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Abstract

In this paper, we study the performance limit of a wireless communication system over a fading channel.

The system under study consists of 1) a finite-buffer discrete-time queueing system on the link layer, and 2) a

rate-adaptive channel coding system on the physical layer. The objective of this paper is to analyze the relationship

among data rate (R), packet error probability (E), and delay bound (D), under the interaction between the link layer

and the physical layer. In our analysis, we consider three types of packet errors, i.e., 1) packet drop due to full

buffer, 2) packet drop due to delay bound violation, and 3) packet decoding error due to channel noise. We obtain

an upper bound on the packet error probability. Furthermore, by minimizing the packet error probability over the

transmission rate, we obtain an optimal rate control policy that guarantees the user-specified data rate and delay

bound. In the case of constant arrival, the optimal rate control policy results in an RED triplet; then by varying

data rate and delay bound, we obtain RED Pareto-optimal surface, which serves as the performance limit of the

system under study.

Index Terms

Channel capacity, fading channel, optimal rate control policy, RED, QoS.

I. INTRODUCTION

Future wireless networks are targeted at supporting various applications such as voice, data, and

multimedia over packet-switched networks. Many of these applications require quality of service (QoS)

guarantees, e.g., data rate, packet error probability, and delay bound. However, fading in wireless channels

may cause severe QoS violations. Hence, providing QoS guarantees poses a great challenge for the design

of next-generation wireless networks.

Data communication over fading channels without delay constraint has been extensively studied in the

literature. When the delay constraint is absent, the maximum expected throughput is Shannon’s ergodic

capacity. Depending on the assumptions of channel state information (CSI) availability at the transmitter

(CSIT) and at the receiver (CSIR), existing works can be categorized by the following categories: 1)

channels with perfect CSIT and CSIR [1], 2) the finite-state Markov channels (FSMC) without CSI [2],

3) channels where CSIT is a deterministic function of CSIR [3], and 4) channels with causal CSI [4],
among other variants. Some works have also addressed a more realistic case of non-perfect CSI [5],
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[6]. Practical adaptive modulation and coding schemes for data communication over fading channels are

studied in [7]–[9]. Outage capacity is another widely-studied capacity notion for a fading channel.

The aforementioned works do not consider queueing delay, and thus are not applicable to QoS provi-

sioning for delay sensitive applications. Recently, delay-constrained communication has received a lot of

attention. In [10], Hanly and Tse proposed the concept of delay-limited capacity, which is defined as the

maximum achievable rate achievable under the constraint of a delay bound and zero delay-bound-violation

probability. Throughput maximization under average delay constraint is studied in [11]–[15]. However,

these works have two limitations in QoS provisioning: 1) the average delay constraint cannot specify

delay bound violation probability, needed by many delay-sensitive applications, e.g., interactive games

and real-time video; 2) these works assume that the buffer size is infinite while practical systems have

limited buffer space. This motivates us to investigate statistical delay guarantee (i.e., guarantee on delay

bound violation probability) for wireless communication systems with finite buffer.

In this work, we consider a single-user communication system with finite buffer. Packet transmission is

subject to a constraint on delay bound violation probability. In addition, different from most existing works

that address transmission delay, e.g., [11], [12], we consider non-perfect channel coding, which incurs

non-zero decoding error probability. Thus a packet under our study may experience three types of errors:

1) delay bound violation, 2) packet drop due to full buffer, and 3) decoding error due to channel noise. In

this work, we develop an upper bound on the packet error probability that characterizes the union of the

events of packet drop, delay bound violation, and incorrect decoding. Since we consider a finite buffer,

our result holds for arbitrary delay bound, i.e., our analysis holds for both the small delay regime and the

large delay regime. Based on our analytical result for packet error probability, we obtain an optimal rate

control policy that guarantees the user-specified QoS, by minimizing the packet error probability over the

transmission rate. The optimal rate control policy results in an RED (rate-error-delay) triplet; then in the

case of constant arrival, by varying data rate and delay bound, we obtain RED Pareto-optimal surface,

which serves as the performance limit of the system under study. The RED Pareto-optimal surface serves

the same role as Shannon’s channel capacity, i.e., it tells how far away a practical system (consisting of

link/physical layers) is from the optimal performance. In addition, our results provide important insights

about optimal rate control policy for joint link layer and physical layer design.

This paper is closely related to Ref. [16], which studies the optimal rate and power control policies

for maximizing error-free throughput under the condition of buffer overflow and bit errors in the physical

layer. Different from their work, this paper studies the fundamental tradeoff among data rate, packet error

probability, and delay bound, and provides explicit relationship among data rate, packet error probability,

and delay bound, which is characterized by RED Pareto-optimal surface; in other words, Ref. [16] studies

a single point on our RED Pareto-optimal surface, and Ref. [16] does not study how the maximum rate

changes with packet error probability and delay bound. Packet drop and decoding error are also addressed

in Refs. [17], [18]. One of the major differences between our work and Refs. [17], [18] is that we address

delay bound violation probability, which makes our work more suitable for QoS provisioning for delay

sensitive applications. In [19], an effective capacity approach was proposed to analyze the relationship
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among data rate, delay bound and delay bound violation probability. However, the queueing model in [19]

assumes infinite buffer space; and the large deviation method is used to derive the delay bound violation

probability, and thus the results in [19] are only proved to hold in large delay regime while our results

hold for arbitrary delay bound.

The remainder of the paper is organized as below. Section II describes the system model. In Section III,

we present our analysis of packet error probability. Section IV presents the throughput maximization

problem. Section V describes our RED theory. Simulation and numerical results are given in Section VI.

Section VII concludes the paper.

II. SYSTEM MODEL

We consider a joint queueing/coding single-user system as depicted in Fig. 1. Data packets, whose size

is assumed to be L bits, arrive from some upper layer and are buffered at the link layer. Time is divided

into blocks of equal length Tb. A rate control unit removes some head-of-line (HOL) packets from the

buffer and convey them to the rate adaptive channel encoder in the physical layer. Then the encoded data

is modulated and transmitted through a fading channel channel.

To elaborate, the channel at the physical layer is modeled as a discrete-time block-fading channel with

additive white Gaussian noise. The transmitted signal is multiplied by a time-varying channel gain which

models the fading. In each block, the channel gain is assumed to be fixed. We assume the (baseband)

complex channel gain process {gn} is a stationary ergodic finite state Markov chain (FSMC) with state

space G. Such a channel model is suitable for modeling slowly varying, flat-fading channels [20] and

is also adopted in [11] and [16]. Let W denote the bandwidth, then N = WTb modulated symbols can

be transmitted in one block. Let x = (xn1, xn2, . . . , xnN) denote the output of the rate adaptive channel

encoder (coded symbols), which is the input of the modulator. Let y = (yn1, yn2, . . . , ynN) denote the

output of the demodulator in the n-th block. Then we have

ynk = gnxnk + znk, k = 1, 2, . . . , N (1)

where znk (k = 1, 2, . . . , N) are independent and identically distributed (i.i.d.) circularly symmetric

complex Gaussian random variables with zero mean and variance N0.

Note that we do not specify what channel encoding/decoding schemes are used1, since our objective

is to build a general framework for studying delay-constrained communication problems. We assume the

codeword length does not exceed N (which is the number of channel uses per block), and a codeword

needs to be decoded within one block. Thus the encoding/decoding delay should be no more than 2

blocks.
The queueing subsystem is modeled as a discrete-time finite-buffer queue with buffer size M packets.

When newly arrived packets find that the buffer is full, some packets need to be dropped. There are three

strategies for packet dropping: Strategy 1 (tail-dropping) drops the newly arrived packets; Strategy 2 (tail

pushout) drops the tail (end-of-line) packets in the queue and appends the incoming packets to the tail of

1Different encoding/decoding schemes may result in different delay and error performances.
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the queue; and Strategy 3 (HOL pushout) drops the head-of-line packets in the queue and appends the

incoming packets to the tail of the queue. In the remainder of this paper, we always assume Strategy 3

(HOL pushout) is used.

Let {an} be an i.i.d. random process with state space A ⊂ R+ which represents the number of packets

arriving at the buffer during the n-th block. We assume E[an] = µ and, for the case of constant arrival,

an = µ. As shown in Fig. 2, at the very beginning of the n-th block, a batch of an packets arrive, followed

by the departure of rn (which we refer to as service rate or transmission rate) packets; the queue length qn

is observed immediately after the departure. Let Q denote the buffer state space, i.e., Q = {0, 1, . . . ,M}.

In order to cope with channel variation, we assume the transmission rate is adaptive while the transmis-

sion power is constant. We assume the channel state information, buffer state information and arrival state

information are available at both the transmitter and the receiver. Thus the transmission rate (or service
rate) rn is specified by a rate control policy R : Q× G ×A → Q, i.e.,

rn = R(qn−1, gn, an). (2)

Note that rn depends on qn−1 instead of qn because qn is not available when the n-th departure takes

place. So the evolution of the queueing system is given by

qn = min(qn−1 + an,M)−R(qn−1, gn, an) (3)

where it is required that R(qn−1, gn, an) ≤ min(qn−1 + an,M) (since R is a function of qn−1, this

requirement is natural). Let sn , (qn−1, gn, an) denote the system state; then it is easy to see {sn} forms

a multivariate Markov chain.
Recall that we are interested in delay-constrained communication over fading channels. Let Dmax denote

the maximum tolerable delay, i.e., if one packet cannot reach its destination within Dmax blocks, it will

be considered as an erroneous packet. Let D denote the total delay experienced by a packet in the

system in Fig. 1. Then D is the sum of the delay in the buffer plus the encoding/decoding delay. As we

mentioned above, the encoding/decoding delay is confined to be at most 2 blocks. Thus we will omit the

encoding/decoding delay but focus on the queueing delay in the remainder of this paper.

Our objective is to find the maximum system throughput while satisfying the delay and packet error

probability constraints, which is equivalent to minimizing the packet error probability under the constraints

on data rate (average arrival rate) and delay bound. Now consider a packet enters the system in Fig. 1. It

may experience three types of errors: 1) packet drop due to full buffer, 2) delay bound violation (failing

to reach the destination within Dmax blocks), and 3) packet decoding error due to channel noise. It is

easy to see that there is a tradeoff between the decoding error and the other two types of errors. If we

increase (resp., decrease) the service rate, the buffer will be cleared more quickly (resp., slowly), resulting

in a smaller (resp., larger) drop probability and delay bound violation probability; however, the decoding

error probability will increase (resp., decrease) since more (resp., less) bits are transmitted through the

channel. So the optimal rate control policy should balance packet drop error probability, decoding error
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probability and delay bound violation probability so as to minimize the total error probability. In the next

section, we analyze the probability of the three types of errors.

III. ANALYSIS OF PACKET ERROR PROBABILITY

In this section, we first analyze each of the three types of errors then we give the expression of the

total packet error probability.

A. Decoding Error Probability

Since the decoding error probability depends on channel gain g and service rate r (in unit of packets

per block), we represent the decoding error probability as a function of g and r, denoted by P c
e (g, r). The

specific expression of P c
e (g, r) depends on the modulation and channel coding schemes used [9], [21].

Next, we consider both block codes and convolutional codes.
For block codes, we only consider random coding and decoding. As we mentioned before, a codeword

should be decoded at the end of a block. If r packets are to be transmitted in one block, then the service

rate is rL/N bits per channel use, where L and N denote the packet size (in bits) and the number of

channel uses per block, respectively. Assume the transmission energy is Pt per symbol which is constant

for all symbols. We encode all bits to be transmitted in one block, into one single codeword. Then the

following random coding bound [22] on the probability of decoding error holds, for any ρ ∈ (0, 1]:

Ps ≤ exp(N(ρrL/N log 2− E0(ρ, g))) (4)

where

E0(ρ, g) = ρ ln

(
1 +

Pt|g|2

σ2(1 + ρ)

)
. (5)

Since all bits to be transmitted in one block are encoded into one single codeword, if a codeword is

decoded correctly, then there is no decoding error; otherwise, all information bits are un-decodable and

erroneous. So we have for any ρ ∈ (0, 1]:

P c
e (g, r) ≤ exp(ρrL log 2−NE0(ρ, g)). (6)

For convolution codes, the decoding error probability depends on the specified modulation/coding

scheme. Assume BPSK is used (our analysis can be easily extended to any other linear modulation

scheme). Let Pbc denote the bit error probability. It is bounded by [21]

Pbc ≤
∞∑

d=dfree

BdPd (7)

where Bd is the total number of nonzero information bits on all weight-d paths divided by the number

of information bits per unit time; dfree is the minimal Hamming distance between different encoded
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sequences; Pd is the pairwise error probability which is defined as the probability that the decoder selects

an erroneous path at the distance d from the transmitted path. Pd depends on the channel type, modulation

scheme and decoding type (hard or soft decision). For additive white Gaussian channel and hard decision

decoding, the pairwise error probability is [21]

Pd =



d∑
e=(d+1)/2

(
d
e

)
(pb)

e(1− pb)
d−e, d odd

1
2

(
d
d/2

)
(pb)

d/2(1− pb)
d/2 +

d∑
e=d/2+1

(
d
e

)
(pb)

e(1− pb)
d−e, d even,

(8)

where pb is the channel bit error rate; for BPSK, pb is given by pb = Q(
√

2Eb

N0
), where Eb is the energy

per bit. Then we get an upper bound on packet decoding error probability

P c
e (g, r) ≤ 1− (1− Pbc)

L. (9)

In order to utilize the above upper bound, we need to choose appropriate convolution code which has

required code rate. For BPSK modulation, the number of transmitted data bits is N in one block. The

number of information bits to be transmitted is L× r. So the required code rate is rL/N .

We define average decoding error probability as the ratio of the long-term average number of incorrectly

decoded packets to the average number of arriving packets. Then the average decoding error probability

is given by

P̄ c
e = lim sup

T→∞

1

Tµ

T∑
n=1

E[P c
e (gn, rn)rn]. (10)

Remark 1: Here, we only present the results for random coding and basic convolutional coding; the

error analysis for other types of modulation/coding can be found in the literature.

B. Packet Drop Probability

When a packet arrives at the buffer, if the buffer is already full, the head-of-line packet will be dropped.

We define average packet drop probability as the ratio of the long-term average number of dropped packets

to the average number of arriving packets. In the n-th block, if the arrival rate and the previous queue

length satisfy qn−1 + an ≥ M , then qn−1 + an −M packets will be dropped. So the average packet drop

probability can be calculated by

P̄ q
e = lim sup

T→∞

1

Tµ

T∑
n=1

E(qn−1 + an −M)+ (11)

where (x)+ , max(x, 0). Note that the average packet drop probability depends on rate control policy

which governs the queue state.
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Remark 2: If, by choosing some rate control policy, the steady state of {sn} exists, the packet drop

probability is given by

P̄ q
e =

1

µ
lim
n→∞

E(qn−1 + an −M)+ (12)

which can also be directly calculated by the standard FSMC approach, i.e., first calculating the steady

state distribution of {sn}, then obtaining the packet drop probability via (12).

C. Delay Bound Violation Probability

We are interested in the delay experienced by a packet. The total delay D is the sum of the delay in the

queue buffer and the encoding/decoding delay. As discussed in Section II, the encoding/decoding delay is

at most 2 blocks, thus we can ignore the encoding/decoding delay and focus on the queueing delay. The

queueing delay is the time that a packet spends in the buffer before it leaves the buffer. For example, if a

packet arrives in the the m-th block and departs in the n-th block, then the queueing delay of the packet is

n−m. The delay bound violation probability, or the deadline violation probability [23], is defined as the

probability that a packet fails to reach its destination within a given delay bound. Generally, it is difficult

to derive the queueing delay except for some simple queueing systems [24]. By analyzing the arrival and

departure processes, numerical methods are proposed to calculate the queueing delay in [23] and [25].

Since we are considering a finite-buffer discrete-time queueing system, the departure, queue length and

arrival of which are correlated, the calculation of queueing delay is, if not impossible, a formidable task.

Thus we propose an alternative upper bound approach. Since the buffer size is finite, a packet can be

either transmitted or dropped due to full buffer. Since the packet drop has been addressed in Section III-B,

now we only consider the transmitted packets. We have the following useful lemma.

Lemma 1: Consider a discrete-time queueing system with arrival process an, departure process rn, and

the timing diagram shown in Fig. 2. If D denotes the queueing delay of a packet which departs in the

n-th block, then the following inequalities hold.

Pr

(
n∑

i=n−Dmax+1

ai < qn

)
≤ Pr(D > Dmax) ≤ Pr

(
n∑

i=n−Dmax+1

ai < qn + rn

)
, (13)

where qn is the queue length in the n-th block and Dmax is a positive delay bound.

Proof: We consider a packet τ which leaves the buffer in the n-th block. Note that qn + rn is the

queue length just before the n-th departure. The event D > Dmax is equivalent to the event that packet

τ arrives before the (n − Dmax + 1)-th block, which implies that the packets arriving in the i-th block

(i = n−Dmax+1, . . . , n) are still in the buffer just before the n-th departure, i.e.,
∑n

i=n−Dmax+1 ai < qn+rn.

The buffer status just before the n-th departure, is shown in Fig. 3. Thus we have

Pr(D > Dmax) ≤ Pr

(
n∑

i=n−Dmax+1

ai < qn + rn

)
.
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Now we prove the first inequality in (13). The inequality
∑n

i=n−Dmax+1 ai < qn means that none of the

packets arriving in the i-th block (i = n − Dmax + 1, . . . , n) has left the buffer by the end of the n-th

block. So packet τ , which leaves the buffer in the n-th block, must have arrived in a block prior to the

(n−Dmax + 1)-th block (see Fig. 3), which implies D > Dmax. This proves the first inequality in (13).

Since qn + rn ≤ M and {ai} is stationary, from the second inequality in (13), we have the following

upper bound

Pr(D > Dmax) ≤ Pr

(
Dmax∑
i=1

ai < M

)
. (14)

Next, we consider three types of arrival processes, i.e., constant arrival, Poisson arrival and general i.i.d.

arrival, and derive upper bounds on the delay bound violation probability.

a) Constant arrival: In this case, arrival rate ai is a constant denoted by µ. Then (14) becomes

Pr (D > Dmax) ≤ Pr (µ×Dmax < M) =

{
0, if Dmax ≥ M/µ,

1, if Dmax < M/µ.
(15)

Thus for constant arrival, by choosing (virtual) buffer size M such that M ≤ µ ×Dmax, we can obtain

zero delay bound violation probability, i.e., Pr (D > Dmax) = 0.

b) Poisson arrival: We assume the arrival is a Poisson process with parameter µ, i.e., for all i,

Pr(ai = k) =
e−µµk

k!
, k = 0, 1, · · ·

Since {ai} are i.i.d.,
∑Dmax

i=1 ai is also Poisson distributed with parameter µ×Dmax. Then we have

Pr (D > Dmax) ≤
M−1∑
i=0

e−DmaxµDi
maxµ

i

i!
. (16)

c) General i.i.d. arrival: We assume {ai} are i.i.d. with mean µ and variance σ2. Then by the

well-known central limit theorem, as Dmax approaches infinity, 1/(σ
√
Dmax)

∑Dmax

i=1 (ai−µ) converges in

distribution to a Gaussian random variable of zero mean and unit variance. Thus we have the following

approximation for large delay bound Dmax

Pr (D > Dmax) ≤ Pr

(
Dmax∑
i=1

ai < M

)
≈ 1−Q

(√
Dmax

σ

(
M

Dmax

− µ

))
, (17)

where Q(x) = 1√
2π

∫∞
x

e
−t2

2 dt.

Remark 3: It is easy to see that the delay bound violation probability is non-increasing in the delay

bound. Given delay bound Dmax, by choosing a larger buffer size M , the upper bound on delay bound
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violation probability is increased while the packet drop probability is decreased. Thus there is a tradeoff

between delay bound violation probability and packet drop probability. This interesting tradeoff, with

different model and assumptions, has been studied in [23].

Remark 4: In this section, we have derived the upper bound on delay bound violation probability

for i.i.d. arrival process. In fact, if the arrivals are correlated, e.g., {an} is a Markov chain, we can

also calculate the corresponding upper bound based on large deviation theory [26]. An upper bound on

Pr
(∑Dmax

i=1 ai ≤ M
)

can be derived by directly applying the Gartner-Ellis theorem.

Remark 5: In simulations, we observe that our upper bound on delay bound violation probability is

tighter when the load is higher (i.e., the average arrival rate is closer to the ergodic channel capacity);

and the upper bound is looser when the load is lower. In addition, we also observe that the value of our

upper bound becomes very small if the (virtual) buffer size M is chosen to be smaller than µ × Dmax.

Thus, we can choose appropriate buffer size so that the delay bound violation probability is negligible,

which simplifies the analysis in the remainder of this paper.

We define average delay bound violation probability as the ratio of the long-term average number of

packets that violate delay bound, to the average number of arriving packets. Then the average delay bound

violation probability can be calculated by

P̄ d
e = lim sup

T→∞

1

Tµ

T∑
n=1

E[Pr (D > Dmax) rn] (18)

≤P̂ d
e lim sup

T→∞

1

Tµ

T∑
n=1

E[rn] (19)

=P̂ d
e × (1− P̄ q

e ) (20)

where P̂ d
e denotes the upper bound on Pr (D > Dmax), which we derived in this section, and the last

equality holds because limn→∞ E[rn] = µ× (1− P̄ q
e ), that is, the transmission rate is equal to the arrival

rate minus the drop rate.

Remark 6: The delay bound violation probability may be different for different blocks. However, the

upper bound on delay bound violation probability derived in this section holds for any block, which

guarantees the correctness of (19).

Remark 7: In the above discussion, we implicitly assumed that if a packet violations its delay bound,

it will still be transmitted. However, in practical systems, a better choice may be for transmitter to drop

a packet that violates its delay bound since the packet has already been regarded as an erroneous packet.

Even under this scenario, the upper bounds on decoding error probability, packet drop probability and

delay bound violation probability still hold; so do the results in the remainder of this paper.

9



D. Total Packet Error Probability

Based on the above error analysis, now we are ready to calculate the total packet error probability

(or simply packet error probability), which is defined as the ratio of the long-term average number of

erroneous packets to the long-term average number of arriving packets. Now consider a packet τ , we have

Pr(τ experiences packet error) = Pr(τ is dropped or incorrectly decoded or violates delay bound).

(21)

Let Pe(R,Dmax, µ) denote the total packet error probability, which is a function of rate control policy R,

delay bound Dmax and average arrival rate µ. Then we have the following union bound

Pe(R,Dmax, µ) ≤ P̄ q
e + P̄ d

e + P̄ c
e (22)

where P̄ c
e , P̄

q
e and P̄ d

e are given by (10), (11) and (20), respectively. Especially, if the arrival is constant

and the (virtual) buffer size M is chosen to be µ×Dmax, we have

Pe(R,Dmax, µ) = P̄ q
e + P̄ c

e , (23)

where the equality holds because packet drop and decoding error are mutual exclusive, i.e., if one packet

is dropped, it cannot be transmitted.

In this section, we have conducted packet error analysis. The total packet error probability is expressed

as a function of rate control policy, delay bound and average arrival rate. In the next section, we will

investigate the optimal rate control policy that minimizes the total packet error probability.

IV. THROUGHPUT MAXIMIZATION PROBLEM

As in [16], the throughput of the system in Fig. 1 is defined as the long-term average data rate at which

packets are successfully transmitted. Given a random arrival process {an} with mean µ and delay bound

Dmax, the error-free throughput can be calculated by

µ× (1− Pe(R,Dmax, µ)). (24)

Thus, maximizing throughput is equivalent to minimizing packet error probability, i.e.,

min
R∈R

Pe(R,Dmax, µ) (25)

where R is the space of admissible rate control policies. Since the exact packet error probability is

unavailable, we seek to find a rate control policy which minimizes the following upper bound

lim sup
T→∞

1

Tµ

T∑
n=1

E
(
P c
e (gn, rn)rn + (1− P̂ d

e )(qn−1 + an −M)+ + µP̂ d
e

)
, (26)

which is derived based on (22). From the above discussion, the problem of finding the rate control policy

that maximizes the error-free throughput is an average cost Markov decision problem with state space
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Q×G×A and per-stage cost (P c
e (gn, rn)rn+(1− P̂ d

e )(qn−1+an−M)++µP̂ d
e )/µ. Such an optimization

problem can be solved by the policy iteration algorithm [27]. However, the computational complexity of

policy iteration is high. The computational complexity is O(|Q|3|G|3|A|3). Fortunately, in our simulations,

we find the policy iteration algorithm converges in a small number of iterations, e.g., in about 10 iterations.

Thus the computational burden is acceptable usually.

V. RED TRIPLET AND ITS PROPERTIES

In this section, we study the throughput maximization problem from another perspective. We want

to find the maximum constant rate that can be supported by a time-varying channel under delay and

packet error constraints, which is similar to the problems studied by the effective bandwidth [28] and

effective capacity [19] approaches. This problem can also be interpreted as identifying the maximum

rate of a constant-rate equivalent pipe/channel, which achieves the same delay and error performances as

that achieved by a given time-varying channel2. We propose to use a triplet (µ,Dmax, ε) to characterize

the delay-constrained throughput of a fading channel, where µ is the maximum data rate of a flow with

delay bound Dmax and packet error probability ε. Specifically, we want to find the maximum data rate µ

achievable under delay bound Dmax and error probability ε constraints. By varying the delay and packet

error probability constraints, we obtain a Pareto optimal surface. Such a rate-error-delay (RED) triplet

completely describes the performance of delay-constrained communication over fading channels.

As we mentioned previously, if the arrival is constant and the virtual buffer size M ≤ µ × Dmax,

then Pr (D > Dmax) = 0. Since the virtual buffer size3 M can take any positive integer value as desired,

we always choose M = µ × Dmax. In the remainder of this paper, we always make the following two

assumptions: 1) constant arrival, 2) buffer size M = Dmax×µ. Thus, the rate control policy R only depends

on the channel gain gn and queue length qn−1, i.e., the departure rate in the n-th block is rn = R(qn−1, gn).

Next, we study the structure of the admissible control space of the rate control policy in Section V-A;

and give some properties of the RED surface in Section V-B.

A. Admissible Control Space

So far, the rate control policy R is assumed to be stationary. In general, the rate control policy can be

time-varying. A general rate control policy can be denoted by u = {u1, u2, . . .}, that is, the departure rate

in the n-th interval is rn = un(qn−1, gn). The evolution of the queueing system becomes

qn = min(qn−1 + µ,M)− un(qn−1, gn) (27)

2When a user watches streaming video, he/she does not care whether the physical layer channel is wireless or coaxial cable or twisted

pair or Ethernet cable. Hence, we can convert any time varying channel into a a constant-rate equivalent pipe/channel, and study the QoS

achieved by this constant-rate equivalent pipe to simplify the analysis. This is exactly the idea behind the effective bandwidth and the effective

capacity approaches.
3A virtual buffer is not a physical buffer. A virtual buffer can be implemented by a linked list with its maximum length equal to virtual

buffer size M , where M can be any positive integer chosen by the user.

11



Let U(qn−1, gn) ⊆ Q denote the set of feasible values of un, i.e., un(qn−1, gn) ∈ U(qn−1, gn). Now we

determine U(qn−1, gn). Since the queue length is available at the transmitter, the departure rate (in unit

of packets/block) cannot exceed the total number of packets in the buffer, so we have un(qn−1, gn) ≤
min(qn−1 +µ,M). Moreover, since the CSI is available at the transmitter, it is not reasonable to transmit

at a rate larger than the instantaneous channel capacity. So we have un(qn−1, gn) ≤ C(gn), where

C(gn) = ⌊N
L

log2

(
1 + |gn|2 ×

Pt

N0W

)
⌋. (28)

Thus we have

U(qn−1, gn) = {r|r ∈ M, r ≤ min(qn−1 + µ,M), r ≤ C(gn)}

= {0, 1, · · · ,min(M, qn−1 + µ,C(gn))} (29)

We denote by Π the set of admissible policies, which is the set of all sequences of functions u =

{u1, u2, . . .} where un : Q × G → Q and un(qn−1, gn) ∈ U(qn−1, gn), n = 1, 2, . . . Then the minimum

packet error probability is

min
u∈Π

Pe(u, Dmax, µ). (30)

As we discussed in Section IV, the above maximization problem is an infinite-horizon Markov decision

problem with average cost. From [27], it is known that for an average cost problem with finite state and

control space, there always exists an optimal stationary policy. For infinite state and control space, with

some mild conditions, there also exists an optimal stationary policy. Without loss of generality, throughout

this paper, we assume there always exists an optimal stationary rate control policy.

Now we present two lemmas about the structure of the admissible control space Π. Consider a system

as shown in Fig. 1, given a realization of channel gain sequence H = {Hn} and buffer size M (note

that we use different symbols to denote the random variables and their realizations), we say a sequence

of control actions {rn} is feasible if rn ∈ U(qn−1, Hn), where {qn} is the corresponding queue length

sequence. The feasible condition guarantees qn ≥ 0, n = 0, 1, . . . Let ΓH
M denote the set of feasible control

action sequences. We have the following results.

Lemma 2: Given a realization of channel gain sequence H and two buffer sizes M1, M2. If M1 < M2,

then ΓH
M1 ⊂ ΓH

M2 .

For a proof, see the Appendix. Lemma 2 tells that with a larger buffer size, we will have more freedom

to choose control policies. Now we study the extreme case, that is, infinite buffer size. In this case, the

buffer size constraint on the feasible control space is removed. We have the following result for infinite

buffer systems.

Lemma 3: Given a realization of channel gain sequence H, consider the system shown in Fig. 1 with

infinite buffer size. The set of feasible control action sequences ΓH
∞ is convex.

For a proof, see the Appendix. If the buffer size is finite, Lemma 3 may not hold.
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B. ERD function and RED function

In order to study the RED Pareto surface, we define two functions: ERD and RED. The ERD function

represents the minimum achievable packet error probability under rate and delay constraints. Specifically,

the ERD function represents the minimum achievable packet error probability as a function of data rate

µ and delay bound Dmax, i.e.,

ERD(µ,Dmax) , min
R∈R

Pe(R,Dmax, µ). (31)

The RED function represents the maximum achievable data rate under delay and packet error probability

constraints. Specifically, the RED function represents the maximum achievable data rate as a function of

packet error probability ε and delay bound Dmax, i.e.,

RED(ε,Dmax) , max µ

subject to ERD(µ,Dmax) ≤ ε. (32)

Next we investigate the properties of ERD and RED functions. We have the following proposition about

monotonicity of the ERD function.

Proposition 1: The ERD function is a monotonically decreasing function of delay bound Dmax for

fixed µ.
For a proof, see the Appendix.

Now assume the buffer size is infinite, i.e., the queue can grow to infinite. For infinite buffer, the ERD

function has nicer properties as below.

Proposition 2: If the buffer size is infinite, the ERD function is a monotonically decreasing function

of delay bound Dmax for fixed µ. If the decoding error probability P c
e (g, r) is a convex function of rate

r, the ERD function is also convex in Dmax for fixed µ.
For a proof, see the Appendix.

In Proposition 2, the requirement that P c
e (g, r) is a convex function of r can be satisfied with random

coding, which can be seen from (6). Proposition 2 tells that although the minimum packet error probability

is not a convex function of delay bound in general, an upper bound on the minimum packet error probability

is convex.
The following theorem presents the monotonic property of the RED function and the RED Pareto

surface.
Proposition 3: The RED function RED(ε,Dmax) is an monotonically increasing function of Dmax for

fixed ε, and an monotonically increasing function of ε for fixed Dmax.

For a proof, see the Appendix.

Remark 8: It is easy to see that, given an RED triplet (µ,Dmax, ε), the maximum error-free throughput

is µ× (1− ε).
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VI. SIMULATION AND NUMERICAL RESULTS

In this section, simulation and numerical results are presented to illustrate our theoretical results. After

giving the experimental settings in Section VI-A, we use simulation results to verify the upper bound on

delay bound violation probability proposed in Section III-C. Then we use an example to show the tradeoff

between packet drop probability (link layer) and decoding error probability (physical layer), which justifies

a major means in our RED theory, i.e., an optimal rate control policy that optimally balances the link layer

and the physical layer performance. Then, we give an example of the Pareto surface, resulting from the

optimal rate control policy. Finally, we compare the optimal policy with the optimal fixed-decoding-error

policy.

A. Simulation settings

We simulate the joint queueing/coding system as depicted in Fig. 1. We consider two types of arrival:

constant arrival and Poisson arrival, both of which have mean µ packets per block. The departure is

determined by a rate control policy R. The channel gain sequence {gn} is modeled as a Markov chain

with state transition matrix Q. In all our experiments, the time block length is set to Tb = 0.005 s. The

channel bandwidth is W = 20 kHz, thus the number of complex channel uses per block N = WTb = 100.

The SNR without fading (channel gain |gn| = 1) is 10 dB. The link layer packet size is set to 10 bits.

The set of simulation setting can be arbitrary, however, we just choose appropriate parameters to clearly

show our results.
We consider three types of rate control policies: linear policy, optimal policy, and optimal fixed-

decoding-error policy. The linear rate control policy is one of the simplest policies and is defined as

below

RLinear(m, g) = min(m+ µ,M, ⌊ρ× C(g)⌋) (33)

where C(g) is the instantaneous channel capacity, and ρ ∈ [0, 1]. We call it linear policy since the rate is

upper bounded by a linear function of the instantaneous channel capacity, i.e., ρ× C(g).

The optimal policy can be obtained by the policy iteration algorithm [27]. The optimal fixed-decoding-

error policy is an optimal policy under the constraint of fixed decoding error probability. For a target

decoding error probability ϵdec ∈ (0, 1), the optimal fixed-decoding-error policy is defined by

RDEC(m, g) = min

(
m+ µ,M, ⌊ max

P c
e (g,r)≤ϵdec

r⌋
)
. (34)

The optimal fixed-decoding-error policy takes a “pure queueing approach” since it only optimizes the

queueing performance while keeping fixed decoding error probability; in other words, it does not jointly

optimize the physical layer and the link layer.
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B. Delay Bound Violation Probability

In this section, we simulate the queueing subsystem. The arrival is assumed to Poisson distribution with

mean µ = 12 or 10 packets/block; buffer size M = 100 packets; the channel gain process has two states

G1 = 1, G2 = 0.3 and transition probability matrix is

Q =

(
0.5 0.5
0.5 0.5

)
. (35)

The rate control policy is an linear policy with parameter ρ = 0.4 as defined in (33). Fig. 4 shows the

simulation result of delay bound violation probability compared with the upper bound proposed in (16)

in Section III-C.
From the figure, we can see that both the simulation result and the upper bound decrease rapidly as the

delay bound becomes larger, especially when the delay bound is larger than M/µ. Thus we can choose

an appropriate delay bound (e.g., 2×M/µ) such that we can omit the delay bound violation probability

and thus simplify our analysis.

C. Tradeoff between Decoding Error Probability and Packet Drop Probability

In this simulation, the channel gain process has two states G1 = 1, G2 = 0.5 and state transition

probability matrix is

Q =

(
0.8 0.2
0.2 0.8

)
.

We use linear rate control policies defined in (33). Fig. 5 shows packet drop probability, average decoding

error probability, and average packet error probability vs. ρ (the parameter of the linear control policy).

From the figure, it can be observed that as ρ increases, packet drop probability decreases while decoding

error probability increases. Hence, there is a tradeoff between packet drop probability and decoding error

probability. In addition, the figure shows that the minimum packet error probability is achieved at ρ = 0.7;

i.e., for this system, the optimal linear rate control policy that minimizes the packet error probability is

R∗
Linear(m, g) = min(m+ µ,M, ⌊0.7 ∗ C(g)⌋) (36)

This example indicates that the optimal performance can only be achieved through cross layer design

due to the conflicting nature between the link layer and the physical layer performance (i.e., packet drop

probability vs. decoding error probability).

D. An Example of Pareto Surface

In this simulation, the channel gain and transition matrix are the same as those in Section III-C. It is

easy to calculate that the Shannon ergodic capacity (without power control) is 44 kb/s; for rate control, we

use the optimal policy. Fig. 6 shows the Pareto surface, i.e., maximum data rate µ as a function of delay

bound Dmax and packet error probability. In this and the next simulation, when plotting Pareto surfaces,
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we increase the delay bound by 2 blocks to include the encoding/decoding delay. From this figure, it can

be observed that the maximum data rate is a monotonically increasing function of delay bound and packet

error probability. Moreover, the maximum data rate is always smaller than the ergodic capacity.

E. Optimal Policy vs. Optimal Fixed-decoding-error Policy

In this simulation, the channel gain and transition matrix are the same as those in the previous section;

the optimal policy can be obtained by the policy iteration algorithm; the optimal fixed-decoding-error

policy is defined in (34), and we choose ϵdec = 10−5. Fig. 7 shows the maximum data rate as a function

of delay bound Dmax and packet error probability, under the optimal policy and the optimal fixed-decoding-

error policy, respectively. From this figure, it can be seen that the optimal policy achieves higher data

rate than the optimal fixed-decoding-error policy. This is because the optimal policy balances packet drop

probability (link layer) and decoding error probability (physical layer) while the optimal fixed-decoding-

error policy is a pure queueing (link layer) approach and only minimizes packet drop probability. Again,

it shows the superiority of cross layer design over optimizing each layer individually.

VII. CONCLUSION

In this work, we studied the problem of data communication with both delay and packet error probability

constraints. The transmission data rate is adapted to channel state, buffer state and arrival state to minimize

the total packet error probability thus maximize the system throughput. Different from most previous

works, we considered a system with finite buffer space thus we addressed three types of errors: 1) packet

drop due to full buffer, 2) delay bound violation, and 3) packet decoding error due to channel noise. We

derived an upper bound on the total packet error probability. By minimizing the packet error probability

over the transmission rate, we obtained an optimal rate control policy that guarantees the user-specified

data rate and delay bound. Then by varying data rate and delay bound, we obtained RED Pareto-optimal

surface. Our results provide important insights into statistical QoS provisioning in wireless systems; the

RED Pareto surface represents a major step towards deriving the probabilistic delay-constrained channel

capacity of fading channels. In our future work, both rate adaptation and power adaptation will be used

to achieve a higher data rate.

APPENDIX

Proof of Lemma 2: Consider two systems, A and B, which have the same structure as shown in Fig. 1

but different buffer sizes. System A has a buffer of size M1 and System B has a buffer of size M2, where

M1 < M2. Given a realization of channel gain sequence H = {Hn}, to show that ΓH
M1 ⊂ ΓH

M2 , we just

need to prove that if a sequence of control actions {rn} is feasible for System A, then it is also feasible

for System B.

Let {qin}, i = 1, 2 denote the queue length sequences of System A and System B respectively. Since

{rn} is feasible for System A, we have rn ∈ U(q1n−1, Hn), i.e.,

rn ∈ [0,min(M1, q1n−1 + µ,C(Hn))], n = 1, 2, . . .
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We need to show that
rn ∈ [0,min(M2, q2n−1 + µ,C(Hn))], n = 1, 2, . . .

Thus we just need to prove that q1n−1 ≤ q2n−1, n = 1, 2, . . . We prove this by induction. Without loss of

generality, we assume q10 = q20 = 0. Assume for some k > 0, q1k ≤ q2k, we have

q2k+1 = min(q2k + µ− rk+1,M
2)

≥ min(q1k + µ− rk+1,M
2)

≥ min(q1k + µ− rk+1,M
1) = q1k+1

This completes the proof.

Proof of Lemma 3: Given a realization of channel gain sequence H = {Hn}, consider the system

shown in Fig. 1 with infinite buffer size. To show the set of feasible control action sequences ΓH
∞ is a

convex set, we just need to prove that if two sequences of control actions ui = {rin}, i = 1, 2 are feasible,

then for any λ ∈ [0, 1], uλ = λ ∗ u1 + (1− λ)u2 is also feasible.

Let qi, i = 1, 2, λ denote the queue length sequences of an infinite-buffer queueing system with same

arrival rate µ but different departure sequences {rin}, i = 1, 2, λ. Then we have

qin = qin−1 + µ− rin, i = 1, 2, λ.

By induction, it is easy to show that qλn = λq1n + (1 − λ)q2n. Since rin ∈ [0,min(qin−1 + µ,C(Hn))], n =

1, 2, . . . (in this case, the constraint on buffer size is lifted), we get λr1n + (1 − λ)r2n ∈ [0,min(qλn−1 +

µ,C(Hn))], thus uλ is also feasible.

Proof of Proposition 1: Let D1, D2 denote two delay bounds. Without loss of generality, we assume

D1 < D2. Consider two systems: System A with buffer size M1 and System B with buffer size M2,

where M i = µ × Di, i = 1, 2. We just need to show ERD(D1, µ) ≥ ERD(D2, µ). We prove this by

sample path argument. Let H = {Hn} be a given realization of channel gain sequence. Assume the

optimal rate control action sequence is u = {r1, r2, . . .} for System A, i.e., ERD(D1, µ) = Pe(u, D1, µ).

Since M2 > M1, from Lemma 2, we see that u is also an admissible control action sequence for System

B. Since the average number of packet drop in one block equals to the arrival rate minus the average

departure rate. Moreover, with same rate control policy, the number of packets incorrectly decoded is also

the same, so we have

Pe(u, D1, µ) = Pe(u, D2, µ)

So we get

ERD(D2, µ) ≤ Pe(u, D2, µ) = ERD(D1, µ).
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Thus we see that the ERD function is a monotonically decreasing function of D.

Proof of Proposition 2: We omit the proof to the first part since it is similar to Proposition 1.

Now, we prove the second part with sample path argument. Since the delay bound and buffer size is

related by M = µ × Dmax, it is suffice to show that ERD(M/µ, µ) is convex in M for fixed µ. Let

H = {Hn} be a given realization of channel gain sequence. Consider an infinite-buffer system and two

virtual buffer sizes M i, i = 1, 2. Let 0 ≤ λ ≤ 1 and Mλ = λM1 + (1 − λ)M2. We need to show that

ERD(Mλ/µ, µ) ≤ λERD(M1/µ, µ) + (1− λ)ERD(M2/µ, µ).

Assume the control action sequences that attain ERD(M i/µ, µ), i = 1, 2 are ui = {rin}, i = 1, 2 and

the corresponding queue length sequences are {qin}, i = 1, 2. Now consider virtual buffer size Mλ. Let

the control action sequence be {rλn}, where rλn = λr1 + (1 − λ)r2. From Lemma 3, we see that {rλn} is

also feasible and the corresponding queue length sequence is qλn = λq1n+(1−λ)q2n. Since (·)+ is a convex

function, we have

(qλn + µ−Mλ)+ ≤ λ(q1n + µ−M1)+ + (1− λ)(q2n + µ−M2)+.

Since P c
e (g, r) is convex in r for fixed g, it is easy to show (by taking derivation on r) that rP c

e (g, r) is

also convex in r for r ≥ 0. So we have

rλnP
c
e (Hn, r

λ
n) ≤ λr1nP

c
e (Hn, r

1
n) + (1− λ)r2nP

c
e (Hn, r

2
n).

From (23), we obtain

ERD(Mλ/µ, µ) ≤ λERD(M1/µ, µ) + (1− λ)ERD(M2/µ, µ).

That is, for fixed arrival rate µ, ERD(Dmax, µ) is a convex function of Dmax.

Proof of Proposition 3: Let Di, i = 1, 2, D1 < D2 be two delay constraints and ε > 0. Let µ1 =

RED(D1, ε), we have ERD(D1, µ1) ≤ ε. From Proposition 1, we see

ERD(D2, µ1) ≤ ERD(D1, µ1) ≤ ε

So we obtain RED(D2, ε) ≥ RED(D1, ε). Similarly, we can prove RED(Dmax, ε) is an increasing

function of ε for fixed Dmax.
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Fig. 1: System model
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Fig. 2: Timing diagram
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Fig. 3: Buffer status in the n-th block
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