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Abstract

A recently developed PLUS factorization holds great promise in image cod-
ing due to its simplicity and integer reversibility. However, existing PLUS
factorizations did not consider stability and optimality. To address these
problems, we propose methodologies to design stable and optimal PLUS fac-
torization algorithms. Firstly, we propose three stable PLUS factorization
algorithms, prove the stability theorem under no perturbation and analyze
stability under perturbation. Furthermore, we obtain a closed-form formula
for transform error, and use the formula to design an algorithm for optimal
PLUS factorization. Then, we apply the PLUS factorization to image cod-
ing. The integer DCTs implemented with the optimal PLUS factorizations
found by our algorithms outperform the integer DCT with expansion factors
in terms of entropy. The optimal PLUS factorizations are superior to the
lifting factorization in JPEG-XR. The experimental results agree with ana-
lytical results of PLUS factorization, and show superior performance of our
algorithms in image coding.

Key words: PLUS factorization, stable algorithm, optimization, transform
coding, image compression, integer reversible transform, lapped transform,
discrete cosine transform, lifting factorization

1. Introduction

Transforms are widely used in source coding, image processing and com-
puter graphics. Transform coding is a major technique in image and video
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compression standard, such as JPEG, JPEG 2000, JPEG-XR [1], MPEG [2]
and H.264 [3]. Factorization is used to make the transforms, such as Dis-
crete Cosine Transform (DCT) [4] and Discrete Wavelet Transform (DWT)
[5], faster, simpler and integer reversible. PLUS factorization is a kind of
customizable triangular matrix factorization, proposed by Hao [7] as a new
framework of matrix factorization, and encompasses and generalizes quite a
few triangular matrix factorizations [8, 20, 21]. The PLUS factorization of a
general nonsingular matrix A is formulated as:

A=PLUS (1)

where matrices P, L and U are, almost the same as in LU factorization,
permutation, unit lower and upper triangular matrices, respectively, while S
is a very special matrix, which is unit, lower and triangular, and only with
no more than N −1 nonzeros. Different from LU factorization, all the diago-
nal elements of U in PLUS factorization are customizable, i.e. the diagonal
elements can be assigned almost freely, as long as the determinant is equal to
that of A up to a possible sign adjustment. With PLUS factorization, a non-
singular matrix A is easily factorized further into a series of special matrices
similar to S. Furthermore, the permutation matrix can also be substituted
with a pseudo-permutation matrix, which is a simple unit upper triangular
matrix with 0, 1 and −1 as its off-diagonal elements. Besides PLUS, a cus-
tomizable factorization also has other alternatives, LUSP, PSUL or SULP
with lower S, and PULS, ULSP, PSLU or SLUP with upper S, which
are all taken as varieties of PLUS factorization.

Currently, the lifting factorization [12] is mostly used to factorize the
transforms into lifting steps to simplify the transforms as well as to make
the transform integer reversible, such as the factorization in JPEG-XR [30].
But these factorizations are mostly based on experiences and experiments.
However, the PLUS factorization provides a general and universal way to
factorize transform matrices of any order into products of Elementary Re-
versible Matrices [8]. With the Elementary Reversible Matrices as factor
matrices, PLUS factorization is a powerful tool for realizing the integer re-
versible transform [6], when assisted by the ladder structure and the round-
ing operations [8]. Therefore, it has promising applications in lossless/lossy
coding [8, 9, 10] and reversible image processing [15, 16]. Meanwhile, an
elementary reversible matrix is also a triangular shear matrix. Thus, it also
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has found applications in computer graphics, such as transformation accel-
eration by shears [13], fast image registration [14], in which matrix-based
transformations dominate. However, the existing PLUS factorization suffers
from two limitations: instability and sub-optimality. By instability, we mean
that the PLUS factorization may stop because of zero or near zero pivoting
during the process of Gaussian Elimination. By sub-optimality, we mean
that the PLUS factorization of transform matrices found by existing factor-
ization algorithm may lead to large transform error, which may deprive the
good properties of original transform matrices, such as orthogonality and
high energy-compacting ability, from the products of the factor matrices of
PLUS factorization.

This work is proposed to address these problems (other problems of PLUS
factorization, like blocking factorization and parallelling computing, arising
from solving large linear systems, could be found in [17, 18, 19]). Our main
contributions include:

1. We propose three stable PLUS algorithms in Matlab pseudo code, and
the methodology to stabilize the factorization.

2. We prove the stable theorem and did perturbation analysis of PLUS
factorization, to guarantee the stability of our algorithms theoretically.

3. We obtain a closed-form formula of transform error of PLUS factoriza-
tion, and propose the optimization algorithm based on Tabu Search to
quickly find the optimal factorization and to realize integer transform
with the least transform error.

4. We apply our algorithms to realize integer DCT and integer Lapped
Transform, and test the lossy/lossless image coding performance. Ex-
perimental results show the superiority of our algorithms over some
existing integer DCT algorithms, and the lapped transform factoriza-
tion in JPEG-XR.

The paper is organized as below: the stable PLUS factorization algo-
rithms are introduced in Section 2; error analysis and optimization of PLUS
factorization with Tabu search algorithm are discussed in Section 3; the nu-
merical examples of factorization and the experimental results on integer
reversible transforms for image compression are shown in Section 4. Finally,
Section 5 concludes the paper.
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2. Stabilization of PLUS Factorization Algorithms

The permutation matrix P in PLUS factorization serves for pivoting. If
P is chosen improperly, the algorithm may be unstable, namely division by 0
or extremely small numbers during Gaussian Elimination. In this section, we
will introduce three stable PLUS factorization algorithms for any nonsingular
matrix based on pivoting and back tracing, in which S is designated as a
single-row elementary matrix [8] with n − 1 nonzero off-diagonal elements
in the last row. The algorithms could be generalized to factorization with
any patterned S [7], as well as polyphase matrix [11, 12] factorization. The
analysis of algorithms and stability theorem are also presented, as well as the
uniqueness property of PLUS factorization. Given the diagonal entries of U
and the pattern of S, with a specific permutation matrix P , there is one and
only one form of PLUS factorization for A under the necessary and sufficient
condition of nonzero determinants of the sub-matrices of A. Perturbation
analysis for PLUS factorization is also provided in Appendix B to show its
numerical stability with finite perturbation error bounds.

Definition 1. Stability of the PLUS factorization algorithm.
The algorithm is stable when there are no zero pivots during the PLUS fac-
torization, which lead to infinity elements in the factor matrices.

MATLAB’s notations and grammar are extensively used to represent our
algorithms. Firstly, we summarize the general PLUS factorization algorithm
proposed in the constructive proof in [7] in a more direct form with MATLAB
notations as below.

Algorithm 1. General PLUS factorization algorithm.
For a nonsingular n-by-n matrix A, the first n− 1 diagonal entries of U are
given in vector u, then the general PLUS factorization algorithm is given as
follows:

for i = 1 : (n− 1) do
s(i) = (A(i, i)− u(i))/A(i, n)
A(1 : n, i) = A(1 : n, i)− s(i) · A(1 : n, n)
k = (i + 1) : n
A(k, i) = A(k, i)/A(i, i)
A(k, k) = A(k, k)− kron(A(k, i), A(i, k))

end for
L = I + strict lower tri(A)
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U = upper tri(A)
S = I + [zeros(n− 1, 1); 1] · [s, 0] ¤

kron(·, ·) stands for the kronecker product of two matrices; strict lower tri(A)
is a strictly-lower triangular matrix obtained from A; upper tri(A) is an up-
per triangular matrix obtained from A.

From Algorithm 1, it is obvious that except for the additional n − 1
memory units for S, L and U can be calculated in the place of A, and
there are only n− 1 iterations in the main body of the algorithm. There are
two pivots located in line 2 and 5 of Algorithm 1, where lies the instability.
Simply substituting the zero pivots is practical for stabilization, but not
enough to obtain smaller rounding error accumulated during elimination.
Thus we propose PLUS factorization with partial pivoting in Algorithm 2,
with the two pivots of the largest magnitudes in A(i : n, n) and A(i : n, i).
Then we show the theorem of its stability .

Algorithm 2. PLUS factorization with partial pivoting.
For a nonsingular n-by-n matrix A, the first n − 1 diagonal entries of U
are given in vector u, then the PLUS factorization algorithm with partial
pivoting is given as follows:

P = 1 : n
for i = 1 : (n− 1) do

Determine µ1 with i ≤ µ1 ≤ n, so that |A(µ1, n)| =‖ A(i : n, n) ‖∞
P (i) ↔ P (µ1)
A(i, 1 : n) ↔ A(µ1, 1 : n)
s(i) = (A(i, i)− u(i))/A(i, n)
A(1 : n, i) = A(1 : n, i)− s(i) · A(1 : n, n)
Determine µ2 with i ≤ µ2 ≤ n, so that |A(µ2, i)| =‖ A(i : n, i) ‖∞
P (i) ↔ P (µ2)
A(i, 1 : n) ↔ A(µ2, 1 : n)
k = (i + 1) : n
A(k, i) = A(k, i)/A(i, i)
A(k, k) = A(k, k)− kron(A(k, i), A(i, k))

end for
L = I + strict lower tri(A)
U = upper tri(A)
S = I + [zeros(n− 1, 1); 1] · [s, 0] ¤
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Theorem 1. Stability of Algorithm 2.
For a nonsingular n-by-n matrix A, the first n− 1 diagonal entries of U are
given in vector u, then PLUS factorization algorithm with partial pivoting
can avoid division by zeros and give a stable factorization.
Proof : (by contradiction)
If Algorithm 2 is disabled in the i-th iteration (1 ≤ i ≤ n− 1), i.e. A(j, n) =
0, j = i, · · · , n, then matrix A becomes:




u1 a
(i)
1,2 · · · a

(i)
1,i−1 a

(i)
1,i · · · a

(i)
1,n

0 u2 a
(i)
2,3 · · · ...

...
...

. . . . . . · · ·
0 · · · 0 ui−1 a

(i)
i−1,i · · · a

(i)
i−1,n

0 · · · 0 a
(i)
i,i · · · a

(i)
i,n−1 0

...
...

...
. . .

...
...

0 · · · 0 a
(i)
n,i · · · a

(i)
n,n−1 0




(2)

where the superscripts (i) indicate i-th iteration.
Because of

det(

(
Br×r Cr×s

O Ds×s

)
) = det(Br×r) · det(Ds×s),

we deduce det(A) = 0, which contradicts with the prerequisite that A is
nonsingular. ¥

Due to finite precision of computers, some ill-conditioned matrices, with
near singular sub-matrices, may halt in the i-th iteration of PLUS factoriza-
tion with a midway product as:




u1 a
(i)
1,2 · · · a

(i)
1,i−1 a

(i)
1,i · · · a

(i)
1,n

0 u2 a
(i)
2,3 · · · ...

...
...

. . . . . . · · ·
0 · · · 0 ui−1 a

(i)
i−1,i · · · a

(i)
i−1,n

0 · · · 0 a
(i)
i,i · · · a

(i)
i,n−1 εi,n

...
...

...
. . .

...
...

0 · · · 0 a
(i)
n,i · · · a

(i)
n,n−1 εn,n




(3)
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where |εk,n| < ε, k = i, · · · , n, and ε is the precision of a computer. For
such ill-conditioned matrices, some improvements could be done based on
Algorithm 2.

An upper triangular pseudo-permutation matrix instead of a permutation
matrix can be used in Algorithm 2 to deal with some ill-conditioned cases.
Because L−1 = Ln−1(P n−1Ln−2P

−1
n−1) · · · (P n−1P n−2 · · ·P 2L1 P−1

2 · · ·P−1
n−2P

−1
n−1)

where P i = I + Ei,im , i < im, i = 2, · · · , n − 1, are pseudo-permutation
matrices in the i-th iteration, Li is unit lower triangular matrices composed
of the i-th column of L. The operations of pseudo-permutation matrices
P i applied to A are equivalent to that the elements of the i-th row of A
are added to or subtracted from the im-th row. This stratege can make
Algorithm 2 in effect, when |εi,n|+ |εim,n| > ε in the i-th iteration.

Because of Gaussian Elimination, the pivot chosen in the current iteration
helps to cope with ill-conditioned cases only in the current iteration, but can
not determine the fate of the later iterations. Thus, a trace-back algorithm
is a good candidate for global control of ill-condition as in Algorithm 3 with
a little increase of algorithm complexity. The Algorithm 3 traces back to the
last iteration to re-choose a pivot, namely to multiply a new permutation
matrix, when the algorithm encounters a failure in the current iteration.

Algorithm 3. Trace-back PLUS factorization with partial pivoting.

function PLUS ( pass, P )
if pass == n then

return
else

for i=pass : n do
if |A(i, n)| > ε then

P (pass) = i
A(pass, 1 : n) ↔ A(i, 1 : n)
s(pass)=(A(pass,pass)-u(pass))/A(pass,n)
A(1:n,pass)=A(1:n,pass)-s(pass)·A(1:n,n)
for j=pass : n do

if |A(j, pass)| > ε then
P (pass) = j
A(pass, 1 : n) ↔ A(j, 1 : n)
k = (pass + 1) : n
A(k, pass) = A(k, pass)/A(pass, pass)
A(k,k)=A(k,k)-kron(A(k,pass),A(pass,k))
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PLUS ( pass+1, P )
A(pass, 1 : n) ↔ A(j, 1 : n)

end if
end for
A(pass, 1 : n) ↔ A(i, 1 : n)

end if
end for

end if ¤

PLUS factorization with complete pivoting is equivalent to applying both
left and right permutation matrices to A in each iteration. Not only is the
following algorithm stable without 0 divisors, but also avoids subtraction
between two very close numbers when calculating s(pass) in line 9. The
column pivots must avoid the elements in the last column to guarantee
that SiP Ri+1

= P Ri+1
Si. Therefore, P LAP R1S1P R2S2 · · ·P Rn−1Sn−1 =

AP LAP RS, where P R = P R1P R2· · ·P Rn−1 and S = S1S2 · · ·Sn−1, where
P L is left permutation matrix, P R is right permutation matrix and P Ri

is
the right permutation matrix in the i-th iteration.

Algorithm 4. PLUS factorization with complete pivoting.

PL = 1 : n
PR = 1 : n
for i = 1 : (n− 1) do

Determine µ with i ≤ µ ≤ n , so that |A(µ, n)| =‖ A(i : n, n) ‖∞
Determine λ with i ≤ λ ≤ n − 1, so that |A(µ, λ)| = max{|A(µ,m) −

d(i)|,m = i : (n− 1)}
PL(i) ↔ PL(µ)
PR(i) ↔ PR(λ)
A(i, 1 : n) ↔ A(µ, 1 : n)
A(1 : n, i) ↔ A(1 : n, λ)
if |A(i, n)| > ε then

s(i) = (A(i, i)− u(i))/A(i, n)
A(1 : n, i) = A(1 : n, i)− s(i) · A(1 : n, n)
Determine ν with i ≤ ν ≤ n , so that |A(ν, i)| =‖ A(i : n, i) ‖∞
PL(i) ↔ PL(ν)
A(i, 1 : n) ↔ A(ν, 1 : n)
k = (i + 1) : n
A(k, i) = A(k, i)/A(i, i)
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A(k, k) = A(k, k)− kron(A(k, i), A(i, k))
end if

end for
L = I + strict lower tri(A)
U = upper tri(A)
S = I + [zeros(n− 1, 1); 1] · [s, 0] ¤

Similar to Algorithm 2, Algorithm 4 can also have a trace-back version,
which is not difficult to obtain. Besides, it is natural for users to customize
pivoting strategies of these algorithms to obtain other expected properties.

Collorary 1. The algorithm of trace-back PLUS factorization with partial
pivoting and PLUS factorization with complete pivoting are both stable.
Similar to the proof of Theorem 1, this proof is easy to obtain.

Besides the n-by-n nonsingular matrices, by using our algorithm, an n-
by-m full-rank rectangular matrix can also have a PLUS factorization in the
following forms:
For m < n,




a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn


 = P ·




1
l21 1
...

. . .

lm1 lm2 · · · 1




·




u1 u12 · · · u1n

u2
. . . u2n

. . .
...

um umn


 ·




1
0 1
...

. . .

s1 · · · sn−1 1


 ;

for m > n,




a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn


 = P ·




1
l21 1
...

. . .

ln1 ln2 · · · 1
...

...
...

lm1 lm2 · · · lmn



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·




u1 u12 · · · u1n

u2
. . .

...
. . . un−1,n

un


·




1
0 1
...

. . .

s1 · · · sn−1 1




Next, the uniqueness of PLUS factorization is discussed.

Condition 1. Uniqueness Condition.
det([an,a1,a2, · · · , ak−1]

(k)) 6= 0 when k > 1, and a1n 6= 0 when k = 1,
where A(k) denotes the k-th leading sub-matrix of A.

Theorem 2. Uniqueness of PLUS factorization.
Given a permutation matrix P , diagonal entries of U and the pattern of S,
if a nonsingular n-by-n matrix A has PLUS factorization, A = PLUS and
Condition 1 is satisfied for P T A, then PLUS factorization is unique.
By induction, Theorem 2 is proved in Appendix A.

Condition 1 is necessary and sufficient, and satisfied in our algorithms.
For a counterexample, if P T A = I, which does not satisfy Condition 1,
then I = IS−1

0 IS0 is the PLUS factorization, where S0 could be any single-
row elementary reversible matrix with nonzeros in the last row, i.e. PLUS
factorization for P T A is not unique.

Based on Theorem 2, the property of uniqueness of PLUS factoriza-
tion could be extended to reciprocal determination between two sets. Let
V = {u1, u2, · · · , un−1, s1, s2, · · · , sn−1}, and Q, T compose a partition of
V , with n − 1 elements respectively. Let Q = {q1, q2, · · · , qn−1} and T =
{t1, t2, · · · , tn−1}, q and t could be either u or s. If Q is pre-designated, then
T could be determined uniquely by Q in our algorithms, and vice visa.

3. Optimization of PLUS Factorization

For the better performance in applications, optimization of PLUS fac-
torization aims to minimize three types of transform error, which has three
main origins. The first one is due to the precision limitation of computers.
The second one results from the rounding operations for integer reversible
transformations. The third one comes from the possible quantization of
compression. The error will be further propagated and amplified after mul-
tiplications by factor matrices. The transform error causes the differences

10



between the coefficients after transform with factor matrices of PLUS fac-
torization and those after the original transform. It is well known that the
traditional linear transforms such as DCT and DWT hold many good prop-
erties like orthogonality, high de-correlation and energy-concentration ability
for effective image coding. Therefore, to keep the same merits as the original
transform matrices is an important concern, when using PLUS factorization
as the effective tool for realizing integer reversible reversion of the traditional
transforms. The least transform error is desired. This optimization problem
of PLUS factorization is denoted as PLUS FOP in the following discussion.

PLUS factorization is really diversified, even with a given pattern of S
and ±1 as diagonal entries of U. For an n-by-n matrix A, A = P LLUSP R,
there are up to n! possible left permutation matrices PL, n! possible right
permutation matrices PR and 2n−1 possible combinations of first n − 1 di-
agonal entries of U. It means that there are n! × n! × 2n−1 possible PLUS
factorizations. It is an N-P hard problem to find the optimal PLUS fac-
torization. Thus, enumerating all the possible solutions to find the best is
out of the question for the high-order matrices, but its results for low-order
matrices can be used as a ground truth for comparison between algorithms.
To solve PLUS FOP, we present our error analysis of PLUS factorization,
propose E2 error metric, and design the optimization algorithm with Tabu
Search to find the factorizations with the least transform error. The opti-
mal PLUS factorization with the least transform error can help improve the
performance of various systems, e.g., lossless/lossy image coding.

3.1. Transform Error Analysis

The transform error after the transformation steps with the factor matri-
ces of PLUS is actually a mixture of direct round-off error and indirect error
propagated and accumulated from the round-off error in the previous steps.
For A = P LLUSP R, the transform error can be formulated as:

e = P L(eL + L(eU + U (eS + SP Re0))) (4)

where eL, eU and eS are round-off error vectors directly brought in after the
transformation with L, U and S, respectively, and e0 is the system error
vector before transformation. Compared with the transform error using the
original matrix A, e = eA + Ae0, e0 can be disregarded, and the following
error model is considered for PLUS factorization:

e = P L(eL + L(eU + UeS)) (5)
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where eL = [0, 1, 1, · · · , 1]T , eU = [1, 1, · · · , 1, 0]T and eS = [0, 0, · · · , 0, 1]T

as the upper bound of the magnitudes of error vectors, when the floor()
operator is used. e can be evaluated by its norm as follows:

‖ e ‖ =‖ P L(eL + L(eU + UeS)) ‖
=‖ eL + LeU + LUeS ‖
≤‖ eL ‖ + ‖ LeU ‖ + ‖ LUeS ‖

(6)

In our random numerical experiments, such upper error bound can sometimes
be reached. Therefore, in the integer transform domain, an error metric of
PLUS factorization can be defined by the error bound in Equation (6):

Ep(LUS) =‖ eL ‖p + ‖ LeU ‖p + ‖ LUeS ‖p (7)

where ‖ • ‖p is the p-norm operator.

3.2. Statement of Optimization Problem

Take the error metric defined in Equation (7) as the objective function,
the optimization of PLUS factorization for any nonsingular matrix A is for-
mulated as:

min
P L,P R,u

Ep(LUS)

s.t. A =P LLUSP R

(8)

where u is the vector composed by the first n− 1 diagonal elements of U .
For the vector norm in Equation (7), we test L1, L2 and L∞ in our

experiments, and use E1, E2 and E∞ to represent the corresponding error
metric, respectively. Our experimental results in Section 4 show that L2,
which is a continuous function of vectors, consists with the definition of Mean
Square Error to achieve Least Mean Square Error. Thus, the transform error
metric is defined as E2.

The global optimal factorization results for the DCT matrices found by
exhaustive search are given in Table 2, when matrix order n = 2, 4, 8. It is
easy to obtain the optima when n = 2 or 4. But when n = 8, a PC with 0.7G
CPU and 128M Memory takes nearly 3 weeks to try all the possibilities, not
to mension the matrices of higher orders. The facts founded by exhaustive
search are: (i) Due to symmetry of solution space, the optimal solutions are
not unique: 4 optimal results for 2 × 2 DCT, 4 for 4 × 4 DCT, and 32 for
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8× 8 DCT are found in our experiments. (ii) There are a lot of factorization
results, which approximate the optimal, scattering in the feasible solution
space. In our experiments, there are 8 suboptimal factorizations near the
optimal one for 4 × 4 DCT, with 0.08 more transform error than the least
transform error of the optimal factorization.

Therefore, attempts to solve this NP-hard nonlinear combinatorial op-
timization problem can be achieved by heuristic methods, which yield the
approximately optimal solutions in a polynomial time. Such methods in-
clude Neural Network (NN), Simulated Annealing (SA), Genetic Algorithm
(GA), Tabu Search (TS) and so on [25]. In this paper, we use Tabu Search
to solve the PLUS FOP, since it is a combinatorial optimization problem,
and can be well modelled in the TS framework and well solved as shown in
the experiments.

3.3. Optimization Algorithm with Tabu Search
Tabu search (TS) is a meta-heuristic technique proposed by Glover [23]

to solve combinatorial optimization problems, such as vehicle routing and
shop scheduling problems [25]. TS avoids being trapped at local minima by
allowing the temporal acceptance of the worse solutions, and avoids cycli-
cally revisiting solutions by keeping track of the recent migrations of the
solutions in tabu list. It consistently outperforms the algorithms in Section
2 and provides amazing optimization performance. Based on the essential
procedures of the TS algorithm and the characteristics of possible solutions
mentioned in Section 3.2, we see that PLUS FOP is a typical problem in the
TS framework and TS works well for our PLUS FOP, which is also verified
by the experiments.

Some key terms in the TS algorithm are:

1. Objective function
The objective function E is defined in Equation (8) with p = 2.

2. Possible solution set
A possible solution can be represented as a triplet (P L,P R, u). The
possible solution set is Ω = {(P L,P R, u)}, and |Ω| = n!× n!× 2n−1.

3. Neighbors
∀X ∈ Ω, X = (P L,P R,u), the neighbors of X is defined as: B(X) =
{(P ′

L, P
′
R,u

′
)|d((P L,P R, u), (P

′
L,P

′
R, u

′
)) = 1}, where

d((P L,P R,u), (P
′
L,P

′
R,u

′
)) = d

′
(P L,P

′
L) + d

′
(P R,P

′
R) + d

′′
(u, u

′
),

d
′
(P ,P

′
) = (

∑
i,j δ̄P (i,j),P

′
(i,j))/2, d

′′
(u,u

′
) =

∑
i δ̄u(i),u′ (i), and δ̄i,j = 0

when i = j, δ̄i,j = 1 when i 6= j.
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4. Candidate list
∀X ∈ Ω, C(X) ⊆ B(X), is composed of the top k better candidates
among the neighbors of the current point with less E. The size of the
candidate list |C(X)| = k is a tunable parameter.

5. Tabu tenets, tabu list and tabu tenure
Tabu tenets are implemented using tabu list and tabu tenure. Tabu
list records the recent migrations of current point and forbids revisiting
these points in tabu tenure.

6. Aspiration criteria
Criterion1. If E(Xnext) < Emin, then the next candidate Xnext will be
set as the current candidate Xcurrent , even if Xnext is in the tabu list.
Criterion2. If the candidates in the candidate list are all tabu-active,
then the best one among the candidates will be set as Xcurrent.

7. Termination criteria
Criterion1. If the number of iterations exceeds the maximum iteration
limits, then the program stops.
Criterion2. If the improvement 4E for Emin is less than the improve-
ment threshold ε, then the program stops.

Our iterative TS algorithm is summarized as follows:

Algorithm 5. The optimization of PLUS factorization.

Initialization: Randomly Choose an initial point X in Ω.
Set Xmin = X, Emin = E(X) and i = 0.
while no termination criteria are meet do

i = i + 1
Find B(X) and ∀X ′ ∈ B(X) calculate E(X

′
).

Construct C(X) and find Xnext.
if Xnext satisfies aspiration criteria then

X = Xnext.
if E(X) < Emin then

Xmin = X, Emin = E(X).
end if

else if Xnext is not tabu-active, then
X = Xnext

if E(X) < Emin then
Xmin = X, Emin = E(X).

end if
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end if
Update tabu list.

end while

4. Experimental Results and Discussion

4.1. Examples of the Stable PLUS Factorization Algorithms

Example:

A =




4 3 2 0
3 4 3 2
2 3 4 3
1 2 3 4




The original general PLUS factorization algorithm stops in the first iteration
due to a14 = 0.

With partial pivoting, the result of Algorithm 2 is:

A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 ·




1 0 0 0
4 1 0 0
3 −0.5 1 0
2 −0.25 1.5 1




·




1 1 0.33 4
0 −1 0.67 −16
0 0 1 −18
0 0 0 18


 ·




1 0 0 0
0 1 0 0
0 0 1 0
0 0.25 0.67 1




With complete pivoting, the result of Algorithm 4 is:

A =




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


 ·




1 0 0 0
2 1 0 0

2.5 3.13 1 0
2 1.25 1.22 1


 ·




1 2.5 1.97 4
0 −1 −0.94 −8
0 0 1 18
0 0 0 −18




·




1 0 0 0
0 1 0 0
0 0 1 0

0.5 −0.38 0.007 1


 ·




0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 1



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Remark: The differences between the two above factorizations are that
the latter gives lower integer transform error, since complete pivoting results
in elements with smaller magnitudes in factor matrices. E2 for the first
factorization is 17.03, and E2 for the second factorization is 15.68.

4.2. Experiments for PLUS factorization optimization

DCT matrices are used in the experiments to exemplify the effectiveness
of PLUS factorization optimization, due to the popularity of DCT in image
and video coding. For each optimal PLUS factorization, 10000 randomly
generated matrices are tested for the average transform error with Overall
Mean Square Error (OMSE) and Overall Mean Error (OME):

OMSE =

∑n
i=1

∑n
j=1

∑10000
k=1 e2

k(i, j)
n× n× 10000

(9)

OME =

∑n
i=1

∑n
j=1

∑10000
k=1 ek(i, j)

n× n× 10000
(10)

where ek(i, j) = x̂k(i, j)−xk(i, j), xk(i, j) are the coefficients of the randomly
generated matrices after DCT transform, and x̂k(i, j) are the coefficients after
integer transform with the PLUS factor matrices of the DCT matrices.

Table 1: E(LUS), OMSE and OME of optimal factorizations for DCT matrices
with exhaustive search

n error metric E(LUS) OMSE OME
E1 2.1907 0.3821 0.00015

2 E2 1.7809 0.1272 0.00011
E∞ 1.0205 0.3000 0.0003
E1 3.2134 0.3855 0.00015

4 E2 2.8893 0.1485 0.00011
E∞ 1.3205 0.3000 0.0003
E1 17.5834 0.4011 0.00016

8 E2 4.6766 0.1549 0.00011
E∞ 4.5655 0.3123 0.00049

n is the order of the DCT matrices.

The results in Table 1 reveal that:

• OMSE and OME of the global optimal factorizations found with error
metrics defined using L2 are less than those defined using L1 or L∞.
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• Less E(LUS) is related to less OMSE and OME, and E(LUS) increases
slowly with the orders of matrices.

Table 2: Some optimal factorizations for DCT found by exhaustive search

n P L P R u E2

2 1 2 1 2 1 −1 1.7809
2 1 1 2 1 1 1.7809

4 2 0 4 3 1 2 3 4 1 1 1 2.8893
4 3 2 1 2 4 1 3 −1 1 1 2.8893

4 7 1 8 6 5 3 2 3 2 5 4 7 1 8 6 −1−1 1−1 1 1 1 1 4.6766
8 4 7 1 8 6 5 3 2 3 2 5 4 7 8 1 6 −1−11−1 1 1 1−1 4.6766

2 3 1 4 8 5 76 1 4 6 3 5 2 7 8 1−1 1−1 1−1−1−1 4.6766
2 3 1 4 8 5 7 6 1 4 6 3 5 7 2 8 1−1 1−1 1−1−1 1 4.6766

Table 3: Transform error E2 of optimal factorizations found by TS

t
n k 5 10 15 20 Eae Emse

4 2.89 2.89 2.89 2.89
4 8 2.89 2.89 2.89 2.89 0 0

11 2.89 2.89 2.89 2.89
4 4.68 4.81 4.82 4.78

8 6 4.76 4.76 4.76 4.76 0.08 0.0016
8 4.76 4.76 4.71 4.76
5 8.35 8.14 8.31 7.94

16 8 8.19 8.23 8.12 8.23 — 0.011
11 8.28 8.28 8.28 8.28

k is the size of candidate list;
t is tabu tenure;

Eae = 1
N

∑N
i=1 E(i)−Emin;

Emin is E2 in Table 2;
Emse = 1

N

∑N
i=1(E(i)− E)2;

E is the average error.
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Figure 1: E2 comparison between the factorizations found by three algorithms

Figure 2: Convergence speed of optimization algorithm using TS

18



Based on the results in Table 3, Fig. 1 and Fig. 2, some discussions are
given as follows:

• For n = 4, when the solution space of optimization is relatively small,
our algorithm can always find the optima.

• For n = 8, when the solution space of optimization is expanded, our
algorithm can find the global optima and other sub-optimal solutions.
The transform errors of sub-optimal solutions are very close to that of
the global optima.

• For n = 16, when the solution space of optimization is very large,
our algorithm can find the sub-optimal solutions with little fluctua-
tion. The sub-optimal solutions found with our fast TS method are all
much better than randomly found ones and those found by any PLUS
factorization algorithm.

• The convergence speed of our optimization algorithm using Tabu Search
is very fast. In contrast to exhaustive search for weeks, each iteration
for factorization of the 8 × 8 DCT matrix only costs 0.2ms on a PC
with 0.7G CPU and 128M memory, and the sub-optimal solutions can
be found in only a few iterations.

• When n is small, the PLUS factorizations obtained from algorithms in
Section 2 are with little larger transform error. Thus, these algorithms
are practical in the applications when n is small.

4.3. Optimal PLUS Factorization for Image Coding

In this section, we apply optimal PLUS factorization to lossless/lossy im-
age coding. The integer pixel values are transformed into integer coefficients
with the integer transforms under study. The integer transform implemented
with PLUS factorization is illustrated in Fig. 4.
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Figure 3: Flowchart of 4-point integer DCT implemented with PLUS. In the figure, [ ]
denotes a round-off operation.

We compare the lossless coding performance of the integer transforms in
terms of entropy H(C), which is similar to coding data rate in unit of bits
per pixel (bpp). (Note that the distortion caused by lossless coding is zero.)
H(C) is the average entropy of transform coefficients, given as below:

H(C) =
1

s

s∑
i=1

H(Ci) (11)

where H(Ci) is the entropy of the transform coefficients of the i-th subband,
and s is the total number of the subbands. For n-point 2 dimensional DCT,
s = n × n. Here we use entropy of transform coefficients instead of imple-
menting an entropy coding scheme (e.g., Huffman code or arithmetic code)
to code the resulting transform coefficients for two reasons. First, this paper
focuses on matrix factorization for integer transform implementation; hence,
we should compare the decorrelation performance of the resulting integer
transforms, which is usually characterized by the average entropy defined in
Eq. (11). Second, entropy coding for specific integer transforms is out of the
scope of this paper; we will leave this for future study.

To compare the lossy coding performance of the integer transforms, we
use bpp vs. Peak Signal-to-Noise Ratio (PSNR). In the lossy encoder that
we implement, an input image is first transformed by an integer transform;
then the integer transform coefficients are uniformly quantized; the quantized
coefficients are coded with fixed length coding instead of variable length
coding (or entropy coding), since entropy coding is out of the scope of this
paper. Finally, the decoder reconstructs the image.
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4.3.1. Integer DCT with PLUS Factorization

We apply the optimal PLUS factorization of DCT found by our proposed
algorithm to lossless image coding. The transform matrices are 2-point, 3-
point and 4-point DCTs. Their integer reversible implementation by optimal
PLUS factorization are denoted as ‘Opt2’, ‘Opt3’ and ‘Opt4’ respectively.
Their integer reversible implementation by expansion factors [29] are de-
noted as ‘IntDCT2’, ‘IntDCT3’ and ‘IntDCT4’. Table 4 shows the entropy
of transform coefficients obtained by our proposed optimal PLUS factoriza-
tion schemes and integer DCT with expansion factors. The entropy obtained
by our algorithm is less than that obtained by integer DCT with expansion
factors for all test images.

Table 4: Entropy comparison of Integer DCT with expansion factors [29] and op-
timal PLUS factorization

Image IntDCT2 Opt2 IntDCT3 Opt3 IntDCT4 Opt4
Barbara 6.94 5.95 8.02 6.65 6.92 5.57

Lena 6.37 5.38 7.43 5.97 6.36 5.03
Boat 6.41 5.42 7.46 6.06 6.39 5.12
Jet 5.89 5.11 6.89 5.72 5.87 4.95

Mandrill 7.59 6.59 8.66 7.00 7.57 6.62
Goldhill 6.69 5.70 7.78 6.23 6.68 5.43
Average 6.65 5.69 7.71 6.27 6.63 5.45

The corresponding optimal PLUS factorizations can be found in Appen-
dix C.

4.3.2. Integer Lapped Transform with PLUS Factorization

We also apply optimal PLUS factorization to make Lapped Transform
[31, 32, 33, 34, 37] integer reversible. The Photo Core Transform (PCT) and
Photo Overlap Transform (POT) are defined in [30, 35, 36]. We obtain the
optimal PLUS factorization for 4-point POT and 4-point DCT, and apply it
to lossy/lossless image coding, which is denoted as ‘PLUS 1’. We also apply
optimal PLUS factorization to 4-point POT and 4-point PCT which is an
approximation of DCT. This coding scheme is denoted as ‘PLUS 2’. The
optimal PLUS factorization scheme ‘PLUS 1’ and ‘PLUS 2’ can be found in
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Appendix D. The lifting factorization scheme in JPEG-XR [30, 36] is de-
noted as ‘JPEG-XR’. The entropy performance, as well as lossy performance
of ‘PLUS 1’ and ‘PLUS 2’ is better than that of ‘JPEG-XR’, as shown in
the Table 5, Table 6 and Fig. 5. For example, for image Lena, at the bit
rate of 0.25 bpp, ‘PLUS 1’ achieves 2.5dB gain in PSNR than ‘JPEG-XR’.
In addition, the performance of ‘PLUS 1’ is better than that of ‘PLUS 2’,
which means that the DCT implemented in ‘PLUS 1’ has higher decorrela-
tion ability than its approximation in ‘PLUS 2’.

Table 5: Entropy comparison of Integer Lapped Transforms with JPEG-XR,
PLUS 1 and PLUS 2

Image JPEG-XR PLUS 1 PLUS 2
Lena 4.93 4.48 4.61

Baboon 6.34 6.11 6.22
Barbara 5.64 4.98 5.29

Boat 5.10 4.54 4.71
Goldhill 5.27 4.92 5.01
Peppers 5.09 4.76 4.83
Average 5.40 4.97 5.11
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Figure 4: Average bpp vs. PSNR with integer transforms for test images
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Table 6: Bpp vs. PSNR comparison of Integer Lapped Transforms with JPEG-XR,
PLUS 1 and PLUS 2

Image bpp JPEG-XR PLUS 1 PLUS 2
4 44.14 45.17 45.03
2 42.35 42.97 42.93

Lena 1 38.90 39.81 39.69
0.5 35.16 36.95 36.69
0.25 31.45 33.94 33.52
0.125 28.46 30.10 29.78

4 44.13 45.20 45.06
2 42.36 42.97 42.93

Barbara 1 38.89 39.96 39.73
0.5 34.68 36.54 36.02
0.25 30.34 32.51 31.78
0.125 26.43 28.14 27.42

4 44.14 45.42 45.30
2 42.39 43.12 43.06

Baboon 1 38.85 39.28 39.21
0.5 33.89 34.31 34.24
0.25 28.85 29.52 29.30
0.125 24.46 25.39 25.06

4 44.09 45.14 44.97
2 42.31 42.92 42.91

Boat 1 39.02 40.22 40.05
0.5 35.26 37.01 36.67
0.25 30.91 33.14 32.74
0.125 27.40 29.12 28.85

4 44.13 45.24 45.09
2 42.37 43.01 42.96

Goldhill 1 38.88 39.55 39.41
0.5 34.42 35.64 35.45
0.25 30.38 32.11 31.86
0.125 27.51 28.79 28.63

4 44.15 45.33 45.17
2 42.35 43.03 43.00

Peppers 1 38.87 39.48 39.33
0.5 34.59 35.67 35.57
0.25 31.17 33.27 33.09
0.125 28.57 30.19 29.99
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We also compare the subjective performance of ‘JPEG-XR’, ‘PLUS 1’ and
‘PLUS 2’ in terms of the visual quality of the reconstructed image ‘Barbara’
in Fig. 5. The ‘Barbara’ reconstructed by ‘PLUS 1’ has the best visual
quality, and then the ‘PLUS 2’, and the worst is ‘JPEG-XR’.

(a) Original image Barbara (b) Reconstructed with ‘PLUS 1’
PSNR 32.51 dB

(c) econstructed with ‘PLUS 2’
PSNR 31.78 dB

(d) Reconstructed with ‘JPEG-XR’
PSNR 30.33 dB

Figure 5: Lossy subjective performance comparison of ‘JPEG-XR’, ‘PLUS 1’ and ‘PLUS 2’
at 0.25 bpp

5. Conclusion

In this paper, we have addressed two problems of PLUS factorization:
stabilization and optimization. We proposed stable algorithms for PLUS fac-
torization by pivoting and back tracing strategies, and presented the stability
theorem. We proposed a fast optimization algorithm for PLUS factorization
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with Tabu Search to find the optimal PLUS factorizations with the least
transform error. The experiments in lossy and lossless image coding demon-
strated that the optimal PLUS factorization achieves superior performance
in implementing integer reversible transforms for transform matrices of any
size. The optimal PLUS factorization for progressive lossy transform coding
and new integer transform design will be explored in our future work.

Appendix A. The Proof of Theorem 2

Proof: (by induction)
We just need to prove that: if P T A = LUS = L

′
U
′
S
′
, then L = L

′
, U =

U
′
,S = S

′
(S is the single-row elementary reversible matrix with nonzeros

in the last row, si is the ith entry in the last row of S, S with other patterns
could be proved similarly).

1. Firstly, we prove S = S
′

Because det((P T AS−1)(k)) = det((P T A S
′−1)(k)) = det((LU )(k)) =∏k

i=1 ui, k = 1, · · · , n − 1, we use induction to prove si = s
′
i, i =

1, · · · , n− 1.
1o When i=1, a11 − s1a1n = a11 − s

′
1a1n and a1n 6= 0, so s1 = s

′
1.

2o Assume that si = s
′
i holds, when i < t. When i = t,

det((P T [a1−s1an, a2−s2an, · · · ,at−1−st−1an, at])
(t))−stdet((P T [a1,a2,

· · · , at−1, an])(t)) = det((P T [a1−s1an, a2−s2an, · · · ,at−1−st−1an,at])
(t))−

s
′
tdet((P T [a1, a2, · · · ,at−1,an])(t)), so st = s

′
t.

3o To sum up, si = s
′
i, i = 1, · · · , n− 1 hold, i.e. S = S

′
.

2. Then we prove L = L
′
, U = U

′
.

Because LU = P T AS−1 = P T AS
′−1 = L

′
U

′
, we can have L

′−1L =
U

′
U−1. Because L

′−1L is a lower triangular matrix, U
′
U−1 is a upper

triangular matrix, we have L
′−1L = U

′
U−1 = I. Finally, we have

L
′
= L and U

′
= U . ¥

Appendix B. Perturbation Analysis

Assume that a nonsingular matrix A ∈ Rn×n has unique PLUS factor-
ization, A = LUS. Let ∆A ∈ Rn×n be a perturbation such that A + ∆A
also has unique PLUS factorization:

A + ∆A = (L + ∆L)(U + ∆U )(S + ∆S) (12)
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Note that P is not considered, because the analysis of the sensitivity of
general PLUS factorization algorithm is simpler and without much loss of
generality. The measure of ∆L, ∆U and ∆S is deduced as following.

We use the matrix-vector equation approach [22], to present perturba-
tion analysis for PLUS factorization. Compared with Chang’s perturbation
analysis for LU factorization,

1. The pattern of ∆U in PLUS factorization is different from that of LU
factorization.

2. ∆S increases the analysis complexity.

We use the following notations for the perturbation analysis. A(t) represents

matrix function, and ˙A(t) represents its derivative. For any matrix A ∈
Rn×n, A = [a1, · · · , an], ai is the ith column vector of A, and vec(A) ∈
Rn2×1 is the vector form of A with ai in succession. L̃ ∈ Rn(n−1)/2×1 is
composed of elements in nonzero locations of L̇(0), Ũ ∈ R(n2−n+2)/2×1 is

composed of elements in nonzero locations of U̇ (0), and S̃ ∈ R(n−1)×1 is
composed of elements in nonzero locations of Ṡ(0).

Lemma 1. Assume that a nonsingular matrix A ∈ Rn×n has unique
PLUS factorization, A = LUS. Let ∆A ∈ Rn×n, ∆A = εE, where ε is
small enough, such that A + tE satisfies Condition 1 for all |t| ≤ ε, then
A + tE has unique PLUS factorization:

A + tE = L(t)U (t)S(t), |t| ≤ ε, (13)

which leads to
L̇(0)US + LU̇ (0)S + LUṠ(0) = E. (14)

For t = ε, we obtain A + ∆A with the unique PLUS factorization

A + ∆A = (L + ∆L)(U + ∆U )(S + ∆S), (15)

where ∆L, ∆U and ∆S satisfy

∆L = εL̇(0) + O(ε2) (16a)

∆U = εU̇ (0) + O(ε2) (16b)

∆S = εṠ(0) + O(ε2) (16c)
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It can be easily proved using Taylor expansion in the similar way as in
[22]. Note that L(0) = L, L(ε) = L + ∆L, U (0) = U , U (ε) = U + ∆U ,
S(0) = S, and S(ε) = S + ∆S.

From Equation (14), we obtain

ei = L̇(0)Usi + LU̇ (0)si + LUṡ(0)i, i = 1, · · · , n. (17)

By rearranging equation (17), we obtain a matrix-vector equation:

(
W L W U W S

)



L̃

Ũ

S̃


 = vec(E) (18)

where W L ∈ Rn2×n(n−1)/2 is composed of n × (n − 1) sub-matrices with
following pattern:




W L1,1 W L1,2 · · · W L1,n−2 W L1,n−1

W L2,1 W L2,2 · · · W L2,n−2 W L2,n−1

...
...

. . .
...

...
W Ln−1,1 W Ln−1,2 · · · W Ln−1,n−2 W Ln−1,n−1

W Ln,1 W Ln,2 · · · W Ln,n−2 W Ln,n−1




W Lij
∈ Rn×(n−j), 1 ≤ i, j ≤ n,

W Lij
=





(siujn + uji)

(
0

In−j

)
, i < n (19a)

ujn

(
0

In−j

)
, i = n (19b)

W U ∈ Rn2×(n2−n+2)/2 is composed of n × (n − 1) sub-matrices. Each
sub-matrix has n rows, and the sub-matrices in the ith (i = 1, · · · , n − 2)
column block have i columns, the sub-matrices in the (n−1)th column block
have n columns, with the following pattern:




0n×1 s1L
L1n×1 s2L

L1n×2 s3L
. . .

...
L1n×(n−2) sn−1L

L



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W S ∈ Rn2×(n−1) is a diagonal block matrix, composed of the same n ×
(n− 1) sub-matrices, Lun ∈ Rn×1, with the following pattern:




Lun

Lun

. . .

Lun




Obviously, by fundamental matrix transform, [W L,W U ,W S] can be
transformed into a lower triangular matrix with (a1n, u1, · · · , u1︸ ︷︷ ︸

n

, 1, 1, u2, · · · , u2︸ ︷︷ ︸
n

,

1, 1, 1, u3,· · · , u3︸ ︷︷ ︸
n

, · · · , 1, · · · , 1, un−1︸ ︷︷ ︸
n

, 1, · · · , 1︸ ︷︷ ︸
n

) as the diagonal entries. There-

fore, W = [W L,W U ,W S] is invertible. Let

W−1 =




Y L

Y U

Y S


 ,

then we obtain 


L̃

Ũ

S̃


 = W−1vec(E) =




Y L

Y U

Y S


 vec(E) (20)

‖L̇(0)‖F=‖L̃‖2 ≤‖YL‖F‖vec(E)‖2 =‖YL‖F ‖E‖F (21a)

‖U̇(0)‖F=‖Ũ‖2 ≤‖YU‖F‖vec(E)‖2 =‖YU‖F ‖E‖F (21b)

‖Ṡ(0)‖F=‖S̃‖2 ≤‖YS‖F‖vec(E)‖2 =‖YS‖F ‖E‖F (21c)

‖∆L‖F
‖ L ‖F ≤

‖Y L‖F‖E ‖F
‖ L ‖F

ε+O(ε2)=κL(A)
‖ ∆A ‖F
‖ A ‖F

+O(ε2) (22a)

‖∆U‖F
‖ U ‖F ≤

‖Y U‖F‖E ‖F
‖ U ‖F

ε+O(ε2)=κU (A)
‖ ∆A ‖F
‖ A ‖F

+O(ε2) (22b)

‖∆S‖F
‖ S ‖F ≤

‖Y S‖F‖E ‖F
‖ S ‖F

ε+O(ε2)=κS(A)
‖ ∆A ‖F
‖ A ‖F

+O(ε2) (22c)

where

κL(A) =‖ Y L ‖F ‖ A ‖F / ‖ L ‖F

κU (A) =‖ Y U ‖F ‖ A ‖F / ‖ U ‖F

κS(A) =‖ Y S ‖F ‖ A ‖F / ‖ S ‖F
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Theorem 3. Perturbation analysis II.
Assume that A and A + ∆A are both nonsingular and their PLUS factor-

izations exist: A = LUS and A + ∆A = (L + ∆L)(U + ∆U )(S + ∆S),
then Equations (20) (21a) (21b) (21c) (22a) (22b) (22c) hold.

Perturbation analysis example:

The original PLUS factorization is:

A = LUS

=

(
0.8913 0.4565
0.7621 0.0185

)

=

(
1 0

0.7665 1

) (
1 0.4565
0 −0.3314

)(
1 0

−0.2381 1

)

With a perturbation ∆A, the PLUS factorization is:

A + ∆A = (L + ∆L)(U + ∆U )(S + ∆S)

=

(
0.8913 0.4565
0.7621 0.0185

)
+

(
0.009 0.001
0.007 0.004

)

=

(
1 0

0.7746 1

)(
1 0.4575
0 −0.3316

)(
1 0

−0.2179 1

)

Therefore, the perturbation error is limited.

Appendix C. The optiaml PLUS factorizations for DCT

The PLUS factorization ‘Opt2’ for 2-point DCT CII
2 :

CII
2 =

(
0 1
1 0

)(
1 0

0.4142 1

)(
1 −0.7071
0 1

)(
1 0

0.4142 1

)

The PLUS factorization ‘Opt3’ for 3-point DCT CII
3 :

CII
3 =




0 1 0
1 0 0
0 0 1







1 0 0
0.3382 1 0
0.2391 −0.5176 1







1 −0.3660 −0.7071
0 1 0.8165
0 0 1







1 0 0
0 1 0

0.4142 −0.5176 1



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The PLUS factorization ‘Opt4’ for 4-point DCT CII
4 :

CII
4 =




0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0







1 0 0 0
0.3827 1 0 0
−0.9239 −0.6682 1 0

0 0.3318 0.6934 1







1 −0.3318 0.3318 −0.5
0 1 −0.0761 −0.4619
0 0 1 −0.5
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 0
1 0.3364 −0.3364 1







0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0




Appendix D. The optimal PLUS factorizations for Lapped Trans-
form

For scheme ‘PLUS 1’, it is composed of optimal PLUS factorization of
POT and optimal PLUS factorization of DCT. For scheme ‘PLUS 2’, it is
composed of optimal PLUS factorization of POT and optimal PLUS factor-
ization of the approximation of DCT.

The optimal PLUS factorization of POT is:



−0.1448 0.2313 −0.2313 0.9720
0.2313 0.9720 −0.1448 −0.2313
−0.2313 −0.1448 0.9720 0.2313
0.9720 −0.2313 0.2313 −0.1448


=




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0







1 0 0 0
0.276 1 0 0
−0.276−0.173 1 0
−0.333 0.328 −0.085 1







1 −0.2585 0.2311 −0.1448
0 1 −0.2089 −0.1913
0 0 1 0.1583
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 0
1 0.3364 −0.3364 1




The optimal PLUS factorization of DCT is:



0.5 0.5 0.5 0.5
0.6533 0.2706 −0.2706 −0.6533

0.5 −0.5 −0.5 0.5
0.2706 −0.6533 0.6533 −0.2706


=




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







1 0 0 0
0.2346 1 0 0
0.4142−0.7654 1 0
0.2346 0 −0.6934 1







1 −0.2929 −0.0137 −0.6533
0 1 0.3066 0.6533
0 0 1 0.5
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 0

0.5307 −0.8626 0.3933 1



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The optimal PLUS factorization of the approximation of DCT is:



0.5 0.5 0.5 0.5
0.7071 0 0 −0.7071

0.5 −0.5 −0.5 0.5
0 0.7071 −0.7071 0


=




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0.2929 1 0 0
0.2929 0 1 0

0 0.7071−2.1213 1







1 −0.5 −1.5 −0.7071
0 1 2 0.7071
0 0 1 0.7071
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 0

0.4142 −0.7071 −2.1213 1



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