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Abstract

With the development of computers and the Internet, digitaltimedia can be distributed and pirated easily. Watekingris
a useful technigue for multimedia copyright protectionthis paper, we develop a robust video watermarking systeoansists
of two components, i.e., watermarking embedder and watdinta detector. In the embedder, we insert a watermark rpatte
into video frames according to a watermark payload. The mvaek pattern is generated from a Pseudo-random Noise (PN)
sequence generator using the spread spectrum technigaeabid$ copyright information are mapped to a binary sequence
then encrypted with Advance Encryption Standard (AES) ammbéed/protected by convolutional error correction cd8€Q) to
produce watermark payload. The watermark pattern is wetghhd embedded to each frame to meet perceptual requikement
In addition, the video is slightly geometrically manip@dtin order to defend possible collusion attacks. The detesttracts
the watermark from the candidate video. Kanade-Lucas-$ofeature tracker (KLT) is used to register the candidatieeiwith
respect to the original video, to enhance the correlatioth wie reference. The cross-correlation sequence is beriECC
decoded and decrypted. The experimental results show lieaprioposed video watermark system is very robust to not only
geometric attack, but also collusion attacks, and that jieicceptually invisible to human vision system.

I. INTRODUCTION

Nowadays, computers, interconnected via the Internetentlag distribution of the digital media fast and easy. Howeve
it also requires less effort to obtain the exact copies. @loee, it poses great challenges to copyright protectiondigital
media. Digital watermark embedding is a process of intéggeahe user and copyright information into the carrier naeidi
a way invisible to human vision system (HVS). Its purposeoiptotect the digital works from the unauthorized duplicati
or distribution.

Video watermarking system is desired to embed watermarkuah @ way that the watermark can be detected later for
authentication, copyright protection, and track-anddralegal distribution. Videos, composed of multiple frasn can utilize
image watermarking techniques in a frame-wise manner [thogh the watermarking embedding capacity of video istmuc
larger than that of image, the attacks the video watermgrkirffers are more complicated than image watermarking. The
attacks include not only spatial attacks, but also tempattalcks and hybrid spatial-temporal attacks.

In the literature of track-and-trace video watermarkirttg tlgebra-based anti-collusion code is investigated[§2]+s
ability to trace one or multiple colluders depends on thauaggion that the code is always available and error-fredchvh
may not be true in practice. Besides, the length of antiusitih code hinder the system user capacity. Hence, prhatich
multi-functional watermarking systems based on algelaset anti-collusion code are very limited.

To this end, we propose a robust track-and-trace waterm@gskistem for digital video copyright protection. It consisf two
independent bodies, watermarking embedder and watemuadétector. At embedder, user and product copyright inébion,

e.g. a string of length.,, is first encrypted with Advanced Encryption Standard (AEg)to form a binary sequence. We
then apply error correction code (ECC) [10] to the sequencgenerate a binary sequence with error-correction ability
length L, called watermark payload. Meanwhile, a frame-size wadgknpattern arises from a pseudo-random noise (PN)
sequence [11], [12]. Each binary bit in watermark payloadsisociated with one video frame and determines how watkrmar
is embedded to this frame. Bit O indicates subtracting theemzark pattern from the current frame, while bit 1 indisatelding

the watermark pattern to the current frame. We will repdgtethbedL bits if the video is longer thai frames, and sync the
watermark payload at the beginning of dramatic video scéaa@ges to resist temporal attacks. Furthermore, in ordaretet

the perceptual quality, we build a perceptual model to deitez the signal strength that can be embedded to each framk pi
Note that the stronger the embedded signal, and hence tiee treswatermark can be correctly detected. However, wetet
pattern is like random noise, and too strong of the noiseasigan cause noticeable distortion to the picture. The ramass

of PN sequences also make the embedded watermark informdinm to the attackers. To make a trade-off between capacit
and visual quality, we build a perceptual model to deterntireesignal strength that can be embedded to each pixel.linal
since distributed videos are prone to collusion attacksprepose to apply geometric transforms to the watermarkedoa.
This is called geometric anti-collusion coding in this papehese transforms include rotation, resizing and traieslaand
should be moderate enough to cause no defect to HVS, but alemee the capability to resist collusion attacks.

The watermarking detector just carries out the reversegaoof the embedder. In this system, we assume the detector
can always have access to the original video as the protatfyfiee candidate video. Because of the geometric anti-sioliu



coding at embedder, watermark usually cannot be corregthaeted without any pre-processing even the candidateovid
an error-free copy. Additionally, spatial attacks such aghier geometric manipulations and temporal attacks mayrom
distributed videos. In this paper, we propose to registercindidate video to the original video spatially and terafprAn
iterative KLT based scheme is applied for spatial regigtnatwhereas temporal registration is to match frames thainnize
the mean-square-error (MSE). We then compute cross-atioelcoefficients between re-generated watermark pattach
frame difference of the registered frame and its correspondriginal frame, demodulate the coefficient sequencestover
the watermark payload. It is then ECC decoded (convolutioading for specific) and AES decrypted to derive the origina
user or copyright information. Successful detection iaths the user or copyright information is correctly exedcitherwise
we say the detector fails to detect the watermark.

The paper is organized as follows: Section Il describes theradl architecture of the proposed track-and-trace video
watermarking system. The watermarking embedder techgigreediscussed in Section Ill. Section 1V introduces wasgking
detector techniques. The experimental results present&kdction V verify robustness of the proposed video watetmgr
Finally, the conclusion and future work are given in Sectidin

Il. ARCHITECTURE OFROBUST VIDEO WATERMARKING SYSTEM

The architecture of the track-and-trace video watermagrkiystem includes two independent components, i.e., watking
embedder (Fig. 1) and watermarking detector (Fig. 2). Inidditive watermarking system. Watermarking embeddesistm
of two functional components, watermark generator to gaeewatermark payload (Fig. 1(a)), and watermark embedder t
embed the payload to video frames (Fig. 1(b)). Watermarkieigctor extracts payload from candidate video (Fig. 2@)i
then recover user or copyright information from the payl@aid. 2(b)).
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Fig. 1. Track-and-trace video watermarking embedder

A. Watermarking Embedder

The proposed video watermarking system is an additive sysie. adding watermark signal to the original video. The
inputs of embedder are the original video, user ID and cgyrinformation. The key configure parameters are the frame
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Fig. 2. Track-and-trace video watermarking detector

size (widthxheight) of the input video, AES encryption ke dyl in Fig.1(b)), pattern ID Key2 in Fig.1(b)) to generate
watermark pattern an&’ey3 to generate geo-transform parameters for film distributors

String-type user/copyright information are binarized;rgpted, and ECC coded into watermark paylaod. If convoiutode
rate = 1/2 is used, the information &f, characters is transformed info= 16 L bits. Watermark pattern by using orthogonal
PN sequences can resist frame-averaging collusion. Thelpsandom watermark patterns weighted by perceptual rmagel
of each frame are embedded with the largest strength ungmrarivable constraint. The length of PN sequeitces frame
size (widthxheight). The number of the orthogonal sequemédength N is exactly N. For geometry transform, the bicubic
interpolation is used to keep original video informationnasch as possible. There at&° rotation,+5 pixel translation and
+5% resizing. Thus, the proposed system could accommadi@N distributors ideally.

After embedding, the watermarked videos are distributdgeyTmay suffer from intentional manipulations or unintenél
degradations later. These attacks include but not restrigeometric manipulations, erroneous transmission, aHdsion.

B. Watermarking Detector

The inputs of detector are the candidate video and its alginpy. The goal is to extract watermark payload from the
candidate video and recover the user/copyright informatigth reference to the original copy. Some of the key configur
parameters are the size (width and height) of the two inpdtas, AES decryption keyieyl’ in Fig.2(a)) and pattern ID
(Key2' in Fig.2(a)) to re-generate watermark pattern. Usually,seeKeyl’ = Keyl, Key2' = Key2 for consistency of
symmetric AES and PN-sequence generation at both ends.

The distributed video may be enlarged or cropped in sizertiefy to as resizing attack. Hence, the candidate video may
differ in frame size with the original video. The detector@ays a resize algorithm to the candidate video to match them



in size wherever necessary. The algorithm is bicubic imiatpn (expanding) or decimation (shrinking). Note that apply
geometric anti-collusion coding at embedder. Also, malisi attacks may impose spatial and temporal transforms ptieg
to remove the watermark information. On the other hand, #tedlor is very sensitive to these transforms and oftes fail
detection without any pre-processing to the candidateovidecordingly, we first register the candidate video to tbference
video, both spatially and temporally. Normalized crose-elation coefficients are computed between each pair ofehistered
candidate frame and the reference frame. The anti-colugepmetric transform information brought Wyey3’ is used to
trace possible illegal distributors.

Then we do binary hard decision to get +1/-1 sequence frontdedficients based on a threshold, and demodulate it to
a binary 0/1 sequence, which is the extracted watermarkopdylFinally, the payload is ECC decoded and AES decrypted
to recover the user/copyright information of string typs, ibustrated in Fig.2(b). Here Viterbi algorithm is used l8eCC
decoding regarding convolutional code for ECC encodingnatbexdder.

The proposed video watermarking system is integrated vétious techniques, include spectrum spreading, AES etioryp
and decryption, ECC encoding and decoding, perceptual hiiegy model, geometric anti-collusion coding and frame
registration. The following section will introduce theslniques in detail respectively.

I1l. WATERMARK EMBEDDING TECHNIQUES

A. Watermark Pattern Generation

A seed denoted aKey?2 in Fig.1(a) is required to generate a PN-sequence as watepattern using spectrum spreading.
It should be of the same size with the video frame in order torddrix addition. The PN-sequence can be m-sequence,
Walsh codes or Kasami sequence with optimal cross-coiwelaglues. The orthogonal PN-sequences are desired hetwee
different videos to resist averaging collusion, and desibetween different watermark payload (+1/-1) to resistperal
attacks. Orthogonal m-sequence is used in our system. RorefsizeN (widthxheight), the length of m-sequencesNg
hence, there ar&/ orthogonal m-sequences.

B. Watermark Payload Generation

Product copyright and user information require encryptmkeep it from attackers who want to detect or tamper theasunt
After encryption, the information appears as noise to tkeckers. The encryption technique could be Rivest-Shaailieman
cryptography (RSA), Data Encryption Standard (DES), Aadeaincryption Standard(AES) and so on. The encryption key
denoted ad<ey1 in Fig.1(a) could be the choice from the watermark creattboiong certain rules. In our system, we choose
AES for encryption and set the length of standard key to behi®8 Keyl could be both user and video related. We assume
that it is a common key to both embedder and detector, knovansgsnmetrical encryption system. If unsymmetrical enégoypt
system is used, the embedder has private Key1, and the detector has public kéyey1’.

Moreover, video distribution process can be viewed as tnésmon in channel, and the attacks to the media is regarsled a
channel noise. Therefore, 1/2 convolution code is adopteslur system for error correction coding (ECC). After encigmp
and encoding, a binary sequence of lengtis generated as watermark payload.

The binary payload is further modulated into +1/-1 sequsras

X'=2X -1, 1)
where{X} € {0, 1} is the binary payloadX’ is the modulated sequence.

C. Perceptual Weighting Model

As mentioned in section [, there is a trade-off between wadek capacity and visual quality in determining the signal
strength that can be embedded into video frames. We build@eptial model in both temporal domain and spatial domain.
The objective is to maximize the watermark capacity withcaising noticeable degradation to visual quality of vid&dse
model diagram is shown in Fig. 3. Embedding strength is d@texd in a pixel-wise manner for every frame. Hence, it is
formulated as a heightwidth mask matrix)M/, with each entry describing the weight for the collocatedenaark pattern
signal. Then for lengti. watermark payload, the watermark corresponding toithg@ayload bit in framéL +i, k € Z T is:

W =signX'(i))- M ® P )

where ® is element-wise productP is watermark patternX’(¢) is the ith watermark payload. The pixel values in the
watermarked framél” should be clipped to [0,255].
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1) Temporal Perceptual ModelingThe perceptual model in temporal domain is based on the fetthHuman eyes are
sensitive to changes with slow motion, but not to fast mowihgnges. Generally, the larger the difference betweenutrertt
frame and the previous frame, the stronger the embedded|sigangth could be. But the simple difference betweencadia
frames is not good enough to describe object moving. For plarf an object is moving leaving a smooth background, we
cannot embed high strength watermark into the smooth badkgl Therefore, we propose a block motion matching algrit
to find the difference between blocks in current frame andipts frame with the least sum of absolute differences (SAD)
which is defined as:

SAD(Q, @)= Y |Li.f) — (@, 5)] (3)
(1,5)€Q, (i ,5') €V

where(2 is the block in the current framé)’ is the block in the previous framéi, j), (i, j') are the pixel coordinateg, is
the current frameJ, is the previous frame.
The algorithm for perceptual model in temporal domain is suarized as follows:
for each block® in the current framelo
for each block®)’ in N5(Q2) in the previous frame&lo
if SAD(9,9Q) < minSAD then

mMinSAD = SAD;
Diff = [1.(2) - L(&)];
end if
end for
end for

where Nz () is the neighborhood df? in the rangeB.
Np(Q) ={z € I,|B. N Q # 0} (4)

where B, is the translation o8B by the vectorz, i.e., B, = {b+ z|b € B},Vz € I,.
Temporal model first perform block matching between two eeljg frames, and calculate the difference between these



matching blocks. Then the differences are scaled as temparsk.
TemporalMask =« - Dif f (5)

2) Spatial Perceptual ModelingiWe propose two perceptual models in spatial domain. Theeithar be used independently
or combined together to generate one spatial mask.

Model 1 is based on edge and texture. The underlying priadéfpthat rough area like texture rich area and edges, could be
embedded with higher strength watermark, since human egemsensitive to changes in these areas. To accuratelyifiden
these areas, we use a combination of three metrics to dessuith area.

« The first metricMapl is the difference between current pixel and its surroundingls. If the difference is large, it

means the current pixel is located in area that can toleedddive large changes, so that large embedded signal gtreng
is possibleMapl is calculated by a convolution of the original frame and higtss filter, which is defined below:

-1 -1 -1
H=|-1 8 -1 (6)
-1 -1 -1

o The second metrid/ap2 is the variance of the block which is centered at the curréewlpThe larger the variance, the
higher the embedded signal strength can be.

« The third metricM ap3 is the entropy of the block which is centered at the currexeélpiThe higher the entropy is, the
richer texture the area has, and the higher embedded sigeabth could be.

Each of the three metrics can describe how rich the textuoé ke local area around pixel, but none of them is sufficient
by its own. Therefore, we define the spatial as the produchefliree metrics:

SpatialMaskl = 3 - Mapl - Map2 - Map3 @)

where is a scaling factor.

Model 2 is based on saliency map [13] and Just Noticeablefiffce (JND) model [14], [15] of video frames. The saliency
map highlights salient texture areas in a image, where cbel@nperceivable embedding locations. To obtain salienap,m
the frame is down-sampled and low pass filtered in the fourarsform domain, and then up-sampled to the original frame
size. The magnitudes of the saliency map describe the fregus frame information. Visual just noticable differenedlects
nonlinear response of human eyes to spatial frequency.dBaiseIND human perceptual model, the saliency map is further

mapped into spatial mask by:
n

(SaliencyMap + 0)

Spatial Mask2 = (8)

To guarantee good visual quality of videos, we choose thénmainvalue between the spatial mask and temporal mask for
each pixel. And the final embedded signal strength is alsotbed by a minimum and a maximum value. The perceptual
weighting map (PWM) is defined as:

PW M = min(maxStrength, max(minStrength, min(Temporal M ask, Spatial Mask))) 9)

D. Geometric Anti-collusion Coding

After embedding the watermark payload into the carrier @jdee apply geometrical transforms to each copy of the video.
The transform is a combination of shifting, resizing andatiotn, and varies among different video distributors. Faetevideo
copy, its specific transform index is a random variable gateer by K cy3, related to user and copyright information. The
extent of the transform should be moderate enough in ordetonoe awared by HVS, but can still be detected by computers.
If colluders try to linearly or nonlinearly combine the mniple video copies to eliminate the embedded watermark,ekelted
video will usually be blurred and become unaccepted by hueyas. Thus, the geometrical transform protects video wetee
from inter-video collusion attacks. This process is calfgspmetrical anti-collusion coding. To preserve as muchrinftion
as possible, bi-cubic spline interpolation [16] is used Hattie blank area after transform.

IV. WATERMARK DETECTION TECHNIQUES

A. Video Frame Registration

Apart from the geometric anti-collusion coding, the inpahdidate video at detector may go through many changegr eith
accidental manipulations or malicious attacks. Two magiegories among the changes are affine transform in spatiadid,
and frame add/drop in temporal domain. Since detector hessado original video, we can use original copy as reference
and register candidate video to the reference in both dphimain and temporal domain.



1) Spatial Registration:The spatial registration is based on Kanade-Lucas-Tho(K&3i) feature tracker. Affine model is
used in spatial registration [17], [18]. The affine transfamodel to any pixelz, y) is:

=1 G+ @

The objective of spatial registration is to find the 6 affinrensform parameters— f in the model, so as to do inverse affine
transform before detection. KLT achieves this by matchimg ¢orresponding feature points in the candidate frame laad t
original frame, and get the solution to the parameter sete cal the rectified framé(!). For each pixelz, y) of F(V), we
compute its pixel positioriz’, ) in candidate frame” (). Take F(*)(z',5/) as the match iF (") (x, y) if 2,y are integers;
otherwise, we interpolat&(®) (z’, ) at (2’,y'). However, due to the complexity of the transform and the ifgmtness of
KLT algorithm, the rectified frame after one-time inversdiraf transform is often not good enough to extract watermark
from. Therefore, we propose to refine the estimité by applying KLT iteratively. Specifically, we have affine tisform

displacement expressed as:
ox -z a—1 b T e
[5y] - [y—y] - [ ¢ d- 1] M i [f] -

When the ith KLT iteration get$' () and the corresponding affine parameterdaet f#, we compute the displacement of each
pixel. We keep doing this until the convergence conditiosasisfied or we reach the maximum number of iteration. In this
system, we check the maximum pixel displacement betweerctmsecutive rectifications:

Maz e po{102°], |0y} < e (12)

where
ot = zt -t (23)
syt = y -yt (14)

ande is a pre-defined threshold.

In most cases, we expect spatial registration based on KLimpsove the detection performance if the candidate video
actually experiences certain affine transform. Howeveg, dbtector is unaware of the exact manipulation to the catelid
frame. If it is not affine transform, KLT gives wrong paranrsteand the performance after spatial registration can brsevo
than that without it. Hence, spatial registration is setiaal in our detector. Typically, detector can control toitstv on/off
the spatial registration if it has manipulation informatid>therwise, we can always try both and choose the one witerbe
detection result.

2) Temporal Registrationin temporal registration, we use the simple rule of minimgzthe mean-square-error (MSE) to
register candidate frame to the original frame. We scaniralgequence to find the best match for current candidateefra
that minimize MSE [19]. One causal constraint is put so thatframe displayed in the past can be captured in the future.
That is, if two framesi,j in candidate video withk < j, and then the registered frame?), «(j) in original video must
satisfya(i) < a(j). For framek in the candidate video, it computes the MSE witltonsecutive frames in the original video
alk—1)+1,--- ,a(k — 1) + n, wherea(k — 1) is the previous registered frame, and register the currantd to the one
with the minimal MSE.

Likewise, temporal transform may or may not appear in thedichate video. The performance after temporal registration
could be worse than that without it if no temporal manipaatoccurs. Therefore, temporal registration is also saboatin
our detector. If temporal registration is enabled, it isalljuperformed ahead of spatial registration.

B. Watermark Extraction and Payload Recovery

After registration, it is assumed each frame in candidateewihas found its match frame in the original video. Note
the watermark is a additive system that adds watermarkrpaittéo original frame. Hence, we can detect the existence of
watermark signal by computing the cross-correlation betwine watermark pattern and the true frame difference. Weaus
key exactly corresponding to Key3 at embedder to re-gea¢hatwatermark pattern, a frame-size PN sequence at thetatete
The normalized cross-correlation is defined as:

P P

NC(P,P) = (——
B P) = BT T2,

) (15)
where P is the watermark patterr® is the true difference between candidate frame and itsteggi$ frame< -, - > denotes
inner product, and| - |7 is Frobenius norm.

The range of the normalized cross-correlationj+i4, 1]. The larger the absolute value of the coefficient, the bettance
the candidate frame contains the regenerated patternt has the watermark information embedded. Each candidatad



TABLE |
STEP BY STEP RESULT OF WATERMARKING EMBEDDER

Sequences PWM Watermarked Geo-transformed

MPEG4
WORLD

corresponds to one coefficient value. A hard decision tlolesbf O is used to make the coefficient sequence to a binami-1/
sequence. If the coefficient is larger than 0, we denote itldsdtherwise it is "-1“. The extracted -1/+1 sequendes’} is
then demodulated to 0/1 sequerc€} as:

X=(X"+1)/2 (16)

The watermark payload recovery is the reverse process dbgdigeneration. The binary payload sequefCeneeds to
be decoded and decrypted to derive the string. For ECC degodie use Viterbi algorithm to decode the convolutionalecod
[20]. And AES decryption method is described in standard T8le 128-bit AES key used in decryption is denotedkasy1’,
usually set to be identical t&ey1.

V. EXPERIMENTAL RESULTS

The step by step results of watermark embedding are listethie I. The test video sequences are downloaded from
[21] for watermarking embedding. They are YUV sequences bf format includingForeman Mobile, Newsand Stefan
Column 1 shows the Y components of the 90th frames in the raigiequences. Column 2 represents their corresponding
watermark patterns after perceptual weighting model. @ol3 shows the watermarked sequences from which the wateisnar
imperceptible. And Column 4 is the watermarked frames aféametric transform with anti-collusion ability. They aldergo
up-right shifting 3 pixels, clockwise rota?, and resizing 101%. We can hardly distinguish the wateradhfkames in Column
3 with the original frames in Column 1, which meets our peteapbrequirement for watermarking system. Furthermore,
geometric anti-collusion code does not cause much distorteither, as frames in Column 4 and Column 3 look exactkeali
The PSNR of the watermarked sequences are shown in Fig. 4hvdlls in the range of 34 and 47 dB.

At detector side, we test the capability of detector to atityeextract watermark information under various attadksiong
them, the most important task is to verify the capability ésist affine transforms, not only because they are used tor an
collusion coding at embedder for security purpose, but thilduted videos can encounter malicious geometric mdaijpns
as well. Fig.5 lists the watermarked frame under variousi@ffransforms. The test sequence is 300 frames (@@#ndma
and the 5th frame is selected to illustrate the effect of ipleltgeometric transforms, including 25 pixel rotationgand 8°
rotation) (5(c)), 10 pixel expanding (around 105.7%) (5(dp pixel shrinking (around 94.3%) (5(e)) and 40 pixel s8hg 5(f).
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Fig. 4. PSNR of watermarked video sequences in Table I. (egriran. (b) Mobile. (c) News. (d) Stefan.

Note how significantly the last three transforms change thmé structure. The geometric transforms to such exterg baen
easily detected by human eyes, hence they may be out of tige the anti-collusion coding can carry out on watermarked
video, and very likely the result of third party attacks. Tdfere, the performance the detector achieves on thesewickn
fully justify it under affine transform attacks. Table Il sh® the error rate of cross-correlation coefficients the ateteobtains
under the above mentioned transform scenarios. It is defised

M.

R. = i a7)
where M, is the number of erroneous demodulated binary bits, dni$ the number of frames in the sequence. Note this error
rate is obtained before ECC decoding, which can furtherecbthe bit error. The first row shows the error rate withoatrfe
registration. The error rate is too high for ECC to correatdAt turns out we cannot get the correct watermark inforamatit
detector. One time KLT registration has significantly regtlithe error rate. The iterative KLT registration can furtimeprove
the performance (the third row) but not so significant as vdmat time registration to no registration at all. We notice 26
pixel rotation, iterative KLT is actually identical to onerie KLT as it only operates the registration once. This isanse
these are all single kind transforms, either rotation,ziegior shifting. And one time KLT is good enough to track thogrect
transform parameters. While combinational transformsepg®ater challenge for KLT based spatial registration. Aewsm
in Table Ill, complex affine transforms and single transfafrhigher magnitude require iterative KLT to enable the dite
to extract the correct watermark. Note that for resizingsifpee value means shrinking (5(e)), and negative valuécatds
expanding (5(d)). There are some combinatorial transfanmghich KLT registration fails (indicated by “N/A”), i.e térative
KLT registration will not converge after maximum iteratitimes and fails to estimate the correct parameters.

VI. CONCLUSION

In this paper, we propose a robust track-and-trace anftirsioh watermarking system. At the embedder, the user apgricit
information is securely mapped to binary sequences using, AC, which results in watermark payload. Orthogonal &am



®

Fig. 5. Geometric transform/attacks to 5th frameGandma (a) Original frame. (b) Watermark frame. (c) Watermarknfeawith 25 pixel rotation. (d)
Watermark frame with 10 pixel expanding. (e) Watermark feawith 10 pixel shrinking and truncated to original size. \(fatermark frame with 40 pixel
shifting.

TABLE I
CROSSCORRELATION COEFFICIENTERRORRATIO (%) WITH FRAME REGISTRATION IN GrandmaSEQUENCE
25 Pixel Rotation 10 Pixel Expanding 10 Pixel Resizing 40ePRhifting
No registration 41.67 3 48.67 47.67
1-KLT Registration 0 2.33 0.67 2.33
Iterative KLT Registration 0 0 0 0.33




TABLE Il
CAPABILITY OF KLT BASED VIDEO REGISTRATION FORVARIOUS GEOMETRIC TRANSFORMS(N/A: NOT APPLICABLE)

shift resize rotate KLT iteration time Capability
0 -15 0 2 Y
0 -20 0 N/A N
0 15 0 2 Y
0 20 0 N/A N
0 0 40 2 Y
10 10 10 4 Y
20 10 20 N/A N
20 5 20 4 Y
20 -5 20 3 Y
30 5 10 N/A N

size PN-sequence is generated with secrete key as watepatiekn. The pattern is then perceptually weighted andjiated
with the original video sequence frame by frame accordingatermark payload. For anti-collusion purpose, the waseked
video will be geometrically transformed before distriluti At the detector, candidate video will be spatially antgerally
registered to the original video if needed. We compute tlmsscicorrelation between the re-generated watermark pattet
frame difference to extract the payload. Then the payloalGE€ decoded and AES decrypted to get the final watermark
information. Experimental results show that the proposetiesn is robust against geometric attacks and collusi@thkdt and
meets the requirement of invisibility to HVS.

Meantime, it also shows that iterative KLT registration Hiasitations. Our future work includes further investigatiinto
the transform attacks and enhancing the detector capatulitope with complicated combinatorial affine transformd aon-
affine transforms. Moreover, we will test the detector urmber types of video-related attacks such as compressiamenus
transmission, and reverse order display.
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