
1

An Efficient Data Structure for Network Anomaly
Detection

Jieyan Fan, Dapeng Wu, Kejie Lu, and Antonio Nucci

Abstract— Despite the rapid advance in networking tech-
nologies, detection of network anomalies at high-speed
switches/routers is still far from maturity. To push the frontier,
two major technologies need to be addressed. The first one is
efficient feature-extraction algorithms/hardware that can match
a line rate in the order of Gb/s; the second one is fast and effective
anomaly detection schemes. In this paper, we focus on design of
efficient data structure and algorithms for feature extraction.
Specifically, we propose a novel data structure that extracts so-
called two-directional (2D) matching features, which are shown
to be effective indicators of network anomalies. Our key idea
is to use a Bloom filter array to trade off a small amount of
accuracy in feature extraction, for much less space and time
complexity, so that our data structure can catch up with a line
rate in the order of Gb/s. Different from the existing work, our
data structure has the following properties: 1) dynamic Bloom
filter, 2) combination of a sliding window with Bloom filter, and
3) using an insertion-removal pair to enhance Bloom filter with
a removal operation. Our analysis and simulation demonstrate
that the proposed data structure has a better space/time trade-
off than conventional algorithms. For example, for a fixed time
complexity, the conventional algorithm (i.e., hash table [1]–[8])
requires a memory of 1.01G bits while our data structure requires
a memory of only 62.9M bits, at the cost of losing 1% accuracy
in feature extraction.

Index Terms— Network security, network anomaly, edge
router, bloom filter, feature extraction

I. INTRODUCTION

W ITH the rapid growth of Internet-based e-commerce,
detection of network anomalies becomes a major con-

cern in both industry and academia since network anomaly
detection is critical to maintain availability of network ser-
vices. Abnormal network behavior is usually the symptom of
potential unavailability in that:

• Network anomaly is usually caused by malicious behav-
ior, such as denial-of-service (DoS) attacks, distributed
denial-of-service (DDoS) attacks, worm propagation, net-
work scans, or email spams;

• Even if it is caused by unintentional reasons, network
anomaly is often accompanied with network congestion
or router failures.

Please direct all correspondence to Prof. Dapeng Wu, University of
Florida, Dept. of Electrical & Computer Engineering, P.O.Box 116130,
Gainesville, FL 32611, USA. Tel. (352) 392-4954, Fax (352) 392-0044, Email:
wu@ece.ufl.edu, URL: http://www.wu.ece.ufl.edu.

Dr. Jieyan Fan is with the Yahoo! Inc., 701 First Ave, Sunnyvale, CA
94089.

Dr. Kejie Lu is with the Department of Electrical and Computer Engineering
at the University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA.

Dr. Antonio Nucci is with Narus, Inc., 500 Logue Avenue, Mountain View,
CA 94043.

However, detecting network anomalies is not an easy task,
especially at high-speed routers. One of the main difficulties
arises from the fact that the data rate is too high to afford
complicated data processing. An anomaly detection algorithm
usually works with traffic features instead of the original
traffic data itself. Traffic features can be regarded as succinct
representations of the voluminous traffic, e.g., the traffic data
rate is a feature of the traffic. This paper focuses on efficiently
extracting the so-called 2D matching features, which are
shown to be effective indicators of network anomalies (see
Section II). Specifically, this paper proposes a novel data
structure called Bloom filter array, to efficiently extract the
2D matching features from traffic having a data rate in the
order of Gb/s.

The major contributions of this paper include

1) applying 2D matching feature to network anomaly de-
tection;

2) introducing a counter and an insertion-removal pair
vector to support counting and removal operation in a
Bloom filter, which is not supported by classic Bloom
filters;

3) designing a sliding window to reduce the false alarm
probability caused by the boundary effect due to
discrete-time sampling;

4) designing random-keyed hash functions, which provide
both security and convenient extension of Bloom filter;

5) correcting an invalid assumption made in the analysis
of [9] (due to technological advances in the last three
decades) and re-evaluating the time complexity incurred
by hash function calculations and bit comparisons;

6) analysis of time complexity, space complexity, and col-
lision probability of Bloom filter with dynamic data set.

Features for network anomaly detection have been studied
extensively in recent years. For example, Peng et al. [10]
proposed to use the number of new source IP addresses as
a feature to detect DDoS attacks, under the assumption that
source addresses of IP packets observed at an edge router
were relatively static in normal conditions than those during
DDoS attacks. The paper further pointed out that the feature
could differentiate DDoS attacks from the flash crowd, which
represents the situation when many legitimate users start to
access one service at the same time, e.g., when many people
watch a live sports broadcast over the Internet at the same time.
In both cases (i.e., DDoS attacks and the flash crowd), the
traffic rate is high. But during DDoS attacks, the edge routers
will observe many new source IP addresses because attackers
usually spoof source IP addresses of attacking packets to hide



2

their identities. Therefore, the feature of the number of new
source IP addresses improves those DDoS detection schemes
that rely on traffic rate only. However, Peng et al. [10] focused
on detection of DDoS attacks. It did not mention other types
of network anomalies. For example, when malicious users
are scanning the network, we can also observe high traffic
rate but few new source IP addresses. It is very important to
differentiate network scanning from flash crowd because the
former is malicious but the latter is not. The 2D matching
feature on different network layers, as shown by the four
scenarios in Section II, can tell not only the presence of
network anomalies but also their cause.

Lakhina et al. [11] summarized the characteristics of net-
work anomalies under different causes. Its contribution is
to help identify causes of network anomalies. For example,
during DDoS attacks, we can observe high bit rate, high
packet rate, and high flow rate. The source addresses are
distributed over the whole IP address space. On the other
hand, during network scanning, all the three rates are high, but
the destination addresses, rather than the source addresses, are
distributed. However, the paper did not resolve an important
problem, i.e., how to extract features efficiently to match a
high line rate in the order of Gb/s. This paper will address
this problem.

In Ref. [12], we proposed 2D matching features to de-
tect DDoS attacks. The features rely on the fact that most
application-layer protocols generate two-way traffic between
the two end-hosts. In Ref. [12], we also proposed a powerful
machine learning algorithm to detect DDoS attacks, given the
2D matching features. However, the paper [12] did not focus
on efficient design for feature extraction, which is the main
topic of this paper.

Our analysis and simulation demonstrate that the proposed
Bloom filter array has a better space/time trade-off than
the conventional algorithm. For example, for a fixed time
complexity, the conventional algorithm requires a memory of
1.01G bits while our Bloom filter array requires a memory
of only 62.9M bits, at the cost of losing 1% accuracy in
membership representation.

The rest of the paper is organized as follows. Section II
defines the 2D matching features. Section III describes two
basic algorithms to process the feature and points out their
limitations. In Section IV, we present the proposed Bloom
filter array (BFA). In Section V, we analyze the complexity
of the hash table and BFA. Section VI presents simulation
results to show the performance of BFA. Section VII draws
conclusions.

II. 2D MATCHING FEATURES

This section defines the 2D matching features, which will be
used in Sections III and IV for feature extraction. This section
is organized as follows. Section II-A describes the motivations
of using 2D matching features. Section II-B defines the 2D
matching features and lists the notations used in the paper.

A. Motivation

The motivation of using 2D matching features arises from
the fact that, for most Internet applications, packets are gener-

Fig. 1. Network in normal condition.

ated from both end hosts that are engaged in communication.
Information carried by packets on one direction shall match
the corresponding information carried by packets on the other
direction. By monitoring the degree of mismatch between
the traffic flows of two directions, we can detect network
anomalies. To illustrate this, let us consider the behaviors
of the two-way traffic in three scenarios, namely, 1) normal
conditions, 2) DDoS attacks, and 3) re-route.

In the first scenario, when the network of an Internet service
provider (ISP) works normally, information carried on both
directions of communication matches, as shown in Fig. 1.
Host a, a potential attacker, and host v, a potential victim,
are two ends of communication (assume that host v is within
the autonomous system of the ISP while host a is not). Host
a sends a packet to host v and v responds a packet back
to host a. Both packets pass the edge router A. From the
point of view of edge router A, we define the first packet
as an inbound packet, and the second packet as an outbound
packet. The source address (SA) and destination address (DA)
of the inbound packet match the DA and SA of the outbound
packet. If the communication is based on UDP or TCP, we
can further observe that the source port (SP) and destination
port (DP) of the inbound packet match the DP and SP of the
outbound packet. Therefore, edge routers of the autonomous
system can observe matched inbound and outbound packets in
normal conditions. In the example of Fig. 1, it is assumed that
the border gateway protocol (BGP) routing makes the inbound
packets and the corresponding outbound packets pass through
the same edge router. If the BGP routing makes the inbound
packets and the corresponding outbound packets go through
different edge routers as shown in Fig. 3, the matching can still
be achieved by a global analyzer proposed by Lu et al. [12],
i.e., multiple edge routers in an autonomous system convey the
unmatched inbound packets and the corresponding outbound
packets to a centralized matcher (global analyzer), which has
the routing information of the whole autonomous system.

In the second scenario, when attackers launch spoofed-
source-IP-address DDoS attacks [13], the edge routers can
observe many unmatched inbound packets, as shown in Fig.
2. Since source addresses of inbound packets are spoofed, the
outbound packets are routed to the nominal destinations, i.e., b
and c in Fig. 2, which do not pass through edge router A any
more. In this case, edge router A will observe many unmatched
inbound packets.

In the third scenario, as shown in Fig. 3, the number



3

Fig. 2. Source-address-spoofed packets.

Fig. 3. Reroute.

of unmatched inbound packets observed by edge router A
is increased due to a failure of the original route and re-
route of outbound packets to another edge router. A global
analyzer proposed by Lu et al. [12] can address this problem
as mentioned in the first scenario.

All the above scenarios seem to suggest that the number
of unmatched inbound packets observed by an edge router
is a good feature for network anomaly detection. However,
usually, this is not true because traffic volume from one end
to the other is not symmetric, typically. In Fig. 1, if host a is
a client uploading a large file using the File Transfer Protocol
(FTP) [14] to host v, there will be much more packets from a
to v than those from v to a. Uploading file to an FTP server
is a normal behavior but the number of unmatched inbound
packets is very high in this case.

Therefore, it is more appropriate to use flow-level quantities
(instead of packet-level quantities) as features for network
anomaly detection. As in the above FTP case, when a TCP
connection is established, all packets on one direction consti-
tute one flow and packets on the reverse direction constitute
another flow. No matter how many packets are sent on each
direction, there are only one inbound flow and only one
outbound flow. They match in IP addresses and port numbers.
Therefore, we call the number of unmatched inbound flows as
a two-directional (2D) matching feature.

At a first glance, it seems like 2D matching feature only
makes sense to TCP, as UDP does not necessarily generate
2D traffic. In practice, however, although UDP is used at the
transport layer, application layer protocols generally work in
an interactive way, such as SNMP and TFTP. The dominance
of application protocols generating 2D traffic makes the 2D

TABLE I

NOTATIONS AND DEFINITIONS FOR 2D MATCHING FEATURES

Γ : (Discrete-time) sampling interval.
ti : The ith sampling time epoch, where ti+1 = ti+Γ and i ∈ Z+.
p : An inbound packet.
P (ti) : The set of all inbound packets arriving during [ti, ti+1), i.e.,

{p : p arrives during [ti, ti+1)}
p′ : An outbound packet.
P ′(ti) : The set of all outbound packets arriving during [ti, ti+1), i.e.,

{p′ : p′ arrives during [ti, ti+1)}
f(p) : Inbound signature of p.
f ′(p′) : Outbound signature of p′.
X(ti) : The set of signatures of all inbound packets during [ti, ti+1),

i.e., {f(p)|p ∈ Pi}
Y (ti) : The set of signatures of all outbound packets during [ti, ti+1),

i.e., {f ′(p′)|p′ ∈ P ′
i}

D(ti) : X(ti)− Y (ti)
|D(ti)| : The number of UIF (i.e., feature of interest).

matching feature significant.
2D matching features are shown to be effective indicators of

network anomalies [12].1 However, extraction of 2D matching
features at high-speed edge routers is not an easy task. We will
address this issue in Sections III and IV.

B. Definition of 2D Matching Features

We first define three terms.
Definition 1: Signature is the information of interest, car-

ried in traffic.
The exact definition of signature depends on the specific

application targeted. For example, to detect SYN flood DDoS
attacks, as we only care about TCP SYN packet and SYN-
ACK packet, we may use a 5-tuple signature <SA, SP, DA,
DP, sequence number> for inbound packets and <DA, DP,
SA, SP, ACK number – 1> for outbound packets. Generally,
we can use the first 4 tuples as the signature for TCP or UDP
packets.

Definition 2: A flow is a set of the packets with the same
signature and the same direction.

For example, a TCP connection between two ends generates
two flows with different directions.

Definition 3: An unmatched inbound flow (UIF) is an in-
bound flow that has no corresponding outbound packet arriving
at an intended edge router within a time period Γ.

Note that we use a time constraint Γ in the definition of
UIF because it takes time for an outbound packet to arrive.
The value of Γ depends on the round trip time (RTT) of the
connection.

Table I lists the notations used in this paper, where Z+

represents the nonnegative integer set. |D(ti)| represents the
2D matching feature, i.e., the number of UIF, and it is sampled
at discrete time ti. In the following sections, we present
algorithms to extract |D(ti)| from the traffic at edge routers.

III. BASIC ALGORITHMS

This section presents two basic algorithms to process and
store the 2D matching features, namely, the Hash Table
Algorithm and Bloom filter.

12D matching features are good indicators of DDoS attacks with spoofed
source IP addresses but are not good indicators of DDoS attacks with non-
spoofed source IP addresses.



4

A. Hash Table Algorithm

From the discussion in Section II-B, we know the general
procedure to extract |D(ti)| from traffic is:

1) When a p comes, if there is no entry for f(p) in the
buffer, create one entry for f(p) and set the state of that
entry to “UNMATCHED”;

2) When a p′ comes, if there is an entry for f ′(p′) in the
buffer, set the state of that entry to “MATCHED”;

3) At time ti+1, assign the number of entries with state
“UNMATCHED” to |D(ti)|.

So typically we need three operations: insertion, search and
removal2.

A basic algorithm to do this is to use a hash table. Suppose
the signature extracted from a packet is b bits long. We
organize the buffer into a table with l cells of b + 1 bits
each. The extra one bit is the state bit. We also have K hash
functions hi:S �→ Zl, where i ∈ ZK = {0, 1, . . . , K −1}, and
S is the data set of interest, e.g., signature domain.

The insertion operation is as follows:
1) Let i = 0.
2) k = hi(f(p)).
3) If the kth cell is empty, insert f(p) into this cell, set its

state bit to 0 (i.e., “UNMATCHED”), and then exit the
loop.

4) If the kth cell holds f(p), exit the loop.
5) Otherwise, collision happens, let i = i + 1, and repeat

steps 2 to 4 until i = K . If i = K and there is still a
collision, an error report is generated and the insertion
operation terminates.

The search operation is similar to the insertion operation.
The difference is the return of the operation:

1) At step 3, if an empty cell is found, search operation
returns false.

2) At step 4, if a cell storing f(p) is found, search operation
returns true.

The removal operation simply sets the state bit to 1 (i.e.,
“MATCHED”) if a cell holding f(p) is found during the search
operation.

B. Bloom Filter

The hash table algorithm can be used for offline traffic
analysis or analysis of low data-rate traffic but it cannot catch
up with a high data rate at edge routers. To address this
limitation, one can use Bloom filter [9]. Compared to the hash
table algorithm, Bloom filter reduces space/time complexity by
allowing small degree of inaccuracy in membership represen-
tation, i.e., an f(p), which does not appear before, may be
falsely identified as present.

Bloom filter stores data in a vector V of M elements, each
of which consists of one bit. Bloom filter also uses K hash
functions hi:S �→ ZM , where i ∈ ZK . Fig. 4 describes the
insertion and search operations of Bloom filter.

Although Bloom filter has better performance in the sense
of space/time trade-off, it cannot be directly applied to our
application because of the following problems:

2Setting the state to “MATCHED” is actually the removal operation.

1) function BloomFilterInsert(V , s)
2) for ∀i ∈ ZK do
3) V [hi(s)]← 1
4) end function
5) function BloomFilterSearch(V , s)
6) for ∀i ∈ ZK do
7) if V [hi(s)] �= 1 then
8) return false
9) end for

10) return true
11) end function

Fig. 4. Bloom Filter Operations

1) Bloom filter does not provide removal functionality.
Since one bit in the vector may be mapped by more
than one item, it is unsuitable to remove the item by
setting all bits indexed by its hash results to 0.

2) Bloom filter does not have counting functionality. Al-
though the counting Bloom filter [15] can be used
for counting, it replaces a bit with a counter, which
significantly increases the space complexity.

3) Sampling 2D matching features in discrete time results
in boundary effect, as shown in Fig. 5(a). A p arrives at
time t′1 and its matched packet p′ arrives at time t′2. Since
f(p) is counted in Xi whereas f ′(p′) is not counted in
Yi, p is counted as an unmatched inbound packet even
though t′2−t′1 < Γ. Therefore, boundary effect increases
the false alarm rate.

4) In Fig. 5(a), we did not consider the scenario that a p ′

may arrive before its matched packet p, as shown in Fig.
5(b). When a p′ arrives at time t′1, f ′(p′) is not in the
buffer, so we do nothing. At time t ′2, its matched packet
p arrives and f(p) will be placed in the buffer. When
we sample |D(ti)| at time ti+1, p is regarded as an
unmatched inbound packet. This early-arrival problem
also increases the false alarm rate.

Next, we propose a Bloom filter array to address the above
problems.

IV. BLOOM FILTER ARRAY

The good space/time trade-off motivates us to apply Bloom
filter to 2D feature extraction. But we need to address the
problems of Bloom filter mentioned in Section III-B. Our idea
is to design a Bloom filter array (BFA) with the following
functionalities, not available in the original Bloom filter [9]
and [16]:

1) Removal functionality: We implement insertion and
removal operations synergistically by using insertion-
removal pair vectors. The trick is that, rather than
removing f ′(p′) from the insertion vector, we create a
removal vector and insert f ′(p′) into the removal vector.

2) Counting functionality: We implement this by intro-
ducing counters in Bloom filter array. The value of a
counter is changed based on the query result from an
insertion/removal operation.

3) Boundary effect abatement: We use multiple time slots
and a sliding window to mitigate the boundary effect.

4) Resolving the early-arrival problem: which is achieved
by storing information of not only inbound packets but



5

(a) Boundary problem (b) A p′ arrives before a matched p with t̄2 − t̄1 < Γ

Fig. 5. Scenarios of the problems caused by Bloom filter

also outbound packets. In this way, when a p arrives
and the signature of its matched p′ is present, we do not
count p in |D(ti)|.

The rest of the section is organized as follows. In Sections
IV-A and IV-B, we present the data structure and algorithm
of BFA, respectively. We describe the sliding window and
random-keyed hash functions used in BFA in Sections IV-C
and IV-D, respectively.

A. Data Structure

To address the boundary effect, we partition a discrete-time
interval of Γ into w time slots, where w is the number of
slots enough to mitigate the boundary effect (see Section IV-
C). Assume the length of a slot is γ. Then, we have Γ = w×γ.
The data structure of BFA is as follows:

• An array of bit vectors {IVj} (j ∈ Z+), where IVj is
the jth insertion vector holding f(p) in slot [τj , τj+1),
where τj+1 = τj + γ.

• An array of bit vectors {RVj} (j ∈ Z+), where RVj is
the jth removal vector holding f ′(p′) in slot [τj , τj+1).

• An array of counters {Cj} (j ∈ Z+), where Cj is used
to count the number of UIF in slot [τj , τj+1).

Since the two-way flows need to be matched within a time
interval of length Γ, we only need to keep information within
a time window of length Γ. That is, if the current slot is
[τj , τj+1), only {IVj−w+1, . . . , IVj}, {RVj−w+1, . . . , RVj},
and {Cj−w+1, . . . , Cj} are kept in memory.

B. Algorithm

As shown in Fig. 6, our algorithm for BFA consists of three
functions, namely, ProcInbound, ProcOutbound and Sample,
which are described as below.

Function ProcInbound is to process inbound packets. It
works as below. When a p arrives during [τj , τj+1), we
increase Cj by 1 and insert f(p) into IVj if none of the
following conditions is satisfied:

1) f(p) is stored in at least one RVj′ , where j − w + 1 ≤
j′ ≤ j;

2) f(p) is stored in IVj .
Condition 1 being true means that the outbound flow of p
has been observed previously; so we should not count p as
a packet of an UIF. Condition 2 being true means that the
inbound flow, to which p belongs, has been observed in the
current slot j; so we should not count the same inbound flow
again. In Function ProcInbound, a and b are two flags with
initial value false. Flag a is used to indicate condition 1 (line
3 to 4) and flag b for condition 2 (line 5 to 6). If they are both

1) function ProcInbound(p)
2) a← false, b← false
3) if ∃j′, j−w+1 ≤ j′ ≤ j, such that BloomFilterSearch(RVj′ ,f(p))

returns true then
4) a← true
5) if BloomFilterSearch(IVj ,f(p)) returns true then
6) b← true
7) if a and b are both false
8) Cj ← Cj + 1
9) BloomFilterInsert(IVj , f(p))

10) end if
11) end function
12) function ProcOutbound(p′)
13) for j′ ← j to j − w + 1
14) if BloomFilterSearch(RVj′ , f

′(p′)) returns true
15) break
16) if BloomFilterSearch(IVj′ , f

′(p′)) returns true
17) Cj′ ← Cj′ − 1
18) end for
19) BloomFilterInsert(RVj , f ′(p′))
20) end function
21) function Sample(j)
22) return Cj−w+1

23) end function

Fig. 6. Bloom Filter Array Algorithm

false, we increase Cj by one to indicate a new potential UIF
(line 7 to 10).

Function ProcOutbound is to process outbound packets. It
works as below. When a p′ arrives during [τj , τj+1), we check
whether we need to update counter Cj′ for each j ′ (j−w+1 ≤
j′ ≤ j). Specifically, for each j ′ (j−w+1 ≤ j′ ≤ j), decrease
Cj′ by one if both of the following conditions are satisfied:

1) f ′(p′) is not contained in RVj′ ;
2) f ′(p′) is contained in IVj′ .

Condition 1 being true means that no packet from the outbound
flow of p′ arrives during the j ′th time slot. Condition 2 being
true means that the inbound flow of p ′ has been observed in
the j′th slot. Satisfying both conditions means that the inbound
flow of p′ has been counted as a potential UIF; hence, upon
the arrival of p′, the inbound flow of p′ is matched and we
need to decrease Cj′ by one. In Function ProcOutbound, Line
13 starts a loop to iterate j ′ from j to j−w+1. Condition 1 is
checked in lines 14 to 15 and Condition 2 is checked in lines
16 to 17. Note that the loop exits (line 15) if RVj′ contains
f ′(p′); this is because an outbound packet of the same flow
arrived in that j ′th slot and hence the buffer of the j̄th slot
(for each j̄ < j′) has already been checked.

Function Sample is to extract the 2D matching feature.
When we execute Function Sample at the end of the jth
slot (i.e., at time τj+1), the output is |D(τj−w+1)| instead
of |D(τj)| since a time lag of Γ (w slots) is needed for 2D
matching.



6

C. Round Robin Sliding Window

The algorithm presented in Section IV-B has a drawback
in memory allocation. Specifically, at epoch τj+1, we sample
|D(τj−w+1)|, and then we need to throw away the buffer for
the (j−w+1)th slot, and create a new buffer for the (j+1)th
slot. This is inefficient for most operating systems. A better
memory allocation strategy is to use the useless buffer of the
(j−w+1)th slot for the new (j +1)th slot, saving the cost of
deleting the existing buffer and acquiring a new buffer. This
is the idea of our round-robin sliding window.

Our new memory allocation scheme is the following. We
allocate a memory area of fixed size for w insertion vectors
{IVj}, w removal vectors, {RVj}, and w counters {Cj},
where j ∈ Zw. The insertion vector, removal vector, and
counter for the jth slot are IVj%w , RVj%w , and Cj%w,
respectively. Here, % stands for modulo operation. We also
define a pointer I to point to the current slot. Then, rather
than deleting a useless buffer and acquiring a new buffer for
the new slot, we simply update the pointer by I = (I +1)%w.
Fig. 7 shows the improved version of BFA, based on the round-
robin sliding window.

1) function ProcInbound(p)
2) a← false, b← false
3) if ∃j′, j′ ∈ {(I −w + 1)%w, (I −w + 2)%w, . . . , I%w}, such

that BloomFilterSearch(RVj′ ,f(p)) returns true then
4) a← true
5) if BloomFilterSearch(IVI ,f(p)) returns true then
6) b← true
7) if a and b are both false then
8) CI ← CI + 1
9) BloomFilterInsert(IVI , f(p))

10) end if
11) end function
12) function ProcOutbound(p′)
13) for j′ ← I to (I −w + 1)%w
14) if BloomFilterSearch(RVj′ , f

′(p′)) returns true then
15) break
16) if BloomFilterSearch(IVj′ , f

′(p′)) returns true then
17) Cj′ ← Cj′ − 1
18) end for
19) BloomFilterInsert(RVI , f ′(p′))
20) end function
21) function Sample()
22) I ← (I + 1)%w
23) return CI

24) end function

Fig. 7. Bloom Filter Array Algorithm using sliding window

D. Random-Keyed Hash Functions

In previous sections, we assume K hash functions are given
a priori. However, choosing hash functions appropriately is not
trivial due to the following two concerns.

First, K is a user-specified parameter, subject to change.
But for a value of K that a user3 chooses, it is not desirable
to require the user to manually select K hash functions from
a large pool of hash functions provided by the manufacturer.
Also, it wastes memory to store a large pool of hash functions.

Second, to improve security, the K hash functions need to
be changed over time. Otherwise, if an attacker knows the hash

3A user here is a network operator who wants to use our BFA and detection
technique to detect network anomalies.

functions, he can generate such attack packets that for any
two packets p and q, f(p) �= f(q) but hi(f(p)) = hi(f(q)),
i ∈ ZK . The consequence is that even if there are many
attack packets with different signatures, the BFA algorithm
will regard them as belonging to the same flow. So, the number
of UIF for these packets is only one. This causes security
vulnerability.

We address the aforementioned two problems by using
keyed hash functions, i.e., we only need one kernel hash
function and K randomly generated keys. Specifically, the
ith hash function hi(x) is simply h(keyi, x), where h is a
predefined kernel hash function and {key i} (i ∈ ZK ) are
randomly generated keys. For example, we can use MD5
Digest Algorithm [17] as the hash function. Since MD5 takes
any number of bits as input, we can organize key i and x into
a bit vector and apply MD5 to it.

Using keyed hash functions, the first concern (varying K)
can be addressed straightforwardly. Specifically, when K is
changed, we simply generate a corresponding number of
random keys. Applying these K keys to the same kernel hash
function, we obtain K hash functions. Hence, our method
has two advantages: 1) the number of hash functions can be
specified on the fly; 2) hash functions are determined on the
fly, instead of being stored a priori, resulting in storage saving.

The second concern (changing hash functions) can also be
addressed if the keys are periodically changed. Even if the
kernel hash function is disclosed, it is still very difficult, if
not impossible, for an attacker to guess the changing random
keys.

Note that the collision probability of the hash functions is
not affected due to the use of keyed hash functions. In the
case of random-keyed hash functions, the collision probability
of hi(x) depends on not only the collision probability of h
but also the correlation between keyi and x. Since random
number generator techniques are so mature that we can assume
independence between keyi and x, introduction of random
keys has no effect on the collision probability.

V. COMPLEXITY ANALYSIS

This section compares the hash table, Bloom filter, and our
BFA. The section is organized as follows. In Section V-A,
we analyze the space/time trade-off for the three algorithms.
Section V-B addresses how to optimally choose parameters of
BFA.

A. Space/Time Trade-off

Space/time trade-off for both Hash Table and Bloom filter
was analyzed by Bloom [9]. However, the analysis in [9] is not
directly applicable to our setting due to the following reasons:

1) A static data set was assumed by Bloom [9]. However,
our feature extraction deals with a dynamic data set,
i.e., the number of elements in the data set changes
over time. Hence, new analysis for a dynamic data set
is needed. In addition, Bloom [9] only considered the
search operation due to the assumption of static data
sets. Our feature extraction, on the other hand, requires



7

TABLE II

NOTATIONS FOR ANALYSIS

N : Random variable representing the number of different flows
recorded.

φ : Empty ratio.
η : Collision probability, i.e., the probability that an item is falsely

identified to be in the buffer.
R : Flow arrival rate, which is assumed to be constant.

three operations, i.e., insertion, search, and removal, for
dynamic data sets.

2) Bloom [9] assumed bit-comparison hardware in time
complexity analysis. However, current computers usu-
ally use word (or multiple-bit) comparison, which is
more efficient than bit-comparison hardware. Hence, it
is necessary to analyze the complexity based on word
comparison.

3) The time complexity obtained by Bloom [9] did not in-
clude hash function calculations. However, hash function
calculation dominates the overall time complexity, e.g.,
calculating one hash function based on MD5 takes 64
clock cycles [18], while one word-comparison usually
takes less than 8 clock cycles [19].

For the above reasons, we develop new analysis for the
hash table and Bloom filter in Sections V-A.1 and V-A.2,
respectively. Section V-A.3 provides the analysis for BFA
while Section V-A.4 shows numerical results to compare the
performance of the three algorithms. Table II lists the notations
used in the analysis.

1) Analysis for Hash Table: Denote by Mh the size of a
hash table in bits (i.e., space complexity) and by Th the random
variable representing the number of hash function calculations
for an unsuccessful search (i.e., time complexity).

Let us consider search operation first. Upon the arrival of
packet p, the search algorithm checks if f(p) is in the table.
Because an unsuccessful search will continue the loop until an
empty cell is found, it consumes more time than a successful
one does. In addition, it is very difficult to analyze the
time complexity of a successful search since the complexity
depends on the distribution of flow signatures and the data
rate of each flow. For this reason, we only consider the time
consumed for an unsuccessful search, which is a conservative
estimate of the average time complexity of a search. Recall
that, as mentioned in Section III-A, the hash table has l cells
of b+1 bits each, such that Mh = l(b+1). Given the condition
that N flows have been recorded by the hash table, the empty
ratio is

φ =
l − N

l
=

Mh − N(b + 1)
Mh

. (1)

In each loop, the search algorithm calculates one hash function
and checks the addressed entry. If the entry is not empty, next
loop is executed. The conditional probability that the loop
is executed for x times for a given n follows a geometric
distribution as below

Pr[Th = x|N = n] = φ(1 − φ)x−1. (2)

Therefore the conditional expectation of Th is

E[Th|N = n] =
∞∑

x=1

xφ(1 − φ)x−1

=
1
φ

=
Mh

Mh − n(b + 1)
. (3)

Since the table records data for the duration of Γ, the
maximum number of different flows that we need to store
in the buffer is RΓ. Then the expectation of Th is

E[Th] =
RΓ∑
n=0

Pr[N = n]E[Th|N = n]. (4)

Assume N has a uniform distribution

Pr[N = n] =
1

RΓ + 1
. (5)

Applying Eq. (5) to Eq. (4), we obtain the expectation of T h

E[Th] =
1

RΓ + 1

RΓ∑
n=0

Mh

Mh − n(b + 1)
. (6)

Since the time to insert f(p) into or remove f(p) from a
given entry is much shorter than that to find the proper entry,
the time complexities of insertion and removal operations are
almost the same as that of the search operation. Eq. (6) gives
the space/time trade-off (i.e., Mh vs. Th) of the hash table
method.

2) Analysis for Bloom Filter: First of all, we consider the
space complexity of Bloom filter. Denote by Mb the length
of the vector V used by Bloom filter (see Section III-B). The
choice of Mb will affect the accuracy of the search function,
BloomFilterSearch (see Fig. 4). The reason is the following.

When signatures of N flows are stored in V , φ, denoting
the percentage of entries of V with value 0, is

φ =
(

1 − K

Mb

)N

, (7)

where K is the number of hash functions. Assuming K � M b,
as is certainly the case, we can approximate φ as

φ ≈ exp
(
−KN

Mb

)
. (8)

Function BloomFilterSearch(V , s) falsely identifies s to be
stored in V if and only if results of all K hash functions point
to bits with value 1, which is known as a collision. Denote by
ηN the collision probability under the condition that N flows
have been recorded. Then

ηN = (1 − φ)K =
[
1 − exp

(
−KN

Mb

)]K

. (9)

Therefore, the average collision probability is

η =
RΓ∑
n=0

ηn Pr[N = n] =
1

RΓ + 1

RΓ∑
n=0

[
1 − exp

(
−Kn

Mb

)]K

,

(10)



8

where N is assumed to be uniformly distributed as in Eq. (5).
From Eq. (10), it can be observed that η decreases with M b if
K is fixed. Based on Eq. (10), we can denote Mb as a function
of η and K as below

Mb = αRΓ(η, K). (11)

Eq. (11) gives the space complexity of Bloom filter as
a function of collision probability and the number of hash
functions.

Now, let us consider the time complexity of Bloom filter.
Denote by Tb the random variable representing the number of
hash function calculations.

Function BloomFilterInsert always calculates all the K hash
functions, that is,

Tb|{BloomFilterInsert is executed} ≡ K, (12)

where “|” followed by an event means a condition and “≡”
means equality with probability 1.

For function BloomFilterSearch, we first consider a special
case that BloomFilterSearch returns true. In this case, all K
hash functions need to be calculated. So

Tb|{BloomFilterSearch returns true} ≡ K. (13)

This fact will be used in the analysis for BFA (see Section V-
A.3).

In general,

Pr[Tb = x|N=n and BloomFilterSearch is executed]

=

{
φ(1 − φ)x−1 x < K

(1 − φ)K−1 x = K
. (14)

Hence, the conditional expectation of Tb is

E[Tb|N=n and BloomFilterSearch is executed]

=
K−1∑
x=1

xφ(1 − φ)x−1 + K(1 − φ)K−1

=
1 −

[
1 − exp

(
− Kn

αRΓ(η,K)

)]K

exp
(
− Kn

αRΓ(η,K)

)
denote= βn(η, K). (15)

Averaging over N at both sides of Eq. (15), we get the
expectation of Tb under the condition that BloomFilterSearch
is executed, i.e.,

E[Tb|BloomFilterSearch is executed]

=
1

RΓ + 1

RΓ∑
n=0

βn(η, K). (16)

If we know the two prior probabilities, i.e., the probability
that BloomFilterSearch is executed, denoted by Ps, and the
probability that BloomFilterInsert is executed, denoted by P i,
then we can get

E[Tb] =
Ps

RΓ + 1

RΓ∑
n=0

βn(η, K) + PiK. (17)

Eq. (17) gives the time complexity of Bloom filter in terms of
number of hash function calculations.

3) Analysis for BFA: Once again, we analyze the space
complexity of BFA first. The techniques in Section V-A.2 can
be applied here since BFA is originated from standard Bloom
filter. However, there are some differences between these two
schemes. As described in Section IV, BFA has multiple buffers
such as IVj , RVj , and Cj , j ∈ Zw. Therefore, the storage size
for BFA, denoted by Ma (in bits), is w(2 × Mv + L), where
Mv is the size of each insertion or removal vector, and L is
the size of each counter in bits.

Similar to Eq. (10), the collision probability is

η =
1

Rγ + 1

Rγ∑
n=0

[
1 − exp

(
−Kn

Mv

)]K

. (18)

Note that length of each time slot of BFA is γ, so that the
upper limit of the summation operator is Rγ rather than RΓ.
Similar to Eq. (11), Mv is a function of η and K . We define

Mv = αRγ(η, K). (19)

Then

Ma = w(2 × αRγ(η, K) + L). (20)

Eq. (20) gives the space complexity of BFA.
Now, let us consider the time complexity of BFA. Denote

by Ta the random variable representing the number of hash
function calculations for BFA. Recall that, as shown in Fig. 7,
BFA defines three functions, ProcInbound, ProcOutbound, and
Sample. Obviously,

Ta|{Sample is executed} ≡ 0. (21)

When executing Function ProcInbound, all the K hash
functions need to be calculated. The reason is the following.

1) If variables a and b are both false, Function BloomFil-
terInsert is executed, which calculates K hash functions
(see Eq. (12)).

2) Otherwise, at least one of a and b is true; then
at least one of the search operations, i.e., BloomFil-
terSearch(RVj′ ,f(p)), j′ = (I − w + 1)%w, (I − w +
2)%w, . . . , I%w, and BloomFilterSearch(IVI ,f(p)), re-
turns true. This also means that K hash functions have
been calculated (see Eq. (13)).

Therefore, in any case, ProcInbound calculates all the K hash
functions. Further note that, although BloomFilterSearch exe-
cutes up to w+1 search operations, and at most one insertion
operation, the total number of hash function calculations in
these operations is the same as that in one search operation.
This is because the results of hash function calculation in one
search operation can be used again by all the other search
operations and insertion operation. Therefore,

Ta|{ProcInbound is executed} ≡ K. (22)

Similarly,

Ta|{ProcOutbound is executed} ≡ K. (23)

In each time slot, we execute Sample once, ProcInbound
for Rpiγ times, and ProcOutbound for Rpoγ times, where Rpi

and Rpo are inbound packet arrival rate and outbound packet



9

TABLE III

SPACE/TIME COMPLEXITY FOR HASH TABLE, BLOOM FILTER AND BFA

Algorithm Space complexity Time complexity
Hash table Mh (free variable) Eq. (6)
Bloom filter Eqs. (10) and (11) Eqs. (15), (16), and (17)
BFA Eq. (18), (19), and (20) Eq. (24)

arrival rate, respectively. Combining Eqs. (21), (22), and (23)
and assuming (Rpi + Rpo)γ 	 1, which is always true in our
design of BFA, we have

E[Ta] =0 × 1
(Rpi + Rpo)γ + 1

+
K(Rpi + Rpo)γ

(Rpi + Rpo)γ + 1
≈ K.

(24)

Combining Eqs. (24) and (20), we obtain the relationship
between Ma and Ta as below

Ma = w [2αRγ(η, E[Ta]) + L] . (25)

Table III lists the space complexity and time complexity for
hash table, Bloom filter, and BFA.

4) Numerical Results: In this section, we use the formulae
derived in Sections V-A.1 and V-A.3 to compare the hash table
scheme with BFA through numerical calculations. The setting
of our numerical study is the following:

1) Traces captured from an ISP’s edge router shows that
the average number of flows during one second is
around 250, 000. So, we let R=250, 000. To reduce the
probability of false alarms caused by normal packets
with long RTT, we choose Γ large enough such that
more than 99% packets have RTT less than Γ. For the
same traces, Γ=80 seconds.

2) Suppose we want to detect TCP traffic anomaly. Thus
the signature captured from each packet is composed
of 32-bit SA, 32-bit DA, 16-bit SP, and 16-bit DP. So
b = 96 bits.

3) In the BFA algorithm, we use 40 time slots (i.e., w =
40), each of which is 2 seconds (i.e., γ = 2). Also
suppose each counter is a 32-bit integer (i.e., L = 32).

Fig. 8 shows M vs. E[T ] for the hash table scheme, BFA with
collision probability 1%, and BFA with collision probability
0.1%. In Fig. 8, X axis represents the time complexity (i.e.,
the expected number of hash function calculations) and Y
axis represents the space complexity (i.e., the number of bits
needed for storage). From Fig. 8, we can see that the curve
of BFA is below the curve of the hash table. It means BFA
uses less space for a given time complexity. Therefore, BFA
achieves better space/time trade-off than the hash table. We
also see that the curve of BFA with η = 1% is below the
curve of BFA with η = 0.1%. This shows the relationship
between space/time and collision probability. Specifically, to
reach a lower collision probability or more accurate detection,
we need to either calculate more hash functions or use more
storage space.

To see the gain of using BFA, let us look at an example.
Suppose E[T ] = 5, i.e., in each slot, 5 hash function
calculations is needed on average. Then, the memory required
by the hash table scheme, BFA with η = 0.1%, and BFA

1 2 3 4 5 6 7 8 9 10
10

7

10
8

10
9

10
10

10
11

Time E[T]

S
pa

ce
 M

Space/Time Trade−off

Hash Table
BFA (η = 0.001)
BFA (η = 0.01)

Fig. 8. Space/time trade-off for the hash table, BFA with η = 0.1%, and
BFA with η = 1%

with η = 1% is 1.01G bits, 115.3M bits, and 62.9M bits,
respectively. It can be seen that our BFA with η = 1% can
save storage by a factor of 16, compared to the hash table
scheme.

Fig. 8 shows that for the hash table scheme, Mh is a
monotonic decreasing function of E[Th]. The observation
matches our intuition that the larger table, the smaller collision
probability for hash functions, resulting in less hash function
calculations. Further note that Mh approaches RΓ(b + 1)
when E[Th] increases. This is the minimum space required
to tolerate up to RΓ flows.

For BFA, Ma is not a monotonic function of E[Ta], which
approximately equals K . We have the following observations.

• Case A: For fixed storage size, the smaller K , the
larger the probability that all K hash functions of two
different inputs return the same outputs, which is the
collision probability. In other words, the smaller K , the
larger storage size required to achieve a fixed collision
probability. That is, K ↓⇒ Ma ↑.

• Case B: Since an input to BFA may set K bits to “1” in
a vector V , hence the larger K , the more bits in V will
be set to “1” (nonempty), which translates into a larger
collision probability. In other words, the larger K , the
larger storage size required to achieve a fixed collision
probability. That is, K ↑⇒ Ma ↑.

Combining Cases A and B, it can be argued that there exists a
value of K or E[Ta] that achieves the minimum value of Ma,
given a fixed collision probability. This minimum property can
be used to guide the parameter setting for BFA, which will be
addressed in Section V-B.1.

B. Optimal Parameter Setting for BFA

This section addresses how to determine parameters of
BFA under two criteria, namely, minimum space criterion and
competitive optimality criterion.

1) Minimum Space Criterion: According to Eq. (25), three
parameters, Ma, E[Ta], and η, are coupled. Since the collision
probability η critically affects the detection error rate in our
network anomaly detection, a network operator may want
to choose an upper bound η̄ on the acceptable collision



10

10
−3

10
−2

10
−1

10
8.1

10
8.2

10
8.3

10
8.4

10
8.5

10
8.6

10
8.7

η

M
a

E[T
a
]=4

E[T
a
]=6

η
c
=0.0156 

Fig. 10. Ma vs. η for fixed E[Ta].

probability η and then minimize the storage required, i.e.,

min
E[Ta]

Ma, subject to η ≤ η̄ (26)

According to Eq. (25), the solution of (26) is as below

M∗
a = min

E[Ta]
Ma = min

E[Ta]
w [2αRγ(η̄, E[Ta]) + L] , (27)

E[Ta]∗ = arg min
E[Ta]

Ma = arg min
E[Ta]

αRγ(η̄, E[Ta]). (28)

Fig. 9 shows M ∗
a vs. η̄, and E[Ta]∗ vs. η̄ under the same

setting as that in Section V-A.4. From Fig. 9(a), it can be
observed that M ∗

a decreases with η̄. This is because the larger
collision probability we can tolerate, the less space required.
From Fig. 9(b), it can be observed that generally, E[T ∗

a ]
decreases with η. This may be because the smaller E[T ∗

a ] or
K , the larger the probability that all K hash functions of two
different inputs return the same outputs, which is the collision
probability.

2) Competitive Optimality Criterion: From Eq. (18), it can
be observed that η decreases with the increase of Mv if K is
fixed; in other words, Mv decreases with the increase of η if K
is fixed. Further, from Eqs. (19) and (25), it can be inferred
that Ma decreases with the increase of η if E[Ta] is fixed
(note that E[Ta] ≈ K). This is shown in Fig. 10. From the
figure, it can be observed that the two lines intersect at a value
of collision probability, denoted by ηc. This value is critical
for the parameter setting of BFA. If a network operator has a
desirable collision probability η, which is greater than ηc, then
it should choose E[Ta] = 4 since this parameter setting gives
both smaller time complexity and smaller space complexity.
We call this property ‘competitive optimality’ since there is
no tradeoff between time complexity and space complexity
in this case. On the other hand, if a network operator has a
desirable collision probability η, which is smaller than ηc, then
it needs to make a tradeoff between space complexity and time
complexity.

VI. SIMULATION RESULTS

In this section, we conduct two sets of experiments to show
the performance of BFA for feature extraction in high-speed
networks. Section VI-A compares the performance of the BFA
algorithm with that of the hash table algorithm. In Section VI-
B, we show the performance of the complete feature extraction
system, which uses the BFA algorithm.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

7

10
8

10
9

10
10

Average processing time per packet (µ s)

A
llo

ca
te

d 
m

em
or

y 
si

ze
 (

bi
ts

)

 

 
Hash Table
BFA (η=0.001)
BFA (η=0.01)

Fig. 11. Memory size (in bits) vs. average processing time per query (in µs)

A. BFA Algorithm vs. the Hash Table Algorithm

1) Simulation Settings: We apply the hash table algorithm
and the BFA algorithm to the time series of signatures
extracted from real traffic traces, which were collected by
Auckland University [20]. To make a fair comparison with
respective to the numerical results in Section V-A.4, we
use the same 96-bit signature, i.e., SA, DA, SP, and DP,
and let R=250, 000 packets/second and Γ=80 seconds, which
translates to 250, 000 × 80=20M input signatures for each
simulation. These signatures are preloaded into memory before
the beginning of simulations so that I/O speed of hard drive
does not affect the execution time of simulations.

For each simulation run of the hash table algorithm, we
specify the memory size Mh, and measure the algorithm
performance in terms of the average number of hash function
calculations per signature query request, denoted by T̂h, and
the execution time. Due to the Law of Large Numbers, T̂h

approaches the expected number of hash function calculations
per signature query request, i.e., E[Th] in Eq. (6), if we run the
simulation many times with the same Mh. In our simulations,
we run the hash table algorithm ten times; each time with a
different set of input signatures but with the same Mh.

For each simulation run of the BFA algorithm, we specify
the memory size ma and the number of hash functions
K , and measure the algorithm performance in terms of the
collision frequency, denoted by η̂, and the execution time. The
collision frequency is defined as the ratio of the number of
collision occurrences in BloomFilterSearch to the total number
of BloomFilterSearch executions. Due to the Law of Large
Numbers, η̂ is a good estimate of collision probability, η.

2) Performance Comparison Between Hash Table and BFA:
Fig. 11 shows average processing time per query vs. memory
size for the hash table algorithm, BFA algorithm with η̂=0.1%,
and BFA algorithm with η̂=1%.

From Fig. 11, we observe that 1) compared to the hash
table algorithm, the BFA algorithm requires less memory
space for the same time complexity (average processing time
per query), which was predicted in Section V, and 2) the
BFA algorithm with η̂=1% has a better space-complexity/time-
complexity tradeoff than the BFA algorithm with η̂=0.1% but
at cost of higher collision probability, which is predicted by
the numerical results in Fig. 8.



11

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8
x 10

8

η

M
a*

M
a
*  v.s. η

(a)

10
−5

10
−4

10
−3

10
−2

10
−1

2

4

6

8

10

12

14

η

E
[T

a]*

E[T
a
]*  vs. η

(b)

Fig. 9. (a) M∗
a vs. η̄, and (b) E[Ta]∗ vs. η̄

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Average number of hash function calculations

A
ve

ra
ge

 p
ro

ce
ss

in
g 

tim
e 

pe
r 

pa
ck

et
 (µ

 s
)

 

 
Hash Table
BFA (η=0.001)
BFA (η=0.01)

Fig. 12. Average processing time per query (in µs) vs. average number of
hash function calculations per query.

Fig. 12 shows average processing time per query vs. average
number of hash function calculations per query. It can be
observed that the average processing time per query linearly
increases with the increase of the average number of hash
function calculations per query. That is, the larger the average
number of hash function calculations per query, the larger the
average processing time per query. For this reason, instead of
running simulations to obtain the time complexity (i.e., the
average processing time per query), in Section V-A, we used
the average number of hash function calculations per query to
represent the time complexity of the hash table algorithm and
the BFA algorithm.

3) Performance Comparison Between Numerical and Sim-
ulation Results: Fig. 13 compares the simulations results and
the numerical results obtained from the analysis in Section V,
for both hash table algorithm and BFA algorithm in terms of
space complexity vs. time complexity.

In Fig. 13(a), the numerical result agrees well with the
simulation result, except when the average number of hash
function calculations per query is close to 1. From Eq. (6), if
the expected number of hash function calculations approaches
1, the required memory size approaches infinity; in contrast,
simulations with a large Mh may not give accurate results,
due to limited memory size of a computer. This causes the big

Fig. 14. Feature extraction system.

discrepancy between the numerical result and the simulation
result when the average number of hash function calculations
per query is close to 1. When the average number of hash
function calculations per query is greater than or equal to two,
it is observed that simulation always requires more memory
than the numerical result. This is due to the fact that practical
hash function is not perfect. That is, entries in the hash table
are not equally likely to be accessed. Hence, Eq. (2) does not
hold perfectly, neither does Eq. (3). As a result, the average
number of hash function calculations per query in simulation
is larger than that predicted by Eq. (6).

Fig. 13(b) shows that the numerical result agrees well with
the simulation result for all the values of the average number
of hash function calculations per query under our study.

B. Experiment for Feature Extraction System

In this section, we show the performance of the complete
feature extraction system, which uses the BFA algorithm.

1) Experiment Settings: The feature extraction system used
in our experiment is shown in Fig. 14, where the packet parser
retrieves a packet from the network trace file stored in a
hard disk, the filter selects packets of interest (e.g., selects
ICMP packets only for PING flood attack detection), and the
timer controls when to produce the features. The reason of
conducting this experiment is that we would like to know
the performance of the whole feature extraction system that
consists of four modules, i.e., the packet parser, the filter, the
timer, and the BFA algorithm; in contrast, the experiment in
Section VI-A does not involve the interaction among the four
modules.

We use the trace data provided by Auckland University
[20] as the background traffic. This data set consists of
packet header information of traffic between the Internet and



12

1 2 3 4 5 6 7 8
10

8

10
9

10
10

10
11

Average number of hash function calculations

A
llo

ca
te

d 
m

em
or

y 
si

ze
 (

bi
ts

)

 

 
simulation results
numerical results

(a) Hash table algorithm

1 2 3 4 5 6 7 8
10

7

10
8

10
9

Average number of hash function calculations

A
llo

ca
te

d 
m

em
or

y 
si

ze
 (

bi
ts

)

 

 
simulation results
numerical results

(b) BFA algorithm with η=1%

Fig. 13. Comparison of numerical and simulation results.

Auckland University. The connection is OC-3 (155 Mb/s) for
both directions.

In our experiment, we use one 24-hour trace as the back-
ground traffic. We simulate network anomalies caused by
general flood attacks [13] by randomly inserting TCP packets
with random source IP addresses into the the background
trace during specified time periods, which are 11000 – 12800
second, 21000 – 24600 second, 62500 – 63700 second, and
70000 – 72400 second. The average attack rate is 1% of the
packet rate of the background traffic during the same period.

To detect such general flood attacks, we choose <
SA, DA, SP, DP > as the signature of inbound packets and
< DA, SA, DP, SP > for outbound ones. Here the 2D
feature |D(τj)| is the number of unmatched TCP packets in
the jth time slot. The average flow rate is 2480 flows/second.
Therefore, we set R = 2480. We further set η = 0.1%, K = 8,
w = 8, and γ = 10. Then, by solving Eq. (18) for M v and
requiring Mv to be a power of 2, we obtain Mv = 215 bits.
The computer used for our experiments has one 2.4G Hz CPU
and 1GB memory.

2) Performance: There are 78, 501, 441 packets in the
trace. The time to process the data is 296 seconds, including
the time to read data from hard drive. The average processing
rate is 265, 000 packets/second. Hence, the algorithm can deal
with a line rate of 1 Gbps since the average Internet packet
size is about 500 bytes. Note that our test is offline and data is
read from hard disk, whose access speed is much lower than
that of memory. In a real implementation, data is captured by
a high-speed network interface and maintained in the memory;
so the processing speed can be increased. Furthermore, in our
test, a hash function is implemented by software, which is
also much slower than a dedicated hardware. Therefore, it is
reasonable to anticipate a higher processing rate if a dedicated
hardware is used.

Fig. 15 shows the feature extracted from the attack trace.
We can see that the 2D matching feature is a good feature that
helps distinguish normal conditions from abnormal conditions
(with a large number of unmatched packets). More impor-
tantly, our BFA can extract the 2D matching feature from a
link with a line rate in the order of Gbps.

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

1000

Time slot

# 
of

 u
nm

at
ch

ed
 fl

ow
s

Fig. 15. 2D matching feature: number of unmatched SYN packets

VII. CONCLUSION

This paper is concerned about design of data structure and
algorithms for network anomaly detection, more specifically,
feature extraction for network anomaly detection. Our ob-
jective is to design efficient data structure and algorithms
for feature extraction, which can cope with a link with a
line rate in the order of Gbps. We proposed a novel data
structure, namely the Bloom filter array, to extract the so-
called 2D matching features, which are shown to be effective
indicators of network anomalies. Our key technique is to use
a Bloom filter array to trade off a small amount of accuracy in
feature extraction, for much less space and time complexity.
Different from the existing work, our data structure has the
following properties: 1) dynamic Bloom filter, 2) combination
of a sliding window with the Bloom filter, and 3) using an
insertion-removal pair to enhance the Bloom filter with a
removal operation. Our analysis and simulation demonstrate
that the proposed data structure has a better space/time trade-
off than conventional algorithms.

REFERENCES

[1] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: an aid to network processing,” in
SIGCOMM ’05: Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM Press, 2005, pp. 181–192.

[2] “Snort - the open source network intrusion detection system.” [Online].
Available: http://www.snort.org/



13

[3] F. Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 2–14, 2005.

[4] A. Feldmann and S. Muthukrishnan, “Tradeoffs for packet classifica-
tion,” in IEEE INFOCOM 2000, vol. 3, no. 26–30, mar 2000, pp. 1193–
1202.

[5] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in SIG-
COMM ’98: Proceedings of the ACM SIGCOMM ’98 conference on
Applications, technologies, architectures, and protocols for computer
communication. New York, NY, USA: ACM Press, 1998, pp. 203–
214.

[6] J. van Lunteren and T. Engbersen, “Fast and scalable packet classifi-
cation,” IEEE J. Select. Areas Commun., vol. 21, pp. 560–571, May
2003.

[7] D. V. Schuehler, J. Moscola, and J. Lockwood, “Architecture for a
hardware based, tcp/ip content scanning system,” IEEE Micro, vol. 24,
pp. 62–69, Jan. 2004.

[8] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using
tuple space search,” in SIGCOMM ’99: Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer
communication. New York, NY, USA: ACM Press, 1999, pp. 135–146.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, July 1970.

[10] T. Peng, C. Leckie, and K. Ramamohanarao, “Detecting distributed
denial of service attacks using source IP address monitoring,”
Department of Computer Science and Software Engineering, The
University of Melbourne, Tech. Rep., 2002. [Online]. Available:
http://www.cs.mu.oz.au/∼tpeng

[11] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-
wide anomalies in traffic flows,” in Proc. ACM SIGCOMM Conference
on Internet Measurement ’04, Oct. 2004.

[12] K. Lu, D. Wu, J. Fan, S. Todorovic, and A. Nucci, “Robust and efficient
detection of ddos attacks for large-scale internet,” Computer Networks,
vol. 51, no. 18, pp. 5036–5056, Dec. 2007.

[13] J. Mirkovic and P. Reiher, “A taxonomy of ddos attacks and ddos defense
mechanisms,” in Proc. ACM SIGCOMM Computer Communications
Review ’04, vol. 34, Apr. 2004, pp. 39–53.

[14] J. B. Postel and J. Reynolds, “File transfer protocol,” RFC 959, Oct.
1985. [Online]. Available: http://www.faqs.org/rfcs/rfc959.html

[15] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol.” IEEE/ACM Trans.
Netw., vol. 8, no. 3, June 2000.

[16] F. Chang, W. chang Feng, and K. Li, “Approximate caches for packet
classification,” in IEEE INFOCOM 2004, vol. 4, March 2004, pp. 2196–
2207.

[17] R. Rivest, “The md5 message-digest algorithm,” RFC 1321, Apr. 1992.
[Online]. Available: http://www.faqs.org/rfcs/rfc1321.html

[18] MD5 CRYPTO CORE FAMILY, HDL Design House, 2002. [Online].
Available: http://www.hdl-dh.com/pdf/hcr 7910.pdf

[19] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface. San Francisco, CA: Morgan
Kaufmann, 1998, ch. 5,6.

[20] “Auckland-IV trace data,” 2001. [Online]. Available: http://wand.cs.
waikato.ac.nz/wand/wits/auck/4/


