
1

Effective Capacity of a Correlated Nakagami-m
Fading Channel

Qing Wang, Dapeng Wu and Pingyi Fan

Abstract

The grail of next-generation wireless networks is providing real-time services for delay-sensitive applications,

which require that the wireless networks provide QoS guarantees. The effective capacity (EC) proposed by Wu and

Negi provides a powerful tool for design of QoS provisioning mechanisms. In this paper, we intend to generalize

their formula for the effective capacity of a correlated Rayleigh fading channel; specifically, we derive a closed

form approximate EC formula for a special correlated Nakagami-m fading channel, for which the inverse of the

correlation coefficient matrix is tridiagonal. To verify its accuracy via simulation, we develop a Green-matrix based

approach, which allows us to analytically obtain the effective capacity (given the joint probability density function

of a correlated Nakagami-m fading channel) while being able to simulate the corresponding channel gain process.

Simulation results show that our EC formula is accurate. Furthermore, to facilitate the application of the EC theory

to the design of practical QoS provisioning mechanisms, we propose a simple algorithm for estimating the EC of

an arbitrary correlated Nakagami-m fading channel, given channel measurements; simulation results demonstrate

the accuracy of our proposed EC estimation algorithm, showing its suitability in practice.

Index Terms

Effective capacity, correlated Nakagami-m fading, Rayleigh fading, QoS provisioning.

I. INTRODUCTION

The next-generation wireless networks (e.g., 4G cellular networks, WiMax, IEEE 802.11n, and next-

generation mobile ad hoc networks) are targeted at supporting various applications such as voice, data, and

multimedia over packet-switched networks. The grail of these networks is providing real-time services for

delay-sensitive applications. Delay sensitive applications such as voice-over-IP, interactive video, mobile

TV, and interactive gaming, require that the wireless networks provide quality of service (QoS) guarantees,

e.g., guarantees on data rate, delay bound, and delay bound violation probability.

The general objective of this paper is to explore the performance limits in delay-constrained wireless

networks. To address this, one can take the following approaches. The first approach is network calculus (a
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bounding approach) [1], [2]; in this approach, the number of parameters needed to describe the performance

measures is small but the obtained performance measures are not accurate due to simplification in

source/channel characterization. The second approach is parametric stochastic modeling [3], [4]. It models

the statistics (e.g., marginal probability density functions, transition probabilities, or auto-correlation

functions [5]) of stochastic processes for the arrivals and departures in the system. Markov modulated

Poisson processes (MMPP) [6] are such models. To achieve accurate performance prediction, the number

of parameters in the stochastic model is usually large, resulting in high complexity of estimating model

parameters from real traffic/channel measurements. This also leads to high complexity in queueing analysis.

The third approach is large deviations [7], [8]. This approach is simple in terms of the number of

parameters needed for quantifying performance; the performance measure obtained is proven to be accurate

asymptotically, i.e., the performance measure is accurate in the large delay regime but not in the small

delay regime. However, surprisingly, it is showed that the performance measure obtained by large deviation

techniques is accurate even in the small delay regime (e.g., from 50 ms to 500 ms as in Fig. 1) for

Rayleigh/Rician/Nakagami-m fading with a practical Doppler spectrum and the velocity of a mobile

terminal ranging from 0.041 km/h to 204 km/h [9], [10].1 This important finding opens a new avenue for

QoS provisioning in wireless networks [12]. Using large deviations theory, the effective capacity approach

[9], [10] was developed, which has been applied in multiple-input-multiple-output (MIMO) systems [13],

adaptive-modulation-and-coding and power control [14], amplify-and-forward and decode-and-forward

relay networks (cooperative diversity) [15], resource allocation [16], multi-hop delay performance in

wireless mesh networks [17], joint design of video compression, link layer and physical layer [18], and

study of joint impact of bandwidth, power, and code-rate on the effective capacity [19].

The effective capacity (EC) [10] provides a powerful tool for exploring the performance limits in delay-

constrained wireless networks, and designing QoS provisioning mechanisms in wireless networks. The

authors [10] derived a formula for the effective capacity of a Rayleigh fading channel with arbitrary

Doppler spectrum [20]. In this paper, we intend to generalize their formula for the effective capacity of

a correlated Rayleigh fading channel; specifically, we derive a formula for the effective capacity of a

correlated Nakagami-m fading channel (note that Rayleigh fading is a special case of Nakagami-m fading

with m = 1). However, it is difficult to verify the accuracy of our derived EC formula via simulation since

this requires that we should be able to compute the effective capacity via the closed-form formula, given

the joint probability density function (pdf) of a correlated Nakagami-m fading channel, while at the same

1Marwan Krunz et al. [3], [4] used on-off processes (which model the codec-layer channel [11]) instead of Rayleigh/Rician/Nakagami-m
fading with a practical Doppler spectrum (which model the radio-layer channel [11]).
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time, being able to simulate a channel gain process having the same joint pdf as that used in the closed-

form formula. To address this difficulty, we develop a methodology as below: we use an autoregressive

(AR) model to simulate a correlated Nakagami-m fading channel; then use the corresponding correlation

matrix of the AR model to obtain a Green matrix; then apply the Green matrix to the closed-form EC

formula for calculating the EC. Simulation results show that our EC formula for a correlated Nakagami-m

fading channel is accurate.

Furthermore, to facilitate the application of the EC theory to the design of practical QoS provisioning

mechanisms in wireless networks, we propose a simple algorithm for estimating the EC of an arbitrary

correlated Nakagami-m fading channel, given channel measurements. Simulation results demonstrate that

our proposed EC estimation algorithm is accurate. Since our proposed EC estimation algorithm satisfies

both accuracy and simplicity criteria, it shows the great suitability in practice.

The rest of the paper is organized as follows. Section II reviews the effective capacity theory. In

Section III, we derive the EC formula for a special correlated Nakagami-m fading channel, for which

the inverse of the correlation coefficient matrix is tridiagonal. Section IV presents a Green-matrix based

method to obtain the EC formula for a general correlated Nakagami-m fading channel, given the correlation

coefficient matrix of the channel. In Section V, we show the methodology for verifying the accuracy of

our EC formula. Section VI presents an algorithm for estimating the effective capacity of an arbitrary

correlated Nakagami-m fading channel, given channel gain measurements. In Section VII, we show the

simulation results that verify the accuracy of the EC formula and the estimation algorithm. Section VIII

concludes the paper.

II. REVIEW OF THE EFFECTIVE CAPACITY

The effective capacity [10] is a link-layer model in which a wireless link is modeled by two EC

functions, namely the probability γ(µ) of nonempty buffer and the QoS exponent θ(µ) of a connection.

Both of them are functions of the source traffic rate µ. The parsimonious EC channel model characterizes

the capacity of a fading channel; mathematically, it is the dual of the effective bandwidth function [21],

which characterizes the source randomness. Specifically, the key idea in the theory of effective capacity

is that for a source that requires a communication delay bound Dmax and can tolerate a delay-bound

violation probability not more than ε, we need to limit its data rate, i.e., the maximum data rate is µ,

where µ is the solution to ε = γ(µ)e−θ(µ)Dmax , in which θ(µ) = µα−1(µ). Here α−1(·) is the inverse

function of the effective capacity function α(·). Next, we review the definition of the effective capacity.

Let r(t) be the instantaneous channel capacity at time t. Define S(t) =
∫ t

0
r(τ)dτ , which is the service
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provided by the channel during the interval [0, t]. Suppose the stochastic process r(t) is ergodic and

stationary. Then the effective capacity function of r(t) is defined by

α(u) =
−Λ(−u)

u
, ∀u > 0, (1)

where

Λ(−u) = lim
t→∞

1

t
log E[e−uS(t)]. (2)

where S(t) denotes the totally served traffic. Thus, if we know the effective capacity α(u), we can derive

the QoS exponent function θ(·) by θ(µ) = µα−1(µ); then, given the communication delay bound Dmax and

a delay-bound violation probability ε, we can estimate the probability γ(µ) of nonempty buffer through

Monte Carlo simulation, given in Section V, and finally, constrain the source rate µ to satisfy the requested

delay-bound violation probability, adapted to the channel condition. The effective capacity theory is very

useful for the joint adaptive-modulation-and-coding, power control and resource allocation in practical

communication systems such as wireless relay networks or MIMO systems.

III. EFFECTIVE CAPACITY OF A SPECIAL CORRELATED NAKAGAMI-M FADING CHANNEL

In this section, we derive the formula for the effective capacity of a special correlated Nakagami-m

fading channel, for which the inverse of the correlation coefficient matrix is tridiagonal. This section is

organized as below. Section III-A presents the joint pdf of Nakagami-m random vector that has a special

correlation structure, i.e., the inverse of the correlation coefficient matrix being tridiagonal. In Section III-

B, we derive the formula for the effective capacity of the special correlated Nakagami-m fading channel

process.

A. Joint pdf of a Nakagami-m Random Vector

First, we consider a (scalar) Nakagami-m distributed random variable X; its pdf is given by

fX(x) =
2x2m−1

Γ(m)Ωm
exp(−x2

Ω
), x ≥ 0, m ≥ 1

2
(3)

where Γ(·) is the Gamma function; Ω is a given parameter; m is the degree of Nakagami-m distribution.

Note that random variable X here (and also in the rest of the paper) represents channel voltage gain

instead of channel power gain, which is X2.

There is a special property for a Nakagami-m distributed random variable with integer m. That is, a

Nakagami-m distributed random variable with integer m, has the same pdf as that of the square root of

the sum of squares of m independent Rayleigh-distributed random variables or 2m independent complex

Gaussian random variables of zero-mean [22]. We can use this property to specify an N-dimensional
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Nakagami-m distributed random vector ~X , by N×2m Gaussian random variables, which form an N×2m

matrix. Denote {xk, (k = 1, 2, · · · , N)} row vectors of the matrix; denote {yk, (i = 1, 2, · · · , 2m)}
column vectors of the matrix. Assume that the column vectors {yk, (k = 1, 2, · · · , 2m)} are independent

and identically distributed (i.i.d.). Assume that Gaussian random vector yk has zero mean and correlation

coefficient matrix Σ, which has dimension N×N . The elements {Σi,j, (i = 1, 2, · · · , N ; j = 1, 2, · · · , N)}
of Σ are given as below: Σi,j = 1 for i = j and Σi,j = ρi,j for i 6= j with 0 ≤ ρi,j < 1, where ρi,j

is the correlation coefficient between i-th element and j-th element of N-dimensional random vector yk.

Σ = [Σi,j] is a tensor notation, which will be used in the rest of the paper.

It is known [23] that a general correlation coefficient matrix Σ does not give a simple closed-form pdf

for an N-dimensional Nakagami-m distributed random vector. However, if the inverse of the correlation

coefficient matrix, Σ−1, is tridiagonal, then the pdf for N-dimensional Nakagami-m distributed random

vector ~X is given by [23]

f ~X(x1, · · · , xN) =
[det(Σ−1)]mxm−1

1 xm
Ne−wN,Nx2

N/2

2m−1Γ(m)

N−1∏

k=1

[|wk,k+1|−(m−1)xke
−wk,kx2

k/2Im−1(|wk,k+1|xkxk+1)]

(4)

where det(·) is the determinant of a matrix; Iν(·) is ν-th order modified Bessel function of the first

kind, i.e., Im−1(z) =
∑∞

i=0
1

i!Γ(m+i)
( z

2
)2i+m−1, where

∑∞
i=0 = limn→∞

∑n
i=0; wi,j are elements of matrix

Σ−1, i.e., Σ−1 = [wi,j], using tensor notation; and in the above formula, 2m has to be a positive integer

which is also the case discussed in this paper. Hence, (4) is a special case of the pdf of a general N-

dimensional Nakagami-m distributed random vector whose degree m is allowed to be any positive real

number satisfying m ≥ 1
2
. In contrast, (4) is more general than the pdf of Chi-distribution since the degree

m of Chi-distribution has to be a positive integer while the degree m in (4) is allowed to be half of any

positive integer.

B. Effective Capacity of a Special Correlated Nakagami-m Fading Channel

Based on the pdf given in (4), we derive the EC formula for a special correlated Nakagami-m fading

channel in this section.

Suppose that the wireless channel is a Nakagami-m flat fading channel in AWGN. Assume that we

have perfect causal knowledge of the channel gains. We show how to calculate the effective capacity for

this channel. Denote a sequence of Nt measurements of the channel voltage gain over the duration [0, t],

spaced at a time-interval δ apart, by ~x = [x1, x2, · · · , xNt ]
T , where [·]T is a transpose operation. Without

loss of generality, we have absorbed the constant noise variance into the definition of xi, i.e., x2
i represents

signal to noise ratio (SNR) under unity transmission power. The measurement {xi, (i = 1, 2, · · · , Nt)} is
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a realization of a random variable sequence denoted by {Xi, (i = 1, 2, · · · , Nt)}, which can be written as

the vector ~X = [X1, X2, · · · , XNt ]
T . The pdf of random vector ~X is given in the form of (4).

According to (1) and (2), to calculate the EC function, we need to know the expression of E[e−uS(t)];

we derive it as below

E[e−uS(t)] = E[e−u
R t
0 r(τ)dτ ]

(a)≈
∫

e−u(
PNt

i=1 δ×r(τi))f(x1, · · · , xNt)d~x

(b)
=

∫
e−u(

PNt
i=1 δ×log(1+x2

i ))f(x1, · · · , xNt)d~x

(c)≈
∫ ∞

0

e−uδ(
PNt

k=1 x2
k)f(x1, · · · , xNt)d~x

(d)
=

∫ ∞

0

e−uδ(
PNt

k=1 x2
k) [det(Σ−1)]mxm−1

1 xm
Nt

e−wNt,Ntx2
Nt

/2

2m−1Γ(m)

Nt−1∏

k=1

[|wk,k+1|−(m−1) · xk · e−wk,kx2
k/2 ·

Im−1(|wk,k+1|xkxk+1)]d~x

=

∫
[det(Σ−1)]m

2m−1Γ(m)
xm−1

1 xm
Nt

e−(uδ+wNt,Nt/2)x2
Nt

Nt−1∏

k=1

[|wk,k+1|−(m−1) · xk · e−(uδ+wk,k/2)x2
k ·

∞∑
i=0

wm+2i−1
k,k+1 (xkxk+1)

m+2i−1

2m−1+2iΓ(m + i)i!
]d~x

=

∫
[det(Σ−1)]m

2m−1Γ(m)
xm−1

1 xm
Nt

Nt∏
j=1

[e−(uδ+wj,j/2)x2
j ]

Nt−1∏

k=1

[
∞∑
i=0

w2i
k,k+1x

m+2i
k xm+2i−1

k+1

2m−1+2iΓ(m + i)i!
]d~x

(e)
=

∫
Axm−1

1 xm
Nt

Nt∏
j=1

[e−(uδ+wj,j/2)x2
j ]

Nt−1∏

k=1

[
∞∑
i=0

w2i
k,k+1x

m+2i
k xm+2i−1

k+1

Bi

]d~x

(f)
=

∫
Axm−1

1 xm
Nt

Nt∏
j=1

[e−(uδ+wj,j/2)x2
j ]×

∞∑
i1=0

∞∑
i2=0

· · ·
∞∑

iNt−1=0

C(i1, · · · , iNt−1)x
m+2i1
1 x2m+2i1+2i2−1

2 · · ·x2m+2iNt−2+2iNt−1−1

Nt−1 x
2m+2iNt−1−1

Nt
d~x

(g)
=

∞∑
i1=0

∞∑
i2=0

· · ·
∞∑

iNt−1=0

A

2Nt
C(i1, · · · , iNt−1)

Nt∏
j=1

[(uδ + wj,j/2)−(m+ij−1+ij)Γ(m + ij−1 + ij)] (5)

where (a) is due to approximation of integration (in the exponent) by summation over equi-spacing samples

τi; (b) r(τi) = log(1 + x2
i ) since r(τi) is the instantaneous AWGN channel capacity at time τi and x2

i

is SNR under the assumption that the transmission power and noise variance are absorbed into x2
i ; (c)

due to log(1 + |x|2) ≈ |x|2; (d) due to substituting f(x1, · · · , xNt) by (4); (e) due to the substitutions

A = [det(Σ−1)]m

2m−1Γ(m)
and Bi = 2m−1+2iΓ(m + i)i!; (f) due to the substitution C(i1, · · · , iNt−1) =

∏Nt−1
k=1

w
2ik
k,k+1

Bik
;

and (g) due to Γ(x) =
∫

tx−1e−tdt. Moreover, i0 = iNt = 0 holds in the derivation. Since we use the

approximation log(1 + |x|2) ≈ |x|2, (5) is accurate for relatively low SNR. Moreover, by Monte Carlo
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simulations, the speed of the error growth between the analytical and simulated results goes faster as the

SNR increases when it falls into the region SNR> 17dB, i.e., the corresponding error larger than 10%. In

particular, a practical 3G WCDMA system works under relatively low SNR region (about 5dB); hence,

our approximation of a low SNR case has its practical use.

From (1) and (2), we have

α(u) = lim
t→∞

−1

ut
log E[e−uS(t)]

(a)≈ −1

uNtδ
log E[e−ueS(t)]

(b)
=

−1

uNtδ
log(

∞∑
i1=0

∞∑
i2=0

· · ·
∞∑

iNt−1=0

A

2Nt
C(i1, · · · , iNt−1)

Nt∏
j=1

[(uδ +
wj,j

2
)−(m+ij−1+ij)Γ(m + ij−1 + ij)])

(c)
=

−1

uNtδ
log(

K∑
i1=0

K∑
i2=0

· · ·
K∑

iNt−1=0

A

2Nt
C(i1, · · · , iNt−1)

Nt∏
j=1

[(uδ +
wj,j

2
)−(m+ij−1+ij)Γ(m + ij−1 + ij)])

+o(2−Nt(K+1)) (6)

where (a) is due to t = (Nt − 1)δ ≈ Ntδ, S̃(t) =
∑Nt

i=1 δ × r(τi), and we assume that Nt is sufficiently

large; (b) is due to (5); and (c) we partition the sum of infinite number of terms into the sum of finite

number of terms plus a remainder term o(2−Nt(K+1)), similar to the K-th order Taylor approximation of

a differentiable function.

Since α(u) is defined for a continuous time system, we now define the effective capacity for a discrete

time system, denoted by α(d)(u), which is based on (6), i.e., for some integer K ≥ 0,

α(d)(u) =
−1

uNtδ
log(

K∑
i1=0

K∑
i2=0

· · ·
K∑

iNt−1=0

A

2Nt
C(i1, · · · , iNt−1)

Nt∏
j=1

[(uδ +
wj,j

2
)−(m+ij−1+ij)Γ(m + ij−1 + ij)]) (7)

The error |α(u)−α(d)(u)| is very small for sufficiently large Nt because the remainder term o(2−Nt(K+1))

decreases exponentially with the increase of Nt. Hence, K can be small as long as Nt is sufficiently large.

Actually, K = 0 is enough to guarantee accuracy because the product of Nt terms indexed by ij , i.e.,
∏Nt

j=1
Γ(m+ij−1+ij)Γ(m+ij+ij+1)

22ij ·ij !·Γ(m+ij)
in (7), approaches 0 when Nt is sufficiently large and this is verified by our

numerical results. As shown in Fig. 3 and Fig. 4, K = 0 can produce relatively accurate results. More

importantly, when we choose K = 0, the computation complexity of (7) increases linearly with Nt rather

than exponential growth. Hence, we have

α(d)(u) =
−1

uNtδ
log(

A

2Nt
C(i1 = 0, · · · , iNt−1 = 0)

Nt∏
j=1

[(uδ +
wj,j

2
)−mΓ(m)]) (8)

The simple EC formula that we obtain in (8) has significant implication. Its simplicity allows the use of

the effective capacity in the design of practical QoS provisioning mechanisms.
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Note that the EC formula (8) is only valid for a special correlated Nakagami-m fading channel, for

which the inverse of the correlation coefficient matrix, i.e., Σ−1, is tridiagonal. Next, we show how to

compute the effective capacity of a general correlated Nakagami-m fading channel.

IV. EFFECTIVE CAPACITY OF A GENERAL CORRELATED NAKAGAMI-M FADING CHANNEL

The EC formula (8) derived in Section III-B cannot be directly used to compute the effective capacity

of a general correlated Nakagami-m fading channel, for which the inverse of the correlation coefficient

matrix, i.e., Σ−1, is not tridiagonal. To address this, we choose the mathematical tool based on Green’s

matrix given in [23] whose validity has been verified. The reason why we use a Green’s matrix based

approach is two-folded. First, the inverse of a Green’s matrix is tridiagonal, making it possible to use

(8) for calculating the effective capacity of the channel. Specifically, according to a theorem in [24], a

symmetric irreducible matrix is tridiagonal if and only if its inverse is a Green’s matrix.

Our Green’s matrix based approach is as follows. Given an arbitrary correlation coefficient matrix Σ,

whose inverse is not tridiagonal, we project the matrix Σ onto the space of Green’s matrices; denote its

projection by G∗. Then we compute the effective capacity via (8), under the assumption that the correlation

coefficient matrix of the Nakagami-m fading channel is G∗.

Now, we show how to project an arbitrary correlation coefficient matrix Σ of dimension Nt ×Nt onto

the space of Green’s matrices of dimension Nt ×Nt [23]. We first review the Green’s matrix [24], [25].

Similar to the correlation coefficient matrix Σ, a Green’s matrix, G, is also symmetric. A Green’s matrix

satisfies the following constraint

G = [Gi,j] =




u1v1 u1v2 · · · u1vNt

u1v2 u2v2 · · · u2vNt

... . . . ...
u1vNt u2vNt · · · uNtvNt


 (9)

where ui (i = 1, . . . , Nt) and vj (j = 1, . . . , Nt) are real numbers; and G−1 is tridiagonal. Given the

correlation coefficient matrix Σ of a general correlated Nakagami-m fading channel, we can find its

Green’s matrix projection G∗ by solving the following least squares problem,

min
G,{ui},{vj}

∑
i

∑
j

(Gi,j − Σi,j)
2 (10a)

s.t. G satisfies (9), (10b)

uivi = 1, ∀i. (10c)

Constraint (10c) is due to the fact that Σi,i = 1 (∀i) for a general correlated Nakagami-m fading channel.

Moreover, ref. [23] has verified the accuracy of replacing a correlation coefficient matrix Σ by its projected

Green’s matrix, in modeling a general correlated Nakagami-m fading channel.
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To solve (10) for G∗, we can use the Levenberg-Marquardt Algorithm (LMA) [26], which was designed

to solve nonlinear curve-fitting problems under the least-squares criterion. The LMA interpolates between

the Gauss-Newton algorithm (GNA) and the method of gradient descent and LMA is more robust than the

GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum so

LMA could also be viewed as GNA improved with trust region approach. Moreover, it is very convenient

for us to directly use it by the matlab function, such as ”lsqcurvefit(·)”, etc.

Algorithm 1 summarizes our method to compute the effective capacity of a general correlated Nakagami-

m fading channel.

Algorithm 1: Computing the effective capacity of a general correlated Nakagami-m fading channel.

Input: Correlation coefficient matrix Σ of a correlated Nakagami-m fading channel.

If Σ is a Green matrix

Compute the effective capacity of the channel α(d)(u) via (8);

Else

Solve (10) for G∗ by the Levenberg-Marquardt algorithm;

Compute α(d)(u) via (8), using G∗ as the correlation coefficient matrix of the channel;

Endif

Output: α(d)(u).

The computational complexity of Algorithm 1 is given as below. The computational complexity of the

step in the first branch, i.e., computing the EC of the channel α(d)(u) via (8), is O(Nt), which means

it has linear complexity, since we take the first K items as an approximation in Step (c) of Eqn. (6). In

contrast, the original formula in Step (b) of Eqn. (6) has an exponential computational complexity O(2Nt),

making its computation unpractical. In addition, for the first step in the second branch, i.e., solving (10)

for G∗ by the Levenberg-Marquardt Algorithm, its computational complexity determined by the dimension

of the correlated matrix is given by O(N2
t ) [26], which means it can converge quickly. Then, the total

computational complexity of the two steps in this branch is on the order of O(N2
t ). Thus, Algorithm 1

has reasonable complexity so that it can be implemented in practical systems.

V. METHODOLOGY FOR VERIFYING THE ACCURACY OF OUR EC FORMULA

In the previous section, we proposed Algorithm 1 to compute the effective capacity of a general

correlated Nakagami-m fading channel. However, it is difficult to verify the accuracy of Algorithm 1

and the EC formula (8) via simulation since this requires that we should be able to compute the effective
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capacity via the closed-form formula, given the joint pdf of a correlated Nakagami-m fading channel,

while at the same time, being able to simulate a channel gain process having the same joint pdf as that

used in the closed-form formula. To address this difficulty, in this section, we present a methodology to

verify the accuracy of Algorithm 1 and the EC formula (8).

The key idea of our methodology is as below: we use an AR(1) model to simulate a correlated Nakagami-

m fading channel. (This is a widely used model to generate an exponentially correlated fading channel);

then use the corresponding correlation matrix of the AR(1) model to obtain a Green matrix, which

approximates the correlation matrix of the AR(1) model; then apply the Green matrix to the closed-form

EC formula (8) for calculating the EC. Specifically, our verification methodology is given as below.

1) Simulate a discrete-time Nakagami-m fading channel with an AR(1) model where AR(n) is an

autoregressive model of order n; hence the Nakagami-m fading channel has exponential correlation.

The details of how to simulate this channel is given in Section VII-B.1. The correlation coefficient

matrix Σ of the exponentially correlated Nakagami-m fading channel can be analytically derived

and is given in (29) in Section VII-B.1.

2) Given Σ in (29), run Algorithm 1 and obtain α(d)(u).

3) Simulate the communication system shown in Fig. 2, where the source rate µ is constant.

4) Collect the following measurements from the queueing system at the n-th sampling epoch (n =

1, 2, · · · , Ns): S(n) the indicator of whether a packet is in service (S(n) ∈ {0, 1}), Q(n) the number

of bits in the queue (excluding the packet in service), and τ(n) the remaining service time of the

packet in service (if there is one in service).

5) Calculate the measured EC function αs(u) by the following procedure.

γ̂ =
1

Ns

Ns∑
t=1

S(n), (11)

q̂ =
1

Ns

Ns∑
t=1

Q(n), (12)

τ̂s =
1

Ns

Ns∑
t=1

τ(n), (13)

θ̂ =
γ̂ × µ

µ× τ̂s + q̂
, (14)

αs(u) = µ, for u = θ̂/µ. (15)
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6) Verify whether the error |α(d)(u)− αs(u)| is small.

We follow the above verification methodology and conduct simulations in Section VII-B.1. As shown

in Fig. 3 and Fig. 4, the curve for α(d)(u) (obtained from analysis) matches that for αs(u) (obtained from

the simulation). This verifies that Algorithm 1 and the EC formula (8) are accurate.

Actually, for an arbitrary correlated Nakagami-m fading channel, the accuracy of Algorithm 1 and the

EC formula (8) is also indirectly verified through the simulation results based on the estimation algorithm

introduced in Section VI, as shown in Figs. 7 and 8.

VI. ALGORITHM FOR ESTIMATING THE EFFECTIVE CAPACITY OF AN ARBITRARY CORRELATED
NAKAGAMI-M CHANNEL

Now, we know that Algorithm 1 is accurate. The next question is how to use Algorithm 1 in practice.

In a practical system, we cannot directly use Algorithm 1 to compute the effective capacity since the

correlation coefficient matrix Σ of a Nakagami-m fading channel is not known a priori; in other words,

we need to estimate Σ from the channel gain measurements in order to use Algorithm 1. Next, we first

present Proposition 1 that quantifies the relationship between Σ and the statistics of channel gains; then,

we propose an algorithm to estimate Σ and the effective capacity of the channel, given channel gain

measurements.

Proposition 1: Assume N-dimensional Nakagami-m distributed random vector [X1, · · · , XN ]T is spec-

ified by 



X2
1 = Y 2

1,1 + Y 2
1,2 + · · ·+ Y 2

1,2m

X2
2 = Y 2

2,1 + Y 2
2,2 + · · ·+ Y 2

2,2m

· · · · · ·
X2

N = Y 2
N,1 + Y 2

N,2 + · · ·+ Y 2
N,2m

(16)

where Yk,l (k = 1, · · · , N and l = 1, · · · , 2m) are identically distributed Gaussian random variables with

zero mean and variance σ2; for any k (k = 1, · · · , N), Yk,1, Yk,2, · · · , Yk,2m are independent; the column

vectors {[Y1,l, Y2,l, · · · , YN,l]
T , (l = 1, · · · , 2m)} are i.i.d. with zero mean and correlation coefficient matrix

Σ = [Σi,j], which has dimension N ×N , and Σi,j = E[Yi,lYj,l]/σ
2. Then, the following holds.

1) X1, · · · , XN are identically distributed random variables.

2) Denote µX the mean of Xi (i = 1, · · · , N ); and denote ν2
X the variance of Xi (i = 1, · · · , N ). Then

Cov(X2
i , X2

j ) = R(X2
i , X2

j )− (µ2
X + ν2

X)2 (17)

where Cov(·, ·) and R(·, ·) denote the covariance and correlation between two random variables,

respectively.
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3) Correlation coefficient matrix Σ = [Σi,j] is given by

Σi,j =

√
m× Cov(X2

i , X2
j )

µ2
X + ν2

X

(18)

For the proof of Proposition 1, see Appendix A.

Proposition 1 quantifies the relationship between Σ and the statistics of channel gains {Xi, (i =

1, 2, · · · , N)}. Next, we present an algorithm to estimate Σ and the effective capacity of the channel,

given channel gain measurements.

Algorithm 2: Estimating Σ of dimension Nt ×Nt and the effective capacity:

1) Obtain Ne measurements of the channel gain; denote these measurements by x = [x(1), x(2), · · · , x(Ne)]
T ,

where x(k) (k = 1, · · · , Ne) are real-valued channel voltage gains.

2) Given channel gain measurements x, estimate µX , ν2
X , and R(X2

i , X2
j ) via the following equations:

µ̂X =
1

Ne

Ne∑

k=1

x(k) (19)

ν̂2
X =

1

Ne − 1

Ne∑

k=1

(x(k)− µ̂X)2 (20)

R̂(X2
i , X2

j ) =
1

Ne − (j − i)

Ne−(j−i)∑

k=1

x2(k)x2(k + j − i), i = 1, · · · , Nt − 1, j = i + 1, · · · , Nt

(21)

R̂(X2
j , X2

i ) = R̂(X2
i , X2

j ), i = 1, · · · , Nt − 1, j = i + 1, · · · , Nt (22)

R̂(X2
i , X2

i ) =
1

Ne

Ne∑

k=1

x4(k), i = 1, · · · , Nt (23)

3) Estimate the covariance Cov(X2
i , X2

j ) via (17), i.e.,

Ĉov(X2
i , X2

j ) = R̂(X2
i , X2

j )− (µ̂2
X + ν̂2

X)2, i = 1, · · · , Nt, j = 1, · · · , Nt (24)

4) Estimate the correlation coefficient matrix Σ = [Σi,j] via (18), i.e.,

Σ̂i,j =

√
m× Ĉov(X2

i , X2
j )

µ̂2
X + ν̂2

X

(25)

5) Give [Σ̂i,j], compute the estimate of the effective capacity, denoted by α̂e(u), via Algorithm 1.
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In Algorithm 2, we assume the channel gain process is ergodic and stationary so that the estimators in

(19) through (25) are consistent2. In addition, (20) is an unbiased estimate of ν2
X .

We implement Algorithm 2 and conduct simulations in Section VII-B.3. As shown in Figs. 7 and 8,

the curve for α̂e(u) (obtained via Algorithm 2) agrees well with that for αs(u) (obtained via (11) through

(15) from the simulation). This shows that Algorithm 2 provides an accurate estimate of the effective

capacity of an arbitrary correlated Nakagami-m fading channel.

VII. SIMULATION RESULTS

A. Simulation Setting

We simulate the discrete-time system depicted in Fig. 2. In this system, the data source generates

packets at a constant rate µ. Generated packets are first sent to the (infinite) buffer at the transmitter,

whose queue length is Q(n), where n refers to the n-th sample-interval. The head-of-line packet in the

queue is transmitted over the fading channel at data rate r(n). The fading channel has a random voltage

gain X(n); and X2(n) is channel power gain. We use a fluid model, that is, the size of a packet is

infinitesimal. In practical systems, the results presented here will have to be modified to account for finite

packet sizes.

We assume that the transmitter has perfect knowledge of the current channel gains X(n) at each sample-

interval. Therefore, it can use rate-adaptive transmissions and ideal channel codes, to transmit packets

without decoding errors. Thus, the transmission rate r(n) is equal to the instantaneous (time-varying)

capacity of the fading channel, as below,

r(n) = Bc log2(1 + X2(n)× P0/σ
2
n) (26)

where Bc denotes the channel bandwidth, and the transmission power P0 and noise variance σ2
n are

assumed to be constant. The average SNR is fixed in each simulation run and the average SNR SNRavg =

E[X2(n)× P0/σ
2]. Since we set E[X2(n)] = 1, we have SNRavg = E[X2(n)× P0/σ

2] = P0/σ
2.

In our simulations, the sampling interval δ is set to 1 milli-second. This is not too far from reality, since

3G WCDMA systems already incorporate rate adaptation on the order of 10 milli-second [27]. Meanwhile,

for the current enhanced HSPA systems, they have much faster adaption speed, i.e., on the order of 2

milli-second. Each simulation run is 10,000-second long for all the scenarios, in order to obtain good

estimate by the Monte Carlo method. Since the sampling interval is 1 milli-second, we have 10,000,000

samples for estimation; i.e., Ns = 107.

Table I lists the parameters used in our simulations.
2A consistent sequence of estimators is a sequence of estimators that converge in probability to the quantity being estimated as the index

(usually the sample size) grows without bound.
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TABLE I

SIMULATION PARAMETERS

Maximum Doppler frequency fm 15/100 Hz
Channel bandwidth Bc 100 kHz

Average SNR 0 dB to 10 dB
Sampling-interval δ 1 ms

Number of samples Nt 1024
Number of samples Ns 107

Number of samples Ne 107

B. Simulation Results

1) Accuracy of Algorithm 1 and the EC formula (8): In this section, we verify the accuracy of

Algorithm 1 and the EC formula (8) through simulations.

As mentioned in Section V, we will simulate an exponentially correlated Nakagami-m fading channel

so that we can compute the effective capacity via the closed-form formula, given the joint pdf of the

fading channel, while at the same time, being able to simulate a channel gain process having the same

joint pdf as that used in the closed-form formula.

Next we show how to simulate Ns samples of an exponentially-correlated Nakagami-m fading channel.

We make the same assumption as that in Proposition 1. We want to generate Ns samples of channel

voltage gains. This is equivalent to generating an Ns-dimensional Nakagami-m distributed random vector

[X1, · · · , XNs ]
T , which can be specified by

X2
k = Y 2

k,1 + Y 2
k,2 + · · ·+ Y 2

k,2m, for k = 1, · · · , Ns, (27)

where Yk,l (k = 1, · · · , Ns and l = 1, · · · , 2m) are identically distributed Gaussian random variables

with zero mean and unit variance; for any k (k = 1, · · · , Ns), Yk,1, Yk,2, · · · , Yk,2m are independent;

the column vectors {[Y1,l, Y2,l, · · · , YNs,l]
T , (l = 1, · · · , 2m)} are i.i.d. with zero mean and correlation

coefficient matrix Σ = [Σi,j], which has dimension Ns ×Ns, and Σi,j = E[Yi,lYj,l].

Now, we describe how to generate [X1, · · · , XNs ]
T in detail. We first generate 2m i.i.d. Gaussian random

variables with zero mean and unit variance and denote them by Y1,1, Y1,2, · · · , Y1,2m; then use (27) with

k = 1 to generate X1. Then we use the following AR(1) model to recursively generate Yk,l (k = 2, · · · , Ns

and l = 1, · · · , 2m):

Yk,l = βYk−1,l +
√

1− β2gk−1,l, for k = 2, · · · , Ns and l = 1, · · · , 2m, (28)

where {gk,l (k = 1, · · · , Ns−1; l = 1, · · · , 2m)} are i.i.d. Gaussian random variables with zero mean and

unit variance; β is a real number satisfying 0 < β < 1. Specifically, for a given k (k > 1), we first generate

i.i.d. Gaussian random variables {gk,l (l = 1, · · · , 2m)}; then use (28) to generate {Yk,l (l = 1, · · · , 2m)};
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then use (27) to generate Xk; then increase k by one and repeat this process. By doing so, we obtain

X1, · · · , XNs . Since we recursively use AR(1) model to generate the channel gain Xk, the total number

of samples Ns can be arbitrarily large, which is an advantage of our simulation method.

From (28), we can analytically derive the correlation coefficient matrix Σ of dimension Ns×Ns, which

is given as below

Σ =




1 β β2 β3 · · · βNs−2 βNs−1

β 1 β β2 · · · βNs−3 βNs−2

...
...

...
...

...
...

...
βNs−1 βNs−2 · · · · · · · · · β 1


 (29)

The dimension Ns ×Ns of Σ in (29) is too large, which leads to very high complexity in computing the

effective capacity α(d)(u) via (8). To reduce the computational complexity of (8), we need to approximate

Σ in (29) by a matrix of a lower dimension. As we know, 0 < β < 1 and hence βm is very small for a

large m, i.e., Yk,l and Yk+m,l (∀l) can be considered uncorrelated for a large m. We choose Σ of dimension

Nt ×Nt (where Nt = 1024) to approximate Σ of dimension Ns ×Ns (where Ns = 107), since βNt−1 is

extremely small. This guarantees that the effective capacity obtained by Σ of dimension Nt ×Nt via (8)

is almost the same as that obtained by Σ of dimension Ns × Ns. For Σ of dimension Nt × Nt, we can

further simplify it by replacing an element βm by 0 if βm < Γth, where Γth > 0 is a preset small value.

Next, we give an example. Assume β = 0.3679 and Γth = 0.02. Then m = 4 is the least positive

integer satisfying βm < 0.02. Hence, we replace all the elements βm (m ≥ 4) in (29) by zero. Denote

the resulting matrix of dimension Nt×Nt by Σ̃. Using Σ̃ as the input, we run Algorithm 1 to obtain the

effective capacity α(d)(u). To obtain the measured EC function αs(u), we collect measurements from the

simulated queueing system shown in Fig. 2, and calculate αs(u) via (11) through (15).

Figs. 3 and 4 show the measured EC function αs(u) obtained from the simulation and the EC function

α(d)(u) obtained from the analysis, under different Doppler frequencies and different values of m. In the

simulation and the analysis, the average SNR is 10 dB. It is observed that the curve for α(d)(u) gives

good agreement with that for αs(u). The slight difference between α(d)(u) and αs(u) is mainly caused

by two approximations in our analysis, i.e., 1) log(1+ |x|2) ≈ |x|2, and 2) considering only finite number

of terms (K = 0) in (7) instead of infinite number of terms (K = ∞). The results in Figs. 3 and 4 verify

that Algorithm 1 and the EC formula (8) are accurate.

Meanwhile, we also compare our analytical EC function α(d)(u) with the measured EC function αZ
s (u)

from the simulation by using Zhang’s direct-sum decomposition principle and statistically parameters

mapping model [28] for an arbitrary correlated Nakagami-m fading channel. It is observed that the two

results agree with each other in terms of shape and trend. We also observe that the result obtained under
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Zhang’s model is less accurate than that obtained under the AR(1) model. This may be due to less accurate

estimation of parameter β in the rigidly exponential correlation matrix.

2) Comparing our EC Formula with Wu and Negi’s Formula for Rayleigh Fading: Previously, an EC

formula [10] was derived for a correlated Rayleigh fading channel, which is a special Nakagami-m fading

channel with m = 1. Their EC formula is given as below

α(u) =

∫
log(uS(f) + 1)df

u
, u > 0, (30)

where S(f) is the power spectral density of the Rayleigh fading channel.

We use the same simulation setting as that in Section VII-B.1 with m = 1. The average SNR is 5 dB.

Figs. 5 and 6 plot 1) the measured EC function αs(u) obtained from the simulation, 2) the EC function

α(d)(u) obtained from the analysis of this paper with m = 1, and 3) the EC function α(u) obtained from

(30), under different Doppler frequencies. From the figures, it is observed that α(d)(u) and α(u) obtained

by two different EC formulae are consistent, and both of them give good agreement with the measured

EC function αs(u). The small difference between α(d)(u) and α(u) is mainly caused by the approximation

due to consideration of only finite number of terms (K = 0) in (7) instead of infinite number of terms

(K = ∞). Hence, the results here demonstrate that the EC formula in this paper is consistent with the

EC formula, given by [10].

3) Accuracy of Algorithm 2: In this section, we verify the accuracy of Algorithm 2 through simulations.

Different from Section VII-B.1, we will simulate a Nakagami-m fading channel with an arbitrary

correlation coefficient matrix Σ, which is more general than the exponential-correlation matrix Σ in (29).

One can specify the correlation structure of a Nakagami-m fading channel by its power spectral density

denoted by S(jω), which is Fourier transform of the auto-correlation function of the channel gain process.

We can use factorization to obtain H(jω) such that |H(jω)|2 = S(jω), where | · |2 is squared magnitude.

Then we design a digital filter with frequency response H(jω). Given i.i.d. Gaussian random variables

{gk,l (k = 1, · · · , Ns)} as the input of the digital filter, the output of the digital filter is a Gaussian random

process {Yk,l (k = 1, · · · , Ns)} with power spectral density S(jω). Since l = 1, · · · , 2m, we need 2m

digital filters, all of which have the same frequency response H(jω). In our simulation, we let H(jω) be

raised cosine with a maximum frequency fm, which is also maximum Doppler frequency.

We use the following method to generate a Nakagami-m fading process with power spectral density

S(jω): for a given k (k > 1), we first generate i.i.d. Gaussian random variables {gk,l (l = 1, · · · , 2m)};

then the 2m digital filters with frequency response H(jω) take {gk,l (l = 1, · · · , 2m)} as their input,

respectively, and output {Yk,l (l = 1, · · · , 2m)} in parallel, i.e., Yk,l is the output of Filter l, given its
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input gk,l; then use (27) to generate Xk; then increase k by one and repeat this process. By doing so, we

obtain X1, · · · , XNs . Since we recursively generate the channel gain Xk, the total number of samples Ns

can be arbitrarily large, which is an advantage of our method.

Given Ne measurements of the channel gain, i.e., X1, X2, · · · , XNe (where Ne = 107), we run Algo-

rithm 2 to estimate Σ of dimension Nt × Nt and the effective capacity α̂e(u). To obtain the measured

EC function αs(u), we collect measurements from the simulated queueing system shown in Fig. 2, and

calculate αs(u) via (11) through (15).

Figs. 7 and 8 show the estimated EC function α̂e(u) (obtained via Algorithm 2) and the measured EC

function αs(u) obtained from the simulation, under different SNR, different values of m, and different

Doppler frequencies. It is observed that the curves for α̂e(u) and αs(u) are well matched. This indicates that

Algorithm 2 provides an accurate estimate of the effective capacity of an arbitrary correlated Nakagami-

m fading channel. The simulation results demonstrate that the estimation-based Algorithm 2 is accurate

enough so that one can apply the EC technique to the design of practical QoS provisioning mechanisms.

VIII. CONCLUSIONS

In this paper, we derived a closed-form effective capacity formula for a special correlated Nakagami-

m fading channel, for which the inverse of the correlation coefficient matrix is tridiagonal. We also

developed Green’s matrix based Algorithm 1 to compute the effective capacity for a general correlated

Nakagami-m fading channel, given the correlation coefficient matrix of the channel. To verify the accuracy

of Algorithm 1 and our EC formula via simulation, we developed a methodology, which allows us to

analytically obtain the effective capacity (given the joint pdf of the fading channel) while being able to

simulate the corresponding channel gain process. Simulation results showed that Algorithm 1 and our EC

formula are accurate. In practice, we cannot directly use Algorithm 1 to compute the effective capacity

since the correlation coefficient matrix Σ of a Nakagami-m fading channel is not known a priori. To

address this, we proposed estimation-based Algorithm 2 to estimate the EC function, given channel gain

measurements. Simulation results showed Algorithm 2 is accurate, indicating the excellent practicality of

our algorithm.

The implication of this work is significant. Due to lack of closed-form EC formula for the general

Nakagami-m fading channels, most previous works only focus on i.i.d. Rayleigh fading channels. Now,

we have derived the general EC formula and an algorithm for arbitrary correlated Nakagami-m fading

channels and verified their accuracy; this allows researchers to use the EC formula and our algorithm

to analyze and design communication systems under arbitrary correlated Nakagami-m fading channels,
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instead of i.i.d. Rayleigh fading channels only. More importantly, our estimation-based algorithm is shown

to be accurate, which significantly facilitates the application of the EC theory to the design of practical

QoS provisioning mechanisms in wireless networks.

ACKNOWLEDGMENT

This work was supported in part by the US National Science Foundation under grant CNS-0643731,

the US Office of Naval Research under grant N000140810873, NSFC/RGC Joint Research Scheme No.

60831160524 and the open research fund of National Mobile Communications Research Laboratory,

Southeast University, China.

APPENDIX

A. Proof of Proposition 1

Proof: 1) According to (16), it is easy to see that X2
k (k = 1, · · · , N ) are random variables having

the same Chi-square distribution with 2m degrees of freedom and mean 2mσ2. Hence, X2
1 , · · · , X2

N are

identically distributed. Therefore, X1, · · · , XN are also identically distributed; their distribution is Chi-

distribution with mean µX and variance ν2
X .

2) Since random variables Xk (k = 1, 2, · · · , N) are identically distributed with mean µX and variance

ν2
X , we have

E[X2
k ] = µ2

X + ν2
X (31)

The covariance Cov(X2
i , X2

j ) between random variables X2
i and X2

j is given by

Cov(X2
i , X2

j ) = E[(X2
i − E[X2

i ])(X2
j − E[X2

j ])]

(a)
= E[X2

i X2
j ]− (µ2

X + ν2
X)2

= R(X2
i , X2

j )− (µ2
X + ν2

X)2 (32)

where (a) is due to (31).

3) According to (16), for k = 1, 2, · · · , N , we have

E[X2
k ] = E[Y 2

k,1] + E[Y 2
k,2] + · · ·+ E[Y 2

k,2m]

= 2mσ2 (33)

Combining (31) with (33), we have

µ2
X + ν2

X = 2mσ2 (34)
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Next, we derive correlation R(X2
i , X2

j ) between random variables X2
i and X2

j as below,

R(X2
i , X2

j ) = E[X2
i X2

j ]

(a)
= E[(Y 2

i,1 + Y 2
i,2 + · · ·+ Y 2

i,2m)× (Y 2
j,1 + Y 2

j,2 + · · ·+ Y 2
j,2m)]

= E[
2m∑

l=1

Y 2
i,lY

2
j,l +

2m∑

l1=1

2m∑
l2=1

l2 6=l1

Y 2
i,l1

Y 2
j,l2

]

(b)
=

2m∑

l=1

E[Y 2
i,lY

2
j,l] +

2m∑

l1=1

2m∑
l2=1

l2 6=l1

E[Y 2
i,l1

Y 2
j,l2

]

(c)
=

2m∑

l=1

E[Y 2
i,lY

2
j,l] +

2m∑

l1=1

2m∑
l2=1

l2 6=l1

E[Y 2
i,l1

]E[Y 2
j,l2

]

(d)
= 2mE[Y 2

i,lY
2
j,l] + 2m(2m− 1)σ4 (35)

where (a) is from (16); (b) is because for any i (i = 1, · · · , N), Yi,1, Yi,2, · · · , Yi,2m are independent,

and the column vectors {[Y1,l, Y2,l, · · · , YN,l]
T , (l = 1, · · · , 2m)} are independent; (c) E[Y 2

i,l1
Y 2

j,l2
] =

E[Y 2
i,l1

]E[Y 2
j,l2

] holds because the column vectors {[Y1,l, Y2,l, · · · , YN,l]
T , (l = 1, · · · , 2m)} are independent

and hence Yi,l1 and Yj,l2 (i 6= j and l1 6= l2) are independent; and (d) is because the column vectors

{[Y1,l, Y2,l, · · · , YN,l]
T , (l = 1, · · · , 2m)} are i.i.d. and E[Y 2

k,l] = σ2 (∀k, ∀l).
Since it is known that if X and Y are identically distributed Gaussian random variables with zero mean

and variance σ2, and their correlation coefficient is ρ, then E[X2Y 2] = (2ρ2 + 1)σ4 holds, we obtain

E[Y 2
i,lY

2
j,l] = (2Σ2

i,j + 1)σ4 (36)

Substituting (36) into (35), we have

R(X2
i , X2

j ) = 2m(2Σ2
i,j + 1)σ4 + 2m(2m− 1)σ4

(a)
= (µ2

X + ν2
X)2(Σ2

i,j + m)/m (37)

where (a) is due to substituting σ4 by square of (34). Substituting (37) into (32), we obtain

Cov(X2
i , X2

j ) = (µ2
X + ν2

X)2 × Σ2
i,j/m (38)

From (38), we have

Σi,j =

√
m× Cov(X2

i , X2
j )

µ2
X + ν2

X

(39)
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Fig. 1. Estimated Pr{D(∞) ≥ Dmax} from large deviations techniques for the small delay regime.

signal
Received

Transmitted
dataData

source

Rate =

x +

Noise

Fading
channel

Transmitter

Gain

Receiver

µ Q(n) r(n)

Fig. 2. Queueing system model.

10
−4

10
−3

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

9

10
x 10

4

u

α(
u)

 (
bi

ts
/s

)

 

 
m=1.5 ; Analysis
m=1.5 ; Simulation with AR(1) model
m=1.5 ; Simulation with Zhang′ s model
m=2 ; Analysis
m=2 ; Simulation with AR(1) model
m=2 ; Simulation with Zhang′ s model
m=3 ; Analysis
m=3 ; Simulation with AR(1) model
m=3 ; Simulation with Zhang′ s model

Fig. 3. α(d)(u) (analysis) vs. αs(u) and αZ
s (u) (simulation) for Doppler frequency fm = 15 Hz.
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