supt∈N

{
µt − S̃(0, t)

}
> q

}
⊂ ⋃

t∈N

{
µt − S̃(0, t) > q

}
, (b) is due

to the union bound, and (c) from the Chernoff bound. Since α(u) = −Λtandem(−u)/u, we

have

α(u) = − lim
t→∞

1

ut
log E[e−uS̃(0,t)], ∀ u > 0, (36)

Hence, for any ε > 0, there exists a number t̃ > 0 such that for t ≥ t̃, we have

E[e−uS̃(0,t)] ≤ eu(−α(u)+ε)t, ∀u > 0. (37)

If µ + ε < α(u), we have

∑
t∈N

e−uqE[eu(µt−S̃(0,t))]
(a)

≤
∑
t≥t̃

e−uqeu(µ−α(u)+ε)t +
t̃−1∑
t=1

e−uqE[eu(µt−S̃(0,t))] (38)

(b)

≤ e−uq ×
⎛
⎝ eu(µ−α(u)+ε)t̃

1 − eu(µ−α(u)+ε)
+

t̃−1∑
t=1

E[eu(µt−S̃(0,t))]

⎞
⎠ (39)

where (a) from (37), and (b) from geometric sum. From (35) and (39), we have

Pr {Q(∞) > q} ≤ γ × e−uq, if µ + ε < α(u), (40)
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where γ is a constant independent of q. Hence, we obtain

lim sup
q→∞

1

q
log Pr {Q(∞) > q} ≤ −u, if µ + ε < α(u). (41)

Letting ε → 0, we have

lim sup
q→∞

1

q
log Pr {Q(∞) > q} ≤ −u, if µ < α(u). (42)

Since Q(t) = µ × D(t), ∀t ≥ 0, (42) results in

lim sup
Dmax→∞

1

Dmax
log Pr{D(∞) > Dmax} ≤ −µ × u, if µ < α(u). (43)

Let θ = µ × u. Then (43) becomes (10).

Next we prove a lower bound. Let q = βt where β > 0. Then, we have

lim inf
q→∞

1

q
log Pr {Q(∞) > q} = lim inf

t→∞
1

βt
log Pr {Q(∞) > βt} (44)

= lim inf
t→∞

1

βt
log Pr

{
sup
t∈N

{
µt − S̃(0, t)

}
> βt

}
(45)

≥ lim inf
t→∞

1

βt
log Pr

{
µt − S̃(0, t) > βt

}
(46)

= lim inf
t→∞

1

βt
log Pr

{
−S̃(0, t)

t
> β − µ

}
(47)

(a)

≥ − 1

β
inf

x>β−µ
Λ∗(x) (48)

where (a) from Gärtner-Ellis Theorem [1] since Λtandem(u) satisfies Property 1, and the

Legendre-Fenchel transform Λ∗(x) of Λtandem(−u) is defined by

Λ∗(x) = sup
u∈R

{u × x − Λtandem(−u)}. (49)

14



Since (48) holds for any β > 0, we have

lim inf
q→∞

1

q
log Pr {Q(∞) > q} ≥ sup

β>0
− 1

β
inf

x>β−µ
Λ∗(x) (50)

= − inf
y>−µ

Λ∗(y)

y + µ
(51)

It can be proved [3] that

inf
y>−µ

Λ∗(y)

y + µ
= u∗, where Λtandem(−u∗) = −µ × u∗. (52)

From the definition of effective capacity α(u) in (36), Λtandem(−u∗) = −µ × u∗ implies

α(u∗) = µ. Then, applying (52) to (51) leads to

lim inf
q→∞

1

q
log Pr {Q(∞) > q} ≥ u∗, where α(u∗) = µ. (53)

Due to the continuity of α(u), we have

lim
u→u∗ α(u) = µ (54)

Hence, letting u → u∗, (42) and (53) result in

u∗ ≤ lim inf
q→∞

1

q
log Pr {Q(∞) > q} ≤ lim sup

q→∞

1

q
log Pr {Q(∞) > q} ≤ u∗ (55)

Hence, we have

lim
q→∞

1

q
log Pr {Q(∞) > q} = u∗, where α(u∗) = µ. (56)

Since Q(t) = µ × D(t), ∀t ≥ 0, (56) results in

lim
Dmax→∞

1

Dmax
log Pr{D(∞) > Dmax} = −µ × u∗, where α(u∗) = µ. (57)

Let θ∗ = µ × u∗. Then (57) becomes (11).
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From (7), it is obvious that

S̃(t0, t) ≤ min
k

S̃k(t0, t). (58)

Then we have for u > 0,

α(u) = − lim
t→∞

1

ut
log E[e−uS̃(0,t)] (59)

(a)

≤ − lim
t→∞

1

ut
log E[e−u mink S̃k(0,t)] (60)

≤ min
k

− lim
t→∞

1

ut
log E[e−uS̃k(0,t)] (61)

= min
k

αk(u) (62)

where (a) from (58). This completes the proof.

Proof of Proposition 2

Denote rk(t) (k = 1, · · · , K) channel capacity of link k at time t. From Figure 4, it is clear

that the network has only one queue and multiple servers, each of which corresponds to a

wireless link. Since the total instantaneous channel capacity r(t) =
∑K

k=1 rk(t), the effective

capacity function for the aggregate parallel links is

α(u)
(a)
= − lim

t→∞
1

ut
log E[e−u

∫ t
0

r(τ)dτ ]

= − lim
t→∞

1

ut
log E[e−u

∫ t
0

∑K
k=1 rk(τ)dτ ]

(b)
= − lim

t→∞
1

ut

K∑
k=1

log E[e−u
∫ t
0 rk(τ)dτ ]

(c)
=

K∑
k=1

αk(u) (63)

where (a) from (4), (b) since {rk(t), k = 1, · · · , K} are independent, and (c) from (9).
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Given the effective capacity α(u), we can prove (13) and (14) with the same technique

used in proving (10) and (11). This completes the proof.

Proof of Proposition 3

For the traffic of constant rate λ
(s)
s , denote Q̃(∞) the steady state of the end-to-end queue

length and D̃(∞) the end-to-end delay. Using the result in [5, page 30]), we can show

D(∞) − D̃(∞) ≤ σ(s)/λ(s)
s , (64)

Note that D(∞) is the end-to-end delay experienced by the traffic constrained by a leaky

bucket with bucket size σ(s) and token generating rate λ
(s)
s . Hence, we have

D(∞) ≤ D̃(∞) + σ(s)/λ(s)
s , (65)

From (40) and Q̃(∞) = λ
(s)
s × D̃(∞), we have

Pr
{
D̃(∞) > Dmax

}
≤ γ × e−u×λ

(s)
s ×Dmax , if α(u) > λ

(s)
s , (66)

where γ is a constant independent of Dmax. Then, we have

Pr {D(∞) > Dmax} (a)
= Pr

{
D̃(∞) > Dmax − σ(s)/λ(s)

s

}
(b)

≤ γ × e−u×λ
(s)
s ×(Dmax−σ(s)/λ

(s)
s ) (67)

where (a) from (65), and (b) from (66). Hence, we have

lim sup
Dmax→∞

1

Dmax − σ(s)/λ
(s)
s

log Pr{D(∞) > Dmax} ≤ −θ, if α(θ/λ
(s)
s ) > λ

(s)
s . (68)

Similar to the proof of Proposition 1, we can obtain a lower bound

lim inf
Dmax→∞

1

Dmax − σ(s)/λ
(s)
s

log Pr{D(∞) > Dmax} ≥ −θ∗, where α(θ∗/λ(s)
s ) = λ

(s)
s . (69)

Combining (68) and (69), we obtain (16). This completes the proof.
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Proof of Proposition 4

The proof is similar to that of Proposition 1.

Denote Q(t) the end-to-end queue length at time t, Q(∞) the steady state of the end-

to-end queue length, A(t0, t) the amount of external arrival to the network over the time

interval [t0, t]. From (30), we know

Q(t) = sup
0≤t0≤t

{
A(t0, t) − S̃(t0, t)

}
(70)

where S̃(t0, t) is defined by (7) for the tandem links, and is defined by S̃(t0, t) =
∫ t

0

∑K
k=1 rk(τ)dτ

for independent parallel links.

We first prove an upper bound. Without loss of generality, we consider the discrete time

case only, i.e., t ∈ N, where N is the set of natural numbers. From (70) and Loynes Theorem

[6], we obtain

Q(∞) = sup
t∈N

{
A(0, t) − S̃(0, t)

}
(71)

Then, we have

Pr {Q(∞) > q} = Pr

{
sup
t∈N

{
A(0, t) − S̃(0, t)

}
> q

}
(72)

≤ Pr

{⋃
t∈N

{
A(0, t) − S̃(0, t) > q

}}
(73)

≤
∑
t∈N

Pr
{
A(0, t) − S̃(0, t) > q

}
(74)

≤
∑
t∈N

e−uqE[eu(A(0,t)−S̃(0,t))] (75)

From the definition of effective capacity in (36), for any ε/2 > 0, there exists a number t̃ > 0

such that for t ≥ t̃, we have

E[e−uS̃(0,t)] ≤ eu(−α(u)+ε/2)t, ∀u > 0. (76)
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Similarly, from the definition of effective bandwidth in (19), for any ε/2 > 0, there exists a

number t̃ > 0 such that for t ≥ t̃, we have

E[euA(0,t)] ≤ eu(α(s)(u)+ε/2)t, ∀u > 0. (77)

Without loss of generality, here we choose the same t̃ for both (76) and (77), since we can

always choose the maximum of the two to make (76) and (77) hold. Then, if α(s)(u) + ε <

α(u), we have

∑
t∈N

e−uqE[eu(A(0,t)−S̃(0,t))]
(a)

≤
∑
t≥t̃

e−uqeu(α(s)(u)−α(u)+ε)t +
t̃−1∑
t=1

e−uqE[eu(A(0,t)−S̃(0,t))] (78)

≤ e−uq ×
⎛
⎝ eu(α(s)(u)−α(u)+ε)t̃

1 − eu(α(s)(u)−α(u)+ε)
+

t̃−1∑
t=1

E[eu(A(0,t)−S̃(0,t))]

⎞
⎠ (79)

where (a) from (76) and (77). From (75) and (79), we have

lim sup
q→∞

1

q
log Pr {Q(∞) > q} ≤ −u, if α(s)(u) + ε < α(u). (80)

Letting ε → 0, we have

lim sup
q→∞

1

q
log Pr {Q(∞) > q} ≤ −u, if α(s)(u) < α(u). (81)

Similar to the proof of Proposition 1, we can obtain a lower bound

lim inf
q→∞

1

q
log Pr {Q(∞) > q} ≥ −u∗, where α(s)(u∗) = α(u∗). (82)

Combining (81) and (82), we have

lim
q→∞

1

q
log Pr {Q(∞) > q} = −u∗, where α(s)(u∗) = α(u∗). (83)

Since Q(∞) = α(s)(u∗) × D(∞), (83) results in (21). This completes the proof.
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Proof of Proposition 5

For the packetized traffic, denote Qk(t) the queue length at time t at node k (k = 1, · · · , N),

Q(t) the end-to-end queue length at time t, and Q(∞) the steady state of the end-to-end

queue length. Correspondingly, for the ‘fluid’ traffic of constant arrival rate µ, denote Q̃k(t)

the queue length at time t at node k, Q̃(t) the end-to-end queue length at time t, Q̃(∞) the

steady state of the end-to-end queue length, and D̃(∞) the end-to-end delay.

For each node k, we have the sample path relation as below [7]

Qk(t) − Q̃k(t) ≤ Lc, ∀t ≥ 0. (84)

Summing up over k, we obtain

N∑
k=1

[Qk(t) − Q̃k(t)] = Q(t) − Q̃(t) ≤ N × Lc, ∀t ≥ 0. (85)

Hence, for the steady state, we have

Q(∞) − Q̃(∞) ≤ N × Lc. (86)

Since Q(∞) = µ × D(∞) and Q̃(∞) = µ × D̃(∞), we have

D(∞) − D̃(∞) ≤ N × Lc/µ. (87)

Note that D(∞) is the end-to-end delay experienced by the packetized traffic with constant

bit rate µ and constant packet size Lc. Then, we can prove (22) in the same way as we prove

(16) in Proposition 3.

Proof of Proposition 6

Denote D̃(∞) the end-to-end delay experienced by the ‘fluid’ traffic with constant arrival

rate λ
(s)
s . Using the sample path relation in [5, page 35]), we obtain

D(∞) − D̃(∞) ≤ N × Lmax/λ
(s)
s + σ(s)/λ(s)

s , (88)
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Note that D(∞) is the end-to-end delay experienced by the packetized traffic having max-

imum packet size Lmax and constrained by a leaky bucket with bucket size σ(s) and token

generating rate λ
(s)
s . Then, we can prove (24) in the same way as we prove (16) in Proposi-

tion 3.

Proof of Proposition 7

Denote D̃(∞) the end-to-end delay experienced by the fluid traffic with constant arrival rate

µ and without propagation delay. Using the sample path relation between the two cases

(with/without propagation delay), it is easy to show

D(∞) − D̃(∞) ≤
N∑

i=1

di, (89)

Then, we can prove (26) in the same way as we prove (16) in Proposition 3.

Proof of Proposition 8

Denote D̃(∞) the end-to-end delay experienced by the ‘fluid’ traffic with constant arrival

rate λ
(s)
s and without propagation delay. Using the sample path relation in [5, page 35]), we

obtain

D(∞) − D̃(∞) ≤ N × Lmax/λ
(s)
s + σ(s)/λ(s)

s +
N∑

i=1

di, (90)

Then, we can prove (28) in the same way as we prove (16) in Proposition 3.
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