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Abstract—The H.264 video coding standard achieves signifi-
cantly improved video compression efficiency and finds important
applications in digital video broadcast. To enable H.264 video
encoding for digital TV broadcast and maximize its broadcast ef-
ficiency, there are two important issues that need to be adequately
addressed. First, we need to understand the complex coding mech-
anism of an H.264 video encoder and develop a model to analyze
and control its rate-distortion (R-D) behavior in an accurate and
robust manner. Second, the R-D behaviors of individual channels
in the broadcast system should be jointly controlled and optimized
under bandwidth and buffer constraints so as to maximize the
overall broadcast quality. In this paper, we develop a linear rate
model and a linear rate control scheme for H.264 video coding. We
develop an optimum statistical multiplexing system to allocate bits
across video programs (each being encoded by an H.264 encoder)
and video frames so that the overall video broadcast quality is
maximized. We study the bandwidth and buffer constraints in
video broadcast and formulate the optimum statistical multi-
plexing into a constrained mathematical optimization problem.
Realizing that it is impossible to find a close-form solution for
global optima, we propose a simple yet efficient algorithm to find
a near-optimum solution for joint rate allocation under buffer
constraints. Our extensive simulation results demonstrate that the
proposed statistical multiplexing system achieves about 40–50%
saving in bandwidth, provides a smooth video quality change
across programs and frames, and maintains robust decoder buffer
control.

Index Terms—H.264 video coding, rate control, statistical multi-
plexing, optimum rate allocation, TV broadcast.

I. INTRODUCTION

I NTERNATIONAL standards for video coding, such as
MPEG-2, H.263, and MPEG-4, have been the enabling

technologies for a wide range of multimedia applications
[1]–[3]. The H.264 video coding standard developed jointly
by ITU-T VCEG (Video Coding Experts Group) and ISO-IEC
MPEG targets at significantly improved coding efficiency as
well as other important features, such as error resilience and
network friendliness [4]. To enable H.264 video encoding for
digital TV broadcast and maximize its broadcast efficiency,
there are two important issues that need to be adequately
addressed. First, we need to understand the complex coding
mechanism of H.264 video encoding and develop a model to
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analyze and control its rate-distortion behavior in an accurate
and robust manner. This problem is called rate-distortion (R-D)
analysis and control for H.264 [11], [12], [16]. Second, a digital
TV broadcast system often has a number of TV programs, each
being encoded by an H.264 video encoder. The H.264 encoding
behaviors of individual programs in the broadcast system
should be jointly controlled and optimized under bandwidth
and buffer constraints so as to maximize the overall video
broadcast quality. This problem is called optimum statistical
multiplexing [17], [21].

A. Related Work

R-D analysis and control is an essential component in video
coding and streaming over networks. The R-D behaviors of
previous video coding systems, such as MPEG-2, H.263, and
MPEG-4, have been well understood, and many R-D models
and control algorithms have been developed in the literature
[5], [6], [8], [9]. As a new international standard, the H.264
video coding has introduced many sophisticated coding fea-
tures and techniques and becomes much more complex than
its predecessors [4]. This makes it more difficult to develop
a model to analyze and control the R-D behavior of H.264
video encoders accurately and robustly. Recently, a number of
rate control algorithms have been developed for H.264 video
coding [11]–[13], [15], [16]. For example, in [11], the mean
of absolute difference (MAD) of each basic unit in a current
frame is estimated by the MAD of the collocated basic unit in
its previous frame using a linear model. Then, a quadratic rate
model is used to determine the QP of the basic unit. In [12],
the residual of each frame is first estimated with a reduced
set of intra and inter-prediction modes and the number of
reference frames is limited to one. Then, an H.263 TMN8-like
R-D model is used to determine a QP. In [16], a two-staged
scheme is proposed to address the inter-dependency between
R-D optimization and rate control in H.264. In general, these
algorithms, especially those that use previous frame statistics
for rate control [11], suffer from relatively large errors in rate
control or buffer regulation. In addition, some important issues,
such as header bits estimation and recursive macroblock coding
caused by intra prediction, have not been sufficiently addressed
for accurate and robust rate control.

In this work, we propose to develop a simple yet efficient rate
control algorithm, called linear rate control, for H.264 video
coding.

Statistical multiplexing is important for many video appli-
cations, including digital TV broadcast, video surveillance,
and video conferencing. In a statistical multiplexing system,
as illustrated in Fig. 1, multiple video programs/streams are
encoded individually, then multiplexed, and transmitted over
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Fig. 1. Illustration of statistical multiplexing in H.264 TV broadcast.

a bandwidth-limited network to receivers for video decoding
and presentation. In this case, not only the bit rate of each
H.264 encoder needs to be accurately controlled, but also the
total transmission bandwidth needs to be efficiently allocated
between video programs such that the overall video presen-
tation quality is maximized [17], [18], [19], [21]. Note that,
in a multiplexing system, different video programs may have
different scene activities; and within each program, the scene
activity may change dramatically over time. To achieve a good
statistical multiplexing performance, we need to analyze and
estimate the R-D behavior of the H.264 encoder for each frame
in each program. Based on their R-D statistics, we allocate the
total network bandwidth across different video programs and
frames to maximize the overall video broadcast quality. Since
each video stream needs to be transmitted in real-time over
the network to end users, a joint rate allocation should also
consider decoder buffer constraints to avoid buffer under-flow
or overflow which will cause unpleasant picture freezing or
quality degradation due to data loss [19], [29].

A number of statistical multiplexing and joint rate control
algorithms have been proposed for various video encoding
schemes. Depending on how the R-D statistics of the video
frames are obtained, these algorithms follow either of the fol-
lowing two approaches: feedback and look-ahead approaches.
In the feedback approach [17]–[19], coded representations
of previous video frames are used to derive or predict the
encoding complexity of the current frame and its subsequent
frames. This approach assumes that neighboring frames in the
bit allocation window share similar coding characteristics, and
for this reason, it often suffers from performance degradation at
scene changes. In the look-ahead approach [20], [21], a pre-pro-
cessing procedure is applied to future “uncoded” video frames
within the look-ahead window to collect their R-D statistics;
these R-D statistics are then used for joint rate allocation and
rate control. Lack of an accurate R-D model for video encoders
and a mathematical framework for statistical multiplexing, ex-
isting algorithms often achieve adaptivity instead of optimality
in performance.

B. Overview of This Work and Major Contributions

The proposed linear rate control and optimum statistical mul-
tiplexing system for H.264 TV broadcast is illustrated in Fig. 1.
Multiple video sequences captured from different sources are

encoded in parallel by a bank of H.264 video encoders. The
compressed bit streams are multiplexed into a constant-bit-rate
(CBR) channel and transmitted to end users. It should be no-
ticed that different video programs have different scene activ-
ities. In addition, within each program, the scene activity may
change over time (from frame to frame). Our design objective
is to maximize the overall video broadcast quality by dynam-
ically allocating the available channel bandwidth across video
programs and frames. Sometimes, video programs may be pre-
compressed. During the session of digital TV broadcast, these
compressed video streams often need to be reprocessed using
transcoding or rate shaping techniques before network trans-
mission [22], [23]. This is because the bit rates of individual bit
streams need to be adapted so as to match the time-varying net-
work transmission condition and to maximize the overall video
broadcast quality through joint rate allocation. In this case, the
proposed optimum statistical multiplexing scheme also applies.

In statistical multiplexing system for digital TV broadcast,
we need to allocate the channel bandwidth across programs and
frames to maximize the overall video quality. The proposed
multiplexing system has two modules: look-ahead processing
and joint rate allocation. In look-ahead processing, we propose
an efficient scheme to handle the complicated inter-frame de-
pendency problem so that those rate-distortion (R-D) statistics
needed by joint rate allocation can be obtained at low compu-
tational complexity. We will study bandwidth and buffer con-
straints in video broadcast and formulate the optimum statistical
multiplexing into a constrained nonlinear optimization problem.
Realizing that it is impossible to find a close-form solution for
global optima, we propose a simple yet highly efficient algo-
rithm to find a near-optimum solution for joint rate allocation
and quality smoothing under buffer constraints.

Once the channel bandwidth has been allocated to each video
program and the target bit rate for each video frame is deter-
mined, we need to develop an accurate and robust rate control
algorithm for the H.264 video encoder to achieve the target bit
rate. In this work, we find that, in H.264 video coding, the en-
coding bit rates of transform coefficients and overhead informa-
tion are both linear functions of the fraction of quantized zeros.
Based on this finding, we establish a linear rate model and then
develop a linear rate control for H.264 video coding. Our ex-
tensive simulation results demonstrate that the proposed linear
rate control and statistical multiplexing system achieves about
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40–50% saving in bandwidth, provides smooth video quality
change across programs and frames, and maintains robust de-
coder buffer control.

The rest of the paper is organized as follows. In Section II, we
introduce the linear rate model and develop a linear rate con-
trol algorithm for H.264 video encoding. Section III presents
the look-ahead processing scheme. Our joint rate allocation and
its near-optimum solution are described in Section IV. Experi-
mental results are presented in Section V. Section VI concludes
the paper.

II. R-D ANALYSIS AND CONTROL FOR H.264 VIDEO CODING

In this section, we will develop a linear rate model and a linear
rate control algorithm for H.264 video coding.

A. Rate Control for H.264

H.264 employs a number of sophisticated encoding schemes
which are substantially different from previous standards, such
as multiframe motion prediction, variable block sizes, multi-
directional intra prediction, 4 4 integer transform, nonlinear
and nonuniform quantization, and context adaptive binary arith-
metic coding [4], [14]. This makes accurate R-D modeling and
control more challenging. In addition, an effective rate control
algorithm for H.264 video coding needs to address the following
two issues. 1) In H.264 video coding, the fraction of overhead
information bits, including bits for motion vectors, macroblock
coding modes, and quantization parameters, is significant and
often as high as 50% of the total bit rate [16]. These bits are not
related to transform coefficients and not controlled by quanti-
zation parameters. More importantly, the fraction of these bits
changes from frame to frame. Therefore, overhead information
bits estimation has become an important issue in H.264 rate con-
trol. 2) H.264 employs an intra-prediction scheme where the en-
coding of an MB requires the reconstruction of previous MBs
in the encoding order. This type of MB-level recursive encoding
structure procedure prevents us from collecting frame-level sta-
tistics for accurate rate control. In this work, we find that, in
H.264 video coding, there is a linear relationship between the
overall encoding bit rate and the fraction of zeros in the quan-
tized transform coefficients. We then propose a scheme to cope
with the recursive encoding structure and collect frame-level
statistics. Based on the simple yet efficient linear rate model and
frame-level statistics, we will develop a linear rate control algo-
rithm for H.264 video coding.

B. Linear Rate Model for H.264 Encoding

In our previous work [6], we have demonstrated that, in typ-
ical image/video coding systems, including JPEG, JPEG2000,
MPEG-2, H.263, and MPEG-4, there is a linear relationship be-
tween the coding bit rate and the fraction of zeros among
quantized transform coefficients. In other words, we have the
following linear rate model,

(1)

where is the fraction of zeros and is a frame-dependent con-
stant. Here, is the coding bit rate of header information,
including motion vectors, coding modes, picture headers, and

Fig. 2. The linear relationship between encoding bits (Y-axis) and the number
of nonzero coefficients (X-axis) in H.264 coding for “Foreman” CIF video. All
the subplots share the same coordinates.

other overhead information. In our previous work on rate con-
trol [6], the number of motion vector bits was estimated using
table lookup after motion estimation. The rest of the header bits
is relatively small and remains nearly constant between neigh-
boring frames of the same picture type. Therefore, it is efficient
to estimate it from previous frames. A detailed treatment of this
linear rate model is available in [6].

As mentioned previously, in H.264 video coding, the amount
of header bits, including bits for motion vectors, coding modes,
and picture headers, is significant and sometimes changes sig-
nificantly between neighboring frames. Accurate estimation of
the overhead information bit rate has become one of the major
issues in rate control for H.264 video coding. Kwon et al. [16]
found that there is a linear relationship between header infor-
mation bit rate and the number of nonzero motion vectors. This
finding is very useful for overhead information bit rate estima-
tion. However, it involves a relatively high computational com-
plexity since it requires the information about motion vectors.

In this work, we find that, in H.264, not only the bit rate
of transform coefficients but also the bit rate of header
information is a linear function of . This interesting finding
helps us to solve the problem of estimating header information
bits and allows us to establish an accurate rate model for H.264
video coding. In the following, we present one example (out of
many) to demonstrate this linear relationship. We execute the
H.264 video encoder (version JM 9.5) [24] on “Foreman” QCIF
(176 144) video sequence coded at 15 frames per second
(fps) with CABAC (context adaptive binary arithmetic coding).
We encode each frame with multiple quantization parameters,
record the corresponding number of encoding bits and the
number of nonzero coefficients (NNZs). Fig. 2 shows the total
number of encoding bits as a function of NNZs. It can be seen
that there is a strong linear relationship between them. Since

represents the fraction of nonzeros coefficients, we have

(2)

where is constant. This linear rate model also holds for
Intra frames, as well as B-frames with bidirectional motion
prediction. It also holds when CAVLC (context adaptive vari-
able length coding) entropy coding is used [4]. The linear rate
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model in (2) applies not only to a video frame, but also to
a slice or slice group [4]. It should be noted that the linear
rate model may loose its accuracy at extremely low or high
bit rates. However, within a normal operation range of video
encoding, for example, between 25 dB and 45 dB in picture
quality, this model is fairly accurate. It is also worthwhile to
mention that, when the fraction of zeros approaches 1 or the
fraction of nonzeros approaches 0, the number of encoding
bits will be very small (about 300–400 bits), but won’t goes
to exactly 0. These bits are called overhead bits. We find that
the amount of these overhead bits is very small and does not
change significantly from frame to frame. Therefore, we can
simply estimate it using the statistics from previous frames.

C. Linear Rate Control for H.264 Video Encoders

Based on the linear rate model in (2), we are going to develop
a linear rate control (LRC) algorithm for H.264 video encoding.
To this end, there are two major issues that need to be addressed.
First, how to estimate the value of in (2)? Second, how to
determine the quantization parameter for each MB during H.264
video encoding?

1) Estimating the Value of : To estimate the value of , our
basic approach is to use the coding statistics of previous encoded
MBs in the current video frame. Let be the number of coded
MBs in the current frame and the number of bits already
used to encode these MBs. We denote the number of zeros
produced by these MBs by . Note that each 16 16 MB in a
YUV 4:2:0 format has 384 coefficients. Therefore, the average
coding bit rate of these coded MBs is given by
and the fraction of zeros is . According to (2),
can be estimated as follows:

(3)

As more and more MBs are encoded, the estimated value of
should approach its true value of the current frame.

2) Determining the Quantization Parameter: The proposed
rate control operates at the MB level, which determines the
quantization parameter of each MB to be encoded. Let the bit
budget of the current video frame be . Since bits have
been already used for encoded previous , we have
bits left for remaining MBs. Let be total number of MBs in
the current video frame. Therefore, the average coding bit rate
of remaining MBs is given by

(4)

According to (2), the fraction of zeros that need to be produced
by quantizing the remaining MBs is given by

(5)

We observe that, in typical transform coding systems, including
H.264, the fraction of zeros increases with the quantization pa-
rameter. This implies that, in general, there is an one-to-one
mapping between them [6]. Based on this one-to-one map-
ping, we can determine the quantization parameter for a given

, which should achieve the target coding bit rate . In the fol-
lowing section, we will discuss how to collect the distribution
of transform coefficients of the whole video frame and estimate
the mapping.

D. Collection of Frame-Level Statistics

In H.264 video coding, spatial intra prediction, which ex-
plores the spatial correlation among neighboring MBs, is used
to improve the compression efficiency. The prediction of the
current MB relies on the reconstruction of its previous MBs in
the encoding order [4]. This type of recursive encoding struc-
ture requires that the encoding process be performed only on
an MB-by-MB basis and potentially prevents the rate controller
from accessing future MBs to collect frame-level statistics, such
as the distribution of transform coefficients needed by our linear
rate control scheme.

To collect frame-level statistics, we propose a simple method
to break the recursive structure of H.264 encoding and imple-
ment a two-loop encoding pipeline. To elaborate, in the first
loop, the motion compensation of all possible modes, as well as
spatial intra prediction, are performed for all MBs in the current
frame. It should be noted that in this loop we use original pixel
values for intra prediction instead of reconstructed ones, be-
cause they are simply not available at this moment. After motion
compensation and spatial prediction, block transform is applied
to obtain the distribution of transform coefficients. In the second
loop of actual encoding and reconstruction, the intra predic-
tion mode is checked again because reconstructed neighboring
pixels are available now. If the MB coding type is changed after
mode decision, we need to perform the block transform again
on this MB. It can be seen that, compared to the one-loop en-
coding scheme, the only extra computation introduced by this
two-loop pipeline is intra-prediction and block transform (if the
MB type is changed), which involves very low computational
complexity. However, with such type of two-loop encoding, the
rate controller has access to frame-level statistics, which is crit-
ical for accurate and robust rate control.

After spatial intra prediction and temporal motion prediction,
we apply the 4 4 transform [4] to obtain transform coeffi-
cients. Let be the distribution of the un-quantized trans-
form coefficients. We have

(6)

where is the total number of transform coefficients in the
frame, and represents the dead zone of the quantizer. It
should be noted that 1) H.264 adopts a nonlinear scalar quan-
tization scheme with perceptual weighting; 2) Intra and Inter
MBs are using different dead zone thresholds during quantiza-
tion. Therefore, when computing the mapping, we need
to maintain separate distributions for transform coefficients in
Intra and Inter MBs. It should be noted that some other H.264
encoding features, such as skipping of blocks [4], which might
also affect the computation of mapping, have not been
considered here. However, for the purpose of rate control, the
distribution of transform coefficients is able to efficiently cap-
ture content variation within a frame and allows us to determine
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the quantization parameter at low complexity while achieving
accurate and robust rate control, as we can see from the experi-
mental results in Section V.

E. Rate Control Algorithm

The proposed linear rate control (LRC) algorithm can be sum-
marized and implemented as follows. Let the target bit rate (in
bits) per frame be . The value of will be determined by
joint rate allocation explained in Section IV. Let the encoder
buffer size be and the number of bits in the buffer be .
The available bits for coding the current frame is set to be

(7)

where the target buffer fullness is by default set to be 0.2 [9].
The following steps are performed to achieve the target coding
bit rate .

Step 1) Collecting frame statistics: As explained in Sec-
tion II-D, perform motion compensation and/or spa-
tial prediction and block transform for all MBs in the
current frame. Find the distribution of transform co-
efficients.

Step 2) Initialization of LRC: Before encoding the first
MB, set . Also set to be
its value in the previous frame of the same picture
type.

Step 3) Determine for the current MB: Determine the
target fraction of zeros for the remaining MBs using
(5). Based on the one-to-one mapping between and

given in (6), determine the quantization step size
, which will be used to quantize the current MB.

Step 4) Update: Let and be the number of zeros and
number of bits produced by the current MB. Set

, and .
If , update the value of according to
(3). Update the distribution by removing the
frequency statistics of transform coefficients in the
current MB from the distribution, so that al-
ways represents the distribution of transform coeffi-
cients in these remaining uncoded MBs.

Step 5) Loop: Repeat steps 3 and 4 until all MBs in the
frame are encoded.

It can be seen that the LRC algorithm always divides a video
frame into two parts: coded and uncoded MBs, uses the distribu-
tion of transform coefficients as their coding complexity mea-
sure to perform bit allocation, and uses the linear rate model to
determine the quantization parameter. The major computational
complexity of the proposed algorithm is in collecting the distri-
bution of transform coefficients. The actual rate control only in-
volves a small number of addition and multiplication operations.
Therefore, the overall complexity is very low. The performance
of the LRC algorithm will be evaluated in Section V. The LRC
algorithm will be used to control the output bit rate of the H.264
encoders in our statistical multiplexing system.

III. LOOK-AHEAD PROCESSING

In statistical multiplexing, the transmission bandwidth needs
to be allocated across different video programs and frames to

maximize the overall video broadcast quality. To do this, we
need to collect statistics of future frames. Without the knowl-
edge of future frames, it will be very difficult to take advan-
tage of the encoder buffer resource and perform joint rate allo-
cation to optimize the overall video quality. It is also very impor-
tant for maintaining robust buffer control, especially during dra-
matic scene changes. Predicting the statistics of future frames is
challenging because of an interdependent quantization problem
[8]. More specifically, just like the previous video coding stan-
dards, H.264 uses temporal motion prediction, in which pre-
vious encoded frames are used for motion prediction of the cur-
rent frame. This implies that the R-D behavior of the current
frame depends on the quality levels of its previous frames, which
leads to an interdependent effect between their R-D behaviors.
This type of inter-frame R-D dependency make it difficult to
estimate the R-D functions of future frames during look-ahead
processing.

In this work, we develop a simple yet efficient look-ahead
processing scheme to handle this inter-frame R-D dependency
so as to predict the R-D characteristics of future frames before
the actual H.264 encoding. According to the classical R-D for-
mula [7], the R-D function is given by

(8)

where is the variance of DCT coefficients in frame
and program . is an encoder-related parameter. This R-D
model suggests that the major task in look-ahead processing
is to estimate . As discussed in the above, ,
the variance of the difference picture, depends on the history
of the encoding process, especially the quality levels of pre-
vious encoded frames. Denote the th frame in program by

. Let be the encoder reconstruction of frame
. By definition,

(9)

where represents the motion prediction difference operation
[3]. Let

(10)

which is the MSE picture distortion of frame . Note that in
statistical multiplexing, the H.264 encoder is trying to allocate
bits among neighboring frames, making full use of the trans-
mission buffer to maintain a steady and smooth video streaming
quality. Therefore, we can assume that is constant within the
look-ahead window. Let

(11)

which is the variance of the motion prediction difference pic-
ture with the original frame as reference. Note that the picture
distortion is caused by quantization errors, and is
caused by scene motion. Therefore, we can assume that these
two types of errors (picture difference) are uncorrelated. Based
on this assumption, as illustrated in Fig. 3, we have

(12)
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Fig. 3. Estimation of the frame variance during the look-ahead processing.

Fig. 4. Estimation of the R-D function �������� for “Foreman” CIF coded
at 30 fps with an average quality of 33.5 dB.

TABLE I
PERFORMANCE EVALUATION OF LOOK-AHEAD PROCESSING

Therefore,

(13)

This is the simple and efficient model that we are going to use
to predict the R-D behaviors of video frames in the look-ahead
window. It should be noted that here we assume that motion
vectors in the actual H.264 video encoding are the same as those
obtained from the look-ahead process. In addition, we have not
considered the spatial intra prediction in H.264 encoding [4],
[14]. However, these mismatches will be compensated by ad-
justing the encoder parameter . In this work, we simply use
the R-D statistics of previous encoded frames to estimate the
value of based on the R-D formula in (8).

To verify the efficiency of the look-ahead model in (13), we
encode the “Foreman” CIF sequence (150 frames) coded at 30
fps with a target picture quality of 34.5 dB using H.264. Fig. 4

shows the actual frame bits statistics and the estimation given
by (13). Table I shows the relative estimation error (REE) of bit
rate for four additional sequences (the first 150 frames). We can
see that the estimated bit rates are close to actual measurements.
Note that the purpose of look-ahead processing is to probe the
scene complexity of future video frames and collect their R-D
statistics for joint rate allocation. Therefore, there is no need
for the model in (13) to be very accurate only if it is able to
adequately differentiate the scene complexity between different
frames and programs for the joint rate allocation purpose.

From (13), we can see that, to determine the R-D functions
of video frames in the look-ahead window, we only need to
find . To this end, we perform motion estimation and
compensation on the original frames. It should be noted that
the reference frame for motion prediction is the original video
frame instead of the reconstructed one. To reduce the overall en-
coding complexity, the motion estimation results obtained here
in look-ahead processing can be utilized by motion estimation
in actual video encoding.

IV. JOINT RATE ALLOCATION

In this section, we formulate the optimum statistical mul-
tiplexing into a constrained optimization problem and study
buffer constraints in real-time video streaming. We realize
that it is very difficult to obtain a close-form solution for this
nonlinear constrained optimization problem. By assuming a
constant quality within the look-ahead window, this problem
can be greatly simplified and converted into a linear optimiza-
tion problem, which enables us to find a near-optimum solution.

A. Measuring Overall Video Broadcast Quality

The most widely used measure for picture quality is the
Mean Squared Error (MSE) between the decoded picture and
the original one. The MSE is very popular because of its
simple mathematical formulation. In bit allocation and quality
optimization, analytic solutions can be often obtained if we
use the MSE as the image/video quality metric in the objective
function. Certainly, perceptual video quality metrics [25], or
their simplified versions, such as perceptually weighted MSE,
can be also considered. In this work, we just use the MSE-based
video quality metric as an example to demonstrate how the
overall video quality of a video broadcast system can be opti-
mized with optimum statistical multiplexing and accurate rate
control. It should be noted that the MSE measures the picture
quality of a single video frame. A typical approach to extend
this picture quality metric to a video sequence is to consider
the video sequence as a series of still images, evaluate the
picture quality for each individual frame, and then pool these
quality measurements together across different video frames,
or even different video programs using some mathematical
formulation, such as Minkowski summation [26], [27]. More
specifically, let be the MSE distortion of the th frame in
the th video program. Within a certain period of time, from
frame to frame , the overall video quality of program
is measured by the following Minkowski summation [26]:

(14)
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where is a positive constant, typically ranging from 1 to 9
[26]. Likewise, the overall video quality for all video programs
is measured by

(15)

where is a positive constant, also typically ranging from 1 to
9. Here, and specify the relative importance of those frames
with peak visual distortion values. A possible further extension
of this video quality metric is to consider different perceptual
weights [26] or priority levels of different videos programs. Let

be the weight for program . The overall video quality is
given by

(16)

One of the major advantages of Minkowski summation is that
it is able to assign different levels of penalty on low-quality pic-
tures by choosing different values of and . For example, if
we set and to be 1, the Minkowski summation is just an
arithmetic averaging operation. If we set them to be a very large
value, the overall video distortion will then approach the peak
value of .

B. Buffer Constraints and Mathematical Formulation

In video streaming, a decoder buffer is used to receive the bit
stream from transmission channels, and the decoder drains the
compressed picture data from the buffer, decodes it, and presents
the picture to end users. Therefore, in statistical multiplexing,
when we determine the encoding and transmission rates for each
video program, we need to guarantee that the output bit stream
satisfies the decoder buffer constraint [28]. Let be the
transmission rate of program at frame time . Since all
video programs are multiplexed onto a single channel with a
bandwidth , we should have

(17)

Let be the encoding bit rate allocated by the statistical
multiplexing algorithm to frame in program . Let be the
start-up delay (in frames) of the decoder. The decoder buffer
level, denoted by , is given by the difference between
output and input bit rates of the buffer, i.e.,

.

(18)

Therefore, the objective of joint rate allocation in statistical mul-
tiplexing is to determine the coding bit rate and transmission rate
for every program, , such that the overall vi-
sual distortion metric in (16) is minimized under buffer con-
straints. Mathematically, this can be formulated into the fol-
lowing constrained optimization problem:

(19)

where is the buffer size, and the second constraint implies
there are no buffer overflow and under-flow. Here,

(20)

which is derived from (13).

C. Constant Quality Assumption and Model Simplification

We can see that the optimization problem in (19) is highly
nonlinear with a number of constraints. It is often very difficult,
or even impossible to derive a close-form solution for this min-
imization problem. In this work, realizing this difficulty, we at-
tempt to find a robust and near-optimum solution. This is accom-
plished by making the following assumption: with optimum sta-
tistical multiplexing, the quality change across video programs
and frames should be smooth, or in an even more ideal case,
the video quality of each frame within the look-ahead window
is constant. In other words, , for and

, where is the operational video dis-
tortion level of the H.264 encoder. Note that this constant can
also change as the window moves to the next frame, as we can
see from the experimental results in Section V. This assumption
is reasonable. First, in its theoretical analysis [10] an optimum
solution of rate allocation will achieve equal distortion in each
input source. Second, within a small look-ahead window (typi-
cally 10–50 frames), video frames share similar image features
and R-D characteristics. Therefore, practically, it is reasonable
to assume that they have the same coding distortion level during
joint rate allocation. This constant visual distortion assumption
is also desired in many applications. For example, in digital TV
broadcast, when viewers flip through TV channels, they don’t
expect a sudden change in the video quality of TV programs.
In this work, this assumption significantly simplifies the com-
putation and enables us to find a near-optimum solution to the
optimization problem in (19).

Since the operational visual distortion level of the H.264 en-
coder is . According to (13), the corresponding bit rate of
frame , denoted by is given by

(21)
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Using the constant visual distortion assumption, the optimiza-
tion problem in (19) is simplified to

(22)

which can be solved using the numerical algorithm presented in
the following section.

D. Algorithm for Statistical Multiplexing

The simplification from (19) to (22) enables us to find a highly
efficient and robust solution to the optimum statistical multi-
plexing problem. Note that the objective of (22) is to find the
minimum value of while satisfying the buffer constraints. Our
basic approach is to start from a very large initial value of and
then decrease its value step by step until the buffer contraints are
no longer satisfied. Note that, in statistical multiplexing, trans-
mission rates and encoding bit rates are
inter-dependent and coupled under the buffer constraints. We
observe that it is computationally intensive to determine their
values simultaneouly. Instead, we propose to decouple them and
update their values in an iterative manner. The detailed statis-
tical multiplexing algorithm is summarized as follows.

Step 1) Initialization: At the beginning of the video ses-
sion, i.e., , set the encoder parameter to be
its empirical value obtained from previous coding
experiments.

Step 2) Look-ahead processing: Suppose the current frame
number is . As described in Section III, apply the
look-ahead processing procedure to video frames
within the look-ahead window, i.e., frames
to , to obtain the original frame difference

. It
should be noted that, except the first time, we only
need to perform look-ahead processing on the new
video frame as the look-ahead window shifts to the
position of this frame.

Step 3) Determine the transmission rates : Let
be the average video distortion of all H.264

video programs at frame . When , we
can simply set to be a video quality level desired
by the application. It should be noted that this
is used for look-ahead processing only. According
to (21), the expected bit rate generated by the H.264
encoder, denoted by , will be

(23)

Certainly, those video programs with larger
should get higher transmission rates.

Based on this observation, we use the following
formula to assign the transmission rates:

(24)

where is the total network transmission band-
width, and is the average bit rate of pro-
gram given by

(25)

Step 4) Determine the encoding bit rates : Once
the transmission rates are assigned, the
encoding bit rate can be obtained using
the following method: we start from a very large
value of and reduce its value by a small step size
until the buffer overflow constraints in (22) are sat-
isfied. It should be noted that when is very large,

will be very small and the buffer con-
straints will be satisfied. This will guarantee that the
minimum solution will be found if the step size is
sufficiently small. To prevent potential buffer over-
flow or underflow, if needed, we modify the value of
encoding bit rate such that the buffer level of
each individual video is above 10% and below 90%
of the buffer size.

Step 5) Linear rate control: obtained from Step 4
is the target encoding bit rate for the current frame

. The linear rate control algorithm presented
in Section II-E is used to adjust the encoding quan-
tization parameter to achieve this target bit rate.

Step 6) Loop: Increase the frame number by 1 and repeat
steps 2 to 5 until all frames are finished.

One unique feature of the proposed statistical multiplexing
algorithm is the constant video distortion constraint within the
look-ahead window. It has two major advantages. First, it en-
ables us to find a fast and efficient solution to the highly non-
linear constrained optimization problem in (19). Second, when
the look-ahead window moves to its next position, the constant
video distortion constraint acts like a low-pass filter, which ef-
ficiently smoothes out the frame-to-frame and program-to-pro-
gram quality variation. Experimental results presented in Sec-
tion V will demonstrate this unique property.

E. Complexity Analysis

The additional computational complexity introduced by the
proposed statistical multiplexing system is low. More specifi-
cally, the system has three components: look-ahead processing,
joint rate allocation, and linear rate control. The look-ahead pro-
cessing performs motion compensation and/or spatial predic-
tion using original frames as reference. When the look-ahead
processing shifts to the next video frame, results for existing
video frames in the window can be reused. We only need to per-
form look-ahead processing for the new-coming frame. The mo-
tion vectors obtained from this look-ahead processing are reused
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Fig. 5. Actual frame bits of the “Foreman” QCIF video coded at 96 kbps and 15
fps when the LRC algorithm and the H.264 rate control (H.264-RC) are applied.

by the actual encoding process. Therefore, the additional com-
plexity introduced by look-ahead processing is relatively small.
According to our experience, it is about 5–7% of the overall en-
coding complexity.

The joint rate allocation algorithm outlined in Section IV-D
also have low complexity since it only involve a relatively small
number of arithmetic operations. The process in Step 4 con-
verges very fast, especially if we start from a reasonable initial
value of . For example, we can use two times the average dis-
tortion of video frames in the previous multiplexing window as
the initial value. The third component, linear rate control, also
has low computational complexity, as discussed in Section II-E.
According to our experience, the overall computational com-
plexity of the proposed statistical multiplexing system is about
10–12% of the overall encoding complexity.

V. EXPERIMENTAL RESULTS

We implement the linear rate control (LRC) algorithm and
the statistical multiplexing algorithm in an H.264 video encoder
(version JM 9.5) [24]. To simulate the statistical multiplexing
process, we execute the H.264 encoding on multiple video se-
quences on a single PC and use a shared computer file with a
proper access control to synchronize the H.264 video encoders
and exchange information for joint rate allocation. The R-D sta-
tistics obtained from the look-ahead module are written into this
file to be used by the joint rate allocation module. After joint
rate allocation, the control information, including frame bit rate
targets and transmission rates, is sent back to each H.264 en-
coder. The LRC algorithm operates within each video frame to
achieve the target frame coding bit rate allocated by the joint rate
allocation module. In all experiments, the H.264 encoder uses
a motion search range of pixels with up to five reference
frames and CABAC for entropy coding. No B frames are used.

Our experimental evaluation consists of two parts. In the first
part, we test the performance of the LRC algorithm and compare
it with the rate control provided by the reference H.264 JM9.5
video encoder [24]. Except the first Intra frame, the rest frames
are encoded as P frames. The following test video sequences
are used: “Foreman” QCIF (176 144) coded at 96 kbps and
15 fps, and “NBA” CIF (352 288) coded at 1280 kbps and
15 fps. In Figs. 5 and 6, we plot the actual encoding bits per

Fig. 6. Actual frame bits of the “NBA” CIF video coded at 1280 kbps and 15
fps when the LRC algorithm and the H.264 rate control (H.264-RC) are applied.

TABLE II
PERFORMANCE EVALUATION OF LINEAR RATE CONTROL

Fig. 7. Linear rate control for all Intra frames: (A) actual frame bits of the
“Foreman” QCIF video coded at 256 kbps and 15 fps; (B) actual frame bits of
the “NBA” CIF video coded with all Intra frames at 2560 kbps and 15 fps.

frame when the LRC (solid line) and the JM9.5 rate control
(JM95-RC) (dotted line) are applied. It can be seen that the pro-
posed LRC algorithm achieves significantly more accurate and
robust rate control. Table II shows the rate control performance
of the proposed LRC algorithm for other test video sequences at
various encoding settings. It can be seen that the average relative
control error (RCE) is mostly less than 3% and the maximum
RCE is less than 7%. About 0.3–0.6 dB quality improvement
has been observed during our simulations when the LRC algo-
rithm is used. The proposed linear rate control algorithm also
applies to Intra frames. To demonstrate its performance, we en-
code both sequences using all Intra frames: “Foreman” QCIF
video at 256 kbps and 15 fps and “NBA” CIF video at 2560
kbps and 15 fps. Fig. 7 shows the actual bits of each frame. It
can be seen that it is very close the frame bit rate target. The av-
erage relative control errors are 1.7% for “Foreman” and 3.3%
for “NBA”.
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Fig. 8. Variance of the original picture difference � ��� �� of the test video
clips.

Fig. 9. Output video quality (PSNR) of each program in the H.264 statistical
multiplexing system.

In the second part, to test the performance of the statistical
multiplex algorithm presented in Section IV-D, we use five TV
video clips which have a wide range of scene activities, in-
cluding sports, news, and movie scenes. The input videos are
encoded at CIF size and 30 fps. The period of Intra frames is
90 (or 3 seconds). Fig. 8 shows the original frame difference

, as defined in Section III, of the five video clips. It
should be noted in this experiment the Intra frames of different
videos are not synchronized. This is because in practice a video
stream can join the statistical multiplexing system at any time.
We can see that the scene activity variation across video pro-
grams and among video frames is fairly large, which imposes
challenges to the bit allocation, quality smoothing, and buffer
regulation modules in the statistical multiplexing system. The
total network bandwidth is set to be 7.5 Mbps. The start-up delay
is 1 second, and the look-ahead window size is 15 frames. Here,
a start-up delay is needed so that the buffer can build up to pre-
vent potential underflow.

First, we consider that all video programs have the same per-
ceptual weight . Fig. 9 shows the PSNR of each encoded
video frame of the H.264 statistical multiplexing system. It can
be seen that the temporal quality change from frame to frame
is smooth; and the quality variation across programs is very
small, mostly less than 1.0 dB. Fig. 10 shows the actual coding
bits of each frame. (Those peaks are coding bit rates of
Intra frames.) The transmission rate is shown in Fig. 11.
Fig. 12 plots the decoder buffer level (in bits) of each video

Fig. 10. Coding bits of each frame in the H.264 statistical multiplexing system.

Fig. 11. Transmission rate of each program in the H.264 statistical multi-
plexing system.

Fig. 12. Decoder buffer level of each program in the H.264 statistical multi-
plexing system.

program. It can be seen that the by selecting appropriate trans-
mission rates and performing efficient bit allocation, the statis-
tical multiplexing system achieves robust regulation of decoder
buffers.

Next, we consider that different video programs have dif-
ferent perceptual weights or priority levels. The perceptual
weight can be obtained from one of those perceptual visual
quality models developed in the literature [25]–[27]. The
priority levels can be assigned by users or determined by
application requirements. To begin with, we set the perceptual
weights for those 5 video programs to be (2.5, 2.0, 1.0, 0.5,
0.7). Figs. 13– 16 show the PSNR quality, frame encoding bits,
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Fig. 13. Output video quality (PSNR) of the H.264 statistical multiplexing
system when different programs have different perceptual weights.

Fig. 14. Coding bits of each frame in the H.264 statistical multiplexing system
when different programs have different perceptual weights.

Fig. 15. Transmission rate of each program in the H.264 statistical multi-
plexing system when different programs have different perceptual weights.

transmission rate, and decoder buffer level of each program.
Note that in Fig. 13 program 1 has a much higher PSNR quality
than others because its perceptual weight is the largest. It can
be seen that the proposed statistical multiplexing system is still
able to maintain a smooth video presentation quality and robust
buffer control when different video programs have different
perceptual weights or encoding priority levels.

Fig. 17 shows the broadcast quality, defined by (16), at dif-
ferent bandwidth with and without optimum statistical multi-
plexing. In the “without” case, an equal partition of the total

Fig. 16. Decoder buffer level of each program in the H.264 statistical multi-
plexing system when different programs have different perceptual weights.

Fig. 17. Broadcast quality with and without optimum statistical multiplexing.

TABLE III
QUALITY IMPROVEMENT WITH THE PROPOSED

STATISTICAL MULTIPLEXING SYSTEM

bandwidth is used. For comparison, we also include a low-com-
plexity version of the proposed algorithm which performs look-
ahead processing only for the first 30 frames and assumes the
subsequent video frames share similar statistics. Table III shows
some examples of different perceptual weight assignments and
the corresponding quality improvement in terms of PSNR. It can
be seen that the optimum statistical multiplexing achieves about
2–3 dB improvement (on average) in the broadcast quality. If
translated into bits saving, this is about 30–50% saving in band-
width. In other words, with the proposed optimum statistical
multiplexing, the digital broadcast system is able to transmit
nearly twice the TV programs.

We can also see that the low-complexity version does result in
some improvement over equal rate allocation. However, some-
times, this low-complexity scheme might be even worse than the
equal rate allocation scheme when the scene content changes
dramatically over time because it does not track the dynamic
change of scene content and allocate bit rate accordingly. This
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is why continuous look-ahead processing is needed in the pro-
posed scheme. We have not conducted performance compar-
isons between the proposed system and the existing schemes
in the literature, because we found that it is difficult to imple-
ment those algorithms, and hard to achieve the same perfor-
mance as described by those papers [17]–[19]. We believe that
the major quality improvement comes from robust joint rate al-
location and accurate rate control. The joint rate allocation, cou-
pled with look-ahead processing, is able to exploit the content
variations between video programs and frames. The linear rate
control is able to accurately determine the quantization param-
eters to achieve the target bit rates assigned by joint rate alloca-
tion.

VI. CONCLUDING REMARKS

To enable H.264 digital TV broadcast, this paper studied two
important problems, namely, R-D analysis and statistical mul-
tiplexing. The major contributions of this work are in the fol-
lowing. First, we demonstrated that in H.264 video coding there
is a linear relationship between the overall encoding bit rate and
the fraction of zeros among quantized transform coefficients.
Based on this linear rate model, we developed a linear rate con-
trol (LRC) scheme for H.264 video coding. Second, we de-
veloped a simple and efficient look-ahead processing scheme
to handle the inter-frame R-D dependency in H.264 video en-
coding and collect the R-D statistics of future frames for joint
rate allocation. Third, we developed a fast and robust algorithm
to find a near-optimum solution to the joint rate allocation under
the decoder buffer constraints. The proposed statistical multi-
plexing system represents one of the first systematic studies in
this important area. Our extensive simulation results demon-
strated that the proposed statistical multiplexing system is able
to maintain a smooth video presentation quality across programs
and among frames, as well as a robust decoder buffer regulation.
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