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Abstract

With the development of computers and the Internet, digitalmultimedia can be distributed and pirated easily. Watermarking is
a useful technique for multimedia copyright protection. Inthis paper, we develop a robust video watermarking system. It consists
of two components, i.e., watermarking embedder and watermarking detector. In the embedder, we insert a watermark pattern
into video frames according to a watermark payload. The watermark pattern is generated from a Pseudo-random Noise (PN)
sequence generator using the spread spectrum technique. User and copyright information are mapped to a binary sequenceand
then encrypted with Advance Encryption Standard (AES) and encoded/protected by convolutional error correction code (ECC) to
produce watermark payload. The watermark pattern is weighted and embedded to each frame to meet perceptual requirements.
In addition, the video is slightly geometrically manipulated in order to defend possible collusion attacks. The detector extracts
the watermark from the candidate video. Kanade-Lucas-Tomasi feature tracker (KLT) is used to register the candidate video with
respect to the original video, to enhance the correlation with the reference. The cross-correlation sequence is binarized, ECC
decoded and decrypted. The experimental results show that the proposed video watermark system is very robust to not only
geometric attack, but also collusion attacks, and that it isperceptually invisible to human vision system.

I. I NTRODUCTION

Nowadays, computers, interconnected via the Internet, make the distribution of the digital media fast and easy. However,
it also requires less effort to obtain the exact copies. Therefore, it poses great challenges to copyright protection for digital
media. Digital watermark embedding is a process of integrating the user and copyright information into the carrier media in
a way invisible to human vision system (HVS). Its purpose is to protect the digital works from the unauthorized duplication
or distribution.

Video watermarking system is desired to embed watermark in such a way that the watermark can be detected later for
authentication, copyright protection, and track-and-trace illegal distribution. Videos, composed of multiple frames, can utilize
image watermarking techniques in a frame-wise manner [1]. Although the watermarking embedding capacity of video is much
larger than that of image, the attacks the video watermarking suffers are more complicated than image watermarking. The
attacks include not only spatial attacks, but also temporalattacks and hybrid spatial-temporal attacks.

In the literature of track-and-trace video watermarking, the algebra-based anti-collusion code is investigated [2]–[8]. Its
ability to trace one or multiple colluders depends on the assumption that the code is always available and error-free, which
may not be true in practice. Besides, the length of anti-collusion code hinder the system user capacity. Hence, practical and
multi-functional watermarking systems based on algebra-based anti-collusion code are very limited.

To this end, we propose a robust track-and-trace watermarking system for digital video copyright protection. It consists of two
independent bodies, watermarking embedder and watermarking detector. At embedder, user and product copyright information,
e.g. a string of lengthLs, is first encrypted with Advanced Encryption Standard (AES)[9] to form a binary sequence. We
then apply error correction code (ECC) [10] to the sequence to generate a binary sequence with error-correction abilityof
length L, called watermark payload. Meanwhile, a frame-size watermark pattern arises from a pseudo-random noise (PN)
sequence [11], [12]. Each binary bit in watermark payload isassociated with one video frame and determines how watermark
is embedded to this frame. Bit 0 indicates subtracting the watermark pattern from the current frame, while bit 1 indicates adding
the watermark pattern to the current frame. We will repeatedly embedL bits if the video is longer thanL frames, and sync the
watermark payload at the beginning of dramatic video scene changes to resist temporal attacks. Furthermore, in order tomeet
the perceptual quality, we build a perceptual model to determine the signal strength that can be embedded to each frame pixel.
Note that the stronger the embedded signal, and hence the easier the watermark can be correctly detected. However, watermark
pattern is like random noise, and too strong of the noise signal can cause noticeable distortion to the picture. The randomness
of PN sequences also make the embedded watermark information blind to the attackers. To make a trade-off between capacity
and visual quality, we build a perceptual model to determinethe signal strength that can be embedded to each pixel. Finally,
since distributed videos are prone to collusion attacks, wepropose to apply geometric transforms to the watermarked videos.
This is called geometric anti-collusion coding in this paper. These transforms include rotation, resizing and translation, and
should be moderate enough to cause no defect to HVS, but also enhance the capability to resist collusion attacks.

The watermarking detector just carries out the reverse process of the embedder. In this system, we assume the detector
can always have access to the original video as the prototypeof the candidate video. Because of the geometric anti-collusion



coding at embedder, watermark usually cannot be correctly extracted without any pre-processing even the candidate video is
an error-free copy. Additionally, spatial attacks such as further geometric manipulations and temporal attacks may occur to
distributed videos. In this paper, we propose to register the candidate video to the original video spatially and temporally. An
iterative KLT based scheme is applied for spatial registration, whereas temporal registration is to match frames that minimize
the mean-square-error (MSE). We then compute cross-correlation coefficients between re-generated watermark patternand
frame difference of the registered frame and its corresponding original frame, demodulate the coefficient sequence to recover
the watermark payload. It is then ECC decoded (convolutional coding for specific) and AES decrypted to derive the original
user or copyright information. Successful detection indicates the user or copyright information is correctly extracted, otherwise
we say the detector fails to detect the watermark.

The paper is organized as follows: Section II describes the overall architecture of the proposed track-and-trace video
watermarking system. The watermarking embedder techniques are discussed in Section III. Section IV introduces watermarking
detector techniques. The experimental results presented in Section V verify robustness of the proposed video watermarking.
Finally, the conclusion and future work are given in SectionVI.

II. A RCHITECTURE OFROBUST V IDEO WATERMARKING SYSTEM

The architecture of the track-and-trace video watermarking system includes two independent components, i.e., watermarking
embedder (Fig. 1) and watermarking detector (Fig. 2). It is an additive watermarking system. Watermarking embedder consists
of two functional components, watermark generator to generate watermark payload (Fig. 1(a)), and watermark embedder to
embed the payload to video frames (Fig. 1(b)). Watermarkingdetector extracts payload from candidate video (Fig. 2(a)), and
then recover user or copyright information from the payload(Fig. 2(b)).

(a) Watermark generator

(b) Watermark embedder

Fig. 1. Track-and-trace video watermarking embedder

A. Watermarking Embedder

The proposed video watermarking system is an additive system, i.e. adding watermark signal to the original video. The
inputs of embedder are the original video, user ID and copyright information. The key configure parameters are the frame



(a) Watermark extractor

(b) Payload recovery

Fig. 2. Track-and-trace video watermarking detector

size (widthxheight) of the input video, AES encryption key (Key1 in Fig.1(b)), pattern ID (Key2 in Fig.1(b)) to generate
watermark pattern andKey3 to generate geo-transform parameters for film distributors.

String-type user/copyright information are binarized, encrypted, and ECC coded into watermark paylaod. If convolution code
rate = 1/2 is used, the information ofLs characters is transformed intoL = 16Ls bits. Watermark pattern by using orthogonal
PN sequences can resist frame-averaging collusion. The pseudo random watermark patterns weighted by perceptual modeling
of each frame are embedded with the largest strength under imperceivable constraint. The length of PN sequenceN is frame
size (widthxheight). The number of the orthogonal sequences of lengthN is exactlyN . For geometry transform, the bicubic
interpolation is used to keep original video information asmuch as possible. There are±5o rotation,±5 pixel translation and
±5% resizing. Thus, the proposed system could accommodate1000N distributors ideally.

After embedding, the watermarked videos are distributed. They may suffer from intentional manipulations or unintentional
degradations later. These attacks include but not restrictto geometric manipulations, erroneous transmission, and collusion.

B. Watermarking Detector

The inputs of detector are the candidate video and its original copy. The goal is to extract watermark payload from the
candidate video and recover the user/copyright information with reference to the original copy. Some of the key configure
parameters are the size (width and height) of the two input videos, AES decryption key (Key1′ in Fig.2(a)) and pattern ID
(Key2′ in Fig.2(a)) to re-generate watermark pattern. Usually, weset Key1′ = Key1, Key2′ = Key2 for consistency of
symmetric AES and PN-sequence generation at both ends.

The distributed video may be enlarged or cropped in size, referring to as resizing attack. Hence, the candidate video may
differ in frame size with the original video. The detector employs a resize algorithm to the candidate video to match them



in size wherever necessary. The algorithm is bicubic interpolation (expanding) or decimation (shrinking). Note that we apply
geometric anti-collusion coding at embedder. Also, malicious attacks may impose spatial and temporal transforms attempting
to remove the watermark information. On the other hand, the detector is very sensitive to these transforms and often fails in
detection without any pre-processing to the candidate video. Accordingly, we first register the candidate video to the reference
video, both spatially and temporally. Normalized cross-correlation coefficients are computed between each pair of theregistered
candidate frame and the reference frame. The anti-collusion geometric transform information brought byKey3′ is used to
trace possible illegal distributors.

Then we do binary hard decision to get +1/-1 sequence from thecoefficients based on a threshold, and demodulate it to
a binary 0/1 sequence, which is the extracted watermark payload. Finally, the payload is ECC decoded and AES decrypted
to recover the user/copyright information of string type, as illustrated in Fig.2(b). Here Viterbi algorithm is used for ECC
decoding regarding convolutional code for ECC encoding at embedder.

The proposed video watermarking system is integrated with various techniques, include spectrum spreading, AES encryption
and decryption, ECC encoding and decoding, perceptual weighting model, geometric anti-collusion coding and frame
registration. The following section will introduce these techniques in detail respectively.

III. WATERMARK EMBEDDING TECHNIQUES

A. Watermark Pattern Generation

A seed denoted asKey2 in Fig.1(a) is required to generate a PN-sequence as watermark pattern using spectrum spreading.
It should be of the same size with the video frame in order to domatrix addition. The PN-sequence can be m-sequence,
Walsh codes or Kasami sequence with optimal cross-correlation values. The orthogonal PN-sequences are desired between
different videos to resist averaging collusion, and desired between different watermark payload (+1/-1) to resist temporal
attacks. Orthogonal m-sequence is used in our system. For frame-sizeN (widthxheight), the length of m-sequences isN ,
hence, there areN orthogonal m-sequences.

B. Watermark Payload Generation

Product copyright and user information require encryptionto keep it from attackers who want to detect or tamper the content.
After encryption, the information appears as noise to the attackers. The encryption technique could be Rivest-Shamir-Adleman
cryptography (RSA), Data Encryption Standard (DES), Advance Encryption Standard(AES) and so on. The encryption key
denoted asKey1 in Fig.1(a) could be the choice from the watermark creator following certain rules. In our system, we choose
AES for encryption and set the length of standard key to be 128bits. Key1 could be both user and video related. We assume
that it is a common key to both embedder and detector, known asa symmetrical encryption system. If unsymmetrical encryption
system is used, the embedder has private keyKey1, and the detector has public keyKey1′.

Moreover, video distribution process can be viewed as transmission in channel, and the attacks to the media is regarded as
channel noise. Therefore, 1/2 convolution code is adopted in our system for error correction coding (ECC). After encryption
and encoding, a binary sequence of lengthL is generated as watermark payload.

The binary payload is further modulated into +1/-1 sequences as:

X ′ = 2X − 1, (1)

where{X} ∈ {0, 1} is the binary payload,X ′ is the modulated sequence.

C. Perceptual Weighting Model

As mentioned in section I, there is a trade-off between watermark capacity and visual quality in determining the signal
strength that can be embedded into video frames. We build a perceptual model in both temporal domain and spatial domain.
The objective is to maximize the watermark capacity withoutcausing noticeable degradation to visual quality of videos. The
model diagram is shown in Fig. 3. Embedding strength is determined in a pixel-wise manner for every frame. Hence, it is
formulated as a height×width mask matrixM , with each entry describing the weight for the collocated watermark pattern
signal. Then for lengthL watermark payload, the watermark corresponding to theith payload bit in framekL + i, k ∈ Z+ is:

W = sign(X ′(i)) · M ⊙ P (2)

where⊙ is element-wise product,P is watermark pattern,X ′(i) is the ith watermark payload. The pixel values in the
watermarked frameW should be clipped to [0,255].



Fig. 3. Perceptual Modeling Diagram

1) Temporal Perceptual Modeling:The perceptual model in temporal domain is based on the fact that human eyes are
sensitive to changes with slow motion, but not to fast movingchanges. Generally, the larger the difference between the current
frame and the previous frame, the stronger the embedded signal strength could be. But the simple difference between adjacent
frames is not good enough to describe object moving. For example, if an object is moving leaving a smooth background, we
cannot embed high strength watermark into the smooth background. Therefore, we propose a block motion matching algorithm
to find the difference between blocks in current frame and previous frame with the least sum of absolute differences (SAD),
which is defined as:

SAD(Ω, Ω′) =
∑

(i,j)∈Ω,(i′,j′)∈Ω′

|Ic(i, j) − Ip(i
′, j′)| (3)

whereΩ is the block in the current frame,Ω′ is the block in the previous frame,(i, j), (i′, j′) are the pixel coordinates,Ic is
the current frame,Ip is the previous frame.

The algorithm for perceptual model in temporal domain is summarized as follows:

for each blockΩ in the current framedo
for each blockΩ′ in NB(Ω) in the previous framedo

if SAD(Ω, Ω′) < minSAD then
minSAD = SAD;
Diff = |Ic(Ω) − Ip(Ω

′)|;
end if

end for
end for

whereNB(Ω) is the neighborhood ofΩ in the rangeB.

NB(Ω) = {z ∈ Ip|Bz ∩ Ω 6= ∅} (4)

whereBz is the translation ofB by the vectorz, i.e., Bz = {b + z|b ∈ B}, ∀z ∈ Ip.
Temporal model first perform block matching between two adjacent frames, and calculate the difference between these



matching blocks. Then the differences are scaled as temporal mask.

TemporalMask = α · Diff (5)

2) Spatial Perceptual Modeling:We propose two perceptual models in spatial domain. They caneither be used independently
or combined together to generate one spatial mask.

Model 1 is based on edge and texture. The underlying principle is that rough area like texture rich area and edges, could be
embedded with higher strength watermark, since human eyes are insensitive to changes in these areas. To accurately identify
these areas, we use a combination of three metrics to describe such area.

• The first metricMap1 is the difference between current pixel and its surroundingpixels. If the difference is large, it
means the current pixel is located in area that can tolerate relative large changes, so that large embedded signal strength
is possible.Map1 is calculated by a convolution of the original frame and highpass filterH , which is defined below:

H =





−1 −1 −1
−1 8 −1
−1 −1 −1



 (6)

• The second metricMap2 is the variance of the block which is centered at the current pixel. The larger the variance, the
higher the embedded signal strength can be.

• The third metricMap3 is the entropy of the block which is centered at the current pixel. The higher the entropy is, the
richer texture the area has, and the higher embedded signal strength could be.

Each of the three metrics can describe how rich the texture isof the local area around pixel, but none of them is sufficient
by its own. Therefore, we define the spatial as the product of the three metrics:

SpatialMask1 = β · Map1 · Map2 · Map3 (7)

whereβ is a scaling factor.
Model 2 is based on saliency map [13] and Just Noticeable Difference (JND) model [14], [15] of video frames. The saliency

map highlights salient texture areas in a image, where couldbe imperceivable embedding locations. To obtain saliency map,
the frame is down-sampled and low pass filtered in the fouriertransform domain, and then up-sampled to the original frame
size. The magnitudes of the saliency map describe the frequency of frame information. Visual just noticable differencereflects
nonlinear response of human eyes to spatial frequency. Based on JND human perceptual model, the saliency map is further
mapped into spatial mask by:

SpatialMask2 =
η

(SaliencyMap + δ)
(8)

To guarantee good visual quality of videos, we choose the minimal value between the spatial mask and temporal mask for
each pixel. And the final embedded signal strength is also bounded by a minimum and a maximum value. The perceptual
weighting map (PWM) is defined as:

PWM = min(maxStrength, max(minStrength, min(TemporalMask, SpatialMask))) (9)

D. Geometric Anti-collusion Coding

After embedding the watermark payload into the carrier video, we apply geometrical transforms to each copy of the video.
The transform is a combination of shifting, resizing and rotation, and varies among different video distributors. For each video
copy, its specific transform index is a random variable generated byKey3, related to user and copyright information. The
extent of the transform should be moderate enough in order not to be awared by HVS, but can still be detected by computers.
If colluders try to linearly or nonlinearly combine the multiple video copies to eliminate the embedded watermark, the resulted
video will usually be blurred and become unaccepted by humaneyes. Thus, the geometrical transform protects video watermark
from inter-video collusion attacks. This process is calledgeometrical anti-collusion coding. To preserve as much information
as possible, bi-cubic spline interpolation [16] is used to fill the blank area after transform.

IV. WATERMARK DETECTION TECHNIQUES

A. Video Frame Registration

Apart from the geometric anti-collusion coding, the input candidate video at detector may go through many changes, either
accidental manipulations or malicious attacks. Two major categories among the changes are affine transform in spatial domain,
and frame add/drop in temporal domain. Since detector has access to original video, we can use original copy as reference
and register candidate video to the reference in both spatial domain and temporal domain.



1) Spatial Registration:The spatial registration is based on Kanade-Lucas-Thomasi(KLT) feature tracker. Affine model is
used in spatial registration [17], [18]. The affine transform model to any pixel(x, y) is:

[

x′

y′

]

=

[

a b
c d

] [

x
y

]

+

[

e
f

]

(10)

The objective of spatial registration is to find the 6 affine transform parametersa − f in the model, so as to do inverse affine
transform before detection. KLT achieves this by matching the corresponding feature points in the candidate frame and the
original frame, and get the solution to the parameter set. . We call the rectified frameF (1). For each pixel(x, y) of F (1), we
compute its pixel position(x′, y′) in candidate frameF (0). TakeF (0)(x′, y′) as the match inF (1)(x, y) if x′, y′ are integers;
otherwise, we interpolateF (0)(x′, y′) at (x′, y′). However, due to the complexity of the transform and the imperfectness of
KLT algorithm, the rectified frame after one-time inverse affine transform is often not good enough to extract watermark
from. Therefore, we propose to refine the estimateF (1) by applying KLT iteratively. Specifically, we have affine transform
displacement expressed as:

[

δx
δy

]

=

[

x′ − x
y′ − y

]

=

[

a − 1 b
c d − 1

] [

x
y

]

+

[

e
f

]

(11)

When the ith KLT iteration getsF (i) and the corresponding affine parameter setai −f i, we compute the displacement of each
pixel. We keep doing this until the convergence condition issatisfied or we reach the maximum number of iteration. In this
system, we check the maximum pixel displacement between twoconsecutive rectifications:

maxxi,yi∈F (i){|δxi|, |δyi|} < ǫ (12)

where

δxi = xi − xi−1 (13)

δyi = yi − yi−1 (14)

andǫ is a pre-defined threshold.
In most cases, we expect spatial registration based on KLT toimprove the detection performance if the candidate video

actually experiences certain affine transform. However, the detector is unaware of the exact manipulation to the candidate
frame. If it is not affine transform, KLT gives wrong parameters, and the performance after spatial registration can be worse
than that without it. Hence, spatial registration is set optional in our detector. Typically, detector can control to switch on/off
the spatial registration if it has manipulation information. Otherwise, we can always try both and choose the one with better
detection result.

2) Temporal Registration:In temporal registration, we use the simple rule of minimizing the mean-square-error (MSE) to
register candidate frame to the original frame. We scan original sequence to find the best match for current candidate frame
that minimize MSE [19]. One causal constraint is put so that no frame displayed in the past can be captured in the future.
That is, if two framesi, j in candidate video withi < j, and then the registered frameα(i), α(j) in original video must
satisfyα(i) ≤ α(j). For framek in the candidate video, it computes the MSE withn consecutive frames in the original video
α(k − 1) + 1, · · · , α(k − 1) + n, whereα(k − 1) is the previous registered frame, and register the current frame to the one
with the minimal MSE.

Likewise, temporal transform may or may not appear in the candidate video. The performance after temporal registration
could be worse than that without it if no temporal manipulation occurs. Therefore, temporal registration is also set optional in
our detector. If temporal registration is enabled, it is usually performed ahead of spatial registration.

B. Watermark Extraction and Payload Recovery

After registration, it is assumed each frame in candidate video has found its match frame in the original video. Note
the watermark is a additive system that adds watermark pattern into original frame. Hence, we can detect the existence of
watermark signal by computing the cross-correlation between the watermark pattern and the true frame difference. We use a
key exactly corresponding to Key3 at embedder to re-generate the watermark pattern, a frame-size PN sequence at the detector.
The normalized cross-correlation is defined as:

NC(P, P̂ ) = 〈
P

‖P‖F

,
P̂

‖P̂‖F

〉 (15)

whereP is the watermark pattern,̂P is the true difference between candidate frame and its registered frame;< ·, · > denotes
inner product, and‖ · ‖F is Frobenius norm.

The range of the normalized cross-correlation is[−1, 1]. The larger the absolute value of the coefficient, the betterchance
the candidate frame contains the regenerated pattern, i.e.it has the watermark information embedded. Each candidate frame



TABLE I
STEP BY STEP RESULT OFWATERMARKING EMBEDDER

Sequences PWM Watermarked Geo-transformed

corresponds to one coefficient value. A hard decision threshold of 0 is used to make the coefficient sequence to a binary -1/+1
sequence. If the coefficient is larger than 0, we denote it as ”1“, otherwise it is ”-1“. The extracted -1/+1 sequences{X ′} is
then demodulated to 0/1 sequence{X} as:

X = (X ′ + 1)/2 (16)

The watermark payload recovery is the reverse process of payload generation. The binary payload sequenceX ′ needs to
be decoded and decrypted to derive the string. For ECC decoding, we use Viterbi algorithm to decode the convolutional code
[20]. And AES decryption method is described in standard [9]. The 128-bit AES key used in decryption is denoted asKey1′,
usually set to be identical toKey1.

V. EXPERIMENTAL RESULTS

The step by step results of watermark embedding are listed inTable I. The test video sequences are downloaded from
[21] for watermarking embedding. They are YUV sequences of CIF format includingForeman, Mobile, Newsand Stefan.
Column 1 shows the Y components of the 90th frames in the original sequences. Column 2 represents their corresponding
watermark patterns after perceptual weighting model. Column 3 shows the watermarked sequences from which the watermark is
imperceptible. And Column 4 is the watermarked frames aftergeometric transform with anti-collusion ability. They allundergo
up-right shifting 3 pixels, clockwise rotate2o, and resizing 101%. We can hardly distinguish the watermarked frames in Column
3 with the original frames in Column 1, which meets our perceptual requirement for watermarking system. Furthermore,
geometric anti-collusion code does not cause much distortion neither, as frames in Column 4 and Column 3 look exactly alike.
The PSNR of the watermarked sequences are shown in Fig. 4, which falls in the range of 34 and 47 dB.

At detector side, we test the capability of detector to correctly extract watermark information under various attacks.Among
them, the most important task is to verify the capability to resist affine transforms, not only because they are used for anti-
collusion coding at embedder for security purpose, but the distributed videos can encounter malicious geometric manipulations
as well. Fig.5 lists the watermarked frame under various affine transforms. The test sequence is 300 frames QCIFGrandma,
and the 5th frame is selected to illustrate the effect of multiple geometric transforms, including 25 pixel rotation (around8o

rotation) (5(c)), 10 pixel expanding (around 105.7%) (5(d)), 10 pixel shrinking (around 94.3%) (5(e)) and 40 pixel shifting 5(f).
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Fig. 4. PSNR of watermarked video sequences in Table I. (a) Foreman. (b) Mobile. (c) News. (d) Stefan.

Note how significantly the last three transforms change the frame structure. The geometric transforms to such extent have been
easily detected by human eyes, hence they may be out of the range the anti-collusion coding can carry out on watermarked
video, and very likely the result of third party attacks. Therefore, the performance the detector achieves on these videos can
fully justify it under affine transform attacks. Table II shows the error rate of cross-correlation coefficients the detector obtains
under the above mentioned transform scenarios. It is definedas:

Re =
Me

M
(17)

whereMe is the number of erroneous demodulated binary bits, andM is the number of frames in the sequence. Note this error
rate is obtained before ECC decoding, which can further correct the bit error. The first row shows the error rate without frame
registration. The error rate is too high for ECC to correct. And it turns out we cannot get the correct watermark information at
detector. One time KLT registration has significantly reduced the error rate. The iterative KLT registration can further improve
the performance (the third row) but not so significant as whatone time registration to no registration at all. We notice for 25
pixel rotation, iterative KLT is actually identical to one time KLT as it only operates the registration once. This is because
these are all single kind transforms, either rotation, resizing or shifting. And one time KLT is good enough to track the correct
transform parameters. While combinational transforms pose greater challenge for KLT based spatial registration. As shown
in Table III, complex affine transforms and single transformof higher magnitude require iterative KLT to enable the detector
to extract the correct watermark. Note that for resizing, positive value means shrinking (5(e)), and negative value indicates
expanding (5(d)). There are some combinatorial transformsin which KLT registration fails (indicated by “N/A”), i.e. iterative
KLT registration will not converge after maximum iterationtimes and fails to estimate the correct parameters.

VI. CONCLUSION

In this paper, we propose a robust track-and-trace anti-collusion watermarking system. At the embedder, the user and copyright
information is securely mapped to binary sequences using AES, ECC, which results in watermark payload. Orthogonal frame



(a) (b)

(c) (d)

(e) (f)

Fig. 5. Geometric transform/attacks to 5th frame ofGrandma. (a) Original frame. (b) Watermark frame. (c) Watermark frame with 25 pixel rotation. (d)
Watermark frame with 10 pixel expanding. (e) Watermark frame with 10 pixel shrinking and truncated to original size. (f)Watermark frame with 40 pixel
shifting.

TABLE II
CROSSCORRELATION COEFFICIENTERRORRATIO (%) WITH FRAME REGISTRATION IN GrandmaSEQUENCE

25 Pixel Rotation 10 Pixel Expanding 10 Pixel Resizing 40 Pixel Shifting

No registration 41.67 3 48.67 47.67

1-KLT Registration 0 2.33 0.67 2.33

Iterative KLT Registration 0 0 0 0.33



TABLE III
CAPABILITY OF KLT BASED V IDEO REGISTRATION FORVARIOUS GEOMETRICTRANSFORMS(N/A: NOT APPLICABLE)

shift resize rotate KLT iteration time Capability

0 -15 0 2 Y
0 -20 0 N/A N
0 15 0 2 Y
0 20 0 N/A N
0 0 40 2 Y
10 10 10 4 Y
20 10 20 N/A N
20 5 20 4 Y
20 -5 20 3 Y
30 5 10 N/A N

size PN-sequence is generated with secrete key as watermarkpattern. The pattern is then perceptually weighted and integrated
with the original video sequence frame by frame according towatermark payload. For anti-collusion purpose, the watermarked
video will be geometrically transformed before distribution. At the detector, candidate video will be spatially and temporally
registered to the original video if needed. We compute the cross correlation between the re-generated watermark pattern and
frame difference to extract the payload. Then the payload isECC decoded and AES decrypted to get the final watermark
information. Experimental results show that the proposed system is robust against geometric attacks and collusion attacks, and
meets the requirement of invisibility to HVS.

Meantime, it also shows that iterative KLT registration haslimitations. Our future work includes further investigation into
the transform attacks and enhancing the detector capability to cope with complicated combinatorial affine transforms and non-
affine transforms. Moreover, we will test the detector underother types of video-related attacks such as compression, erroneous
transmission, and reverse order display.
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