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Einstein’s general theory of relativity fundamentally changed our view about the physical world.
Different from Newton’s theory, Einstein’s space and time are not flat but can be warped by matter.
For a curved space such as Einstein’s space, Euclidean geometry is no longer suitable, and Rieman-
nian geometry is usually used instead. In parallel with physics, due to an explosion of data from
all fields of science, there is an increasing need for pattern analysis tools, which are capable of an-
alyzing patterns of data in a non-Euclidean (curved) space. To handle data in a curved space, linear
approaches are not directly applicable, and instead nonlinear approaches are the right weapon. How-
ever, early-day nonlinear approaches were usually based on gradient descent or greedy heuristics, and
suffered from local minima and overfitting [1]. In contrast, kernel methods provide a powerful means
for transforming data in a non-Euclidean curved space (such as Einstein space) into points in a high-
dimensional Euclidean flat space, so that linear approaches can be applied to the transformed points
in the high-dimensional Euclidean space. With this flattening capability, kernel methods combine the
best features of linear approaches and nonlinear approaches, i.e., kernel methods are capable of deal-
ing with nonlinear structures while enjoying a low computational complexity like linear approaches.
In this column, we provide important insights into kernel methods and illustrate the power of kernel
methods in two important pattern analysis problems: feature extraction and clustering.

INSIGHT INTO KERNEL METHODS: A TRANSDUCTIVE PARADIGM

A linear pattern analysis method A can be extended to a kernel method via the following procedure:

1. Select a kernel suitable for a given nonlinear pattern analysis problem. A kernel is a function κ
that for all x and z in the data space X , satisfies κ(x,z) = ⟨ϕ(x),ϕ(z)⟩, where ϕ is a mapping
from X to a Hilbert space, and ⟨·, ·⟩ is an inner product.

2. Given a training data set {xi : i = 1,2, · · · ,N}, calculate the kernel function ki, j = κ(xi,x j) for
each pair of xi and x j. The resulting N×N matrix K with entries ki, j is called the kernel matrix.

3. Train the given linear pattern analysis method A using the kernel matrix and the training data
set, and obtain a pattern function f (x) = ∑N

i=1 αiκ(xi,x), where αi (i = 1, · · · ,N) are obtained
by training.

The term ∑N
i=1 αiκ(xi,x) is called the dual representation of f (x) [1], and αi (i = 1, · · · ,N) are called

the dual variables. In essence, under dual representation, f (x) is a linear combination of kernel func-
tions evaluated at each training data point and a given x. Hence, a kernel method actually conducts
transduction, i.e., directly draws conclusions about new data from the training data, without construct-
ing a model; in other words, transduction is a type of inference from observed, specific (training) cases
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Figure 1: Flatten a curved space by a nonlinear mapping ϕ(x).

to specific (test) cases (e.g., a given x). This is different from induction, which is a type of inference
from specific (training) cases to a general rule/model. Under an inductive paradigm, once the general
rule/model is obtained through learning, the training data will be discarded and will not explicitly be
part of the general rule/model.

Why is a kernel method capable of resolving nonlinear structures at a low computational cost?
First, the capability of dealing with nonlinear structures is due to the use of ϕ(x), which flattens a
curved space. Specifically, flattening is achieved by mapping x ∈ X to ϕ(x) in a high-dimensional
feature space such that the nonlinear structure embedded in {xi} becomes a linear structure in the
feature space. For example, a nonlinear surface in X becomes a linear hyperplane in the feature
space after applying map ϕ(x) (see Fig. 1). Second, low computational complexity is due to the dual
representation of pattern function f (x), also known as kernel trick, i.e., kernel κ(xi,x) = ⟨ϕ(xi),ϕ(x)⟩
can be evaluated without computing ϕ(xi) and ϕ(x). This is because a kernel can be directly given as a
function of xi and x without explicitly defining ϕ(·). Avoiding computing ϕ(xi) and ϕ(x) significantly
reduces the computational complexity.

For feature extraction problems, f (x) is a feature vector in a feature space. For clustering prob-
lems, f (x) is a cluster index. For classification problems, f (x) is a class index. For regression
problems, y = f (x) is a regression function. For nonlinear system identification problems, x(t +1) =
f (x(t)) is a system state equation that governs the dynamics of a given nonlinear system. We will
describe the first two pattern functions in the following sections.

KERNEL-BASED FEATURE EXTRACTION

Transforming the input data x into a feature vector ϕ(x) in a feature space is called feature extraction.
The purpose of feature extraction is to extract relevant information from the input data. Dimensional-
ity reduction (i.e., removing irrelevant feature dimensions) is usually involved in feature extraction. In
this section, we describe two known techniques in the literature: kernel principle component analysis
(KPCA) and a discriminant-learning-based kernel feature extraction method.

KPCA [1] utilizes a dual representation of an eigenvector u j of the covariance matrix of x, so
that the projection P of ϕ(x) onto the direction u j in the feature space is given by Pu j(ϕ(x)) =
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∑N
i=1 αi, jκ(xi,x). This dual representation enables us to avoid computing ϕ(x). KPCA is summa-

rized below.

Input: {xi : xi ∈ RL, i = 1,2, · · · ,N}, kernel κ(·, ·), and k (the dimension of the output feature
space).

1. Calculate ki, j = κ(xi,x j) for i = 1,2, · · · ,N and j = 1,2, · · · ,N, and obtain the kernel matrix
K ∈ RN×N , whose i-th row and j-th column is ki, j.

2. Find the k largest eigenvalues {λ j : j = 1, · · · ,k} and the corresponding eigenvectors {v j :
v j ∈ RN , j = 1, · · · ,k} of matrix K.

3. Let αi, j = vi, j/
√

λ j (i = 1, · · · ,N and j = 1, · · · ,k), where vi, j is the i-th element of v j.

4. Compute x̃ j,m = ∑N
i=1 αi, jκ(xi,xm) (m = 1, · · · ,N and j = 1, · · · ,k), where x̃ j,m is the j-th

element of x̃m.

Output: transformed data {x̃i : x̃i ∈ Rk, i = 1, · · · ,N}.

kernel linear feature extraction (KLFE) [2] is a discriminant-learning-based kernel feature extrac-
tion method for supervised learning. Discriminant-learning-based feature extraction seeks a feature
space that maximizes the difference between data of difference classes. Consider supervised learn-
ing for two classes and assume that the input data set D consists of {(xi,yi) : i = 1,2, · · · ,N}, where
xi ∈ RL and the class label yi ∈ {−1,+1}. LFE [3, 4] seeks a linear transformation matrix W that
maximizes the difference between transformed data points Wx of different classes. This difference is
called a margin, similar to that in a support vector machine (SVM) [1]. The margin ρi(W) of xi under
W is defined by ρi(W) = mT

i Wmi −hT
i Whi, where mT

i Wmi is the Mahalanobis distance between
xi and its nearest neighbor in a different class, and hT

i Whi is the Mahalanobis distance between xi

and its nearest neighbor in the same class. Let mi , xi −NM(xi,yi), where the nearest miss function
NM(·, ·) is given by

NM(x,y), argminx′ ||x′−x||p, (1)
s.t. (x′,y′) ∈ D , (2)

y′ ̸= y, (3)

where ||x||p is lp norm of x. Let hi , xi −NH(xi,yi), where the nearest hit function NH(·, ·) is given
by

NH(x,y), argminx′ ||x′−x||p, (4)
s.t. (x′,y′) ∈ D , (5)

y′ = y. (6)

The margin-maximizing W can be found by solving the following optimization problem:

max
W

∑N
i=1 ρi(W), (7)

s.t. ∥W∥2
F = 1,W ≥ 0,
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Figure 2: Classification error rate (y-axis) vs. dimension L (x-axis) of Swiss roll data

where ∥W∥F is the Frobenius norm of W. W ≥ 0 means that matrix W has to be positive semi-
definite. KLFE is a kernel extension of LFE. Using a nonlinear mapping ϕ(x) that maps x ∈ RL to
ϕ(x) ∈RL̄ (L̄ > L), we can define m̄i , ϕ(xi)−ϕ(NM(xi,yi)) and h̄i , ϕ(xi)−ϕ(NH(xi,yi)). Under
KLFE, the margin-maximizing W̄ ∈ RL̄×L̄ can be found by solving

max
W̄

∑N
i=1(m̄T

i W̄m̄i − h̄T
i W̄h̄i), (8)

s.t. ∥W̄∥2
F = 1,W̄ ≥ 0.

In [2], a KPCA-based method was proposed to efficiently compute nonlinearly transformed points
x̃i = W̄ϕ(xi). KLFE can also achieve dimensionality reduction by choosing the dimensions with
largest variance in the feature space.

To compare the performance of KLFE, LFE, and PCA, we use an experiment with synthetic data, a
Swiss roll (Fig. 1(a)). To generate 3-dimensional sample points xi = [x(1)i ,x(2)i ,x(3)i ]T (i = 1, · · · ,N) on
a Swiss roll, we let x(1)i = θ × cos(θ) and x(2)i = θ × sin(θ), where θ is a random variable uniformly
distributed in [0,4π]; x(3)i is a random variable uniformly distributed in [0,2]; then the 3D sample
points xi (i = 1, · · · ,N) are on a 3-D helix surface (Swiss roll). To evaluate pattern classification
performance under various feature extraction schemes, we label sample points generated by θ ∈
[0,2π] with y =−1 and label sample points generated by θ ∈ (2π,4π] with y = 1. The 3-dimensional
vector xi is further mapped to a L-dimensional vector zi by matrix R, i.e., zi = Rxi, where matrix
R is randomly generated and has dimension L× 3. The purpose of mapping xi to zi is to add some
irrelevant features and test whether a feature extraction scheme is able to perform well under irrelevant
features. In this way, we obtain the input data set D = {(zi,yi) : i = 1,2, · · · ,N}, where zi ∈ RL and
the class label yi ∈ {−1,+1}. For each feature extraction scheme, we use K-Nearest-Neighbor (K=1)
as the classifier so that we can evaluate the performance of feature extraction in terms of classification
error rate. The classification error rates are averaged over 10 simulation runs, each with a different
matrix R. Fig. 2 shows the classification error rate vs. dimension L. We can see that KLFE and
LFE achieve comparable performance, and both KLFE and LFE outperform PCA. When dimension
L = 1, KLFE achieves better performance than LFE. In addition, KLFE is robust against the change
of dimension L, because KLFE has an explicit mechanism to eliminate irrelevant features.
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KERNEL-BASED CLUSTERING

Clustering partitions a set of objects into groups (clusters) so that objects in the same cluster are more
similar (in some sense) to each other than to objects in other clusters. In this section, we describe
three known clustering algorithms: kernel K-means, spectral clustering, and Self-Organizing-Queue
(SOQ) based clustering [5].

The K-means algorithm is a widely used iterative clustering algorithm. In each iteration, the K-
means algorithm computes a new centroid1 µk for each cluster k and then updates the cluster members
using the new centroids based on the nearest neighbor rule. Kernel K-means [6] is a kernel extension
of K-means algorithm, which is summarized below.

Input: {xi : i = 1, · · · ,N}, kernel κ(·, ·), and the number of clusters K.

1. Initialize the K clusters and obtain {C(0)
k : k = 1, · · · ,K}, where C(t)

k denotes the set contain-
ing all the members of Cluster k at Stage t.

2. Let t = 0.

3. For each xi (i = 1, · · · ,N), update its new cluster index by k∗(xi) = argmink ||ϕ(xi)−µk||22,
where ||ϕ(xi)−µk||22 can be computed by

||ϕ(xi)−µk||22 = ||ϕ(xi)−
1

|C(t)
k |

∑
x∈C(t)

k

ϕ(x)||22 (9)

= κ(xi,xi)−
2

|C(t)
k |

∑
x∈C(t)

k

κ(xi,x)+
1

|C(t)
k |2

∑
x∈C(t)

k

∑
z∈C(t)

k

κ(x,z) (10)

Since we assume points {ϕ(xi) : i = 1, · · · ,N} form a linear geometric structure in the fea-
ture space due to flattening capability of ϕ(·), we use the Euclidean distance in (9) instead
of a geodesic distance used in a curved space. Again, in (10), the kernel trick bypasses
direct computation of ϕ(x).

4. Update the membership of each cluster k (k = 1, · · · ,K) by C(t+1)
k = {xi : k∗(xi) = k, i ∈

{1, · · · ,N}}.

5. If the termination criteria are not satisfied, let t = t +1 and go to Step 3; otherwise, stop.

Output: {C(t+1)
k : k = 1, · · · ,K}.

Spectral clustering techniques are widely used for graph clustering [7] or community detection [8],
i.e., finding sets of “related” vertices (called communities) in a graph. Spectral clustering utilizes the
spectrum of the Laplacian matrix L of a given graph for grouping the nodes, since the multiplicity K
of the eigenvalue 0 of Laplacian L equals the number of connected components in the graph (denote
these connected components by A1, · · · ,AK), and the eigenspace of eigenvalue 0 is spanned by the
indicator vectors 1A1, · · · ,1AK of those components, where indicator vector 1Ak ∈ RN , the i-th entry

1The centroid of a cluster is the arithmetic mean position of all the points/members in the cluster
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of which is 1 if Node i belongs to Ak, and is 0 otherwise. Hence we can use the eigenvectors of
eigenvalue 0 to obtain the indicator vectors 1A1, · · · ,1AK , which is exactly a partition of the graph into
K connected components. Spectral clustering techniques can be categorized into unnormalized and
normalized techniques. An unnormalized spectral clustering algorithm leverages the spectrum of the
unnormalized Laplacian matrix of a given graph, while a normalized spectral clustering algorithm
leverages the spectrum of the normalized Laplacian matrix. Spectral clustering can be regarded as a
special type of weighted kernel K-means [6] since a weighted kernel K-means scheme can be reduced
to an unnormalized/normalized spectral clustering scheme by choosing appropriate weight matrix and
letting kernel matrix K = S, where S is an affinity matrix used in spectral clustering. The following
shows an unnormalized spectral clustering algorithm.

Input: Affinity matrix S (where S ∈ RN×N), and the number of clusters K.

1. Compute the unnormalized Laplacian matrix L = D − S, where D is a diagonal matrix
whose diagonal entries are row-sum of S.

2. Compute the K smallest eigenvalues and the corresponding eigenvectors u1, · · · ,uK of L.

3. Let U (U ∈ RN×K) be a matrix containing vectors u1, · · · ,uK as columns.

4. For i = 1, · · · ,N, let yi (yi ∈ RK) be the vector corresponding to the i-th row of U.

5. Use the K-means algorithm to partition {yi : i = 1, · · · ,N} into clusters C1, · · · ,CK .

6. Let Ak = { j : y j ∈Ck} (k = 1, · · · ,K), where Ak contains the indices of nodes that belong to
Cluster k.

Output: {Ak : k = 1, · · · ,K}.

The performance of existing spectral clustering techniques is not satisfactory for many applica-
tions. To improve the performance, a bio-inspired approach called Self-Organizing-Queue (SOQ) [5]
was proposed for the graph clustering problem. The key idea of SOQ is to enable fictitious queues of
intelligent nodes with self-organizing decision capability to choose a queue with most friends to join
so that closely-related nodes are grouped into the same cluster/queue. The SOQ clustering algorithm
is given as below.

Input: a set of N nodes, affinity matrix S (where S ∈ RN×N), and the number of clusters K.

1. Initialization: divide the set of N nodes into K queues; assign a queue to Current Queue;
Flag=1.

2. While (Flag)

3. WHO: Choose who in Current Queue as Current Person.

4. HOW: (How to) select a queue as Next Queue for Current Person to join.

5. WHERE: (Where to) place Current Person in Next Queue.
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6. Assign Next Queue to Current Queue.

7. WHEN: (When to) let Flag=0, i.e., stop the loop.

8. Endwhile

Output: the resulting K queues/clusters.

The key features of SOQ are: 1) self-organization, i.e., each node has the ability to decide where
it wants to join; 2) the similarity matrix S can be asymmetric, and the entries in S can take any real
value, including negative values. Note that none of the existing spectral clustering algorithms allows
asymmetric similarity matrix and similarity matrix with negative entries.

There are many variations of SOQ, depending on how Step 1, 3, 4, 5, and 7 are implemented. For
example, in Step 3 (WHO), we can choose the head of Current Queue as Current Person; in Step 4
(HOW), Current Person i can use the following criterion (called Most Friends) to choose Queue k̂ as
the Next Queue to join:

k̂ = argmax
k

∑ j∈Ck
(si, j + s j,i)

|Ck|
(11)

where si, j is the entry of S at row i and column j, and Ck is the set of indices of members in Queue
k; in Step 5 (WHERE), we can place Current Person at the tail of Next Queue. Due to the self-
organizing decision capability, SOQ clustering scheme achieves better clustering performance than
existing spectral clustering techniques and K-means algorithm for many applications [5].

To compare the performance of representative kernel based clustering schemes, i.e., unnormalized
spectral clustering (USC) [6], normalized cut (ncut) [6], and SOQ, as well as K-means, we conduct
two experiments. Since unnormalized and normalized spectral clustering algorithms can be regarded
as special types of weighted kernel K-means, we use spectral clustering to represent kernel K-means
as well.

The first experiment uses synthetic data consisting of 2-D Gaussian-distributed sample points. To
simulate four clusters, we use four 2-D Gaussian distributions with the same standard deviation of
0.05 and mean (-0.3, 0), (0, 0), (0.3, 0), and (0.6, 0), respectively, and each 2-D Gaussian distribution
corresponds to one cluster; the two dimensions of the 2-D Gaussian are independent and identically
distributed. The number of samples for the four clusters are 105, 15, 15, and 15, respectively, and the
total number of points N is 150. Fig. 3 shows the 2-D positions of the 150 sample points. For spectral
clustering algorithms, an affinity matrix is needed. Let the generated 2-D points be p1,p2, ...,pN , with
pn = (xn,yn) for 1 ≤ n ≤ N. We generate the affinity measure si, j between any two points pi and p j
by si, j = exp(−||pi−p j||22/(2σ2)), where σ = 1 in this experiment. In this way, we obtain an affinity
matrix S.

We run the algorithms 20 times, each with a different randomly permuted input, to obtain 20
clustering results. By comparing to the ground truth in Fig. 3, we obtain the error rate for each
experiment. For the 20 experiments, we calculate the mean clustering error rate and 95% confidence
interval, which are listed in the second column of Table 1, where µerror denotes the mean clustering
error rate and µerror ±ν denotes upper/lower bound of the confidence interval, respectively. Table 1
demonstrates that SOQ significantly outperforms K-means, USC, and ncut for this synthetic data set.

The second experiment uses real-world data, consisting of images of handwritten digits, which
are described in [9] and are downloadable from [10]. The 10 digits data set is used in our experiment.
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Figure 3: Positions of the two-dimensional sample points in a 2D plane; points with the same color
belong to the same cluster (i.e., generated by the same distribution).

Table 1: Error rate
µerror ±ν Synthetic Data Handwritten Digits

K-means 0.3090±0.0865 0.2661±0.0349

USC 0.3483±0.0620 0.3704±0.0219

ncut 0.5020±0.0474 0.3228±0.0204

SOQ 0±0 0.1603±0.0192

There are 10 clusters in the data set, with 100 members in each cluster. Again, we run the algorithms
20 times, each with different randomly permuted input. For the 20 experiments, we calculate the mean
clustering error rate and 95% confidence interval, which are listed in the third column of Table 1.
Table 1 demonstrates that SOQ significantly outperforms K-means, USC, and ncut for this set of
handwritten digits.

CONCLUSION

In this column, we have discussed kernel methods as pattern analysis tools, and provided insights in
two important pattern analysis problems, namely, feature extraction and clustering.

Kernel methods have been widely applied to computer vision, image processing, information
retrieval, text mining, handwriting recognition, geostatistics, kriging, bioinformatics, chemoinformat-
ics, information extraction, among others. It is expected that kernel methods will provide valuable
pattern analysis tools for emerging big data applications.
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