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Abstract

This paper considers the problem of joint congestion control and scheduling in wireless networks
with quality of service (QoS) guarantees. Different from per-destination queueing in the existing works,
which is not scalable, this work considers per-link queueing at each node, which significantly reduces
the number of queues per node. Under per-link queueing, we formulate the joint congestion control and
scheduling problem as a network utility maximization (NUM) problem and use a dual decomposition
method to separate the NUM problem into two sub-problems, i.e., a congestion control problem and a
scheduling problem. Then, we develop a sliding mode (SM) based distributed congestion control scheme,
and prove its convergence and optimality property. Different from the existing schemes, our congestion
control scheme is capable of providing multi-class QoS under the general scenario of multi-path and
multi-hop; in addition, it is robust against network anomalies, e.g., link failures, because it can achieve

multi-path load balancing.
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UTURE wireless networks are expected to consist of a variety of heterogenous components and
F aim to support interactive applications such as voice over IP (VoIP), online multi-player games and
live sharing of multimedia contents in terms of video, audio, texts or images among distributed users.
In such a context, a network should be designed to provide quality of service (QoS) to inelastic traffic
such as video and audio, and simultaneously provide high data rate for elastic traffic, e.g, email and web
traffic. Therefore, how to perform congestion control and scheduling efficiently is crucial to achieve these
key features for a wireless network.

Different from wire-line networks, the joint congestion control and scheduling in wireless networks is
particularly challenging due to unreliability, time-varying channel gain, and interference among wireless
channels. The joint congestion control and scheduling can be formulated as a network utility maximization
(NUM) problem [1] [2] [3] [4] [5] [6] [7]. Under the setting that each node has no buffer, the NUM
problem can be solved in a distributed manner by iteratively updating the link price, which is the sum of
the per-hop prices [1] [5]. This mechanism requires that each link calculate and feed back the per-hop
prices to the source, thus inducing a lot of overhead. In per-destination queueing networks, the optimal
solution for the NUM problem can be obtained by the primal-dual algorithm within the network capacity
region [8] [9], which requires each node maintains a queue for each flow. Works such as [6]and [7]
optimize the end-to-end delay performance by the NUM problem.

There are two commonly used queueing structures: the per-destination queue [2] [3] [9] [10] and
the per-link queue [3] [11] [12] [6] [7]. In the per-destination queueing networks, every node needs to
maintain a queue [13] for each flow, thus the number of queues per node can be as large as the number
of nodes in the network. This overhead is unbearable for relay nodes in a large-scale wireless network.
It is shown in [11] that the per-link queue structure involves less overhead, preserves some good design
features such as decomposition [14] and naturally provides multi-path awareness. Therefore, we consider
the joint congestion control and scheduling problem under the setting of per-link queueing.

In wireless networks, distributed algorithms are desirable due to the unavailability of global information.
Generally, the QoS constraints make it difficult to solve the congestion control problem in a distributed
manner. Directly projecting the non-QoS-constrained solution to the QoS-constrained region usually
results in a degraded performance. Sliding mode (SM) control theory [15] provides a powerful tool
for designing distributed algorithms for solving convex optimization problems with a large number
of constraints, and has been applied to congestion control problems in the Internet [16] [17] [18].
However, the SM control is not directly applicable to wireless networks because of time-varying channels.

Fortunately, the decomposition between the scheduling problem and the congestion control problem may
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make it possible to apply the SM control to the congestion control problem which does not involve the
time-varying channel states, given the Lagrangian multipliers resulted from the decomposition.

Different from the existing works, we consider the congestion control and scheduling of a per-link
queueing wireless network with multi-class QoS requirements under both constant channels and time-
varying channels. By “per-link-queue (per-next-hop queue)”, we mean that packets destined to the same
next hop node, are put into the same queue. Thus the number of queues that a node has to maintain is
the number of its neighbors within one hop. Our system model shares some similarities with the route-
dependent case in [3], where time-varying channels and QoS are not considered. Some works study
similar problems under the per-destination queueing models, such as [19] [20] [21]. In [22], the authors
consider the general framework of the time-average penalty or reward optimization, but no distributed
solution is given. Different from the SM controller in [16] [17] designed for the Internet, the wireless
context induces an interaction between congestion control on Layer 4 and scheduling on Layer 2, so that
the convergence conditions are naturally satisfied and no network feedback is necessary, which is a good
example of “layering as optimization decomposition” [14] [23]. Under the per-link queueing model, we
apply the SM control technique to the congestion control problem and develop a distributed scheme. We
prove that 1) the distributed control scheme converges and achieves optimality under continuous-time
system parameters; and 2) it converges to a bounded neighborhood of the optimal solution under discrete
time and time-varying channels.

In this paper, we first consider the congestion control and scheduling under constant wireless channels
for simplicity, and then extend the results to time-varying wireless channels and evaluate the performance
by the Lyapunov drift method [22] [24].

The rest of the paper is organized as follows. In Section II, we describe the system model, followed
by the formulation and solution to the NUM problem under constant channels in Section III. Section IV
extends the solution in Section III to wireless networks under time-varying channels. Section V presents

performance analysis and Section VI presents simulation results. Section VII concludes the paper.

II. SYSTEM MODEL

In this section, we present the model of a multi-hop multi-path per-link queueing wireless network.
Section II-A describes the per-link queueing model. Section II-B presents the QoS requirements for

heterogenous services and Section II-C describes the capacity region of a per-link queueing network.
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A. The Queueing Model

For a per-link queueing wireless network, let 7 denote the set of flows and A/ denote the set of nodes.
A link /; ; in the network has a transmitting node 7 € N and a receiving node j € N;, where N is
the set of node i’s next hop nodes. £ = {l; ;j} denotes the set of all links. These links are directed; we
assume connectivity between any two nodes is symmetric and the topology is assumed to be static. Each
flow s € F has a total transmission rate 2* over multiple paths. Let 27 ; denote the transmission rate of
flow s over [; ; with source node b® = i. Then the total transmission rate z° over multi-path is

=) (1)
i=b* je N;

The rate power function denoted by (G, P) is the offered physical-layer capacity matrix under channel
state matrix G' = [g; ;| and power allocation matrix P = [p; ;] € P, where P is the set of feasible power
allocation matrix P. Matrix X = [z7 ;] denotes the multi-path transmission rates for all flows. Throughout
this paper, A = [a; ;] is a tensor notation for matrix A. A wireless channel is a shared medium, where
links interfered with each other contend for exclusive access to the channel. A conflict graph [20] can
capture the contention among links; the conflict graph depends on G and P. The convex hull of the
corresponding rate vectors of the independent sets of the conflict graph determines the feasible rate
region at link layer. It is assumed that a proper routing algorithm is applied to the network according to
information such as distance or signal-to-interference-plus-noise-ratio (SINR), which results in a routing
table denoted by R. The source-destination pairs on link layer are considered as flows. In scheduling and
routing, we consider the packet-level operation and the overhead of packetization is assumed to be zero.

Since we use the per-link queueing model, each next hop of /; ; has a dedicated queue (at node )
denoted by g; j. Therefore, the number of the queues in node 7 is at most the same as the number of its
next hops. If [; ; is activated, the data in g; ; is transmitted. At time ¢, the output of g; ; consists of the

traffic destined to node j and the transit traffic destined to nodes other than node j. Thus we have
Hi,g (t) = Zﬁi,j,k (t) + Q5 (t) (2)
k

where «; j(t) is the data rate delivered to node j through /; j; and p; j(t) is a shorthand notation for
1i; (G(t), P(t)), i.e., the physical-layer capacity offered on I; ;; and p, ; . (t) is the transmission rate from
¢,j to gj through [; ; at time ¢. Here, a triplet node index (3, j, k) is used to define the two cascading

queues ¢; ; and g; ;. involved in a per-link transmission.
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B. QoS Requirements

To describe the QoS requirements of heterogenous applications, define the QoS constraint functions

for flow s by:

hl(z®) = 62, — a° (3a)

h(2°) = 2° — 05,4, (3b)

where 6° and 60?

S in > ax are constants. The QoS requirements can be described by using inequality

constraints on the functions in (3). For example, the service that guarantees minimum transmission rate
for flow s can be defined as h!'(2*) < 0. For notation simplicity, we use h!(2*) < 0 and h?(2°) <0 to

represent equality constraint, where ¢ . =07 .

C. Capacity Region of a Per-link Queueing Network

In queueing networks, the joint congestion and scheduling problem should be solved under the con-
straint of network stability, which is defined as the stability of the queues. Let the exogenous arrival at
qi,; be defined by

xz’,j = Z x;?,j' (4)

s:b5=1

Let FZ2 ;(t) and F?;(t) denote the steady state inflow and outflow rate of g; ; at time . Intuitively, we

have
) Zf—_:l() meN; & (T)
Fijt) = 2 Emiz
SO N Mgk (T)
(1) e : (5)

Then the average inflow and outflow rate, denoted by Ff ; and Fi"j can be written as

Fiy = lim F;(t)
By = lim F75(t)

Define X as the capacity region of a per-link queueing network under time-varying channels, then the

necessary and sufficient conditions are derived as

xiy < FYy— Fl V(i j) € L (6)

under the assumptions of convergent and bounded arrivals and convergent time-varying channel states

similar to [?]. Note that a network with constant arrivals and constant wireless channels is a special case

September 27, 2012 DRAFT



for this assumption. Usually, (6) is also known as the flow conservation constraint for queueing networks
[2] [3], which is recognized as the network stability condition [9].

Note that the capacity region of a network under per-link queueing may be different from that under
per-destination queueing. Intuitively, the per-destination queueing yields smaller granularity in scheduling
than per-link networks. In [25], we studied the capacity region of the per-link queueing network with
per-destination backlog information. Please refer to [9] [25] for details about the derivation and dynamic

control in queueing networks.

III. THE NUM PROBLEM UNDER CONSTANT CHANNELS

In this section, the joint congestion control and scheduling under constant wireless channels is formu-
lated as an NUM problem. By dual decomposition, the NUM problem is decomposed into a congestion
control problem and a scheduling problem.

We consider an NUM problem with QoS constraints as below

max U*(x) (7a)
{Xex} seEF
st.: h<0 (7b)
@i — FYy+ Fy <0,¥(i,j) € £ (7¢)
Z Z z;; =1’ (7d)
i=b* je N;

where U®(z®) is the utility of flow s with transmission rate z° (s € S); (7c) is the flow conservation
constraint; (7b) specifies the QoS constraints and vector h = [h1(z°!), ho(2°2), ..., ho(x*®)]T, where
he (%) (s € S,w € {1,2,...,Q}) can be any function defined in (3); and H* = {w|h,,(z®) is an element of h}

is the set of the indices of the constraint functions for flow s (s € S). For example, in a network where

only Flow 1 has a transmission rate requirement 10 < z! < 20, then h = [ml — 20,10 — :vl]T and
H'={1,2},H* =0 (s # 1). Note that F;, F; in (7) are the steady state outflow and inflow for link

l;,;, which are constants.

The solution to the NUM problem is organized as below: in Section III-A, (7) is decomposed into
the congestion control problem (9) and the scheduling problem (10), given the Lagrangian multiplier A,
which is updated iteratively according to Section III-B. Then (9) and (10) are solved in Section III-C
and Section III-D, respectively. The optimality and convergence of the continuous time control laws are

stated in Theorem 1 in Section III-E.
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A. Decomposition

To solve problem (7), we use the dual decomposition method [3]. The Lagrangian dual function of (7)

with respect to (w.r.t.) constraint (7c) is D(A):

D(A) = max U?(z®)—

{Xex} s
Z Nig (wig — F+ Fy)
(3,5)eL
= max Z Us(l‘s) — z )\i,jl‘i,j +
{Xex} ses (i,5)eL
(4,9)EL

where A = [)\; ;] is the Lagrangian price matrix for constraint (7c) with ); ; corresponding to each node
pair (i,7) € L. It is implied by (8) that given the optimal link price [); ;], the first and the second term

in (8) can be solved separately. Define the congestion control problem as

max Us(z®) — Xij%ig |, )
{XEX h<0} Sezf (%) (i§£ I

where (8) only depends on X given A, and the scheduling problem is given by
max Y Nij (FY—Fiy), (10)
(1,5)eL
which is independent of X with A known. To solve (10), a set of links are chosen to transmit under
some interference constraints and proper routing algorithm to get the minimum.
Thus, by dual decomposition, the joint problem is decomposed into two separate problems correspond-
ing to different protocol layers, and they interact with each other through Lagrangian price. Next, we

explain how to determine the Lagrangian prices [\;;].

B. Lagrangian Price

To obtain [); ;], consider the dual problem of (7)
mj&n D(A), (11)

Since D(A) is a convex function w.r.t. [\; ;] [26], taking the partial derivative w.r.t. \; ;, we obtain:

.2 OD(A)
e 6)\1’]

= F;— Fij — xij. (12)
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which is assumed to be uniformly bounded by constant D. According to Slater’s theorem [26], there is

no duality gap between (7) and (11). Thus, the Lagrangian price can be updated iteratively by:

Ng®) = [ag(X,0) (@i (t) = B0 + FL )]0 ¥id) € £ (13)

where y; ;(X,t) > 0 is a user-specified function and if y; ;(X,t) is a constant, the Lagrangian price is

proportional to the per-link queue length; and the projection [a](f is defined by:

n a, fb>0o0ra>0
[a}b:

0, otherwise

C. SM Based Solution to the Congestion Control Problem

In this section, the SM controller for the congestion control problem (9) is developed for given [J; ;].
The SM control theory [15] [27] provides an optimal distributed method to iteratively solve convex
optimization problems with a large number of constraints. Furthermore, the SM controller involves some
adjustable parameters which correspond to the performance of the controller such as steady-state error
and rate of convergence.

Here, we give a brief introduction to the sliding mode control theory. We illustrate the technique of

sliding mode control by an optimization problem example. Consider a convex optimization problem

min  s(Y)
st.  fY) > 0 (14)
fY) = 0 (15)
fsY) = 0 (16)

with s(Y") as the objective function and Y € R™ as the optimization variables. The constraints (14) to
(16) represent regions in R™ space and the intersection of these regions is the feasible region. The sliding
mode controller produces a distributed solution whose trajectory is like sliding along the curve that is at
the intersection of surfaces fi(Y) = 0 and/or f>(Y) = 0 and/or f3(Y") = 0; the trajectory finally reaches
the optimal point. For more details, we refer the readers to [15] and [17].

This motivates the design of our SM based controller for the congestion control problem (9) as

+
. s s Oh (2° o
w0 = [, 0 {uf, 0 = ds )+ 3 vty Pt NijeL  am
meHs ¥ {L‘S(t)

x3 ()
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where 27 ;(X,t) > 0 is a user-specified function; u; ;(?) S 8[&7@) ® is the partial derivative of U*(:)
p ’ (2% xs(t

w.rt. 27 ;(t) and evaluated at 2°(t); and 78%’;95) © £ b ;(t) is the partial derivative of Ay, w.r.t. z7 ;
) Q4 xs(t R P

and v, (t) is defined as

) if hoy(25(8)) > 0
o (1)) = Tm(t) m (2°(t)) (18)

0 Af A (25(8)) <0
where 7, (t) > 0 is a user-specified functions corresponding to h,,(z*) and we use v, (f) = v > 0 as
an example in our following design, where v is a constant. The functions [z; ;(X,?)] and [y; ;(X, )] are

called iteration functions of the system. Here, we do not discuss the parameter design for SM control.

Relevant works can be found in [16] and [17].

D. Solution to the Scheduling Problem

Similar to [2] [20], our solution to (10) at time ¢ is to select a set of interference-free links £, that

maximize
> iyt (B (1) — Fiy(0) (19)

(i) €Lo

where Fi{j (t) and FY;(t) are the time-averaged inflow rate and outflow rate at time ¢. According to
the definition of Ff’j(t) and F?;(t), each node can estimate these parameters by tracking the arrival
rate, transmission rate and receive rate, which are local information. The Lagrangian price \; ;(t) is
proportional to the queueing length in the node. Therefore, the solution to the scheduling problem
turns out to be an maximum weighted independent set problem with weight \; ;(¢) (F&(t) - Fi{j (t))
Alternatively, this solution can be simplified to yield a practical scheduling and routing algorithm, which

will be presented in Section IV under time-varying channels.

E. Optimality and Convergence of the Joint Scheme

In summary, we solve (7) by iteratively computing the Lagrangian price for each node pair (i, j) € L,
adjusting the transmission rates of each source and scheduling the links according to the network states.
In this section, we prove the optimality and convergence property of the joint scheme, i.e., (13), (17) and

(19), for the NUM problem (7), as stated below:

Theorem 1. Assume that:
1) X(0) is a feasible rate matrix;

2) each utility function U*(-) is concave w.r.t. the transmission rate x°;
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10

3) (13), (17) and (19) are the governing laws of the system;
4) yij(X,t) = yin(X,t) = 275(X,t) = 27%(X,t) (V(i,5) € L,s1 # s2,k # j), ie, the iteration
functions are the same for node i.

Then the system state (X (t), A(t)) will converge to the optimal solution, denoted by (X, A), where X

is the optimal rate matrix for (7), and A is the optimal price matrix.

The proof is sketched in Appendix A. Furthermore, if the optimal solution exists, and the set of all
optimal solutions is bounded, the SM controller can make the rate matrix converge to an optimal point
from any initial rate matrix, which is not necessarily within the capacity region [15] [16].

Intuitively, for a given A, (17) makes the transmission rates converge to their optimality similar to
the case in the Internet [17]. Meantime, the scheduler selects an optimal set of links to transmit based
on the given A as in (19). These decisions produce an updated A, and finally the transmission rates
and the Lagrangian price converge simultaneously to an optimal solution of (7). It is pointed out in
Theorem 1 that y;;(X,t) = y;x(X,t) = 275(X,t) = 27%(X,t) (V(i,)) € L,s1 # s2, # k) is a
sufficient condition for the convergence of the joint iteration (13) and (17) under constant channels.
Thus, the iteration functions z; j,Vs € S are the same for all flows originating from node %, which are
also the same as the iteration functions y; ; over multipaths of these flows. This naturally allows the

co-existence of heterogeneous components in a network. We can see that the control law given in [11]

has 27, = y;; =1,Vs € S,V(i,j) € L, which is a special case for the design in (13) and (17).

I'V. EXTENSION TO TIME-VARYING CHANNELS

In this section, the NUM problem of a wireless network is considered under slotted time-varying
channels. Based on the control laws of (13), (17) and (19), we design Algorithm 1 and Algorithm 2,
which asymptotically solve the NUM problem under time-varying channels.

For simplicity, we consider a wireless network with slotted time-varying channels, the channel gains
of which are i.i.d. convergent [24]. Different from the transmission rate under constant channels, the

instantaneous transmission rate under time-varying channels changes from slot to slot, thus the optimized

variables are [z j], defined in a time-average sense. Accordingly, the QoS constraints are also defined
on the time-averaged transmission rate. The network utility for a flow is a function of the average
transmission rate and an optimal dynamic control policy is defined over all possible power control,

routing and scheduling that can realize the optimal average transmission rate X.
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11

Similarly, the NUM problem under time-varying channels is formulated as

max U*(z%) (20a)
{Xex.py &
st.: PeP (20b)
Tij— FY+ F; < 0,9(i,) € £ (20¢)
h <0 (20d)
75 = >z, (20e)
i=bs j€ N;

where (20b) is the constraint on power and each element of which is subject to constraints on minimum
SINR and maximum transmission power. (20) allows many types of traffic such as constant bit rate
(CBR), variable bit rate (VBR) and elastic traffic.

Although (20) seems similar to (7), it cannot be directly solved by dual decomposition, which may
result in an unfeasible link assignment or transmission rate. Instead, we directly extend the control law,
ie., (13), (17) and (19), to the time-varying system settings and evaluate its performance in Section V.

The SM based joint congestion control and scheduling algorithm under time-varying channels is given

in Algorithm 1 where A is the sampling interval for the discrete time system.

1 Initialization: X (0) € X, F?;(0) =0, ﬂij(o) =0, A(0) =0;
2 At time t + 1, update the system states according to:

3 Price: the Lagrangian price is updated according to

Nt 1) = | [y (X DA (i5(8) = F2(0) + F(0) Mg (0] 7 5 @1
4  Congestion Control: each source updates its multi-path transmission rate by

w4+ 1) = [ [0, () + 28, (04 (g, (0) = Xy (6) + w63, (0)] 7 5 (22)

5 Scheduling: perform Alg. 2 to get the optimal power control.

Algorithm 1: SM based congestion control and scheduling

The time average inflow rate Fifj(t) and outflow rate Fi"j(t) at time ¢ can be represented as

. Zm Rmvivj (t - 1) + Zm Hm,i,j (t)

Fii,j (t) — ; (23&)
Fo,(t) = >k Dijk(t ; 1) + pa (ﬂv (23b)
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12

where R, ; j(t —1) is the total transmitted data from slot 0 to slot ¢t —1 over ¢, ; to ¢; j and D; ; 1(t —1)
is the total transmitted data from ¢; ; to ¢; ; Hmij(t) and p; j(t) satisfy (2).
Substituting (23) into (19), we obtain the optimal power control as below

P(t) =arg IlglaXZ Aij(t) <Mz’,j(t) >, -(ﬂ)
S j m !
=arg mea%( ()\ :Um Z Hw k: ) 24)
7.7

where (24) is due to the fact that the decision at time ¢ does not affect ) |, Ry, ; j(t—1) and Y, D; ; i (t—
1). It is recognized that (24) is a maximum weighted independent set (MWIS) problem with X; ;(¢) ;. ;(t)—
Yok Hi,j,k(t))‘jvk(t) assigned as the weight W; ; for each [; ;. Then (24) can be solved in three steps
based on a predefined routing algorithm R, as stated in Algorithm 2, where L¥ (i,7)(t) is the length
of the mth packet in g; ; at time ¢, which will be transmitted from node ¢ to node j and put into g;;
and I'; ;(t) = {~| ZVkm L LE(i,5) < pij(t)} is the set of packet index for transmission, which also
depends on P and G.

1 At time ¢ for each g; ;(V(4,j) € £), decide the next hop node k of each packet that not destined to node j by
k=arg min \;, (1),

n:(j,n)ER

then get Ei,j,k(t) = Z””Er‘i,j (t) Lfn (l7j)(t)’
2 The weight W; ;(¢) for any link ; ; is calculated by:

Wi, () Nm Zﬂ”k

3 Allocate transmission power P according to:

P(t) = arg rlglggz W; ;(G(t), P); (25)
2,7

Algorithm 2: The scheduling and multi-path routing algorithm under per-link queues

It is easy to justify that Algorithm 2 gives an optimal solution to (24) based on routing scheme R.

The Lagrangian price (21) and the transmission rate (22) at each node are updated in a distributed
manner with low computational complexity and the information used in Algorithm 1 is local rather than
global. Given the link price [);;], (25) is generally NP hard, even if the power control is on-off with

two values. If suboptimal performance is allowed, some algorithms such as column generation [28] can
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13

be used to solve the MWIS problem. The MWIS problem can also be solved in a distributed manner
with low complexity by the algorithm mentioned in [20], which usually achieves a performance within
about 4/5 of the optimal performance. There are also some works studying the impact of the imperfect
scheduling and its bound such as [29] [30].

Algorithm 1 cannot be derived directly from the dual decomposition of the NUM problem (20).
However, (20) can be used as a reference system to characterize the performance of Algorithm 1. The

performance of Algorithm 1 is studied in the next section.

V. PERFORMANCE ANALYSIS

In this section, Section V-A shows the performance of Algorithm 1. To enhance the performance of
Algorithm 1 in terms of delay, we propose a Very Important Packet (VIP) queueing structure in Section

V-B.

A. Performance of Algorithm 1

The system states under the discrete-time control policy evolve as a Markov chain and we need to
show that this Markov chain is stable. Because we apply the floor operation to the Lagrangian price and
the transmission rate, it is easy to check that the Markov chain has a countable state space, but is not
necessarily irreducible. Thus, we consider the partition of the state space as the transit state set and the
recurrent state set. It is defined to be stable if all recurrent states are positive recurrent and the Markov
process hits the recurrent states with probability one [8] as ¢ approaches infinity. This can guarantee that
the Markov chain is absorbed/reduced into some recurrent class, and the positive recurrence ensures the

periodicity of the Markov chain over this class. Then we evaluate its stability by the following theorem:
Theorem 2. The Markov chain described by (21) (22) is stable.

Theorem 3. The network utility produced by Algorithm 1 converges statistically to the neighborhood of
K25|A(\/02+Dg+zl+22)>§ io

the optimal utility with radius ( 5K

2
- Ko|S|A(VE + DE + Z1 + Zo)

5K, (26)

SRV (o))} - 30

where (26) is the result under y; ;(X,t) = y; (X, t) = 25(X,t) = 27%(X,t) = 1 (V(i,j) € L,s1 #
sa,k # j) and similar result holds for y; ;(X,t) = y;x(X,t) = 2]4(X,t) = 2%(X,t) # 1 (V(i,j) €

L, 81 # so,k # j); x5(c0) denotes the transmission rate of the Markov chain in steady state, and V' and
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D are constant bounds of function (uf] — Aij + vb} j)+ and the partial derivative of the dual function
ui —4;
T (H)—%iy |

d; ;; and Ko = max, |[u® (2°(c0))|* and K1 > 0 is the largest lower bound of

The proofs of Theorem 2 and 3 are given in Appendix B.

Theorems 2 and 3 imply that the expectation of the network utility converges to a small neighborhood
of the optimal utility. Thus, the iterations of transmission rates and the Lagrangian prices converge
simultaneously. There may be other decomposition possibilities as studied in [23].

Here, we provide some intuition about our sliding mode based joint congestion control and scheduling
design. In queueing networks, the NUM problem can be decomposed into a scheduling problem and a
congestion control problem, which produces the classic primal-dual algorithm [31]. The dual algorithm
turns out to be the back-pressure routing/scheduling, which can stabilize the network whenever the source
arrival rate is within the capacity region of the wireless network [8] [9]. Since the QoS requirements in
our problem are functions of source transmission rate, these constraints will only affect the solution to
the congestion control problem rather than the stability of the network within the capacity region. Since
the sliding mode control theory provides a distributed optimal solution to convex optimization problems,
it can be applied to solving the congestion control problem.

Note the the capacity region under per-link queueing may be different from that under per-destination
queueing. Intuitively, the per-destination queueing provides smaller granularity for scheduling and it can
be easily proved that the capacity region under per-destination queueing is not less than that under per-link
queueing. Little work is done about this comparison. In Sec. VI, we present the simulation results about

the throughput comparison of a network under both per-link queueing and per-destination queueing.

B. Performance Enhancement Mechanism: VIP Queues

In the above system model, we do not consider the services with stringent delay requirements. In
this section, we propose a framework for the co-existence of the per-link queues (non-VIP queues) and
the VIP queues so that delay-sensitive services can be supported. The VIP queues and non-VIP queues
are maintained separately along the routes of delay-sensitive applications and the VIP queues will be
scheduled by some delay-aware algorithms. Since these applications may have much less number of
destinations, the per-destination queues can also be used. One application is for interactive multi-class
such as VoIP, online multiplayer games, which have stringent delay requirements. The packets from
interactive multimedia applications are marked as VIPs and will be put into VIP queues and transmitted

with higher priority over non-VIPs. Another application is the transmission of layered video, where
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Fig. 1. Network topology: (a) Dumbbell topology. (b) Chain topology. (c) Loop topology

the base-layer packets can be placed into the VIP queues and transmitted with high priority, and the
enhancement layer packets are placed into the non-VIP queues and transmitted with low priority. There

are some theoretical analysis of the performance regarding priority queues [32].

VI. SIMULATION RESULTS

In this section, we demonstrate the performance of Algorithm 1 by simulating ad hoc networks in three
topologies with typical traffic patterns. Section VI-A describes the simulation settings, and Section VI-B
presents the simulation results of Algorithm 1 under constant and time-varying time division multiple

access (TDMA) channels.

A. Simulation Settings

The ad hoc network topology that we simulate is depicted in Fig. 1, where Figs. 1(a), 1(b) and
1(c) show a dumbbell topology, a chain topology and a loop topology respectively. The lines in Fig.
1 indicate bi-directional links and the distance between any two neighboring nodes is the same. Each
constant wireless channel has a capacity of 1.4Mb/s. The time-varying channel state can be one of the
five states/rates, i.e., {0.28,0.84,1.40,1.96,2.52}Mb/s, with probability 1/5. Thus, the expectation of
the transmission rate for a time-varying channel is 1.4Mb/s. Without loss of generality, only one-hop

interference is considered, i.e., each node cannot transmit and receive simultaneously.
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TABLE I
PARAMETERS
Topology | Services QoS Parameters
sl:{li,3} No QoS A = 0.0(TVC)

s2:{l1,3, l3,2}
Dumbbell | s3:{l1 3, l34}
s4:{l1,3, l3,4, las}
s5:{l1,3, l3,4, la6}

sl:{l12, l2,3} z2 > 350kbps | A =1
Chain s2:{l2,3, l34} z* = 100kbps | v = 200
(CO) s3:{l3,4}

sd:{li2, loz, I3a}

sl:{li2, l2s} x? > 350kbps | A =0.01
Chain s2:{la3, I3} z* = 100kbps | v = 200

(TVC) s3:{ls4}
sd:{l12, la3, l3,4}

sl:{li2, l2s} x' > 350kbps | A = 0.01(TVC)
Loop and {l1,4, la3} v =300
521{12,3}

The utility function of each flow is:
U(z®) = ws In(z® + 1) (27)

where wj is a user specified parameter to indicate different weight of the service, and we choose identically
wg = 2000 here. In Algorithm 1 and 2, design parameter v and the scalar iterative step-size A are also
user-specified parameters and listed in Table I, where CC is shorthand notation for constant channels and

TVC is shorthand notation for time-varying channels.

B. Performance of Algorithm 1

1) Throughput Performance: In this section, we study the throughput performance of Algorithm 1. The
set up of the simulation is the following: in a 6-node ad hoc network in dumbbell topology, as shown in
Fig. 1(a), there are five best effort (BE) services from node 1 to node 2, 3, 4, 5, 6 respectively. The time-
varying channel states are i.i.d. uniformly distributed with transmission rate {40, 120, 200, 280, 360 }kb/s.
For comparison, it is simulated under Algorithm 1 with per-link queueing and under the MaxWeight

algorithm [8] with per-destination queueing. It is known that the MaxWeight achieves the throughput
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Fig. 2. Transmission rate and queue length of dumbbell topology: (a) The average transmission rate under Alg. 1 and per-link
queueing. (b) The average queue length under Alg. 1 and per-link queueing. (c) The average transmission rate under MaxWeight

and per-destination queueing. (d) The average queue length under MaxWeight and per-destination queueing.

optimal under per-destination queueing. To get the optimal throughput under Algorithm 1, we choose
transmission rate as the utility function for each node. The routing table applied to Algorithm 1 is listed
in Table I, while the MaxWeight algorithm uses the back-pressure routing.

Fig. 2 illustrates the time-averaged rates of data reaching each destination, and queue length vs. time
under both queueing models. From Fig. 2(a), we can see the time-averaged data rate at each destination
converges to about 22kb/s, which means the per-link queues in the dumbbell network is able to support
such data rates. The time-averaged queue length also converges fast to finite value as shown in Fig. 2(b).
This data rate can also be supported by the per-destination queue/MaxWeight (not shown in simulation
results). However, with a transmission rate 23kb/s for each service, the network under per-destination
queueing is unstable. It is seen from Fig. 2(c) that the time-average data rates at some destination nodes
are obviously below 23kb/s. Accordingly, the queues are not stable in 2(d) because the rate of data

entering the network is more than the rate of data reaching the destination. In the per-link queueing,
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node 3 is the only next hop node of node 1, thus the source rates of node 1 will converge to the same
rate according to Algorithm 1 under the same utility function, which is also validated by Fig. 2(a).

Since it is very difficult to get an analytical results of the capacity region of a wireless network, we have
to resort to simulation to roughly compare the throughput of a network under the per-link queueing and
the per-destination queueing. It is seen that with reasonable routing algorithm applied, Algorithm 1 can
achieve a throughput performance close to MaxWeight but using much less queues. There are 6 X 6 = 36
queues under the per-destination queueing whereas only 10 queues under the per-link queueing.

2) Supporting Multi-class Services: In this section, we evaluate whether Algorithm 1 can simultane-
ously support various QoS required by different services. Both elastic and inelastic services are simulated
in a 4-node ad hoc network in chain topology, as shown in Fig. 1(b). There are four services in the network.
s1 and s3 are BE flows such as email and file transfer protocol (FTP). s2 has a minimum transmission
rate requirement of 350kb/s (in time-average sense under time-varying channels), which can provide the
VBR flows such as video over IP. s4 is a CBR flow transmitting at 100kb/s, which represents 10 VoIP
streams (each with 10kb/s).

Fig. 3 shows the time average transmission rates vs. iteration steps without/with QoS requirements under
constant channels (CC) in the 4-node chain ad hoc network. In Fig. 3(a), we compare the convergent trans-
mission rates of the ad hoc network under Algorithm 1 (per-link queueing) and the MaxWeight algorithm
(per-destination queueing). The transmission rates under MaxWeight are denoted by x1', z12, z13. Since
s4 transmits at a constant rate, it is not shown in the figure. It is shown that the throughput of Algorithm
1 is slightly smaller than the Maxweight algorithm which is throughput optimal and uses more queues. It
is also noticed that the QoS constraints under Maxweight are not satisfied. In addition, similar simulation
results can be observed in Fig. 4 under time-varying channels. If QoS requirement is not considered, the
transmission rate for x! is much lower than 350kbps, as shown in Fig. 3(a). In comparison, the QoS
requirements are satisfied in Fig. 3(b) for all flows under Algorithm 1. Comparing the network utility
under no QoS with that under QoS requirements, the former is larger than the latter, which is reasonable
because the feasible region is smaller under QoS constraints. In this chain topology, [1 2 and I3 4 can be
activated simultaneously. s1, s2 and s4 pass l2 3, which has to be activated with no other active links.
Thus, I2 3 is the bottleneck and 22 is expected to be smaller without QoS constraints, which also matches
our simulation results. Similar results are observed in Figs. 4(a) and 4(b) under time-varying channels
where s2 is the VBR flow. In summary, all these simulation results demonstrate that Algorithm 1 is
capable of supporting traffic with multi-class QoS requirements. One possible disadvantage of Algorithm

1 is that the convergence of the transmission rates may be slower.
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Fig. 3. Transmission rate for chain topology under constant channels: (a) The average transmission rate under Alg. 1 and

MaxWeight without QoS requirements. (b) The average transmission rate under Alg. 1 with QoS requirements.

3) Robustness against Link Failure: In this section, we study the robustness of Algorithm 1 against
link failure under time-varying channels. To emphasize that Algorithm 1 can support multi-path, a 4-
node loop ad hoc network is simulated, as shown in Fig. 1(c). sl is a video-over-IP flow with minimum
transmission rate requirement of 350kb/s and s2 is BE flow. There is multi-path routing identified for sl
through [ o and [q 4 respectively.

Fig. 5 illustrates the multi-path transmission rates vs. iteration steps under loop topology shown in
Fig. 1(c) under time-varying channels. In Figs. 5(a) and 5(b), the QoS requirement is satisfied for s1 by
the sum of the transmission rates over two paths. The time-average queue length also converges. Since
s1 and s2 have to share [5 3, the transmission rate x%A over [y 4 is expected to be larger than xiz over
the other path, which matches the simulation results in Fig. 5(a). For comparison, Figs. 5(c) and 5(d)
show the transmission rate and queue length in the case of the link failure of /; 4. When encountering
a link failure, it is shown in Fig. 5(d) that q; 4 corresponding to /1 4 increases quickly, which decreases

the transmission rate x%A quickly to zero. In this case, the QoS requirement is not satisfied and the
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Fig. 4. Transmission rate for chain topology under time-varying channels: (a) The average transmission rate under Alg. 1 and

MaxWeight without QoS requirements. (b) The average transmission rate under Alg. 1 with QoS requirements.

the transmission rate xiQ of the other path increases according to (22). Finally the QoS requirement is
satisfied as shown in Fig. 5(c) and the network is stable. These simulation results show that Algorithm. 1
is robust against link failure because the multi-path transmission adaptively does load balancing to satisfy

QoS requirements without changing the routing table.

VII. CONCLUSIONS

In this paper, we study the joint congestion control and scheduling problem for multi-hop, multi-
path per-link queueing wireless networks with QoS constraints. It is formulated as an NUM problem
under both constant and time-varying channels, which is decomposed into a congestion control problem
and a scheduling problem. Then, a distributed SM based controller is designed to iteratively solve the
congestion control problem, which can provide multi-path rate adaption to satisfy QoS constraints.
The scheduling problem is identified as a maximum weighted independent set problem and can also
be solved in a distributed manner. We extend this algorithm to the case with time-varying channels

and prove that the dynamic control law, i.e., Algorithm 1 is stable and the network utility converges
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Fig. 5. Transmission rate for loop topology: (a) The transmission rate under multi-path with TVC and QoS requirements. (b)
The queue length under multi-path with TVC and QoS requirements. (c) The transmission rate under link failure for I; 4 with

TVC and QoS requirements. (d) The queue length under link failure for /1 4 with TVC and QoS requirements.

to a bounded neighborhood of the optimal. Simulation results show that Algorithm 1 is capable of
providing heterogenous multi-class services with different QoS requirements. Because of the multi-path
load balancing feature of this algorithm, it is robust against network anomalies such as link failure.
The application of the SM control theory in wireless networks is tightly related to the decomposi-
tion property of the protocol stack. Since the joint congestion control and scheduling is a cross-layer
optimization, these two subproblems interact with each other through the Lagrangian prices. Therefore,
the sources adapt the transmission rate to the price, which masks the link status such as time-varying
channel capacities and dynamic scheduling. At the same time, the scheduling problem is independent of
the source transmission rates. This property makes it possible to apply SM control theory. Furthermore,
the convergence conditions of the SM controller are also relaxed because the decomposed sub-problems

provide a way of “negative feedback” to each other in wireless networks.
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APPENDIX A

PROOF OF THEOREM 1

Proof: We sketch the proof of Theorem 1 below, and interested readers can find the design law of
the SM controller in [15] [16]. To prove the convergence and optimality of the algorithm, we construct

the Lyapunov function as

W(X,A) = Wi(X)+Wa(A) (28)
where
A 1 N 2 1 A2
W) &5 3 (A —hig) =5l A Al
(i,9)eL
s 1 s 1 NN
Wa(X) £ S (05, - 33,)" = 51 X - X 29)
seS,j=n?

and ([S\i,j], [i‘f j]) are the optimal solutions to problem (7) (assumed to be feasible), thus they are constants.

For brevity, we omit the “(¢)” of the quantities below. Differentiating (28) with respect to ¢, we obtain:

W(X,A)
= Z #75) [205 (s +vbi; — Xij) + ot Z ( ) [y (i + Fly = F2)] 0 G0)
= Z 23 5) 285 (udy +obl; = Nig) + (Am' - 5\@;’) yij (zij + Fi;— FY), 31)
i

where the last inequality follows that (30) and (31) are equal if the projection in (13) and (17) are inactive,
and if the projection is active, the projection in (13) and (17) are zero, while the expression in (31) are
positive due to z; ; + F; — F?; < 0 and uj ; +vbf ; — A; j < 0. Here, “37, ” and “}_ . is a shorthand

notations for »_; »cpand D gy ien -

Since [i"f]] is the optimal solution to the NUM problem, then the fact comes that Ai J = U ;, where
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s = 8%36(1;) L Substituting it into (31) yields
W(X,A)

IN

E (= ) 22 (1wl =y = g+ o+ 005 ) + D i (Mg = M) (g — ) +
i
Z vig (Mg = N ) (815 + Fly = F)) (32)
- ZZJ AS,J) ( Ui~ ASJ + ZZJ 3 Af]) (5‘1] - )‘i,j) +
sz,j (255 — @5 5) vbi; + Zyw ( m) (@i — &ij) +

Zym ( w) (i3 + Fii,j - ) (33)
= Z (xsﬂ T ,J) 2 (u ( )+ Z w i “%SJ) vbj; +
Z?Jm ( w) (&3 + Fj — Ffj) 34

The second term and the forth term in (33) cancel each other if =} j = Yiyj (Vs € S,b° =i,n° = j)

because flows sharing the same source node i and the next hop node j relate to the same J; j, then

Zz i (@5 AS,J) O‘ Zyw ( i u) (Tij — %ij)

Because U? is concave w.r.t. %, and ufj u® (Vj € N;), where u® ‘fg 5o Then we have:
Zz i (@i AS,J) (uzsj - ﬁf])
S DM DIETED SEN NI @)
s \JEN; JEN;
= 2 (@ —2%) (u® — 0 (36)
S

<0

~s A dU*®
where 1° = e

;- and (35) follows that u; ; — u7 ; depends on z7 ; in terms of x* for a source s; and

(36) follows that U? is a concave function of x°.
From constraint (7c), we have z; ; < FO FZ Because Ff i F°4 and ); ; are the optimal solution

for (10) at time ¢ and FZ’ and FO are feasible solutions to the outflow and inflow, thus

Z)\’i,j(i’i,j +Fii,j 2] < ZA’LJ 1,5 FZ +FZ Fi(,)j) <0. (37)
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From the KarushKuhnKucker (KKT) conditions, A; ; (ﬁc” + FZ’] — FZ"]) = 0 holds and

> (‘Xivj) (&1 + Fiy = FY)

i?j
= > (_;\m') (Ffj —Fl - F+ ng) <0 (38)
0

because the quantities with hat are the optimal solution to (10). Thus, Zl ; Yij ()\m- — 5\”) (j:Z i+ Fii,j _
0. We also have (], — 27 ;)vb; ; < 0 according to the definition of b; ;.
Therefore, W < 0, which implies that the joint congestion control and scheduling scheme is optimal

and convergent according to LaSalle’s Invariance Principle [2]. |

APPENDIX B

PROOF OF THEOREM 2 AND 3
A. Proof of Theorem 2
Proof: The Lyapunov function is the same as defined in Appendix A. Here, for simplicity, it is

assumed that y; ;(X,t) = 27;(t) = 1 (Vs € F,(i,j) € L£,VX,t). Consider the expectation of the

one-step Lyapunov drift
E{W(t+1) = W(®)|X(1),A)}
= E{Wi(t+1) — Wi(t)| X (1), A(t)} + E{Wa(t + 1) — Wa(t)| X (£), A(t)}
= E{Wi(X({t+1)) - Wi(X ()X (1), At)} + E{Wa(A(t + 1)) — Wa(A@))[X (1), A(t)} (39)
By substituting (21) into (39), the first term of (39) is
E{Wi(t+1) = W)X (t), A(t)}

Al

= E{W (|[A() — A
[A(t) — Ad]" — 1) [ X (), A1)} — E{Wi(A()| X (), A(t)}

( d"]) = Wi(A®)1X(8), A1)}
(

- E{w

IN

E{W1 (A(t) — Ad) — Wi (A())| X (1), A(t)} —

E { e [(A@) - @) — 4] - L] x00). A(t)}

< E{Wi(A(t) = Ad) — Wi(A()| X (), A(t)} + 1A + %HQH%? (40)

where d = [d; ;(?)] with d; j(t) = F?;(t) — Fjj(t) — x; ;(t) as defined in (12) and €; = [A(t) — Ad]" —
[[A(t) — Ad]ﬂ; the first inequality comes from expanding the term Wy ([A(t) — Ad]™ — 1) and relax
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the projection in it. Note that 0 < ¢; < A21, where 0 and 1 are zero and unit matrix respectively. Thus,

A+ Fllexl3 < A?||A|2 + $AY|1]j3 £ A%Z,. Substitute it into (40), and we have
E{W1(t +1) — Wi()| X (), A(t)}

E{ W1 (A(H) — Ad) — Wi(AM)| X (0, A®)} + A2Z,

— _AE { >, (hig = Nig)
4,3

where the second equality follows from expanding the term W; (A(t) — Ad) — Wi (A(?)).
Denote the objective function in (9) as V(X (2), A(t)) = >_,cs U(2°) = 22(; j)er Aiji,j- The partial

IN

X(t),A(t)} + AR {3 X (0, A} + A7 @)

. : s s __ .8 . _ s
derivative w.r.t. x7; is V%, = uf; — A\;; and g = [V}, where u]

g is the partial derivative w.r.t. x; . of

J 1,J

U®(x®). Substituting (22) into the second term of (39) and following the same manipulations as above,

we have
E{Wa(t + 1) — Wa(H)] X (), A1)}
—E{ W, ([[X(1) + A (g+vBe)]])| X(0), A®)} — E{Wa(X(£)[X (1), A1)}
—E {Wa ([X(1) + A (g + vBO)" — )| X (1), A1)} — E {Wa(X(1)|X (1), A1)}

<E{Wa (X(H) + A (g + vB()| X(t), A()} — E { Wa(X (1) X(t»A(t)} -

E{e [(X(0)+4@+oB0)" - X[ X(0).A0)
<E{W2 (X () + A (g +0B())| X (0, A0} — E{Wa(X ()| X (1), AW} + i + 3 s, 42

where B(t) = [b7;(¢)] and €2 = [X(?) + A gt — [[X(t)+A g]+J. Further simplify (42) by e2X +
slleall3 < A% X3 + 5AY1]5 £ A%Z; and we get

E{Wa(t + 1) = Wa ()| X (¢), A(t)}

< E{Wa (X)) +A (g+vB1)")| X(t),At)} —E{Wa(X(t)| X(t),A(t)} + A*Zs

— A]E{Zgz zf - a5 )| X }—i—AZE{vbS ai s — 5| X (1), A®)}
+§A2E{ (g +vB(n))* 3| X, A} + A% Z,

< AE{Z% xi;— 25 )) X(t),A(t)}—i—;AzE{ g+ vB(t) T3] X, A} + A%Z, (43)
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where the second equality follows the definition of bij(t). Substitute (41) and (43) into (39), then

E{W(t +1) = W(t)[X(2), At)}

< —AELY Td(Nig = Ai)| X(E),A() p +AEQ D gee (a5 — £55)| X(£), A(t)

BJ T Mg
S7j
+A%(Zy + Zy + D + V), (44)
where the last inequality follows that the conditional expectation of ||d||3 and ||(g + vB(¢))"||3 are

uniformly bounded by constants Dy > 0 and Vg > 0. For dy, ;(?), the per-link flow variables [F;(t)],
[E’j(t)] and the transmission rate [x; ;(¢)] are bounded. For ||(g + vB(¢))*

5. if g +uB(t) > 0, ||(g+
vB(1))"[53 < l|luf;(t)]5 + [[vB(t)]|3 is bounded, otherwise ||(g + vB(t))*]j3 = 0.

Follow similar manipulation procedure as in the proof of Theorem 1 and take conditional expectation,

(44) can be simplified to
E{W(t+1) - W(t)|X(t),A)}
< AY E{(u - @) (@5(t) — )} + AN Z1+ Zo+ DY+ V), (45)

where 4° is the partial derivative of U®(z°) w.r.t. z ;

j and evaluated at X.
Define A, such that

=
1>

X |E Z (u® —a°) (2° — 2°(t))

< A(V§+Di+Zi+ Z2)},

which is not empty and has finite number of elements with properly chosen A.

Therefore, we have:
E{W(t+1)-W(@)|X(),Al)}
1 o2 2 _ 1 21,2 2
< A (Vo' + Dy + Z1 + Za)Ixen 5A(Vo + Dg + 21 + Z2)Ixea (46)

where [ is the indicator function. Thus, by Theorem 3.1 in [8], which is an extension of Foster’s criterion,

the Markov chain is stable. [ ]
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APPENDIX C

PROOF OF THEOREM 3

Proof: Taking expectation of (46) w.r.t. (X, A), we have
E{W({t+1)-W(t)}
1
< SANVE D+ 21+ Zo) + A Y E{(ut — %) (2°(t) - 3°)} (47)

Summing (47) over 7 =0,...,¢t — 1, it is obtained that

t—1 .
- % > (ZE{(US — %) (2°(t) — ;@S)}) < E{W (X (0),A(0))} + $A%(V{E + Di + Z1 + Zo) s

tA

If 25(t) # Z°, (48) can be simplified as

S NS

= | . 2}
n — | (@) = i)
;) (ZS: { wij(t) —@iy] " "
E{W(X(0), AO)} + 5A%(V5' + DG + 21 + Z2)
< (49)
tA
Since U?(x*) is a strictly concave function of z° and the transmission rate x* € [0,z ], % is
non—negative and bounded. Then u(Jt)ixj > K holds, where K7 > 0 is the largest lower bound of
u; ;—u
T; J(t)—ac

S E{((o0) - 07} < 2T D A+ B)

50
2K, (50)
Then it is obtained that
ZE{US Z Us
<Y [E{UT (27(00))} - 08}
N2
< ZE { (US (2°(0)) — US> }
S (.8 2/ s ~8\2
<Y E{u (@*(00) (a7 (00) — %) }
<K2|f\A(V02+D8+Zl+Zz) 51)
= 2K1 )
where K5 = max; |u® (2°(c0))|? is a constant; and |F| is the cardinality of F. [ |
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