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Fuzzy-Clustering-Based Decision Tree Approach for
Large Population Speaker Identification

Yakun Hu, Dapeng Wu, and Antonio Nucci

Abstract—In this paper, we address the problem of large
population speaker identification under noisy conditions. Major
techniques for speaker identification is based on Mel-Frequency
Cepstral Coefficients (MFCC), Gaussian Mixture Model (GMM)
and Universal Background Model (UBM) which we call
MFCC+GMM and MFCC+GMM+UBM. The approaches are
known to perform very well for small population identification
under low-noise conditions. However, the increase of population
size can cause performance degradation of these schemes under
noisy conditions. To mitigate this limitation, we propose a fuzzy-
clustering-based decision tree approach. The key idea of our
approach is to 1) use a decision tree to hierarchically partition
the whole population into groups of small size, and determine
which speaker group at the leaf node a speaker under test
belongs to, and 2) apply MFCC+GMM to the selected speaker
group for speaker identification. The advantage of our approach
is that we use features that are independent from MFCC to
partition speakers into groups and only apply MFCC+GMM
to speaker groups at the leaf level. The key challenge in our
design is how to achieve a low error probability of decision-tree-
based classification. To address this, we adopt fuzzy clustering
in constructing the tree for population partitioning, i.e., at each
level, a speaker may belong to multiple groups. Such redundancy
increases the probability of classifying a speaker under test into
a correct group/node on the tree. Another novelty of this paper
is that we use pitch and five vocal source features to construct a
six-level decision tree. Experimental results demonstrate that our
approach outperforms MFCC+GMM and MFCC+GMM+UBM
with higher accuracy and lower complexity for large population
identification under additive white Gaussian noise (AWGN)
conditions.

Index Terms—Large Population Speaker Identification,
Hierarchical Decision Tree, Fuzzy Clustering, GMM, MFCC

I. INTRODUCTION

Speaker identification [1] is an example of biometric system
that has many useful applications. In speaker identification,
given an input speech, the task is to determine the unknown
speaker’s identity by selecting one from the whole population
of speakers registered in the system. In this paper, we consider
large population speaker identification under noisy conditions.
Specifically, there are a large number of registered speakers
in our system and there is a mismatch between training and
testing caused by noisy conditions (i.e., training samples are
clean but testing samples are corrupted by additive noise).

Copyright(c)2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubspermissions@ieee.org.

Yakun Hu and Dapeng Wu are with Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32611. Correspondence
author: Prof. Dapeng Wu, wu@ece.ufl.edu, http://www.wu.ece.ufl.edu.
Antonio Nucci is with Narus, Inc., 570 Maude Court, Sunnyvale, CA 94085.

The major technique for speaker identification is based
on MFCC (Mel-Frequency Cepstral Coefficients) and GMM
(Gaussian Mixture Model) [1]. Some important GMM-
based approaches including the Universal Background Model
(UBM) approach have been proposed [2], [3]. In this
paper, we call them the MFCC+GMM approach and the
MFCC+GMM+UBM approach. Another emerging technique
which becomes very population is the i-vector approach
(including the joint factor analysis approach) [4], [5].
The i-vector approach has been widely used for speaker
verification. However, it seems not be directly applied to
speaker identification yet. The i-vector approach usually
requires a large number of data to perform well and the
computational complexity can be high when applying i-
vector to speaker identification especially for large population
case. In our paper, we use the MFCC+GMM approach and
the MFCC+GMM+UBM approach as the benchmarks for
performance comparison.

The approaches based on MFCC and GMM are known to
perform very well for small population speaker identification
under low-noise conditions [1], [2]. However, they also have
some drawbacks. The first drawback is that they suffer from
the mismatch between training and testing caused by noisy
conditions. The noisy conditions can severely degrade the
identification performance. The second drawback is actually a
common problem of almost all existing speaker identification
techniques. The success of almost all existing identification
systems (including GMM-based systems) lies in the fact that
they are trained on datasets with only a relatively small
population. However, it is pretty straightforward that when
the population has a significant increase (e.g., thousands
of registered speakers or even more), the probability of
identification errors will significantly increase, accordingly.
Unfortunately, there are not much existing research work
studying this problem. Some papers mainly focused on
reducing the computational complexity in large population
cases at the cost of a very slight accuracy loss [6]–[8]. In
some other papers which claimed to deal with large population
identification, the experiments were actually carried out on
datasets with only hundreds of registered speakers [9], [10].
In [11], Chaudhari et al. attempted to address the truly
large population identification problem and they proposed a
derivative of MFCC+GMM and achieved a good accuracy on
the IBM internal dataset consisting of 10013 speakers. The
experiments in [11] were conducted when training and testing
conditions are matched without additive noise or channel
variations. Nevertheless, the population becomes an extremely
important impact factor of the identification performance
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under noisy conditions. Some existing research have provided
evidences to support this conclusion. One evidence is from
[12] in which Reynolds showed the accuracy of MFCC+GMM
as a function of the population size on NTIMIT database which
contains speech samples degraded by noise and bandlimiting
[12]. Experimental results shown in [12] indicate that the
identification accuracy steadily decreases as the population
size increases and the largest drop in accuracy occurs when
the population size increases to 100. With the full 630 speaker
population, there is about 30% loss in accuracy compared with
10 speaker population case. Another evidence comes from
our own experimental results. Fig.1 shows the accuracy v.s.
population for MFCC+GMM on our own speech dataset (the
specific description will be given in Section V) in the scenario
of additive white Gaussian noise (AWGN) with a 30dB signal-
to-noise ratio (SNR). From the figure, we also can see there is
a steady and significant accuracy loss as the population goes
up. As a conclusion, approaches based on MFCC and GMM
have achieved great success in speaker identification. However,
two factors including the additive noise that is ubiquitous
in the environment and the practical requirements of large
population identification are greatly limiting the approaches
in real applications.
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Fig. 1. Accuracy v.s. Population for MFCC+GMM.

To mitigate the limitations of MFCC+GMM (including
MFCC+GMM+UBM) and improve the performance of large
population speaker identification under noisy conditions, we
proposed a fuzzy-clustering-based hierarchical decision tree
approach. The key idea of our approach is that we use a
decision tree to partition the original large population into
subgroups in a hierarchical way. For a speaker under test,
we first conduct the decision-tree-based classification (i.e.,
determine which speaker group at the leaf node of the tree
the speaker belongs to) and then apply the MFCC+GMM
identification approach to the selected speaker group at the
leaf node to determine the speaker identity. The decision tree
has multiple levels and the population partitioning is conducted
from upper levels of the tree to its lower levels. The root node
of the tree represents the universal set containing all registered
speakers. At each level of the tree, we use a speech feature to
do speaker clustering, i.e., a node (or a speaker group) splits
into several child nodes (or speaker subgroups) at its lower
level. In this process, speakers with similar speech feature are
put into a same child node whereas speakers with dissimilar
speech feature are put into different child nodes. Then, each

child node contains a smaller population size than its parent
node. Thus, at the bottom level, each speaker group at the
leaf node has a very small population size and the population
reduction is achieved. When the hierarchical decision tree is
constructed, for a speaker under test, we conduct the decision-
tree-based classification from the top of the tree to its bottom.
At each level, we determine which speaker group or node the
speaker belongs to. At the bottom level, we select one and only
one speaker group at the leaf node that the speaker belongs
to and apply MFCC+GMM to the selected speaker group for
speaker identification. The advantage of our approach is that 1)
we only apply MFCC+GMM to the speaker group at the leaf
node with a very small population size instead of applying it to
the original large population, and 2) since we only use speech
features that are independent from MFCC to cluster speakers
into groups, speakers with similar MFCC may not be put into
a same speaker group and the probability of speakers having
similar MFCC is much lower in the speaker group at the leaf
node than at the root node containing the whole population.
Hence MFCC+GMM can perform well in the speaker group
at the leaf node with a much higher correct identification rate
as well as a much lower computational complexity.

In the process of decision-tree-based classification, a
speaker may be classified into an incorrect node or speaker
group. What is worse, a classification error at any level will
propagate through the tree and finally accumulates at the
bottom level, i.e., if a speaker under test is classified into an
incorrect node (or speaker group) at a level, the speaker will
finally be classified into an incorrect speaker group at the leaf
node. Then, there is no chance for us to correctly identify the
speaker. Therefore, the key challenge in our design is how to
achieve a low probability of classification error in the process
of decision-tree-based classification for a speaker under test.
We can use the conventional hard clustering in constructing
the decision tree, i.e., a speaker only belongs to one node (or
speaker group) at each level of the decision tree. However,
it seems that the classification accuracy in the process of
decision-tree-based classification could not be satisfactory in
this case. For example, for those speakers on the boundaries
between different groups, an inevitable feature deviation in the
testing phase, even very small, will almost guarantee an error
of classification. Also, for speakers whose feature values have
relatively large deviation from sample to sample, it is difficult
to prevent from classifying them into the incorrect speaker
groups. To achieve a satisfactory performance of decision-tree-
based classification, we proposed to adopt fuzzy clustering in
constructing the decision tree, i.e., a speaker may belong to
multiple nodes (or speaker groups) at each level of the decision
tree. For a speaker under test, such redundancy introduced
by fuzzy clustering can greatly increase the probability of the
speaker being “captured” by a correct node (or speaker group)
at each level of the tree. Thus, the probability of classifying
a speaker under test into a correct speaker group at the leaf
node can greatly increase, accordingly.

Another novelty of this paper is that we derived six
features (including pitch and five vocal source characteristics)
to construct a six-level decision tree. The six features are
believed to 1) be able to discriminate different groups of
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speakers, 2) be independent from MFCC, 3) be independent
from each other, and 4) be robust to additive noise (e.g.,
AWGN). We evaluate the performance of the six-level
decision tree and compare the identification performance
with the MFCC+GM approach and the MFCC+GMM+UBM
approach on our own dataset in the scenario of AWGN.
Experimental results indicate that our approach outperforms
the MFCC+GMM approach and the MFCC+GMM+UBM
approach with higher correct identification rate (e.g., 8%
increase compared with MFCC+GMM+UBM for 30dB SNR
and 30s testing length) and lower computational complexity
which meets the requirement of real-time applications.

The remainder of this paper is organized as follows. In
Section II, we propose the fuzzy-clustering-based hierarchical
decision tree. Section III specifically describes the speech
features used in the decision tree for speaker clustering. In
Section IV, we present the fuzzy clustering algorithm adopted
in the decision tree. Section V shows the experimental results
and Section VI concludes the paper.

II. FUZZY-CLUSTERING-BASED HIERARCHICAL DECISION
TREE

In this section, we specifically describe our fuzzy-clustering-
based hierarchical decision tree for speaker identification.
In Section II-A, the system diagrams using the hierarchical
decision tree are shown. Section II-B explains the design of
the decision tree approach.

A. Diagrams of Fuzzy-Clustering-Based Hierarchical
Decision Tree

There are two units in our identification system using fuzzy-
clustering-based hierarchical decision tree: decision-tree-based
classification and speaker identification at leaf nodes of
the tree. Decision-tree-based classification has two phases:
training phase (i.e., speaker clustering for the construction
of the hierarchical decision tree) and testing phase (i.e., the
process of determining which speaker group at the leaf node
a speaker under test belongs to). Speaker identification at leaf
nodes also consists of training phase and testing phase.

Fig.2 shows the construction of the hierarchical decision
tree. In the figure, Cn1,n2,··· ,nL,nL+1 denotes the nL+1th node
representing a speaker group at level L, where L = 0, 1, · · · .
Every node is a set of speakers. The root node C1 at level
0 represents a single speaker group containing a total of N
speakers, where N has a large value (e.g., >1000) in our
problem. The parent node of Cn1,n2,··· ,nL,nL+1

at level L
is Cn1,n2,··· ,nL at level L − 1. At each level, the speaker
clustering is conducted, i.e., a parent node at an upper level
is split into several child nodes at its lower level. The speaker
clustering is carried out hierarchically from upper levels to
lower levels and is completed until each leaf node of the
tree can be labeled by a particular speaker group which
contains a sufficiently small number of speakers (e.g., <50).
As mentioned in Section I, we adopt fuzzy clustering at each
level of the tree. Specifically, a speaker in a parent node at a
level may belong to more than one child nodes at its lower
level. The fuzzy clustering will be specified in Section IV.

C1, 1

C1 = {1, 2, ···, N} 

C1, 2

C1, 1, 1

Level 0

Level 1

Level 2

Root

C1, 1, 2 C1, 2, 1 C1, 2, 2

Fig. 2. Construction of Hierarchical Decision Tree.
(Fuzzy Clustering:

∪
nL+1

Cn1,n2,··· ,nL,nL+1 = Cn1,n2,··· ,nL and
|Cn1,n2,··· ,nL,p

∩
Cn1,n2,··· ,nL,q | ≥ 0, where p ̸= q, L = 1, 2 · · · and

| · | denotes the cardinality of a set)

Fig.3 illustrates the classification based on hierarchical
decision tree, where Fig.3(a) gives the overall structure of
the hierarchical decision tree for classification and Fig.3(b)
specifies the input and output of a node at each level of the
tree for classification. As indicated from Fig.3(a), for a speaker
under test, the decision-tree-based classification proceeds from
the top of the tree to its bottom. At each level of the tree,
Fig.3(b) shows that the input of a node is an input speech for
testing. After feature extraction and classification procedure,
the node outputs the classification decision, i.e., which speaker
group at the child node at the lower level a speaker under test
is determined to belong to. At each level, one and only one
node is enabled and thus, for an input testing speech, an unique
path from the root node of the tree to one leaf node is enabled.

C1, 1 C1, 2

C1, 1, 1 C1, 1, 2

C1, 1, 1, 1 C1, 1, 1, 2 C1, 1, 2, 1 C1, 1, 2, 2

Level 0

Level 1
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+ Classification
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C1, 2, 1 C1, 2, 2

C1, 2, 1, 1 C1, 2, 1, 2 C1, 2, 2, 1 C1, 2, 2, 2

Feature Extraction 

+ Classification 

at C1, 1, 1

Feature Extraction 

+ Classification 

at C1, 1, 2

Feature Extraction 

+ Classification 

at C1, 2, 1

Feature Extraction 

+ Classification  

at C1, 2, 2

Feature Extraction 

+ Classification 

at C1, 1

Feature Extraction 

+ Classification 

at C1, 2
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(a) Overall Structure of Hierarchical Decision Tree for Classification

Feature Extraction + Classification

at Root Node C1 if L = 0 or at                       if L > 0

Input Speech 

for Testing

Classification Decision 

(                           at Level L + 1)
1+  1 2 L L+2n , n , , n , nC

L

Level L

1+1 2 Ln , n , , nC
L

(b) Input and Output of a Node at Level L

Fig. 3. Classification based on Hierarchical Decision Tree.

When a leaf node is enabled, the decision-tree-based
classification will be terminated and MFCC+GMM will be
applied to the speaker group at the enabled leaf node for
speaker identification. Since we only use those speech features
that are independent from MFCC to conduct speaker clustering
via decision tree, the probability of having speakers with
similar MFCC is significantly reduced in the speaker group at
the leaf node. Thus, MFCC+GMM can perform well. Notice
that the speaker group at the enabled leaf node contains a small
population, we do not need a GMM with a large number of



4

mixtures to complete the identification task and this further
ensures the computational complexity to be low.

B. Why Hierarchical Decision Tree?

In large population speaker identification, why it’s feasible
to use hierarchical decision tree for population reduction? This
is because human speech does contain many useful features
that can be used to cluster speakers into groups. Speaker
groups do exist that speakers sharing with a similar speech
feature are in a same group whereas speakers having different
speech features are from different groups. For example,
speakers with different genders can be distinguished by using
pitch feature [13]; based on different movement patterns of the
vocal cords during utterances, different speaker groups could
be obtained; Many emerging features which are independent
from MFCC may indicate different speaker groups [14]. In
summary, human speech has many different attributes and it’s
feasible to cluster speaker into groups by using various speech
features. At each level of our hierarchical decision tree, we
try to find different speaker groups by examining a certain
attribute of speech.

In our hierarchical decision tree, the speaker clustering is
carried out orderly and independently from the upper levels
to the lower levels. There is another alternative way that
we can jointly use all features to complete the clustering
at one time. Why we adopt the hierarchical way? There are
basically two reasons. On one hand, to classify a speaker under
test into a cluster (or speaker group) where MFCC+GMM is
used for speaker identification, our approach requires lower
computational complexity. Our approach uses low-dimensional
feature data (e.g., one-dimensional) and the classification is
much less complicated than the one using high-dimensional
feature data. Moreover, let us do a complexity analysis of the
classification. Suppose eight clusters are created by using each
feature, then jointly using M features will result in 8M clusters
and need a computational complexity of O(8M ) during the
testing phase. In contrast, a hierarchical tree constructed by M
features will also result in 8M clusters at the leaf level but only
incurs a computation complexity of O(M) during the testing
phase. On the other hand, as will be shown in Section III, since
features used at different levels of the tree are required to be
independent from each other, the classification performance
of our approach and the one jointly using multiple features
should be close to each other.

Some researchers proposed to combine MFCC and the
features that are complementary to MFCC for speaker
identification. Ezzaidi et al. put forward to combine pitch
and MFCC for speaker identification [15]. In [16], Wang
and Zheng integrated wavelet octave coefficients of residues
(WOCOR) into MFCC for speaker identification. In [17],
Hosseinzadeh et al. derived a set of spectral features from
the excitation component of speech and combined them with
MFCC for speaker identification by using GMM. Nakagawa
et al. proposed to combine MFCC and phase information for
speaker identification [18]. Those approaches use different
fusion techniques to combine likelihood scores based on
different features for speaker identification. Although fusion

techniques are fairly mature in speaker recognition, some
additional training is required to obtain the optimal weights
or parameters for the feature combination [19]. For large
population speaker identification, the key drawback of those
approaches is that they require high computational complexity
and they are not sufficiently scalable. From one aspect,
all those approaches need to combine scores for different
features (including MFCC) against all speaker models and
thus are not applicable to large population identification
due to the unacceptably high complexity. From another
aspect, when a new feature is available, the fusion approach
may need to be redeveloped in order to accommodate the
new feature and this greatly reduces the scalability of the
approaches. Comparatively, in our approach, we believe that
those complementary features to MFCC only can provide a
certain profile of the speech and thus are more suitable for
grouping speakers rather than identifying speakers directly.
We derived some complementary features and used them
to construct a decision tree for classifying speakers into
subgroups before using MFCC for identification. In this
way, the complexity can be significantly reduced for large
population identification since GMM likelihood scores are
only calculated against a small number of speaker models.
In our decision tree, the classification at each level and the
identification at the leaf node are independently conducted.
Therefore, it’s not difficult to accommodate a new feature by
just adding one more level to the existing tree without having
any effect on the original design.

III. SPEECH FEATURES FOR SPEAKER CLUSTERING

To achieve good performance, features used in our approach
for clustering should meet the following requirements: 1) a
good feature should be very capable of discriminating different
groups of speakers; 2) features used at different levels of the
tree should be independent from each other; 3) all features
should be independent from MFCC used at the leaf node for
identification; 4) all features should be robust to additive noise.
This section will describe the six features we derived.

A. Feature Description

All features we used fall into the category of vocal source
feature. The source-filter model of speech production [20]
tells us that speech is generated by a sound source (i.e., the
vibration of vocal cords) going through a linear acoustic filter
(i.e., the combination of the vocal tract and the lip). MFCC
mainly represents the vocal tract information. The vocal source
is believed to be an independent component from the vocal
tract and is able to provide some speaker-specific information.
This is why we are interested in extracting vocal source
features for speaker clustering.

The first feature we derived is pitch or fundamental
frequency. The pitch period is the period of the vocal source
vibration and can be estimated from the period of a voiced
sound. The rest of five features are all related to the vocal
source excitation of voiced sounds. We extract them from the
linear predictive (LP) residual signal [21] which is a good,
though not exact, representative of the vocal source excitation.
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It is well known that a LP residual signal of a voiced sound is
virtually periodic and in each cycle, there are both a positive
pulse and a negative pulse. For different speakers, the shape of
the pulses are very different. The five vocal source features we
use are width of the positive pulse, skewness of the positive
pulse, skewness of the negative pulse, PAR of the positive
pulse within one cycle and PAR of the negative pulse within
one cycle. Notice that we do not use the width of the negative
pulse as a feature since experimental results indicate that
it does not perform as well as the other five. The related
discussion will be given in Section V-A2.

B. Feature Extraction

In this section, we will specify how the six features are
extracted from the speech signal.

1) Pitch Extraction: In our work, YIN algorithm [22] is
used for pitch feature extraction. Fig.4 shows the input and the
output of the pitch extraction module using YIN algorithm.
As indicated from the figure, given a continuous speech as
the input, the module first decomposed it into NF frames.
The frame length is 25ms and the frame shift length is
10ms. For the i-th frame (i = 1, 2, · · · , NF ), we obtain the
pitch estimation pi and the probability of the frame being
voiced denoted as Pri. Since the reasonable pitch range of
human speech is from 50Hz to 550Hz [23], we drop all pitch
estimations which are lower than 50Hz or higher than 550Hz.
We also discard all pitch estimations that are extracted from
frames whose probability of being voiced are below 0.8. By
doing so, we can remove all potential outliers and obtain a set
of reliable pitch estimations.

Pitch Extraction Module using YIN Algorithm

Continuous 

Speech

Pitch Freq: p1

Prob. of 

Voicing: Pr1

Frame 1

Pitch Freq: p2

Prob. of 

Voicing: Pr2

Frame 2

Pitch Freq: 

Prob. of 

Voicing:

Frame NF

{pi | 50 ≤ pi ≤ 550 ∩ Pri ≥ 0.8}

Outlier 

Detection

FNp

NF
Pr

Fig. 4. Pitch Feature Extraction.

2) Vocal Source Features Extraction: We developed our
own algorithm to extract all five vocal source features. As
similar as pitch extraction, the vocal source features are only
derived from voiced speech frames. Fig.5 shows the process
of vocal source feature extraction. Given a continuous speech
as the input, it is decomposed into short-time frames as
similarly as shown in Section III-B1. For each speech frame,
we determine whether it’s voiced or not based on the energy
and the zero crossing rate of the frame. If it is voiced,
we apply the well-known Levinson-Durbin algorithm to the
frame to estimate the LP coefficients. As the sampling rate is
11.025kHz, the LP order is set to be 14. This is reasonable
because a rule of thumb to choose the LP order is to use 1

complex pole per kHz plus 2-4 poles to model the radiation
and glottal effects [20]. By using those LP coefficients, we
obtain the LP residual signal and extract all five vocal source
features from the LP residual signal.Continuous SpeechFrame SegmentationInitialize Frame Index i = 1Calculate Energy Ei and Zero Crossing Rate ZiVoiced Speech Frame? NoYes i = i + 1Finish Processing all Frames?TerminateYes NoLinear Prediction AnalysisPre-emphasis and WindowingResidual SignalPositive & *egative Pulse DetectionVocal Source Feature Extraction (Width, Skewness and PAR)Outlier Removal
Fig. 5. Vocal Source Features Extraction.

The vocal source feature extraction is not specified here
since it is not the focus of this paper. The last step of the
vocal source features extraction is the outlier removal just like
the pitch feature extraction. Since there is no solid knowledge
about the reasonable range of the vocal source feature values,
we can not set lower and upper limits as we did for pitch
feature but we can do it by statistical analysis. It is observed
that, for each of five vocal source features, feature estimations
roughly have a normal distribution. A certain percentage
of the feature estimations with highest values and a same
percentage of the feature estimations with lowest values are
treated as outliers and should be removed. The selection of the
percentage for different vocal source features will be shown
in Section V.

C. Feature Evaluation

We evaluate our features to see whether they meet the
requirements mentioned at the beginning of this section.

• All six features fall into the category of vocal source
features which characterize some attributes of the
movement of the vocal cords. As the movement of the
vocal cords is related with the glottis structure and the
speaking habit of a speaker during utterances, it should be
pretty stable for a specific speaker and be quite different
from different speakers. Thus, all six features are capable
of discriminating different groups of speakers.

• All six features characterize totally different attributes
of the movement of the vocal source. Pitch represents
the period of the vocal cords movement; width features
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measure how long time the vocal cords are in open
state within one movement cycle; skewness features
provide information about the rate of vocal cords opening
and closing; PAR features characterize how the energy
distributes in the process of vocal cords movement.
Therefore, the six features should be independent from
each other and can be used at different levels of the tree
to give a significant population reduction in total.

• All six features are vocal source features and are
independent from MFCC which characterizes the vocal
tract during utterances. Therefore, they should be
independent from MFCC used at leaf nodes of the tree.

• All six features are robust to additive noise (e.g., AWGN).
There are mainly two reasons. On one hand, all features
are only extracted from voiced speech frames which
usually have relatively high SNR. On the other hand, all
features do not learn details of speech waveforms but are
some quantities that characterize some attributes of the
vocal source in a generalized way and accordingly, are
more robust to additive noise. For example, in the pulse
portion of the LP residual signal extracted from a voiced
frame, SNR is relatively high and all the five vocal source
features can be very insusceptible to additive noise;
additive noise can distort the specific speech waveform
but the periodicity of the speech signal can probably be
preserved and pitch can still be well extracted.

The analysis above indicates that all six features meet the
requirements and can be used to construct our hierarchical
decision tree for speaker clustering.

IV. FUZZY CLUSTERING

In this section, we will present the fuzzy clustering
algorithm used in our decision tree.

A. Why Fuzzy Clustering?

The decision-tree-based classification performance is crucial
to the success of our approach for large population speaker
identification under noisy conditions. The target is that
we want to achieve a high accuracy of decision-tree-based
classification with a significant population reduction in the
speaker groups at leaf nodes. In terms of classification
accuracy, suppose we have a total of LT speech features
for speaker clustering and we can construct an LT -level
tree by using one feature at one level. Denote the correct
classification rate achieved by one-level decision tree using
feature l (l = 1, 2, · · · , LT ) for speaker clustering as Accl
and Accl is defined as the probability of classifying a speaker
under test into a correct speaker group at the leaf node of
the one-level tree. When we construct an LT -level tree by
using feature l at level l, we denote the overall accuracy of
decision-tree-based classification as Acc and Acc is defined
as the probability of classifying a speaker under test into a
correct speaker group at the leaf node of the LT -level tree.
Then, it’s straightforward to obtain

Acc ≈ Acc1Acc2 · · ·AccLT (1)

If we have six features and each feature can achieve a
97% correct classification rate, then we can do a simple
calculation that for the six-level tree, the overall accuracy is
only (97%)6 = 83.3%. The degradation of the classification
accuracy is remarkable when the number of levels increases.
Hence, at each level of the tree, we must ensure a sufficiently
low probability of classification error so that the overall
accuracy of a multi-level decision tree can be satisfactory.

In respect of population reduction, for a hierarchical
decision tree, we can define its population reduction rate as
100% minus the ratio of the population averaged over all
leaf nodes of the tree to the original whole population. The
population reduction rate tells you how many percent the
population is reduced after speaker clustering via the decision
tree and a higher rate means a more population reduction
achieved. Suppose we construct an LT -level decision tree and
let PRLT

denote the population reduction rate achieved by
the tree. If the total number of registered speakers is N , then
the population averaged over all leaf nodes denoted as Nleaf

can be obtained by

Nleaf = N(1− PRLT
) (2)

If we only use speech features that are independent from
MFCC to construct the decision tree for speaker clustering,
then the overall correct identification rate achieved by our
speaker identification system using the LT -level decision tree
can be approximated as

CIR ≈ Acc×AG(Nleaf ) (3)

where AG is the correct identification rate achieved by
MFCC+GMM and it’s a function of the population size.
From Equation (3), we know that in order to achieve better
identification performance, we not only want the accuracy of
decision-tree-based classification Acc to be higher but also
want the leaf nodes to contain a population size as small as
possible because we have shown that AG will decrease as
population increases in Section I. However, generally, a higher
population reduction rate results in a lower classification
accuracy. This is because when the clustering algorithm tries
to load a smaller population into each speaker group or node
at a certain level, the dynamic range of feature values of
speakers in each group becomes smaller and the “distance”
between neighbouring speaker groups also become smaller. In
the process of decision-tree-based classification, an inevitable
feature inconsistency between training and testing will cause
an incorrect classification with a higher probability.

To achieve a low error probability of decision-tree-based
classification, we propose to use fuzzy clustering at each level
of our decision tree. Fuzzy clustering, which is different from
the conventional hard clustering, is a class of algorithms for
cluster analysis that allow the objects to belong to several
clusters simultaneously, with different degrees of membership
[24]. Different from the common fuzzy clustering algorithms,
at each level of the tree, our fuzzy clustering algorithm allows
one speaker to belong to multiple speaker groups or nodes,
simultaneously. That is to say, our algorithm does not assign
degrees of membership or alternatively, for each speaker group
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at a level of the tree, the degree of membership is either
0 or 1 but there may be multiple speaker groups whose
degrees of membership are 1. At each level of the tree, the
classification error mainly comes from those speakers on the
boundaries between different speaker groups or those speakers
who have relatively low feature stability. When conducting
speaker clustering, if we put those speakers into all speaker
groups that they may belong to, then in the process of decision-
tree-based classification, those speakers can be “captured” with
a much higher probability by correct speaker groups in which
they can be found. The probability of classification error can be
significantly reduced, accordingly. A performance comparison
between hard clustering and fuzzy clustering will be made in
Section V-A2. One thing needs to be pointed out that fuzzy
clustering results in a less population reduction at leaf nodes
due to the redundancy introduced among speaker groups at
each level. More redundancy leads to a higher classification
accuracy but a less population reduction so there is a trade-
off. Our fuzzy clustering algorithm aims at introducing the
most appropriate redundancy and achieving a satisfactory
classification accuracy with a population reduction as much
as possible.

B. Fuzzy Clustering Algorithm

Fig.6 shows the flow chart of the fuzzy clustering algorithm
used at level L of the decision tree. The algorithm applies
to every feature we derived so that the flow chart does not
specify the feature. As shown in the figure, we cluster all
speakers belonging to Cn1,n2,··· ,nL

at level L− 1 into several
child nodes at level L. To ensure that there is a sufficient
number of speakers for clustering, before conducting any
clustering operation, we first count the number of speakers
contained in Cn1,n2,··· ,nL

at level L − 1. If the number
of speakers is less than a pre-determined number (e.g.,
20), no clustering operation will be carried out. Since the
population contained in Cn1,n2,··· ,nL is small enough for
MFCC+GMM to yield a satisfactory performance of speaker
identification, Cn1,n2,··· ,nL will be treated as a leaf node to
which MFCC+GMM will be applied for speaker identification.
If there is a sufficient number of speakers in Cn1,n2,··· ,nL at
level L− 1, the fuzzy clustering at level L will be conducted.
We first do feature extraction and obtain the feature denoted
as Fi,j . Here, i (i ∈ Cn1,n2,··· ,nL

) is the speaker index and
j (j = 1, 2, · · · , Ni) is the feature index, where Ni denotes
the total number of feature estimations of speaker i. Notice
that for each of the six features we derived, the feature data is
one-dimensional. Then, instead of using the raw feature data,
we use the statistics of feature data for clustering. Specifically,
for speaker i ∈ Cn1,n2,··· ,nL

, we first calculate the mean and
the standard deviation of the feature data as follows:

µi =

∑Ni

j=1 Fi,j

Ni
(4)

σi =

√∑Ni

j=1(Fi,j − µi)2

Ni − 1
(5)

Then, a confidence interval [µi−λσi µi+λσi] is constructed
for speaker i, where λ is a pre-determined coefficient. For
speaker i, the two new statistical data µi ± λσi can be a
good statistical representation of the raw feature data. Next,
let D = {µi−λσi, µi+λσi} which is a data set containing the
two statistical data of all speakers belonging to Cn1,n2,··· ,nL

.
D is fed into Lloyd’s algorithm and a partition vector
[P0, P1, · · · , PM ] is output, where M is the total number
of clusters adopted by Lloyd’s algorithm. Finally, based on
the partition vector, we create all M clusters (i.e., speaker
groups). For speaker i and cluster m (m = 1, 2, · · · ,M ),
if [µi − λσi µi + λσi]

∩
[Pm−1 Pm] ̸= ∅, we let i ∈

Cn1,n2,··· ,nL,m. By doing so, we select all those clusters which
there is a probability that a speaker belongs to and replicate
the speaker into all these selected clusters.

let

Initialize Speaker Index

i = First Element in 

Start

Feature Set {Fi, j}

(speaker index

feature index j = 1, 2, ···, Ni)

1[ ] [ ]i i i i m mP Pµ λ σ µ λ σ −Λ = − ⋅   + ⋅    I

Yes

No

Yes

No

Is i the Last 

Element in 

Yes

Terminate

No

Initialize Cluster 

Index

m = 1

∈
1 2 Ln , n , , ni  C

L
1 2 Ln , n , , nC

L

i ∈
1 2 Ln ,n , , n , mC

L

m = m + 1

m = M?
i = next element 

in
1 2 Ln , n , , nC

L

1 2 Ln , n , , nC ?
L

Statistics 

Analysis

Data Set for Clustering 

(speaker index

Mean Value of Feature Data 

of Speaker i

Standard Deviation Value of 

Feature Data of Speaker i 

:A pre-determined 

coefficient

D={ , }i i i iµ λ σ µ λ σ− ⋅  + ⋅

,
1

iN

i j
j

i
i

F

N
µ ==

∑

2
,

1

( )

1

iN

i j i
j

i
i

F

N

µ
σ =

−
=

−

∑

λ

∈
1 2 Ln , n , , ni  C

L

0?Λ >

Lloyd’s Algorithm

(a total of M Clusters)

20?>
1 2 Ln , n , , nC

L

Yes

No

Partition 

Vector

0 1 1[ , , , ]M MP P P P−L

Fig. 6. Flow Chart of Fuzzy Clustering Algorithm at Level L of the Decision
Tree.

From the description above, we know that our algorithm
consists of two parts: partition vector determination and
replication. In the aspect of partition vector determination,
some statistical data rather than the raw feature data are used
to determine the cluster boundaries. There are at least two
benefits to do so. One is that the computational complexity of
using statistical data is much lower, compared with the case
of using all raw feature data, especially for large population
identification. The other one, also more important, is that it
prevents from using those feature estimations that are out of
the confidence interval for analysis since those “abnormal”
feature estimations may give rise to an inaccurate clustering
result. In this sense, it acts like a further outlier removal that
we use statistical data. In the aspect of replication, for each
speaker, we only use those reliable feature estimations that fall
into the confidence interval to determine the replication and it
can make the replication reasonable. On one side, those feature
data that are out of the confidence interval only occur with a
very low probability. If we use those data for replication, then
it will induce an over-replication and thus a less population
reduction will be achieved. On the other side, the feature
data that are out of the confidence interval may not well
“represent” the speaker. The replications based on these feature
data are probably useless because in the decision-tree-based
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classification, the probability of a speaker being classified into
a cluster is very low if the speaker is replicated into this cluster
based on those unreliable feature data.

In our fuzzy clustering algorithm, λ is an important
parameter in constructing the confidence interval and
conducting the replication. λ can tradeoff between the
accuracy of decision-tree-based classification and the
population reduction achieved by the decision tree. A higher
value of λ gives rise to more replication which results in a
higher classification accuracy but a less population reduction.
Contrarily, a smaller value of λ brings about more population
reduction but a lower classification accuracy. The selection of
λ for different features will be shown in Section V-A2.

When the hierarchical decision tree is constructed by using
the fuzzy clustering algorithm, for a speaker under test, we first
determine which speaker group at the leaf node the speaker
belongs to. Fig.7 shows the decision-tree-based classification
conducted at level L. As shown in the figure, when the
decision-tree-based classification is completed at level L − 1
of the tree and Cn1,n2,··· ,nL

at level L − 1 is enabled, we
first determine whether Cn1,n2,··· ,nL is a leaf node of the tree.
If it is a leaf node, the decision-tree-based classification will
be terminated and the MFCC+GMM identification approach
will be applied to Cn1,n2,··· ,nL

. If not, the decision-tree-based
classification will be continuously conducted at level L. After
feature extraction and outlier removal, a set of feature data is
first obtained for the speaker under test. We then take the mean
value of the feature data and make the classification decision at
level L by comparing the mean value with the partition vector
obtained by the Lloyd’s algorithm in the fuzzy clustering. At
last, based on the comparison, one and only one node at level
L is enabled and the decision-tree-based classification at level
L terminates. The classification will proceed from the enabled
node at level L in the same way until one leaf node is finally
enabled.

V. EXPERIMENTAL RESULTS

In this section, we implement the fuzzy-clustering-based
hierarchical decision tree for large population speaker
identification under noisy conditions and compare the
performance with the MFCC+GMM+UBM approach and
the MFCC+GMM approach used as the baseline systems.
In Section V-A, we use the six features we derived for
speaker clustering to construct a six-level hierarchical decision
tree and evaluate its performance. Section V-B compares
the performance of our fuzzy-clustering-based hierarchical
decision tree approach, the MFCC+GMM approach and the
MFCC+GMM+UBM approach for large population speaker
identification under noisy conditions.

A. Performance Evaluation of Six-level Decision Tree

In this section, we use six features including pitch and five
vocal source characteristics to construct a six-level hierarchical
decision tree with appropriate parameters and evaluate the
performance of the six-level decision tree including the
classification accuracy and the population reduction rate.
Section V-A1 describes the dataset used for experiments
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Fig. 7. Flow Chart of Decision-Tree-based Classification at level L.

and the basic experimental settings. In section V-A2, we
show the parameters used to construct the six-level tree and
demonstrates the performance achieved by the six-level tree.
We also compare the classification performance of the hard-
clustering-based decision tree and the fuzzy-clustering-based
decision tree.

1) Experimental Settings for Performance Evaluation of
Six-level Tree: The dataset we use for the experiments
is collected from the websites of online audiobooks such
as www.audible.com, www.theaudiobookstore.com, etc. The
online audiobooks cover a variety of topics such as business,
history, science, etc. and each audiobook was recorded by a
narrator. There are a large number of high-quality and clean
audio samples recorded in English. For each narrator, minutes-
long audio samples in mp3 format can be downloaded and all
mp3 samples were converted into a 1-channel wav. format
with a sampling rate of 11.025kHz. In this way, we create
our own dataset which consists of totally 3805 speakers for
the experiments. The dataset meets the requirement of large
population speaker identification.

In the experiments, for each speaker, the training sample
and the testing sample were recorded by a same microphone
and the type of speech is read utterances. The amount of
both training sample and testing sample are 30 seconds. Our
experiments are conducted in the AWGN scenario. AWGN is
commonly encountered in voice over IP (VoIP) environments
and it’s difficult to be perfectly eliminated from the desired
speech signal. The white Gaussian noise with pre-determined
energy is generated and is added to the clean testing samples
by computer to meet the different requirements of SNR values.
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2) Performance of Six-level Tree: In this section,
experiments are conducted to determine the optimal
parameters in constructing the six-level tree and to evaluate
the performance of the tree. All experiments are conducted on
the dataset described in Section V-A1.

For our decision tree approach, we know that adding a
feature to an existing tree will bring in more population
reduction as well as some loss of the classification accuracy.
Therefore, we must make sure that the more population
reduction brought by adding a feature will give us benefit
even with some degradation of the classification accuracy.
Usually, if the leaf node of an existing tree still contains a
relatively large population (e.g., hundreds of speakers), then
we believe that there is still some space for us to add more
good features to the tree for further performance improvement.
However, when the leaf node contains a relatively small
population (e.g., dozens of speakers), then the population is
too small to be further clustered and adding more features may
not bring much performance improvement. What is worse,
it may even give rise to performance degradation since it
does not make any sense to cluster a small population and
the performance is unpredictable. In a word, the number of
levels of the tree depends on 1) the original population of
identification problem and 2) the performance of the features
used to construct the decision tree. If the original population
is large, then we probably should construct a tree with more
levels. If a good feature is available, then it should be able
to bring more benefits by adding it to an existing tree. In
our experiments, we consider a feature to be good if it can
achieve a sufficiently high classification accuracy (e.g., >99%)
as well as a good amount of population reduction (e.g., >40%
reduction). By this criterion, the six features we developed
are all good features. Since the population size we deal with
is large (about 4000 speakers), therefore we use them all to
construct a six-level tree. In Section III-A, we mentioned that
the width of the negative pulse is also a candidate of vocal
source features. However, it does not perform sufficiently well
so that it may not give us benefit by adding it to the tree.
Therefore, we discard it in stead of using it to construct a
seven-level tree. If there are other good features available,
we should add them to the existing six-level tree for further
performance improvement.

In our decision tree approach, the parameters of pitch
feature include the value of λ to construct the confidence
interval and the number of clusters adopted by the Lloyd’s
algorithm; for the other five vocal source features, besides the
two parameters listed above, there is one additional percentage
parameter regarding the outlier removal. Table I gives an
example of our decision tree used in AWGN scenario with
25dB SNR. It shows the parameters of the six features used
at different levels of the tree.

From the table, we can see that from the first level to
the sixth level, the features used are pitch feature, PAR
of the positive pulse, skewness of the positive pulse, PAR
of the negative pulse, skewness of the negative pulse and
width of the positive pulse, successively. Since all features
are almost independent from each other, ideally, there should
only be a little effect on the performance if the tree is

constructed by using features in a different order. However,
we do have a criterion that the features which are able to yield
a better classification performance (i.e., a higher classification
accuracy as well as more population reduction) are used in
the upper levels. For example, pitch feature has the best
classification performance among the six features so that it is
used in the first level of the tree. The reason is that we always
want to use a better feature to partition the population when
the population is relatively large. If the population of a node
is relatively small, then the performance of clustering a small
population into groups is not predictable since subgroups may
not exist in the population. In our fuzzy clustering algorithm,
a speaker will probably be replicated into every subgroup
no matter how good the feature is. Therefore, to make full
use of every feature and to achieve the best classification
performance, we always use better features in the upper levels
and avoid applying good features to cluster small population
into groups. In practice, when constructing our decision tree,
we first use our dataset described in Section V-A1 to evaluate
the classification performance of the six features and determine
the order of the six features used in the tree, accordingly.
This is how we figure out the order shown in Table I and
this order will be adopted to construct our decision tree in
all experiments. One thing needs to be pointed out that in
the ideal case when each node of the tree always contain a
sufficient number of speakers to be clustered, we believe the
order should not make a difference because they are almost
independent from each other.

The parameters shown in the table are selected by trying
different combinations and are able to achieve a sufficiently
high classification accuracy as well as a high population
reduction rate. The classification accuracy and the population
reduction rate achieved at different levels of the six-level
decision tree are shown in the table. All 3805 speakers are
used to do the classification test through the decision tree and
the classification accuracy achieved at a level is calculated
as the percentage of speakers being classified into a correct
node at that level. The calculation of the population reduction
rate is based on the definition in Section IV-A but we use a
weighted average over all nodes at different levels of the tree.
Specifically, to calculate the population reduction rate achieved
at a level, we assign a weight to a node at that level and
the weight is determined as the percentage of speakers being
correctly classified into the node at that level. For instance, a
total of 1000 speakers are correctly classified at a level of the
tree. Among all, 100 speakers are correctly classified into a
node at that level with a population size of 200. Then, when
we calculate the weighted average population over all nodes at
that level, the weight assigned to that node is 100/1000 = 10%
because 10% of all speakers are classified into a speaker
group with a population size of 200. The weighted average
population is reasonable for the calculation of population
reduction rate achieved at different levels.

As indicated from the table, from upper levels of the tree to
lower levels, the classification accuracy steadily decreases and
the population reduction rate (PR Rate in the table) steadily
increases. In 25dB case, our six-level decision tree is able
to achieve a 97.06% classification accuracy and a 94.33%
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TABLE I
PARAMETERS USED TO CONSTRUCT SIX-LEVEL HIERARCHICAL DECISION TREE AND PERFORMANCE ACHIEVED (25DB SNR)

Level Feature λ No. of Clusters Outlier Percentage PR Rate(%) Accuracy(%)
1 Pitch 0.8 16 / 51.24 99.03
2 PAR of the Positive Pulse 1.1 32 7.5% 76.61 98.50
3 Skewness of the Positive Pulse 0.55 16 2.5% 86.33 97.90
4 PAR of the Negative Pulse 0.8 16 2.5% 90.93 97.45
5 Skewness of the Negative Pulse 0.85 8 7.5% 93.01 97.27
6 Width of the Positive Pulse 0.7 16 2.5% 94.50 97.06

TABLE II
PERFORMANCE COMPARISON OF FUZZY-CLUSTERING-BASED DECISION

TREE AND HARD-CLUSTERING-BASED DECISION TREE (30DB SNR)

Level Hard-Clustering Fuzzy-Clustering
PR Rate(%) Acc.(%) PR Rate(%) Acc.(%)

1 85.80 96.93 89.24 99.40
2 92.29 90.51 94.95 98.74
3 94.36 82.79 97.13 98.16
4 97.50 80.37 98.10 98.06
5 98.61 67.20 98.53 97.35
6 99.20 61.00 98.83 97.16

population reduction rate at the bottom level (i.e., each leaf
node contains 216 speakers on average). The performance
looks quite impressive.

To validate that the fuzzy-clustering is essential for the
construction of our decision tree and it outperforms the
conventional hard clustering. We compare the classification
performance of the fuzzy-clustering-based decision tree and
the hard-clustering-based decision tree in the AWGN scenario
with 30dB SNR. We use the same six features shown in Table I
to construct the two trees. The comparison is summarized in
Table II. The PR rate and the accuracy are calculated as same
as described above for Table I. From the table, we know
that the fuzzy-clustering-based decision tree can achieve a
much higher classification accuracy (Acc. in the table) than
the hard-clustering-based decision tree while the population
reduction achieved by the two trees are pretty much the same.
For the fuzzy-clustering-based decision tree, at the bottom
level, the classification accuracy is 97.16% and the population
reduction rate is 98.83% (i.e., each leaf node contains 45
speakers on average). The hard-clustering-based decision tree
is not applicable since a 61% classification accuracy is not
acceptable.

B. Comparison with MFCC+GMM+UBM and MFCC+GMM

In this section, the performance of our fuzzy-clustering-
based hierarchical decision tree approach are compared with
the MFCC+GMM+UBM approach and the MFCC+GMM
approach for large population speaker identification. The
experiments are conducted in AWGN scenario with different
SNRs and are tested with different amount of testing
samples. Section V-B1 introduces the experimental settings

TABLE III
PARAMETERS USED IN CALCULATIONS OF MFCC AND GMM

Window Type Hamming
Window Length 0.0232s

Frame Rate 100 Frames/s
NFFT 256

No. of Filter Banks 31
Lowest/Highest Freq. of Filter Bank 200Hz/3500Hz

Dim. of MFCC 26
Dither yes

Cov. Matrix of GMM Nodal&Diagonal
Min. VAR Allowed in GMM 0.01

and Section V-B2 shows the comparison in aspects of correct
identification rate and computational complexity.

1) Experimental Settings for Performance Comparison:
The experiments are carried out on the same dataset which has
been described in Section V-A1. For the MFCC+GMM+UBM
approach, we estimate the UBM with 2048 GMM mixtures
by using one-hour speech of 120 male speakers (each has
one 30s training sample) and one-hour speech of 120 female
speakers (each has one 30s training sample). The speakers
used to estimate the UBM are not used for the evaluation. In
the adaptation, each speaker model is derived by adapting the
parameters of UBM using the speaker’s 30s training samples.
We use a single adaptation coefficient for all parameters with
a relevance factor of 16. In the testing phase, we use the dot-
scoring technique [25] to score a testing sample against all
speaker models and find the best match. For the MFCC+GMM
approach and the MFCC+GMM approach invoked at leaf
nodes of our hierarchical decision tree, we adopt 32-mixture
GMM and for each speaker, a 30s training sample is used to
estimate the 32-mixture GMM. Table III shows all parameters
adopted for MFCC calculation and GMM classification in the
experiments. The parameter applies to all three approaches.
In our decision tree approach, the decision tree is constructed
in the same way as shown in Section V-A by using the same
dataset.

In VoIP, the typical SNR is at least 25dB [26]. In order to
make our work realistic and applicable, our experiments are
mainly carried out in the AWGN scenario with 25dB SNR
and 30dB SNR. However, to validate the performance of our
approach in low SNR cases, experiments are also conducted
for 15dB SNR and 20dB SNR. Additionally, experiments are
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carried out with shorter testing samples (3s and 10s).
2) Comparison of Accuracy and Complexity: The

performance comparison in correct identification rate and
computational complexity is summarized in Table IV,
Table V and Table VI. The correct identification rate (CIR
in the tables) is measured by the percentage of correct
identification averaged across all 3805 speakers in our
dataset. The computational complexity is measured by the
average execution time of testing a speaker. Table IV shows
the performance comparison for 25dB and 30dB SNRs when
the testing sample is 30s long. As indicated from the table,
we know that our fuzzy-clustering-based hierarchical decision
tree approach can achieve higher correct identification rate
than both MFCC+GMM+UBM approach and MFCC+GMM
approach. The MFCC+GMM approach is the worst of the
three approaches. For 30dB and 25dB, compared with the
MFCC+GMM+UBM approach, our approach can achieve 8%
and 2% increase in correct identification rate, respectively.
The performance comparison is shown in Table V for
15dB and 20dB SNRs when the testing sample is 30s long.
Although the performance of all approaches in low SNR
cases are not satisfactory, the table indicates that our approach
can achieve much higher correct identification rate than the
other two GMM approaches. For 15dB and 20dB, compared
with the MFCC+GMM+UBM approach, our approach can
achieve 17% and 21% increase in correct identification rate,
respectively. Table VI shows the performance comparison
for 30dB SNR when the testing sample is 3s long and 10s
long. As shown in the table, shorter testing length leads to
performance reduction of all three approaches. Our approach
is still the best among the three approaches. Compared with
the MFCC+GMM+UBM approach, our approach can achieve
about 3.5% increase in correct identification rate in both
cases of 3s and 10s testing length. The great performance
improvement brought by our approach comes from the
significant population reduction with only a little loss of
decision-tree-based classification accuracy under AWGN
conditions.

In addition to the accuracy, our approach also has the
big advantage in computational complexity. For speaker
identification problem especially large population case, both
MFCC+GMM approach and MFCC+GMM+UBM approach
are very expensive. Each MFCC feature vector needs to be
scored against all GMM components of all speaker models.
Even the dot-scoring technique helps MFCC+GMM+UBM
approach achieve lower computational complexity, there is still
a large amount of likelihood computations against a great
number of speaker models. Compared with the two other
approaches, our approach has a much lower computational
complexity because MFCC+GMM is only applied to speaker
groups at leaf nodes with much smaller population size and the
number of GMM mixtures is not large. Thus, the total amount
of likelihood computations is greatly reduced. Our hierarchical
decision tree has some additional computation including the
feature extraction and the decision-tree-based classification.
However, both the feature extraction and the threshold-based
classification require only a very small amount of computation.
Therefore, the additional computation is negligible, compared

TABLE IV
COMPARISON FOR 25DB AND 30DB SNRS (30S TESTING SAMPLE)

Approach Avg. time per speaker(s) CIR(%)
25dB 30dB 25dB 30dB

GMM 373 371 51.93 71.56
GMM+UBM 74 73 65.88 80.93
Decision Tree 30 12 67.91 88.8

TABLE V
COMPARISON FOR 15DB AND 20DB SNRS (30S TESTING SAMPLE)

Approach Avg. time per speaker(s) CIR(%)
15dB 20dB 15dB 20dB

GMM 559 520 6 20.5
GMM+UBM 103 97 5.7 33.9
Decision Tree 13 13 22.1 54.91

with GMM likelihood computation. Table IV, Table V and
Table VI compare the average execution time of finishing
testing one speaker for three approaches. As shown in the
tables, although the MFCC+GMM+UBM approach is much
faster than the MFCC+GMM approach, our approach required
much less time than the MFCC+GMM+UBM approach.
Thus, it’s another good benefit of our approach. Notice that
some approaches were proposed to reduce the computational
complexity of the MFCC+GMM+UBM approach with only
a very slight degradation of the identification performance
[3], [6], [8]. Here, we do not compare the complexity of our
approach with those approaches. However, we can see that the
execution time of our approach to finish testing a speaker is
less than or approximates the length of the testing speech, it is
promising that our approach can be implemented fast enough
for the real-time applications.

As a conclusion, the above comparison in both correct
identification rate and computational complexity shows the
superiority of our fuzzy-clustering-based hierarchical decision
tree approach for large population speaker identification in
AWGN scenarios.

VI. CONCLUSIONS

As the major technique for speaker identification,
approaches based on MFCC and GMM can achieve superior
performance for small population identification under low-
noise conditions. However, for large population identification

TABLE VI
COMPARISON FOR 3S AND 10S TESTING SAMPLE (30DB SNR)

Approach Avg. time per speaker(s) CIR(%)
3s 10s 3s 10s

GMM 75 150 53.98 66.31
GMM+UBM 51 64 56.33 75.16
Decision Tree 3 9 59.78 78.65
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under noisy conditions, the performance of approaches based
on MFCC and GMM suffers from severe degradation. As
the population increases, the accuracy will steadily decrease
and the computational complexity will proportionally increase.
To improve the performance of large population speaker
identification under noisy conditions, we proposed the fuzzy-
clustering-based hierarchical decision tree approach. Our
approach aims at using a hierarchical decision tree to
partition the large population of all registered speakers into
subgroups of very small population size and determining the
speaker group at the leaf node to which a speaker under
test belongs. Since we only use those speech features that
are independent from MFCC to do speaker clustering for
population partitioning, the probability of having speakers with
similar MFCC is greatly reduced in speaker groups at the
leaf nodes. We only apply the MFCC+GMM identification
approach to the selected speaker group at the leaf node which
has a small population size and hence MFCC+GMM can
perform well for speaker identification with a much lower
computational complexity. To achieve a low error probability
of decision-tree-based classification, we proposed to adopt the
fuzzy clustering rather than the conventional hard clustering
in constructing the decision tree. Specifically, at each level of
the tree, a speaker may belong to multiple speaker groups
or nodes. Replicas of a speaker in multiple groups/nodes
can greatly increase the probability of classifying the speaker
(if under test) into a correct group/node in the process of
decision-tree-based classification. Moreover, we developed a
total of six features (including pitch and five vocal source
characteristics) and constructed a six-level tree, accordingly.
Experimental results have shown the excellent performance of
our approach for large population identification under AWGN
conditions. It is promising that our approach is applied in real-
time applications of large population speaker identification
under noisy conditions.

To further validate the superiority of our decision tree
approach, more experiments should be conducted to test
our approach on datasets with larger population in different
scenarios of additive noise such as interfering speakers’
voice, background music, etc. In order to accommodate larger
population, more useful speech features need to be derived and
more levels need to be added into the existing tree for more
population reduction. Moreover, as we all know, in automatic
speech recognition, it is a common practice to automatically
determine the order of the features in decision tree (e.g.,
decision tree for context dependent acoustic modeling). For
our decision tree, a feasible way to achieve the same goal,
though sub-optimal, may be that we always select a feature
and add it to an existing tree if a new decision tree constructed
by adding one more level with this feature can achieve better
classification performance than using other available features.
This can be another future work for our decision tree approach.
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