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Abstract

Efficient motion estimation is an important problem because it determines the com-
pression efficiency and complexity of a video encoder. Motion estimation can be for-
mulated as an optimization problem; most motion estimation algorithms use mean
squared error (MSE), sum of absolute differences (SAD) or maximum a posteriori
probability (MAP) as the optimization criterion and apply search-based techniques
(e.g., exhaustive search or three-step search) to find the optimum motion vector.
However, most of these algorithms do not effectively utilize the knowledge gained in
the search process for future search efforts and hence are computationally inefficient.
This paper addresses this inefficiency problem by introducing an adaptive motion
estimation scheme that substantially reduces computational complexity while yet
providing comparable compression efficiency, as compared to existing fast-search
methods.

Our approach is motivated by the recent developments in using Renyi’s entropy as
the optimization criterion for system modeling [1]. This scheme is particularly suited
for wireless video sensor networks, video conferencing systems and live streaming
videos which have stringent computational requirements. Our results show that our
scheme reduces the computational complexity by a factor of 9 to 21, compared to
the existing fast algorithms.

Key words: Adaptive motion estimation, Renyi’s entropy, wireless video,
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1 Introduction

Video communication has seen a tremendous surge in the past decade. There is
a lot of interest in transmission of digital video over the Internet. Transmission
of digital video requires extremely high data rates. For example, a raw video
with a resolution of 176 x 144 pixels/frame and a frame rate of 10 frames/s has
a data rate of 2 Mb/s. Consequently, efficient video compression must be in
place. There have been significant advances in digital multimedia compression
algorithms, which make it possible to deliver high-quality video at relatively
low bit rates.

Hybrid video coding [2] is the most widely used video coding scheme. It uses a
combination of temporal prediction (inter-coding) and transform (intra) cod-
ing to achieve good coding efficiency. Inter-coding exploits the temporal re-
dundancy between frames using motion estimation and compensation. The
motion estimation requires the specification of the underlying model (cam-
era, illumination, object, scene, motion), an estimation criterion (displaced
frame difference, optical flow equation, Bayesian criterion), optimization cri-
terion (Lp norm, entropy, correlation) and a search strategy (stochastic or
deterministic) [2,3].

For wireless video applications, a key requirement is low computational com-
plexity. Since in most cases motion estimation constitutes roughly 70% of the
computational load on the video encoder [4], it is a major concern for design-
ing wireless video applications. Thus, there is a need for a fast, simple and
efficient motion estimation algorithm.

In this paper, we propose an adaptive motion estimation approach to model
motion vectors for inter-coding. The objective of our adaptive motion esti-
mation scheme is to achieve good quality video with very low computational
complexity. Our method attempts to model the motion vectors using adaptive
filtering techniques. The main contributions of this paper are (1) an opti-
mization criterion for motion estimation, which uses an information theoretic
framework rather than traditional variance-based framework, and (2) a very
low complexity search algorithm ideally suited for wireless video applications.

The remainder of the paper is organized as follows. Section 2 discusses the
related works on motion estimation and identifies their limitations. To address
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these limitations, we propose a model-based motion estimation approach. To
facilitate the description of our algorithm, Section 3 introduces the types of
existing adaptive systems and tries to make a choice of the algorithm that
realizes our model-based motion estimation approach. In Section 4, we present
our model-based adaptive motion estimation algorithm using Renyi’s entropy.
The unique property of our algorithm is its low complexity. Therefore, in
Section 5, we analyze the complexity of the encoder and decoder using our
scheme and compare it with existing schemes. In Section 6, we present the
simulation results of our algorithm for varying frame rates and different test
videos, and compare it with the existing schemes in terms of peak signal-
to-noise ratio (PSNR). Section 7 concludes the paper and points out future
research directions.

2 Related Work

We first discuss the exhaustive search method in Section 2.1 and then review
existing fast algorithms in Section 2.2.

2.1 Exhaustive Search Method

In this scheme, each video frame is divided into blocks. The block is predicted
from a previously coded reference frame using block-based motion estimation.
The motion vectors specify the displacement between the current block and
the best matching block. The predicted block is obtained from the previous
frame based on the estimated motion vector (MV) using motion compensation.
Then the prediction error block is coded by applying the DCT, quantizing the
DCT coefficients and converting them into binary codewords using entropy
coding techniques. The quantization of the DCT coefficients is controlled by
the quantization parameter which scales a predefined quantization table as
defined in JPEG standard [5]. The block diagram of a typical block based
hybrid video encoder is shown in Fig. 1.

Block matching motion estimation algorithms work by dividing a video frame
into segments of smaller size called blocks, each of which consisted, in general,
of 8 x 8 pixels. The algorithm assumes that all the pixels in the block undergo
the same translation. The same motion vector is assigned to all the pixels in
the block. The motion vector is estimated by searching for the best matching
block within a search window, centered on the corresponding block in the
reference frame.
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Fig. 1. Block diagram of the encoder.

The process is formulated as follows:
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f̂(x, y, n + 1) = f̃(x + d̂(x)
n , y + d̂(y)

n , n) (3)

e(x, y, n + 1) = f(x, y, n + 1) − f̂(x, y, n + 1) (4)

e′(x, y, n + 1) = Q[e(x, y, n + 1)] (5)

f̃(x, y, n + 1) = f̂(x, y, n + 1) + e′(x, y, n + 1) (6)

where is f the original video frame, f̃ if the motion compensated frame, f̂
is the motion estimated frame, e is the estimation error and e’ its quantized
value, Q[·] denotes the quantization operator, n is the time reference, dn

(x)

is the motion vector in the x-direction, dn
(y) is the motion vector in the y-

direction, Bm is the mth block, M is the number of blocks and BDM is some
block distortion measure. It can be Sum of Squared Differences (SSD), Sum
of Absolute Differences (SAD), cross-correlation function, to mention a few.

When equation (1) is evaluated for all possible pixel locations, the algorithm is
called the exhaustive block matching algorithm (EBMA). This is the optimal
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solution for a given block size and search window. However, the computational
complexity of EBMA is very high.

2.2 Fast Search Algorithms

In most practical cases, an exhaustive search may not be required as the
motion is not completely random. In the literature, there are several classes
of algorithms that perform motion estimation with reduced computational
complexity, as compared to their exhaustive counterparts. We list four major
classes of fast motion estimation algorithms as below.

The first class of fast algorithms works by reducing the search to a subset of
blocks which are more likely to be the desired block that provides the mini-
mum BDM. The main assumption is that the error surface is uni-modal, which
means that there is only one local minimum, which is also the global mini-
mum. Some of the algorithms that belong to this class are Two-dimensional
logarithmic (TDL) search [6], block-based gradient descent search [7], three-
step search [8], a new three-step search (TSS) [9], the four-step (4SS) search
[10], to mention a few. But the error surface is usually multi-modal, i.e., it
contains many local minima due to frame skipping, motion and video content.
The global minimum of the error surface can change due to these factors.

The second type of fast algorithms [11] is based on the assumption that the
block-motion fields are usually smooth. This implies that there is a high prob-
ability that the neighboring blocks will have almost the same motion vectors.
A sub-sampled block motion field is obtained by applying motion estimation
to a subset of blocks in the frame. The motion field is then interpolated to get
the complete motion vector information for the frame. This type of algorithms
reduces the computational complexity but suffer from poor prediction quality.

The third category of fast algorithms utilizes multi-resolution search tech-
niques, which can combat two major limitations of aforementioned fast search
algorithms. First, the error surface is usually multi-modal and hence they
may not reach the global minimum; and second, the computational complex-
ity involved in the calculation of the BDM function is very high. These can be
overcome by the multi-resolution method, which searches the solution space of
an optimization problem at successively finer resolutions. The search proceeds
by first obtaining a rough estimate of the solution at a lower resolution which
is easier to evaluate. This solution is fed to the next stage which is performed
at a higher resolution and so on till the highest resolution is reached. The
search window is also reduced at each step. Examples of this scheme are [12]
and [13]. The limitation of this type of schemes is that it requires increased
storage because we need to keep images at several resolutions. This method
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can yield inaccurate results for videos with small objects because it performs
the search at a lower resolution.

The fourth kind of fast algorithms is based on fast full search techniques.
Instead of reducing the computational complexity of block matching at the
expense of prediction quality by restricting the search space, fast full search al-
gorithms are intended to reduce computational complexity without sacrificing
prediction quality. They usually achieve this by evaluating the BDM function
and comparing it with the lowest BDM value calculated so far. If the BDM
value of the candidate exceeds the known lower bound, it is discarded and
the search proceeds to the next candidate. Examples of the algorithms like
this are Partial Distortion Elimination [14], Successive Elimination Algorithm
[15], and Winner-Update Strategy [16]. However, the problem with these algo-
rithms is the unpredictable amount of computation. In noisy video sequences,
or even sequences with a large amount of motion, these algorithms reject only
small part of the candidate motion vectors and do not provide much saving
in computation.

We notice that the aforementioned four types of algorithms do not effectively
utilize the knowledge gained in calculating the motion vectors from one frame
to the next. These algorithms do not track the motion estimation along the
frames. For each search, they usually reset their memory and start from the
same initial conditions (some of them may use a median filter to obtain initial
values of motion vectors). We propose a novel model-based scheme which takes
advantage of the information gained from past frames to estimate the motion
vectors of future frames. Though similar attempts have been made in the
past, they usually decoupled the motion estimation from the prediction of the
motion vectors [17]. The goal is to develop an adaptive system that models the
motion field rather than code the motion field directly. The advantage of our
scheme is that the motion estimation is very fast. Since the motion model can
be replicated at the decoder given knowledge about the initial conditions there
is no need to transmit motion vectors. This provides savings in bandwidth.
The extra bits can be used for the transmission of residual errors and thus
providing better reconstruction.

Thus far we have identified the advantages of a model-based adaptive scheme
in terms of fast motion estimation and bandwidth savings. In the next section,
we make a choice of the adaptive algorithm that we use for the motion esti-
mation and also introduce our choice of optimization criterion for adaptation
and justify its selection.
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3 Choice of the adaptive system

Adaptive filters have been successfully used in various research areas including
signal processing, telecommunication, system identification, and automated
control. The efficiency of the adaptive filters is rooted in the optimal estima-
tion theory, which allows the filter to automatically adapt to the minimum
mean squared error (MMSE) solution efficiently. Least mean square (LMS)
algorithm and recursive least square (RLS) algorithm are the two best known
techniques to approximate the optimal Wiener filter solution. Both LMS and
RLS recursively compute the optimal filter’s weights, resulting in simple im-
plementation, fast convergence rate, and good performance.

Mean square error (MSE) has been the most widely used criterion for the
training of most adaptive systems. The two main reasons for this choice were:
the simplicity in computation, and the Gaussian probability density assump-
tion. It has been shown in [1] that MSE may not be the best criterion because
most real-life problems are governed by nonlinear equations and most random
phenomena are far from being normally distributed. Therefore, the training of
adaptive systems requires a criterion other than MSE which takes into account
not only second-order statistics like MSE but also the higher-order statistical
behavior of the systems.

Shannon’s entropy of a given probability density function (pdf) is a scalar
quantity that provides a measure of the average information content of any
distribution. Information is a function of the pdf itself and hence the entropy
is related to the pdf rather than any particular statistics of it. Therefore it is
a more useful criterion for training adaptive systems than MSE.

Given the current video frame and the next frame, the adaptive system can
predict the motion vectors by minimizing the entropy of the estimation error
similar to the block matching methods which tries to find the best matching
block by minimizing the SSD or SAD. The interpretation of this is as follows.
When entropy of the error is minimized, the expected information contained
in the estimation error is minimized; hence the adaptive system is trained
optimally in the sense that the mutual information between the video input
and the model output is maximized. However, there are no analytical methods
to use Shannon’s entropy in adaptation. Hence, we use a nonparametric en-
tropy estimator based on Renyi’s entropy [18], which can be applied directly
to data samples collected from experiments and without imposing any a pri-
ori assumptions about the pdf of the data. Thus the method can manipulate
information as straightforwardly as the mean square error (MSE) criterion.
Straightforward methods that use the Quadratic Renyi’s entropy in a way
similar to LMS method have been developed in [19]. We follow this approach
for estimation of motion in video frames.
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Fig. 2. A snapshot of the original image of the video sequence ”Suzie”.

We show one snapshot of the motion estimation error images of the test video
sequence ”Suzie” for our adaptive system with MSE and Entropy as criteria for
adaptation. Fig. 2 shows one original frame of the test video sequence ”Suzie”.
From Fig. 4, it is clear that although the motion estimation error for the MSE
method has smaller variance compared to the Entropy method in Fig. 3, it
contains more information about the original image. The intuition is that in
our scheme we try to minimize the entropy of the motion estimation error;
in other words, we try to minimize the correlation between the error image
and the original image. By minimizing the entropy, we minimize the useful
information contained in the error image, thereby extracting the maximum
possible information from the original image. This process is like whitening
the error image, i.e., making the error image statistically independent of the
original image.

4 Entropy based Motion Estimation scheme

The organization of this section is as below. We first formulate the motion
estimation as an adaptive prediction problem in Section 4.1. Then, we intro-
duce the general notion of Renyi’s Entropy in Section 4.2 and finally develop
it as a criterion for the adaptive motion estimation system for video coding in
Section 4.3.
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Fig. 3. A snapshot of error image of the video sequence ”Suzie” using Renyi’s En-
tropy

Fig. 4. A snapshot of error image of the video sequence ”Suzie” using MSE
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Fig. 5. Adaptive predictor

4.1 Adaptive Motion Estimation Approach

Consider the block diagram of a general adaptive prediction system in Fig. 5.
The filter consists of a linear structure with an impulse response denoted by
the weight vector, w. The filter input is the past values of the input, x. The
present value of the input serves as the desired response, d. At some discrete
time, n, the filter produces an output, y. This output is the best estimate of
the current value of x given its past values, in the sense that the entropy of
the estimation error, e, defined as the difference between the filter output, y
and the desired response, d is minimized.

The equations representing the above problem are given as follows:

y = wT x (7)

e = d − y (8)

∇n =
∂J

∂wn

(9)

wn+1 = wn + µ∇n (10)

where ∇n is the gradient of the optimization criterion, J and µ is the step size
used for updating the weight equation. This is similar to the popular LMS
[20] algorithm.

Translating this problem for motion estimation we define our new goal:

The objective is to design an adaptive system whose output is the current
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frame, f given the motion compensated frame, f̃ as input, such that the en-
tropy of the motion estimation error, e defined as the difference between the
intensity of the current frame, f, and the motion compensated frame, f̃ , is
minimized.

The function of the adaptive filter is to provide the best estimate or prediction
of the current frame given knowledge of the previous motion compensated
frame. Hence, the current frame serves as a desired response to the adaptive
system. The previous frame is used as the input to the above adaptive system.
The equations for the motion estimation problem can be formulated as follows:

f̂(x, y, n + 1) = f̃(x + d̂(x)
n , y + d̂(y)

n , n) (11)

e(x, y, n + 1) = f(x, y, n + 1) − f̂(x, y, n + 1) (12)

e′(x, y, n + 1) = Q[e(x, y, n + 1)] (13)

f̃(x, y, n + 1) = f̂(x, y, n + 1) + e′(x, y, n + 1) (14)

d̂
(x)
n+1 = d̂(x)

n + µ∇n
x (15)

d̂
(y)
n+1 = d̂(y)

n + µ∇n
y (16)

where f is the original video frame, f̃ if the motion compensated frame, f̂ is
the motion estimated frame, e is the estimation error and e’ its quantized
value, Q[·] denotes the quantization operator, n is the time reference, d̂(x)

n is
the motion vector in the x direction, d̂(y)

n is the motion vector in the y direction,
µ is the adaptation parameter, ∇n

x and ∇n
y the stochastic gradient estimate

in the x and y directions respectively.

Our hypothesis is that for the same initial conditions, both encoder and de-
coder can estimate the motion vectors in real-time thereby avoiding the need
for transmitting them. But note that in usual LMS, we need to update the
motion vectors using the difference between the true motion vectors and the
estimated ones. Since we don’t have the true motion vectors, we use the motion
estimation error itself to update the motion vectors. Also we require lossless
transmission of the error signal e, for the best estimation. But in reality due
to bandwidth restrictions the error signal e is quantized to . This results in
sub-optimal estimates of the motion vectors. Also packet losses can lead to
error accumulation. This can be minimized by introducing intra frames peri-
odically. In this paper we address the issue of motion estimation only. Issues
regarding robust transmission will be omitted here and set aside for future
work.
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From equations (11) to (16), we know everything required to perform motion
estimation except how to calculate the gradients namely ∇n

x and ∇n
y. For this

we first need to introduce the Renyi’s entropy and the information potential
criterion [21] for batch adaptation. Next, we define the stochastic information
gradient algorithm from [19] and show how it can be used as a criterion for
the adaptive motion estimation problem.

4.2 Renyi’s Entropy

Information theory is a mathematical framework for defining information con-
tent of signals. Renyi’s entropy is an alternative entropy measure similar to
the well known Shannon’s entropy. Without knowledge of the underlying pdf,
Shannon’s entropy is difficult is estimate using simple algorithms as compared
to Renyi’s entropy. Renyi’s entropy has been successfully applied to many
problems in physics, signal processing and pattern recognition.

Renyi’s entropy for a random variable e is defined in [18] as

hα(e) =
1

1 − α
log

∫
fα(e)de, α �= 1 (17)

where fα(e) is the pdf of the variable e and α > 0 is the order of entropy. As
α → 1, Renyi’s entropy becomes Shannon’s entropy.

The argument of the log is defined as the (order-α) information potential [21].
The information potential can be written as an expected value as follows:

vα(e) =
∫

fα(e)de = E[fα−1(e)] ≈ 1

N

N∑
i=1

fα−1(ei) (18)

The pdf in equation (18) can be obtained by Parzen window estimation [22],
resulting in a nonparametric estimator of information potential

vα(e) =
1

Nα

∑
j

(∑
i

κσ(ej − ei)

)α−1

(19)

where κσ is the kernel function in Parzen windowing and σ, the width of the
window. Writing the σ-wide kernel in terms of a unit width kernel, κ we get

κσ(x) =
1

σ
κ
(

x

σ

)
(20)
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For α = 2 in equation (19) reduces it to

v2(e) =
1

N2

∑
j

∑
i

κσ(ej − ei) (21)

Substituting α = 2 in equation (17) becomes

h2(e) = − log
∫

f 2(e)de (22)

This is known as Quadratic Renyi’s Entropy (QRE) which we will be using
subsequently for further considerations.

We have represented Renyi’s Entropy in terms of the information potential.
Notice that the log operator in equation (19) is monotonic. This will help us in
the next section where instead of minimizing Renyi’s entropy to obtain certain
system parameters, we can maximize the information potential for values of
α > 1. Therefore, the information potential can replace the entropy criterion
in adaptation with significant computational savings.

4.3 Stochastic gradient estimator

Consider that the adaptive system shown in Figure 4. We follow the derivation
in [19] for developing an online adaptation algorithm for the case when α = 2
(Quadratic Renyi’s Entropy). The sample error of the system can be repre-
sented by en = dn - yn. Then the instantaneous gradient of the information
potential estimator at time instant n with respect to the weight vector w is
given by(

∂V2

∂w

)
n

= −1

2
κ′

σ(en,n−1)
∂yn,n−1

∂w
(23)

The information potential can be maximized by using this instantaneous gra-
dient estimator as the update in the steepest ascent algorithm.

wn+1 = wn + η

(
∂V2

∂w

)
n

(24)

The instantaneous gradient given in equation (23) requires a single evaluation
of the derivative of the kernel function at the point en,n−1 = en − en−1. If a
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Gaussian kernel function is chosen, its derivative is simply a product of its
argument and the Gaussian evaluated at the same point again.

κσ(ei) = G(e, σ2) =
1√
2πσ

exp

(
− ei

2

2σ2

)
(25)

where σ is the variance of the error signal.

In the case of FIR filters, equation (25) can be further simplified by replacing
the gradient of the output with respect to the weight vector by simply the
input vector.

∂yn,n−1

∂w
=

∂yn

∂w
− ∂yn−1

∂w
= xn − xn−1 (26)

Thus we have all the information necessary to evaluate the equation (24), the
weight update equation needed for successful adaptation.

For adaptive motion estimation the value of the kernel function and the
stochastic instantaneous gradient for updating the motion vectors in equa-
tions (15) and (16) can be obtained from the equations (23) to (26). The
equations are given as follows:

eD(x, y, n + 1) = e′(x, y, n + 1) − e′(x, y, n) (27)

eR(x, y, n + 1) =
1√
2πσ

exp

(
−eD

2(x, y, n + 1)

2σ2

)
(28)

∇n
x = ∇n

y =
1

2σ2
eR(x, y, n + 1)eD(x, y, n + 1)(

f̃(x, y, n) − f̃(x, y, n − 1)
) (29)

In this section, we have derived an instantaneous gradient estimator for the
information potential following a methodology similar to the LMS algorithm.
The only difference is that the training data set, now consists of pair-wise
differences of the samples in contrast to using the actual input-output pairs
as done in LMS. Here we can observe that the updates for both the motion
vectors have the same value. This implies that the possible set of motion
vectors is limited. Therefore to mitigate this problem, we impose a smoothness
constraint that the neighboring motion vectors cannot differ by more than a
pre-determined threshold. Thus, we have defined completely a method for
adaptive motion estimation.
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5 Complexity Analyses and Storage Requirements

We discuss the computational complexity and storage requirements of the
adaptive motion estimation algorithm and compare it with EBMA, the block-
based gradient descent search [7] algorithm and the three-step search [8], which
will be presented in Sections 5.1 and 5.2, respectively.

5.1 Complexity Analyses

Assuming the image size is M x M, with a search range of R x R and a block
size of B x B we proceed to calculate the number of operations required per
pixel. Table 1 summarizes the number of additions, subtractions, exponentials,
absolute values, multiplications and conditionals (if statements) required by
the algorithm at the encoder [2].

Table 1
Comparison of worst case encoding complexity of the four schemes at the pixel level.

Operations Adaptive Motion EBMA Block-based Three-Step

per pixel Estimation Gradient Descent Search

Additions 2 (2R + 1)2 B2 + (R − 2)(2B − 1) 8(log2(R/2) + 1) + 1

Subtractions 4 (2R + 1)2 B2 + (R − 2)(2B − 1) 8(log2(R/2) + 1) + 1

Exponentials 1 0 0 0

Absolute 1 0 0 0

Multiplications 4 0 0 0

Conditionals 4 (2R + 1)2 B2 + (R − 2)(2B − 1) 8(log2(R/2) + 1) + 1

Total 15 4(2R + 1)2 4(B2 + (R − 2)(2B − 1)) 4(8(log2(R/2) + 1) + 1)

Table 2 shows the results for the case when R=16 and B=3, assuming all the
above operations are executed in a single instruction cycle.

Table 2
Total number of instructions per pixel for R=16 and B=3.

Method Total number of instructions per pixel

Adaptive Motion Estimation 15

EBMA 4356

Block-based Gradient Descent 316

Three Step Search 132

Our assumption that the above operations can be executed in a single in-
struction cycle is justified because the current DSP and FPGA technology
can perform all the operations, except the exponential operation, in a single
cycle. The exponential operation can be efficiently implemented using an 8-bit
table lookup which also can be executed in a single instruction cycle. We have
ignored assignment operations in the above calculations, as it is implementa-
tion dependent.
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The above results show that our algorithm has extremely low computational
complexity. It is nearly 220 times faster than EBMA, 21 times faster than
Gradient descent and nearly 9 times faster than the three-step search (TSS).
This means that the algorithm has great potential for use in encoders with
limited computational capability like a wireless video sensor.

In Table 3, we present the decoding complexity of the various schemes and
Table 4 shows the results for the case when R=16 and B=3, assuming all the

Table 3
Comparison of worst case decoding complexity of the four schemes at the pixel level.

Operations Adaptive Motion EBMA Block-based Three-Step

per pixel Estimation Gradient Descent Search

Additions 2 2 2 2

Subtractions 4 0 0 0

Exponentials 1 0 0 0

Absolute 1 0 0 0

Multiplications 4 0 0 0

Conditionals 4 0 0 0

Total 15 2 2 2

Table 4
Total number of instructions per pixel for R=16 and B=3.

Method Total number of instructions per pixel

Adaptive Motion Estimation 15

EBMA 2

Block-based Gradient Descent 2

Three Step Search 2

above operations are executed in single instruction cycle.

The table above shows that for our scheme, the decoder complexity is the same
as that of the encoder as expected. The decoder has 7 times more complexity
than other schemes which have only 2 operations per pixel. However, the
advantage of our scheme is that it does not require a separate hardware for
the decoder because we start with the same initial conditions. Only the data
input to the decoder is different. Also the increased complexity is minimal.

5.2 Storage requirements

The update equation for adaptive motion estimation requires storage of the
current and the past motion compensated frames, the motion vectors for the
previous frame, and the current and the past error frames. Also we need an 8
bit lookup table for exponent calculations. For other three algorithms, we re-
quire the storage of only 1 past frame. For wireless applications, computational
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complexity has higher precedence over storage requirement. In a typical wire-
less sensor network, a Y-QCIF video sequence would require approximately
175 kB of storage which is acceptable for most wireless applications.

Remark 1 One of the potential applications of our scheme is wireless video
sensor networks. A wireless video sensor only employs video encoding but not
video decoding. This requirement leverages the features of our algorithm, i.e.,
very low encoding complexity and slightly high decoding complexity. Hence,
our algorithm is well suited for wireless video sensor networks because a video
sensor is battery operated and hence power efficiency is especially critical.

6 Simulation results

In this section, we implement our adaptive motion estimation algorithm as
described in Section 4. We choose the luminance component of several video
sequences in QCIF format for the encoding process. For EBMA, a block size of
8x8 is chosen with integer-pel accuracy. The search range is 16x16 pixels. The
block-based gradient descent search algorithm was implemented as described
in [7] with a block size of 3x3 and a search range of 16x16 pixels with integer-
pel accuracy. For the three-step algorithm [8] we use a block size of 8x8 and
a search range of 16x16 pixels with integer-pel accuracy. The mean absolute
error (MAE) distortion function is used as the block distortion measure for
the two algorithms. Since we focus on the study of motion estimation, we have
excluded DCT, quantization and entropy coding in the simulation.

In each algorithm, motion is estimated and compensated using the perfectly
reconstructed reference frames. The first frame is intra-coded and the rest,
inter-coded. The experiment was conducted using frame rates of 10, 5 and
2 respectively. The values of Y-PSNR in dB for the four different QCIF se-
quences are shown in Tables 5, 6 and 7.

Table 5
Y-PSNR values for 4 test video sequences at 10 fps.

Method Miss Coastguard Suzie Foreman

America

EBMA 38.93 28.77 34.3 29.9

Three-step 35.96 26.45 28.51 23.92

Gradient Descent 31.5 25.04 23.9 20.64

Adaptive Motion Estimation 32.3 21.83 26.2 21.72

For low bit rate applications, the typical frame rate is usually 10 frames/sec
or lower. As frame rate decreases, the temporal correlation between two con-
secutive video frames decreases. The assumption that block motion vectors
are center-biased i.e. smaller displacements is more probable than larger ones,
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Table 6
Y-PSNR values for 4 test video sequences at 5 fps.

Method Miss Coastguard Suzie Foreman

America

EBMA 38.13 27.16 32.07 27.3

Three-step 33.68 22.49 25.9 21.3

Gradient Descent 29.53 23.01 22.41 19.02

Adaptive Motion Estimation 29.19 20.19 23.18 18.84

Table 7
Y-PSNR values for 4 test video sequences at 2 fps.

Method Miss Coastguard Suzie Foreman

America

EBMA 36.93 25.03 29.35 23.07

Three-step 28.39 20.75 23.03 18.05

Gradient Descent 26.26 21.21 20.49 16.59

Adaptive Motion Estimation 25.81 18.66 20.20 16.18

fails here. This decreases the efficiency of block matching algorithms resulting
in bigger motion vectors. If the search range is not big enough higher error
values result. This increases the coded error value and the value of the motion
vectors which are both undesirable for low bit rate coding. Our scheme is a
frame based scheme so we can ideally find the true motion vector. We are
not constrained by a search window. More the skip rate, the smaller is the
probability of finding the true motion vector. The true motion vector can fall
outside the search range. Transmission of motion vectors requires a significant
amount of bits per pixel (bpp). Our scheme does not suffer from this because
the motion vectors need not be transmitted. Thus, the adaptive motion es-
timation provides a trade-off between computational complexity and video
presentation quality.

From Table 5 to Table 7, we notice that there is a 3 dB difference in Y-PSNR
values between our algorithm and the three-step search. However, our scheme
saves the bit budget for motion vectors, which usually constitutes about 50%
of the total budget for low bit-rate video applications. Therefore, the 3 dB
performance loss can be compensated by the bandwidth savings due to not
transmitting motion vectors in our scheme.

Remark 2 In the simulator, we do not implement DCT, quantization and
entropy coding. This is because the performance of a motion estimation al-
gorithm is determined by the MSE of the error image, which is independent
of DCT, quantization and entropy coding. From the information theory, it is
known that typically, the larger the MSE of the error image without DCT,
quantization and entropy coding, the larger MSE of the error image with DCT,
quantization and entropy coding.
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7 Conclusion

Motion estimation is a critical problem in the design of a video encoder. Exist-
ing motion estimation techniques do not effectively utilize the past knowledge
in motion prediction, leading to inefficiency in computation. To address this
problem, we proposed an adaptive model-based motion estimation algorithm
using Renyi’s Entropy. In this scheme, the motion vectors of the current frame
are iteratively computed from the previous frame, based on a model. This
results in computational savings because of the knowledge gained in the com-
putation of the previous motion vectors, and it also leads to bandwidth sav-
ings because the motion vectors need not be transmitted. Our results showed
that our scheme reduces the computational complexity by a factor of nine to
twenty-one, as compared to the existing fast algorithms.

The nice feature of our adaptive motion estimation algorithm is its very low
computational complexity. Hence, our algorithm is ideally suited for wireless
video applications, in which computational complexity and energy consump-
tion pose major constraints. With the emergence of wireless video sensor net-
works, we expect that our algorithm will find widespread applications.

Our future work will focus on implementing our algorithm on MPEG-4 and
H.264 codecs and evaluating the performance of the resulting codecs. We will
also investigate the error robustness of our algorithm. In addition, we will
combine our algorithm with wavelet video coding.
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