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On Optimal Power Control for Delay-Constrained
Communication over Fading Channels

Xiaochen Li, Xihua Dong, and Dapeng Wu

Abstract— In this paper, we study the problem of optimal
power control for delay-constrained communication over fading
channels. Our objective is to find a power control law that
optimizes the link layer performance, specifically, minimizes
delay bound violation probability (or equivalently, the packet
drop probability), subject to constraints on average power, arrival
rate, and delay bound. The transmission buffer size is assumed
to be finite; hence, when the buffer is full, there will be packet
drop. The fading channel under our study has a continuous
state, e.g., Rayleigh fading. Since directly solving the power
control problem (which optimizes the link layer performance)
is particularly challenging, we decompose it into three sub-
problems, and solve the three sub-problems iteratively; we call
the resulting scheme Joint Queue Length Aware (JQLA) power
control, which produces a local optimal solution to the three sub-
problems. We prove that the solution that simultaneously solves
the three sub-problems is also an optimal solution to the optimal
power control problem. Simulation results show that the JQLA
scheme achieves superior performance over the time domain
water filling and the truncated channel inversion power control.
E.g., JQLA achieves 10 dB gain at packet drop probability of
10−3, over the time domain water filling power control.

Index Terms— Delay-constrained communication, power con-
trol, queuing analysis, delay bound violation probability, packet
drop probability.

I. INTRODUCTION

Real-time applications such as streaming multimedia will be
supported in the next generation wireless networks. Services
required by these applications are different from elastic traffic
in that they expect low end-to-end delay, i.e., delay-constrained
communication. It is particularly challenging to provide delay
guarantee or quality of service (QoS) guarantees to delay
sensitive applications since a wireless channel can experience
time varying channel capacity due to fading.

The studies on delay-constrained communication typically
use one of the two models, i.e., the physical layer (PHY)
model and the link-PHY model. The difference between the
two models is whether or not a queue is included in the system.
In a PHY model, there is no buffer and hence the end-to-end
delay considered here only consists of channel-encoding delay
and decoding delay in the physical layer; assuming a block
fading channel [1], reliable communication is achieved by
channel-encoding the information bits within M fading blocks
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to average out the random effects caused by thermal noise and
fading; then the end-to-end delay is 2M fading blocks1.

For the PHY model, a delay-constrained capacity of a
fading channel [1] can be used as the upper bound on the
performance of a delay-constrained communication system;
existing delay-constrained capacity notions include outage
capacity [2], delay-limited capacity [3], and expected capacity
[4]. When the channel state information (CSI) is available at
the transmitter side, power control can be utilized to increase
capacity. The optimal causal power control scheme which
maximizes the expected capacity subject to average power
constraint is time domain water filling (TDWF) [4], which
can also be used to maximize the ergodic capacity [5]. An
optimal non-causal power control scheme is studied in [6],
where the channel gains of all M fading blocks are assumed
to be known at the beginning of the transmission, which is
similar to parallel channels. The optimal power control that
maximizes outage capacity under non-causal CSI, is studied in
[7]; in the special case of M = 1, the optimal power control is
truncated channel inversion (TCI) [5], [7]. The optimal power
control that maximizes outage capacity under causal CSI, is
studied in [4].

In the PHY model, it is implicitly assumed that the ar-
rival rate from the upper layer is equal to the information
transmission rate of the physical layer, which is not valid
in practice (note that there is no buffer in the PHY model).
The PHY model is not practical since there will be mismatch
between the arrival rate and the departure rate. To address
this, we can use a link-PHY model, where a buffer is in place
at the link layer to accommodate the mismatch between the
arrival rate from the upper layer and the departure rate at
PHY. The packets arriving from the upper layer are stored
in the buffer until they are transmitted or dropped due to full
buffer or delay bound violation. Both the arrival process and
the channel fading process (departure process) contribute to
the dynamics of the system. The end-to-end delay considered
here consists of queuing delay in the buffer and encoding
delay and decoding delay in the physical layer. With the
knowledge of CSI at the transmitter side, we can control
the departure process to achieve optimality for certain perfor-
mance measures. In general, the objective of the optimization
involves one of the following [8]–[13]: maximizing throughput
or effective capacity [14], or minimizing energy/power, or
minimizing delay (average delay or delay bound violation
probability), or minimizing packet loss probability. When one

1The encoding delay is M . The decoding delay is also M . So the end-to-
end delay is 2M fading blocks.
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performance measure is chosen as the objective function for
the optimization, the other performance measures will serve as
constraints; hence, the problem is a constrained optimization
problem.

In this paper, we study the problem of optimal power
control under the link-PHY model. Our objective is to find a
power control law that optimizes the link layer performance,
specifically, minimizes delay bound violation probability (or
equivalently, the packet drop probability), subject to con-
straints on average power, arrival rate, and delay bound. The
buffer at the link layer is assumed to be finite; hence, when the
buffer is full, there will be packet drop. The fading channel
under our study has a continuous state, e.g., Rayleigh fading.
Since the channel state is continuous, dynamic programming
is not applicable for power control. If dynamic programming
is to be used, we need to quantize the the continuous channel
state; then the system will suffer from capacity loss due to
quantization error; in addition, the computational complexity
of dynamic programming increases quadratically with the
increase of the number of discrete channel states. Since
directly solving the power control problem (which optimizes
the link layer performance) is particularly challenging, we take
a divide-and-conquer approach, i.e., decompose the optimal
power control problem into three sub-problems, and solve the
three sub-problems iteratively till convergence; we call the
resulting scheme Joint Queue Length Aware (JQLA) power
control, which produces a local optimal solution to the three
sub-problems. We prove that the solution that simultaneously
solves the three sub-problems is also an optimal solution
to the optimal power control problem. Simulation results
show that the JQLA scheme achieves superior performance
over the time domain water filling and the truncated channel
inversion power control. E.g., JQLA achieves 10 dB gain at
packet drop probability of 10−3, over the time domain water
filling power control. The algorithm to find the JQLA power
control scheme is too complex; hence one may not use it
in practice. Instead, the main purpose of JQLA is to explore
the fundamental performance limit of power control under the
link-PHY model. Although JQLA does not produce a global
optimal solution, this work represents a major step toward
deriving the fundamental performance limit of power control
under the link-PHY model. The local optimal solution obtained
by JQLA can provide a judgement on the performance of a
practical power control scheme. The 10 dB gain achieved by
JQLA indicates that there is much room to improve for existing
power control schemes!

Power control is a heavily researched topic. The uniqueness
of this work is that we study the optimal power control
law that minimizes delay bound violation probability under
a finite buffer and a fading channel with continuous state.
This problem has not been addressed before. Existing works
on delay-constrained optimal power control either minimize
average delay or minimize effective capacity under an ‘infinite’
buffer (which is not practical) [15]–[18], or under a fading
channel with finite discrete states (which suffers from capacity
loss). Note that average-delay guarantee may not satisfy the
requirements of delay-sensitive applications; e.g., using a
handheld device to watch mobile TV over WiMax, requires

certain delay bound violation probability, which cannot be
specified by average delay since average delay cannot specify
the (tail) probability distribution function; e.g., for a given
delay bound (say, 1 second), two systems with the same
average delay of 500 ms could have quite different delay bound
violation probabilities, e.g., 40% vs. 0.1%.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III describes our method
to address the optimal power control problem. Section IV
presents the simulation results. Section V concludes the paper.

II. SYSTEM MODEL

We consider a point-to-point communication model as illus-
trated in Fig. 1. The data packets from the upper layer enter the
buffer at the link layer. Assume each packet at the link layer
has a size of L bits. We assume the channel gain is perfectly
known at the transmitter side. Given the channel gain and the
queue length in the buffer, the power and rate control module
determines the transmission power and rate (the number of
packets that will be transmitted during one block). Then, the
head-of-line (HOL) packets are removed from the buffer and
conveyed to the physical layer. Then the packets are encoded,
modulated and transmitted through a wireless channel. The
information transmission rate (or code rate in unit of packets
per block) in the physical layer is the same as the service rate
of the buffer.

To elaborate, the wireless channel is assumed to be flat
slow fading, which can be modeled as a discrete-time block-
fading channel with additive white Gaussian noise, i.e., the
channel gain is fixed in a block and the channel gains are
independent and identically distributed (i.i.d.) [1]. We assume
each block has a duration of Tb sec. The channel power gain of
each block takes continuous value. Its marginal distribution is
characterized by a probability density function (pdf) fCH(g),
g ∈ [0,∞); without loss of generality, the noise variance is
absorbed into g. We assume that a block is the smallest time in-
terval, during which the transmitter can conduct power and rate
adaptation. We assume that ideal channel code and modulation
are used so that instantaneous channel capacity (determined by
Shannon’s capacity formula for the given channel gain in the
block) can be achieved in each block. Then, the maximum
error-free transmission rate in a block is uniquely determined
by the transmission power through Shannon’s channel capacity
formula. For simplicity, we let the service rate of the buffer
in a block equal to the instantaneous channel capacity in the
block, and assume the resulting decoding error probability is
zero due to ideal channel coding.

The queueing subsystem is modeled as a discrete-time
finite-buffer queue with buffer size M packets. The data source
generates packets at a constant rate µ packets per block. (In
our future work, we will consider random arrival instead of
constant arrival.) When newly arrived packets see a full buffer,
the system drops the HOL packets in the queue and appends
the incoming packets to the tail of the queue. So the maximum
queueing delay is M/µ. The maximum end-to-end delay in the
link-PHY model is M/µ plus the channel encoding/decoding
delay, which we denote Dc. Given the end-to-end delay bound
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Dmax, if we set the buffer size M = µ× (Dmax −Dc), then
there will be zero delay bound violation; in other words, all
packets that violate the delay bound, are dropped. Hence, we
say, the delay bound violation probability is equal to the
packet drop probability in the system under our study.

Tx BufferLink LayerCoding and Modulation Demodulation and DecodingChannel EstimationPhysical Layer Transmitter Channel Receiver
Feedback

( )g n ( )w nRate and Power Control ( )P nBuffer Occupancy Inform
ation Data Source

Channel State Information
Packet Drop

Fig. 1. System model.

Fig. 2. Update of queue length.

As shown in Fig. 2, in the n-th block, the queue length q(n)
is observed at the observation epoch, then a batch of µ packets
arrive, followed by the departure of s(n) packets. Denote d(n)
the number of packets dropped in the n-th block. Then,

d(n) = max(0, q(n) + µ−M). (1)

The number of packets remains in the buffer before the
transmission is

qr(n) = q(n)− d(n)
= min(M, q(n) + µ).

(2)

The queue length is updated by

q(n + 1) = max(0, qr(n)− s(n))
= max(0, min(M, q(n) + µ)− s(n)).

(3)

The sequence {q(n)} forms a homogeneous, irreducible,
and aperiodic Markov Chain. The steady state queue length
distribution can be obtained from the one step transition
probability matrix P. Since the buffer has finite capacity M ,
P is a square matrix of size (M +1)× (M +1). The i-th row
j-th column of P, 0 ≤ i, j ≤ M , is

pi,j = Prob[q(n + 1) = j|q(n) = i]. (4)

Substituting (3) into (4), we obtain

pi,j = Prob[max(0,min(M, i+µ)−s(n)) = j|q(n) = i]. (5)

To calculate pi,j for each pair of {i, j}, we consider two cases
as below.
Case 1) 0 ≤ i < M − µ and no packet-drop:

pi,j = Prob[max(0, i + µ− s(n)) = j|q(n) = i]

=





Prob[s(n) ≥ i + µ|q(n) = i] j = 0
Prob[s(n) = i + µ− j|q(n) = i] 0 < j ≤ i + µ
0 i + µ < j ≤ M

(6)

Case 2) M − µ ≤ i ≤ M and some packets dropped:

pi,j = Prob[M − s(n) = j|q(n) = i]
= Prob[s(n) = M − j|q(n) = i] 0 ≤ j ≤ M.

(7)

Denote k
(i)
x the probability that x packets can be transmitted

when the queue length is i,

k(i)
x = Prob[s(n) = x|q(n) = i], (8)

where

s(n) = bWTb

L
log2 (1 + P (g(n), q(n))g(n))c, (9)

where W is the channel bandwidth in Hz.
Then the transition probabilities {pi,j} are given by

pi,j =





∑M
l=i+µ k

(i)
l 0 ≤ i < M − µ, j = 0

k
(i)
i+µ−j 0 ≤ i < M − µ, 0 < j ≤ i + µ

k
(i)
M−j M − µ ≤ i ≤ M, 0 ≤ j ≤ M

0 otherwise

.

(10)
Denote c

(i)
x the probability that x or more than x packets can

be transmitted when the queue length is i, i.e.,

c(i)
x =

M∑

l=x

k
(i)
l , (11)

Then the transition probability matrix is given by

P =




c
(0)
µ · · · k

(0)
0 0 · · · 0

c
(1)
µ+1 · · · k

(1)
1 k

(1)
0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

c
(M−µ−1)
M−1 · · · · · · · · · · · · 0
k

(M−µ)
M · · · · · · · · · · · · k

(M−µ)
0

...
...

...
...

...
...

k
(M)
M · · · · · · · · · · · · k

(M)
0




.

(12)
The steady state queue length distribution is given by [19]





π = πP
M∑

i=0

πi = 1
(13)
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where π = [π0, π1, · · · , πM ] is a 1× (M +1) row vector. The
element πi is the probability of queue length equal to i when
the queue enters the steady state, i.e.,

πi = lim
n→∞

Prob[q(n) = i]. (14)

Knowing the steady state queue length distribution, we can
now derive the packets drop probability. The packet drop
probability is defined as the ratio of the number of dropped
packets to the number of total arrival packets, i.e.,

Pdrop = lim
n→∞

∑n
i=1 d(i)
nµ

. (15)

Denote Ld(n) the average number of dropped packets per
block in the first n blocks, i.e.,

Ld(n) =
∑n

i=1 d(i)
n

. (16)

The packet drop probability is

Pdrop =
Ld(∞)

µ
. (17)

When the queue enters the steady state, we have

Ld(∞) = Eq(∞)[d(∞)]

=
M∑

l=M−µ

Prob[q(∞) = l](µ + l −M)

=
M∑

l=M−µ

πl(µ− l + M),

(18)

where d(∞) and q(∞) denote the number of dropped packets,
and queue length at the steady state, respectively.

Similarly, the average transmission power is,

P = lim
n→∞

Eg(n),q(n)[P (g(n), q(n))]

(a)
=

M∑

l=0

πlEg(n)[P (g(n), l)].
(19)

where P (g(n), q(n)) is the transmission power, as a function
of channel gain g(n) and q(n); Step (a) holds because g(n)
and q(n) are independent. In the rest of the paper, we will
omit block index n, since the channel gains are i.i.d., and the
queue length distribution does not change in the steady state,

As mentioned in Section I, our objective is to find a power
control law that minimizes delay bound violation probability,
subject to constraints on average power, arrival rate, and delay
bound. As discussed earlier, given the end-to-end delay bound
Dmax and constant arrival rate µ, we can set the buffer size
M = µ × (Dmax − Dc) so that the delay bound violation
probability is equal to the packet drop probability. Then, given
average power constraint P0, we formulate the optimal power
control problem as below

min
P (g,q)

Pdrop = 1
µ

M∑
l=M−µ

πl(µ− l + M)

s.t.
M∑
l=0

πlEg[P (g, l)] ≤ P0

P (g, q) ≥ 0
π = πP(P (g, q)),∑M

i=0 πi = 1

(20)

where P(P (g, q)) implies that the transition probability matrix
is a function of the power control law P (g, q). The solution
of (20) is the optimal power control law that we seek.

III. JQLA POWER CONTROL SCHEME

In this section, we present a method to solve (20); the
resulting power control is called JQLA.

At first sight, one would use the method of Lagrange
multipliers to solve (20). However, the method of Lagrange
multipliers is not directly applicable; this is because without
knowing the exact form of P (g, q), the probability in (8)
cannot be derived, and hence we do not know the explicit
expression of {πi} as a function of P (g, q). To address this
difficulty, we decompose (20) into three sub-problems and
solve the sub-problems iteratively until it converges. Each of
the sub-problems is an optimization problem. By doing so,
we are able to find explicit relationship between P (g, q) and
{πi}.

The first sub-problem is intended to find the optimal trans-
mission power for a given transition probability matrix P. It
is formulated as follows, for a given P,

min
{P (g,q)}

M∑
q=0

πqEg[P (g, q)] (21a)

s.t. π = πP (21b)
pi,j = Prob[q(n + 1) = j|q(n) = i] (21c)
P (g, q) ≥ 0. (21d)

The constraint (21c) is related to the transmission power via
(8), (9), and (10). Notice that the queue length q takes only
discrete value; the transmission power P (g, q) can be indexed
by q and represented by a set of continuous functions {Pq(g)},
q = 0, 1, · · · ,M . Then (21a) can be rewritten as

min
{Pq(g)}

M∑
q=0

πqEg[Pq(g)]. (22)

Denote the optimal solution to (21) as {P ∗q (g,P)}.
The second sub-problem is intended to find the optimal

transition probability matrix P, for a given steady state queue
length distribution π, which minimizes the average power, i.e.,

min
P

M∑

i=0

πiEg[P ∗i (g,P)] (23a)

s.t. π = πP (23b)
pi,j ≥ 0, ∀i, j (23c)
min(i+µ,M)∑

j=0

pi,j = 1, ∀i (23d)

pi,j = 0, ∀i, j > min(i + µ, M). (23e)

(23c), (23d), (23e) are the constraints that a valid transition
probability matrix needs to satisfy. Denote P∗(π) the solution
to (23).
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The third sub-problem is intended to find the queue length
distribution that minimizes the packet drop probability, for a
given P ∗i (g,P∗(π)), i.e.,

min
π

Pdrop =
1
µ

M∑

i=M−µ

πi(µ− i + M) (24a)

s.t.

M∑

i=0

πiEg[P ∗i (g,P∗(π))] ≤ P0 (24b)

πi ≥ 0, ∀i (24c)
M∑

i=0

πi = 1. (24d)

Denote π∗ the solution to (24). The optimal power control
law is {P ∗q (g,P∗(π∗))}. The following proposition states that
{P ∗q (g,P∗(π∗))} is also an optimal solution to (20).

Proposition 1: Denote P0(g, q) the solution to (20). The
power control law {P ∗q (g,P∗(π∗))} yields the same packet
drop probability as P0(g, q), i.e., {P ∗q (g,P∗(π∗))} is also an
optimal solution to (20).

For a proof of Proposition 1, see Appendix A.
The solution to the first and second sub-problems are

given in Section III-A and III-B, respectively. The third sub-
problem can be numerically solved by sequential quadratic
programming (SQP).

A. Solution to the First Sub-problem

For a given transition probability matrix P, the steady
state queue length distribution {πq} is uniquely determined.
Therefore {πq} can be viewed as fixed parameters as P. In
addition, the i-th row of P is uniquely determined by Pi(g)
and is irrelevant to Pk(g), k 6= i. Therefore minimizing
the sum in (22) is equivalent to independently minimizing
Eg[Pq(g)] for each q ∈ {0, 1, · · · ,M} as below

min
{Pq(g)}

Eg[Pq(g)]

s.t. pi,j = Prob[q(n + 1) = j|q(n) = i]
Pq(g) ≥ 0.

(25)

Denote P ∗q (g) the solution to (25). Note that there is
one-to-one correspondence between transmission power and
maximum error-free transmission rate (packets per block). So
finding P ∗q (g) is equivalent to finding an optimal partition of
g, and the maximum transmission rate (packet per block) of
each region in the partition. By Shannon’s capacity formula,
the minimum power (as a function of channel gain) to convey
i packets in one block is easily obtained by,

P̃i(g) =
A(i)

g
, (26)

where A(i) = 2
iL

W Tb − 1 (i ≥ 0), derived from (9). P ∗q (g)
must be a piecewise function, formed by component functions
P̃i(g), i = {0, 1, · · · , min(q + µ,M)}. A set of P̃i(g) curves
and an example of P ∗q (g) are shown in Fig. 3.

Denote {R(q)
i } the channel gain regions where the trans-

mission rate is i packets per block and the queue length

equals to q; and {R(q)
i } is a partition of the non-negative

region of the real axis [0,+∞), i.e., R
(q)
i

⋂
R

(q)
j = φ for

i 6= j, and
⋃min(q+µ,M)

i=0 R
(q)
i = [0, +∞). Then, P ∗q (g) can be

represented by

P ∗q (g) =
min(q+µ,M)∑

i=0

A(i)
g

1(g ∈ R
(q)
i ). (27)

where 1(x) = 1 if the condition x is true, and 1(x) = 0
otherwise. Substituting (27) into Eg[Pq(g)], the average power
is

Eg[P ∗q (g)] =
min(q+µ,M)∑

i=0

∫

g∈R
(q)
i

A(i)
g

fCH(g)dg. (28)

From (3), the transition probability pq,j is

pq,j =
∫

g∈R
(q)
min(q+µ,M)−j

fCH(g)dg. (29)

The optimization over Pq(g) in (25) is converted into
optimization over the regions {R(q)

i } as below

min
{R(q)

i }

min(q+µ,M)∑

i=0

∫

g∈R
(q)
i

A(i)
g

fCH(g)dg

s.t. pq,j =
∫

g∈R
(q)
min(q+µ,M)−j

fCH(g)dg.

(30)

g

A )1(

g

A )2(

g

A )3(

g

A )4(

00 =g 1g 2g 3g
4g

0,0p
1,0p2,0p3,0p4,0p

)(0 gP

g

Fig. 3. An example of P ∗q (g) is shown in solid curves for q = 0 and µ = 4.

Without loss of generality, a feasible region R
(q)
i may

not be continuous. For example, it is possible that R
(q)
i =

[3, 5)
⋃

[7, 10). However, Proposition 2 states that if {R(q)
i }

is the optimal solution to (30), then each region R
(q)
i (∀i) is

continuous. To prove Proposition 2, we need Lemma 1.
Lemma 1: Let 0 ≤ g1 < g2 ≤ g3 < g4 denote the boundary

points of two regions R1 = [g1, g2) and R2 = [g3, g4).
Assume that the probabilities that g falls into regions R1 and
R2 are non-zero and identical, i.e.,

∫ g2

g1

fCH(x)dx =
∫ g4

g3

fCH(x)dx > 0, (31)
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where fCH(g) is the pdf of channel gain g. Denote P (i, j)
the average power of transmitting i packets when g ∈ R1 and
j packets when g ∈ R2, i.e.,

P (i, j) =
∫ g2

g1

A(i)
x

fCH(x)dx +
∫ g4

g3

A(j)
x

fCH(x)dx. (32)

Then P (i, j) < P (j, i) if i < j.
For a proof of Lemma 1, see Appendix B.

Proposition 2: Suppose the pdf of channel gain fCH(g) is
a bounded and continuous function over [0,∞). Then the set
of regions {R(q)

i } that minimizes the average power in (28),
is {R(q)

i = [g(q)
i , g

(q)
i+1)}, where the boundary points {g(q)

i , i =
0, 1, · · · , min(q + µ,M)}, can be obtained by solving

∫ ∞

g
(q)
i

fCH(g)dg =
min(q+µ,M)∑

j=i

pq,min(q+µ,M)−j ,

for i = 0, 1, · · · , min(q + µ,M), (33)

and the boundary point gmin(q+µ,M)+1 = ∞.
For a proof of Proposition 2, see Appendix C.

To summarize, the solution to (21) can be obtained by
solving (33) for {g(q)

i }, and plugging {g(q)
i } into (27) as below

P ∗q (g,P) =
min(q+µ,M)∑

i=0

A(i)
g

1(g ∈ [g(q)
i , g

(q)
i+1)),

for q = 0, · · · , M. (34)

From (28), the average power is given as below

Eg[P ∗q (g,P)] =
min(q+µ,M)∑

i=0

g
(q)
i+1∫

g
(q)
i

A(i)
g

fCH(g)dg. (35)

B. Solution to the Second Sub-problem

1) Convexity of the objective function in (23a): From (23d)
and (23e), we have

pi,0 = 1−
L(i)∑

j=1

pi,j , (37)

where L(i) = min(i + µ, M) is the column index of the
rightmost nonzero entry of the i-th row of P. There are
totally

∑M
i=0 L(i) independent entries in matrix P. Denote

U(j) = max(j − µ, 0) the row index of the uppermost
nonzero entry of the j-th column of P. It is easy to find that
U(L(i)) = i and L(U(j)) = j. We can rewrite (23) as (the
dependent parameters pi,0 are excluded)

min
pi,j

i=0,··· ,M
j=1,··· ,L(i)

M∑

i=0

πi

L(i)∑

j=0

∫

g∈R
(i)
L(i)−j

A(L(i)− j)
g

fCH(g)dg

(38a)

s.t.

M∑

i=U(j)

πipi,j = πj , j = 1, 2, · · · ,M (38b)

pi,j ≥ 0, i = 0, · · · ,M, j = 1, · · · , L(i)
(38c)

L(i)∑

j=1

pi,j ≤ 1, ∀i. (38d)

From (38b), (38c), and (38d), we know the feasible region for
pi,j (i = 0, · · · ,M , j = 1, · · · , L(i)) is convex. Next we prove
that the objective function is convex in pi,j (i = 0, · · · ,M ,
j = 1, · · · , L(i)), if A(k)−A(k−1) > 0 for k ≥ 1. To prove
this, we need Lemmas 2 and 3.

Lemma 2: Let CN be a symmetric N × N matrix with
elements ci,j ; and let ci,j = amin(i,j), where ak (k ∈
{0, 1, · · · , N}) are arbitrary constants and satisfy 0 < a1 <
a2 < · · · < aN . Then, CN is positive definite.
For a proof of Lemma 2, see Appendix D.

Denote the i-th row (except the first element pi0) of P by
vector pi = [pi,1, pi,2, · · · , pi,L(i)]T , and denote the average
power usage when the queue length equals to i by ki(pi),

which is equal to
L(i)∑
j=0

∫
g∈R

(i)
j

A(j)
g fCH(g)dg.

Lemma 3: If A(k)−A(k−1) > 0 (for k ≥ 1), then ki(pi)
is convex in pi.
For a proof of Lemma 3, see Appendix E.

Let p = [pT
0 ,pT

1 , · · · ,pT
M ]T , and

Pavg(p) =
M∑

i=0

πiki(pi). (39)

Proposition 3: If A(k) − A(k − 1) > 0 (for k ≥ 1), then
Pavg(p) is convex in p.
For a proof of Proposition 3, see Appendix F.

2) Solution for the constraint-relaxed optimization problem:
Proposition 3 shows that the objective function (38a) is convex.
The feasible region of p is also convex. So we can use the
Lagrangian method to find the optimal solution to (38). Since
the inequality constraints (38c) and (38d) make it difficult to
directly solve (38), we first solve a simpler problem (40) with
the equality constraint only; then use its solution to construct
the solution to (38).

min
p

Pavg(p) =
M∑

i=0

πiki(pi) (40a)

s.t.

M∑

i=U(j)

πipi,j = πj , j = 1, 2, · · · ,M. (40b)

The Lagrangian function of (40) is given by

J(p, λ) =
M∑

i=0

πiki(pi) +
M∑

j=1

λj(
M∑

i=U(j)

πipi,j − πj), (41)
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F(j0) =max j (36a)
s.t. FCH(B(L(i)− j0)ŷj0+1)− FCH(B(L(i)− j + 1)ŷj) ≥ 0, (36b)

j ∈ {1, 2, · · · , j0}. (36c)

where λ = [λ1, λ2, · · · , λM ]T . Differentiate J(p, λ) w.r.t. pi,j

and set the derivative to zero, i.e.,

∂

∂pi,j
J(p, λ) = πi

L(i)∑

k=L(i)−j+1

−B(k)

g
(i)
k

+ λjπi = 0, (42)

where B(k) = A(k)−A(k − 1). We obtain

L(i)∑

k=L(i)−j+1

B(k)

g
(i)
k

= λj . (43)

Notice that when πi = 0,
L(i)∑

k=L(i)−j+1

B(k)

g
(i)
k

is not necessary

to be equal to λj . However, letting
L(i)∑

k=L(i)−j+1

B(k)

g
(i)
k

= λj .

is one of the possible solutions, as long as it leads to a valid
solution of {pi,j}. The proof of existence of {pi,j} is provided
in Lemma 4.

For each i, solving equation groups j = 1, 2, · · · , L(i),

g
(i)
j =

B(j)
λL(i)−j+1 − λL(i)−j

, (44)

where λ0 is assumed to be zero. From (33),

pi,j = FCH(g(i)
L(i)−j)− FCH(g(i)

L(i)−j+1), (45)

where FCH(x) =
∫∞

x
fCH(g) dg is the complementary cu-

mulative density function (ccdf) of channel gain. Substituting
(45) into (40b), we have

M∑

i=U(j)

πi(FCH(g(i)
L(i)−j)− FCH(g(i)

L(i)−j+1)) = πj . (46)

Summing up both sides of (46), we obtain
M∑

j=k

M∑

i=U(j)

πi(FCH(g(i)
L(i)−j)− FCH(g(i)

L(i)−j+1)) =
M∑

j=k

πj ,

k = {1, 2, · · · , M}.
(47)

By changing the order of summation, the left hand side (l.h.s.)
of (47) is equal to

M∑

i=U(k)

πi

L(i)∑

j=k

(FCH(g(i)
L(i)−j)− FCH(g(i)

L(i)−j+1)) (48)

=
M∑

i=U(k)

πi(FCH(g(i)
0 )− FCH(g(i)

L(i)−k+1)) (49)

=
M∑

i=U(k)

πi(1− FCH(g(i)
L(i)−k+1)). (50)

Substituting (44) into (50), letting (50) equal to the right hand
side (r.h.s.) of (47), and moving terms to the other side, we
have

M∑

i=U(k)

πiFCH(B(L(i)− k + 1)yk) =
k−1∑

i=U(k)

πi, (51)

where
yk = (λk − λk−1)−1. (52)

Since yk is the only unknown variable in (51), we can solve
(51) for yk (∀k). Denote ŷk the solution to (51).

Lemma 4: The solution ŷk to (51) exists for each k ∈
{1, · · · ,M}, and ŷk ≥ 0.

For a proof of Lemma 4, see Appendix G.
Let p̂i,j be the optimal solution to (40). Then,

p̂i,j = FCH(B(L(i)− j)ŷj+1)− FCH(B(L(i)− j + 1)ŷj).
(53)

Particularly, when j = M , B(L(i)−j) = B(M−M) = 0. We
do not need to calculate ŷM+1, which does not have definition
according to (51).

We have following observations about p̂i,j .
Lemma 5:

(1)
∑L(i)

j=1 p̂i,j ≤ 1.
(2) p̂i,L(i) ≥ 0.
(3) If the ratio B(k + 1)/B(k) is the same for different

value of k, i.e., B(k + 1)/B(k) = c (k ≥ 1), where
c is a constant, then p̂i,j has the same sign for each
column j except for the upper most element pU(j),j ,
j ∈ {µ, · · · ,M}.

(4) p̂i,j ≥ 0 for ∀i, 1 ≤ j ≤ µ− 1.
For a proof of Lemma 5, see Appendix H.

3) Only one negative column in the matrix of p̂i,j: In this
section, we construct the optimal solution p∗i,j for (38) from
p̂i,j . From Lemma 5, (38d) is always satisfied. Then, we only
need to consider (38c), i.e., pi,j ≥ 0 for i = 0, · · · ,M and
j = 1, · · · , L(i). We first construct the optimal solution for a
special case where only one column has p̂i,j < 0 (except for
the uppermost element p̂U(j),j); then generalize the result to
other cases in Section III-B.4.

Denote j0 the index of the column with p̂i,j0 < 0 (except
for the uppermost element p̂U(j0),j0 ). Define a function of j0,
denoted by F(j0), as the optimal solution to (36); if (36) does
not have a solution, let F(j0) = 0. The following proposition
shows how to construct the optimal solution to (38).

Proposition 4: If the following two conditions are satisfied
1) Only one column has p̂i,j0 < 0 (except for the upper-

most element p̂U(j0),j0 ), where j0 is the index of the
column,

2) B(k + 1)/B(k) = c for all k ≥ 1,
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p∗i,j(j0) =

{
p̂i,j j ∈ {1, · · · ,F(j0)− 1}⋃{j0 + 1, · · · , M}, i ∈ {U(j), · · · ,M}
G(j0, i, j) j ∈ {F(j0), · · · , j0}, i ∈ {U(j), · · · , M} , (54)

where

G(j0, i, j) =





∑j0
k=F(j0)

p̂i,k j = F(j0), i ∈ {U(j0) + 1, · · · ,M}
0 j ∈ {F(j0) + 1, · · · , j0}, i ∈ {U(j0) + 1, · · · ,M}
FCH(B(L(i)− j)y∗j+1,j0

)− FCH(B(L(i)− j + 1)y∗j,j0) j ∈ {F(j0), · · · , j0}, i ∈ {U(j), · · · , U(j0)}
,

(55)
where y∗j,j0 = ŷj if j ∈ {F(j0), j0 + 1}; if j ∈ {F(j0) + 1, · · · , j0}, y∗j,j0 is obtained by solving the following equation:

U(j0)∑

i=U(j)

πi(1− FCH(B(L(i)− j + 1)y∗j,j0) =
j0∑

i=j

πi. (56)

then the solution to (38), denoted by p∗i,j(j0), is given by (54).
For a proof of Proposition 4, see Appendix M.

4) Arbitrary number of negative columns in the matrix of
p̂i,j: Proposition 4 gives the solution for the case where only
one column of p̂i,j has negative value. The solution p∗i,j(j0)
differs from p̂i,j only in columns j ∈ {F(j0), · · · , j0};
for other columns, p∗i,j(j0) is the same as p̂i,j . Using this
procedure iteratively, Proposition 5 states that we can construct
the solution for the general case, i.e., arbitrary number of
negative columns in the matrix of p̂i,j .

Proposition 5: If B(k + 1)/B(k) = c for all k ≥ 1, the
solution to (38) is given by Algorithm 1.
For a proof of Proposition 5, see Appendix N.

Algorithm 1: Solving the second sub-problem
1) Input: fCH(g), π, M, µ
Solve (51) for ŷk, k ∈ {1, · · · ,M};
Calculate p̂i,j via (53), i ∈ {0, · · · ,M}, j ∈ {1, · · · , L(i)};
Calculate F(k) via (36), k ∈ {µ, · · · , M − 1};
Calculate G(k, i, j) via (55)), k ∈ {1, · · · ,M − 1},

i ∈ {U(j), · · · ,M}, j ∈ {F(k), · · · , k};
k = M − 1;
2) If p̂U(k)+1,k ≥ 0

{ For i = U(k) to M
p∗i,k = p̂i,k;

Endfor
k = k − 1;
Break}

Else
{ For j = F(k) to k

For i = U(j) to M
p∗i,j = G(k, i, j);

Endfor
Endfor
k = F(k)− 1; }

Endif
If k > 0, go to 2);
p∗i,0 = 1−∑L(i)

j=1 pi,j

3) Output: P∗(π).

C. Solution to the Original Problem (20)
We first sketch our idea and then present Algorithm 2 to

solve the original problem (20).

Our idea is as below. Given a queue length distribution
π, we can solve (23) for P∗(π) by Algorithm 1, and then
solve (21) for P ∗q (g,P∗(π)). Now, it is obvious that the first
constraint (24b) in the optimization problem (24) is a function
of π, and can be denoted as g1(π) ≤ 0, where

g1(π) =
M∑

i=0

πiEg[P ∗i (g,P∗(π))]− P0. (57)

The optimization problem (24) can be reformulated as the
following nonlinear program

min
π

f(π) (58a)

s.t. g(π) ≤ 0, (58b)
h(π) = 0, (58c)

where

f(π) =
1
µ

M∑

i=M−µ

πi(µ− i + M), (59)

g(π) =
[

g1(π)
−π

]
, (60)

h(π) =
M∑

i=0

πi − 1. (61)

(58) can be solved by Merit-function Sequential Quadratic
Programming (MSQP) [20, page 583], which guarantees
global convergence to a local optimal solution under some
weak conditions [21].

Using the above idea, we design Algorithm 2 to seek the
optimal power control law P0(g, q), which is the solution to
(20). We call P ∗q (g,P∗(π∗)) produced by Algorithm 2, JQLA
power control law.

Algorithm 2:
1) Input: fCH(g), µ, M , P0, ε
2) Initialization:

Randomly select a feasible distribution π(0), which
satisfies (13);
m = 0;

3) Given π(m), solve (23) for P∗(π(m)) by Algorithm 1;
4) Given P∗(π(m)), solve (21) for P ∗q (g,P∗(π(m)))

via (33) and (34);
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5) Given π(m) and P ∗q (g,P∗(π(m))), apply one iteration
of MSQP to (58) and obtain an increment dπ;

6) π(m+1) = π(m) + dπ;
7) If |Pdrop(π(m+1))− Pdrop(π(m))| < ε

Go to 8);
Else

m = m + 1;
Go to 3);

Endif
8) π∗ = π(m);
9) Output: P ∗q (g,P∗(π∗)).

Algorithm 2 is actually an MSQP, which produces a local
optimal solution under some weak conditions [21]. Different
from a conventional MSQP, we need Step 3 and Step 4 to
compute P∗(π(m)) and P ∗q (g,P∗(π(m))). Since functions
P∗(π(m)) and P ∗q (g,P∗(π(m))) do not have an explicit
closed form, it is particularly difficult to verify whether the
sufficient conditions for global convergence of MSQP [21]
are satisfied in Algorithm 2. Although this paper does not
provide a convergence proof for Algorithm 2, as shown in our
experiments, Algorithm 2 always converges as long as 1) the
initial point is an interior point with respect to the constraints,
and 2) a merit function is chosen appropriately [21].

D. Structure of the Optimal Power Control Law

The optimal power control law {P ∗q (g,P∗(π∗))} depends
on the optimal queue length distribution π∗, which is obtained
by numerically solving the third sub-problem. However, even
without knowing the closed form of π∗, we can still obtain
structural properties about the optimal power control law
{P ∗q (g,P∗(π∗))} from the intermediate results in solving the
second sub-problem.

Since the only unknowns in (27) are channel gain regions
R

(q)
i or their boundaries {g(q)

i }, hence the optimal power
control law is determined by the channel gain boundaries
{g(q)

i }. Now we examine the structure of {g(q)
i }.

We first consider the case where all p̂i,j > 0. In this case,
p∗i,j = p̂i,j and the boundaries of channel gain regions R

(q)
i

are obtained by g
(q)
i = B(i)ŷL(q)−i+1. Hence, we have the

following two properties:
• Property 1: If queue length q < M − µ, we have

g
(q+1)
i+1 = cg

(q)
i , i.e., the values g

(q)
i , g

(q+1)
i+1 , g

(q+2)
i+2 , · · ·

form a geometric sequence or an arithmetic sequence in
logarithmic scale.

• Property 2: If queue length q ≥ M − µ, the boundaries
g
(q)
i has the same value for all values of q.

Fig. 4 shows an example of channel gain regions R
(q)
i and

their boundaries {g(q)
i } for M = 9 and µ = 3. In Fig. 4,

each horizontal axis represents channel gain g in logarithmic
scale for a fixed value of queue length q. For each horizontal
axis (corresponding to a queue length indexed by q), we plot
the boundary points {g(q)

i , ∀i}; a dark dot represents a value
g
(q)
i . Due to Property 1, the points g

(q)
i , g

(q+1)
i+1 , g

(q+2)
i+2 , . . .

form a straight line (a tilted line); these points are on the axes
from q = 0 to q = M − µ. Due to Property 2, the points

g
(q)
i , g

(q+1)
i , g

(q+2)
i , . . . form a straight line (a vertical line);

these points are on the axes from q = M − µ to q = M .
So each tilted line is connected with a vertical line on Axis
q = M − µ. Hence, all boundary points {g(q)

i , ∀q, ∀i} form a
regular pattern on the 2D plane, similar to plane wave-fronts
in radio propagation.

Fig. 4. An example of channel gain regions of the optimal power control
law when all p̂i,j ≥ 0.

For the case where some p̂i,j < 0, p∗i,j is obtained from
p̂i,j by Algorithm 2. Fig. 5 shows an example of channel gain
regions R

(q)
i and their boundaries {g(q)

i } for the case where
not all p̂i,j > 0. In this example, M = 9, µ = 3, ŷ7 < ŷ8/c
and F(7) = 5; hence, some elements of the optimal transition
probability matrix will be zero. As a result, Property 1 does
not hold, i.e., there may exist some tilted lines not connected
with a vertical line.

Fig. 5. An example of channel gain regions of the optimal power control
law when some p̂i,j < 0.

IV. SIMULATION RESULTS

In this section, we simulate the system depicted in Fig. 1
and compare the JQLA power control law with TDWF and
TCI power control.

Since we assume ideal channel coding is used, the service
rate of the buffer in a block is equal to the instantaneous
channel capacity in the block, and the decoding error proba-
bility in the physical layer is zero. Table I lists the simulation
parameters. We conduct simulations for Case 1, Case 2,
and Case 3, which represent stringent, moderate, and loose
delay constraint, respectively. In Table I, the average power
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constraint P0 is different for different cases; this is because
we want to keep packet drop probability Pdrop ≤ 10−3 under
JQLA power control for all the cases, and we assume that a
connection has a QoS requirement of Pdrop ≤ 10−3.

TABLE I
SIMULATION PARAMETERS

Case 1 Case 2 Case 3
Max queueing delay (Dmax −Dc) 2 5 10
Arrival rate µ 25 10 5
Average power P0 0.94 0.14 0.046
Channel power gain g Exponential distributed with E[g]=1
MTb/L 50
Buffer size M 50

TABLE II
SIMULATION RESULTS FOR JQLA

Case 1 Case 2 Case 3
Packet drop probability Pdrop 0.9 ×10−3 0.78 ×10−3 10−3

Table II shows the packet drop probability under JQLA
power control for the three cases. It can be seen that the QoS
requirement of Pdrop ≤ 10−3 is satisfied for all the cases.
Fig. 6 shows JQLA power control law Pq(g) obtained by
Algorithm 2, for the three cases. From the figure, we have
the following observations. First, if the delay constraint is
stringent (Case 1), JQLA power control law Pq(g) is almost
invariant w.r.t. the queue length q, and for most values of g,
Pq(g) is a decreasing function of g, i.e., when the channel
gain g is small, the transmission power is high to compensate
the poor channel condition; this is similar to TCI power
control. Second, JQLA power control law Pq(g) under Case
2 (moderate delay constraint) is similar to that under Case 3
(loose delay constraint), in the sense that Pq(g) under both
cases exhibits a similar pattern: when g is very small and
q is very large, Pq(g) is a decreasing function of g, similar
to TCI; when g is small and q is also small, Pq(g) is an
increasing function of g, similar to TDWF; when g is large,
Pq(g) is a decreasing function of g, similar to TCI. Third,
for Case 3 (loose delay constraint), the cutoff threshold g

(q)
1

for small q is significantly larger than that for moderate and
stringent delay constraints; (note that if channel gain g < g

(q)
1 ,

the transmission power is zero, i.e., there is no transmission;)
hence, if the delay constraint is loose, the transmitter tends to
wait till the channel gets better to transmit, resulting in lower
average transmission power.

Fig. 7 shows the queue length distribution under JQLA
for the three cases. As shown in Fig. 7, the queue length
distribution π∗ obtained by Algorithm 2 (which is labeled
as ‘Analysis’) agrees well with the queue length distribution
obtained from simulations (which is labeled as ‘Simulation’),
indicating high accuracy of our analysis and Algorithm 2. It
is also observed that the JQLA power control law achieves
small probability for queue length q > M −µ, leading to low
packet drop probability. Note that q(n) > M − µ in the n-th
block results in packet drops (refer to Fig. 2).

Fig. 8 shows packet drop probability Pdrop vs. average
power P0 for JQLA, TDWF, and TCI power control. It is
observed that JQLA achieves approximately 10 dB gain over
TDWF when the packet drop probability is 10−3. We also
observe that TCI performs slightly better than TDWF; this is
because the delay bound for all the three cases is not very large
but TDWF needs very large delay bound to perform well.

V. CONCLUSION

In this paper, we studied the problem of optimal power con-
trol for delay-constrained communication over fading chan-
nels. Our objective is to find a power control law that
optimizes the link layer performance, specifically, minimizes
delay bound violation probability (or equivalently, the packet
drop probability), subject to constraints on average power,
arrival rate, and delay bound. The transmission buffer size
is assumed to be finite; hence, when the buffer is full, there
will be packet drop. The fading channel under our study has
a continuous state, e.g., Rayleigh fading. Since the channel
state is continuous, dynamic programming is not applicable
for power control; in other words, if dynamic programming
were used, the system would suffer from capacity loss due to
error caused by quantizing the continuous channel state. Since
directly solving the power control problem (which optimizes
the link layer performance) is particularly challenging, we
decomposed it into three sub-problems, and solved the three
sub-problems iteratively, which produced JQLA power control
scheme. We proved that the solution that simultaneously solves
the three sub-problems is also an optimal solution to the
optimal power control problem. Simulation results showed
that the JQLA scheme achieves superior performance over the
time domain water filling and the truncated channel inversion
power control. E.g., JQLA achieves 10 dB gain at packet drop
probability of 10−3, over the time domain water filling power
control. Algorithm 2 is too complex; hence one may not use
it in practice. Instead, the main purpose of JQLA is to explore
the fundamental performance limit of power control under the
link-PHY model. Although JQLA does not produce a global
optimal solution, this work represents a major step toward
deriving the fundamental performance limit of power control
under the link-PHY model. The local optimal solution obtained
by JQLA can provide a judgement on the performance of a
practical power control scheme. The 10 dB gain achieved by
JQLA indicates that there is much room to improve for existing
power control schemes!

APPENDIX

A. Proof of Proposition 1

Proof: Denote π0 = [π00, π01, · · · , π0M ] the steady state
queue length distribution generated by P0(g, q). P0(g, q) is
feasible to (20), therefore the average power constraint

M∑

l=0

πlEg[P0(g, l)] ≤ P0, (62)



11

0

0.5

1

1.5

2

0

10

20

30

40

50
10

−2

10
−1

10
0

10
1

10
2

Channel Gain g

JQLA Power Control

Queue length q

P
(g

,q
)

(a)

0
1

2
3

4
5

0

10

20

30

40

50
10

−2

10
−1

10
0

10
1

Channel Gain g

JQLA Power Control

Queue length q

P
(g

,q
)

(b)

0
1

2
3

4
5

6
7

0

10

20

30

40

50
10

−3

10
−2

10
−1

10
0

10
1

Channel Gain g

JQLA Power Control

Queue length q

P
(g

,q
)

(c)

Fig. 6. P (g, q) of JQLA. (a) Case 1, (b) Case 2, (c) Case 3.
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Fig. 7. Queue length distribution of JQLA. (a) Case 1, (b) Case 2, (c) Case
3.
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Fig. 8. Packet drop probability vs. average power. (a) Case 1, (b) Case 2,
(c) Case 3.

is satisfied. From the first and second sub-problem (21) and
(23), we know for the transition probability matrix P∗(π0),

M∑

l=0

πlEg[P ∗l (g,P∗(π0))] ≤
M∑

l=0

πlEg[P0(g, l)] ≤ P0. (63)

Therefore π0 is feasible to (24), therefore

1
µ

M∑

l=M−µ

π∗l (µ− l + M) ≤ 1
µ

M∑

l=M−µ

π0l(µ− l + M). (64)

Because P0(g, q) is the optimal solution to (20), we have

1
µ

M∑

l=M−µ

π0l(µ− l + M) ≤ 1
µ

M∑

l=M−µ

π∗l (µ− l + M). (65)

From (64) and (65), we have

1
µ

M∑

l=M−µ

π0l(µ− l + M) =
1
µ

M∑

l=M−µ

π∗l (µ− l + M). (66)

B. Proof of Lemma 1

Proof: Denote y1 =
∫ g2

g1

1
xfCH(x)dx and y2 =∫ g4

g3

1
xfCH(x)dx. Then we have y1 > y2 since

y1 =
∫ g2

g1

1
x

fCH(x)dx

(a)
>

1
g2

∫ g2

g1

fCH(x)dx

(b)

≥ 1
g3

∫ g2

g1

fCH(x)dx

(c)
=

1
g3

∫ g4

g3

fCH(x)dx

(d)

≥
∫ g4

g3

1
x

fCH(x)dx

= y2 (67)

where (a) follows from 1
x > 1

g2
for x ∈ (g1, g2) and g1 ≥ 0,

(b) follows from g2 ≤ g3, (c) due to (31), and (d) follows
from 1

g3
≥ 1

x for x ∈ [g3, g4).
Substituting y1, y2 into P (i, j), we have

P (i, j) =
∫ g2

g1

A(i)
x

fCH(x)dx +
∫ g4

g3

A(j)
x

fCH(x)dx

= A(i)y1 + A(j)y2.

Similarly, we have

P (j, i) = A(j)y1 + A(i)y2. (68)

If i < j, then A(i) < A(j); hence, we have

P (i, j)− P (j, i) = (A(i)−A(j))(y1 − y2) < 0. (69)
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C. Proof of Proposition 2

Proof: We first prove that if {R(q)
i } is the optimal

solution to (30), then each region R
(q)
i (∀i) is continuous. We

prove this by contradiction.
Assume that {R(q)

i } is the optimal solution to (30); also
assume that there exists a region R

(q)
j that contains (at least)

two disconnected sub-regions, say, [g1, g2) and [g5, g6). With-
out loss of generality, assume 0 ≤ g1 < g2 < g5 < g6.
Assume that a region [g3, g4) is contained in R

(q)
k and g2 <

g3 < g4 < g5. Consider two cases.
• Case 1 (k > j): Consider two sub-cases.

– Case 1.A: The probability of g in sub-region [g3, g4)
is greater than or equal to that in [g5, g6), i.e.,

∫ g4

g3

fCH(g)dg ≥
∫ g6

g5

fCH(g)dg. (70)

Then, there exists g′3 (with g′3 ≥ g3) such that sub-
regions [g′3, g4) and [g5, g6) have the same probabil-
ity, i.e.,

∫ g4

g′3

fCH(g)dg =
∫ g6

g5

fCH(g)dg. (71)

From Lemma 1, if we exchange the index of the two
sub-regions [g′3, g4) and [g5, g6), i.e., let [g′3, g4) ∈
R

(q)
k , [g5, g6) ∈ R

(q)
j , then we can reduce the

average power. Hence, the original {R(q)
i } (without

exchanging the index) is not the optimal solution,
which contradicts our assumption.

– Case 1.B: The probability of g in sub-region [g3, g4)
is less than that in [g5, g6), i.e.,

∫ g4

g3

fCH(g)dg <

∫ g6

g5

fCH(g)dg. (72)

Then, there exists g′5 (with g′5 > g5) such that sub-
regions [g3, g4) and [g′5, g6) have the same proba-
bility. From Lemma 1, if we exchange the index of
the two sub-regions [g3, g4) and [g′5, g6), then we
can reduce the average power. Hence, the original
{R(q)

i } is not the optimal solution, which contradicts
our assumption.

• Case 2 (k < j): Similar to Case 1, we can show that
{R(q)

i } is not the optimal solution, which contradicts our
assumption.

Therefore, each region R
(q)
i (∀i) has to be continuous.

Next, we prove that if i < j, then x < y, ∀x ∈ R
(q)
i and

∀y ∈ R
(q)
j . We prove this by contradiction.

Assume that {R(q)
i } is the optimal solution to (30); also

assume that there exist x ∈ R
(q)
i and y ∈ R

(q)
j (with i < j)

such that x > y. Without loss of generality, assume R
(q)
i =

[g1, g2) and R
(q)
j = [g3, g4). Since x > y, we must have

g4 ≤ g1. Consider two cases.
• Case A: The probability of g in R

(q)
i is greater than or

equal to that in R
(q)
j , i.e.,

∫ g2

g1

fCH(g)dg ≥
∫ g4

g3

fCH(g)dg. (73)

Then, there exists g′1 (with g′1 ≥ g1) such that sub-regions
[g′1, g2) and [g3, g4) have the same probability, i.e.,

∫ g2

g′1

fCH(g)dg =
∫ g4

g3

fCH(g)dg. (74)

From Lemma 1, if we exchange the index of the two re-
gions [g′1, g2) and [g3, g4), then we can reduce the average
power. Hence, the original {R(q)

i } (without exchanging
the index) is not the optimal solution, which contradicts
our assumption.

• Case B: The probability of g in R
(q)
i is less than that in

R
(q)
j .

Similar to Case A, we can show that {R(q)
i } is not the

optimal solution, which contradicts our assumption.

Therefore, if i < j, we must have x < y, ∀x ∈ R
(q)
i and

∀y ∈ R
(q)
j .

Now we know that {R(q)
i } is a partitioning of [0,∞) (by

definition); each region R
(q)
i (∀i) is continuous; if i < j, then

x < y, ∀x ∈ R
(q)
i and ∀y ∈ R

(q)
j . Hence, the optimal solution

must have the following form (except inclusion or exclusion
of the boundary points {g(q)

i }): R
(q)
i = [g(q)

i , g
(q)
i+1) and 0 =

g
(q)
0 ≤ g

(q)
1 · · · ≤ gq

min(q+µ,M) ≤ gq
min(q+µ,M)+1 = ∞.

For i = 0, 1, · · · , min(q + µ,M), we have

∫ ∞

g
(q)
i

fCH(x)dx =
min(q+µ,M)∑

j=i

∫ g
(q)
j+1

g
(q)
j

fCH(x)dx

(a)
=

min(q+µ,M)∑

j=i

pq,min(q+µ,M)−j (75)

where (a) follows from (29).

D. Proof of Lemma 2

Proof: From the definition, the matrix CN is given by

CN =




a1 a1 a1 · · · a1

a1 a2 a2 · · · a2

a1 a2 a3 · · · a3

...
...

...
. . . . . .

a1 a2 a3

... aN




. (76)

Denote CN = {CN} the set of all possible CN . Consider an
arbitrary matrix CN+1 ∈ CN+1. Subtracting the first column
of CN+1 from the second column, the third column, up to the
(N + 1)-th column, we obtain

C′
N+1 =




a1 0 0 · · · 0
a1 a2 − a1 a2 − a1 · · · a2 − a1

a1 a2 − a1 a3 − a1 · · · a3 − a1

...
...

...
. . . . . .

a1 a2 − a1 a3 − a1

... aN+1 − a1




.

(77)
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Then subtracting the first row of C ′N+1 from the second row,
the third row, up to the (N + 1)-th row, we have

C′′
N+1 =




a1 0 0 · · · 0
0 a2 − a1 a2 − a1 · · · a2 − a1

0 a2 − a1 a3 − a1 · · · a3 − a1

...
...

...
. . . . . .

0 a2 − a1 a3 − a1

... aN+1 − a1




.

(78)
Then, we have

det(CN+1) = det(C′
N+1) = det(C′′

N+1) = a1 det(C̃N ),
(79)

where C̃N is the sub-matrix by deleting the first row and first
column of matrix C′′

N+1. It is easy to see that C̃N ∈ CN ,
therefore det(CN+1) = a1 det(C̃N ) > 0. Since det(C1) > 0
(∀C1 ∈ C1), hence det(CN ) > 0 holds for all N ∈ Z+.

Denote (CN )i,j the sub-matrix obtained by deleting the i-th
row and j-th column from matrix CN . Since (CN )i,i ∈ CN−1

(∀i ∈ {1, 2, · · · , N}), hence det((CN )i,i) > 0, which holds
for all N > 1. Therefore, CN is positive definite.

E. Proof of Lemma 3

Proof: From Proposition 2, R
(i)
j = [g(i)

j , g
(i)
j+1). Then,

we have

ki(pi) =
L(i)∑

j=0

g
(i)
j+1∫

g
(i)
j

A(j)
g

fCH(g)dg

(a)
=

L(i)∑

j=1

A(j)[η(g(i)
j )− η(g(i)

j+1)],

(80)

where η(x) =
∫∞

x
fCH(g)

g dg; (a) is due to A(0) = 0. Since
gL(i)+1 = ∞ and η(∞) = 0, we have

ki(pi) =
L(i)∑

j=1

η(g(i)
j )[A(j)−A(j − 1)]. (81)

Take partial derivative w.r.t. pi,m, m ∈ {1, · · · , L(i)}, i.e.,

∂ki(pi)
∂pi,m

=
L(i)∑

j=1

dη(g(i)
j )

dg
(i)
j

∂g
(i)
j

∂pi,m
[A(j)−A(j − 1)]

= −
L(i)∑

j=1

fCH(g(i)
j )

g
(i)
j

∂g
(i)
j

∂pi,m
[A(j)−A(j − 1)].

(82)

From (33), (37)

g
(i)
j = F−1

CH(
L(i)∑

k=j

pi,L(i)−k)

= F−1
CH(

L(i)−j∑

k=0

pi,k)

= F−1
CH(pi,0 +

L(i)−j∑

k=1

pi,k)

= F−1
CH(1−

L(i)∑

k=L(i)−j+1

pi,k),

(83)

where FCH(x) =
∫∞

x
fCH(g) dg is the complementary cu-

mulative density function (ccdf) of channel gain. We have

∂gi
j

∂pi,m
= 1

F ′CH(F−1
CH(1−

L(i)P
k=L(i)−j+1

pi,k))

×

∂
∂pi,m

(1−
L(i)∑

k=L(i)−j+1

pi,k)

= 1

fCH(g
(i)
j )

1(m ≥ L(i)− j + 1). (84)

Substituting (84) into (82), we have

∂ki(pi)
∂pi,m

= −
L(i)∑

j=1

1(m ≥ L(i)− j + 1)

g
(i)
j

[A(j)−A(j − 1)]

= −
L(i)∑

j=L(i)−m+1

B(j)

g
(i)
j

,

(85)

where B(j) = A(j) − A(j − 1), j ≥ 1. We add B(0) =
0 to sequence {B(k)}, which will simplify the subsequent
derivations. Denote h

(i)
m,n the m-th row and n-th column,

m,n ∈ {0, 1, · · · , L(i)}, of the Hessian matrix of ki(pi), i.e.,

h(i)
m,n =

∂ki(pi)
∂pi,m∂pi,n

=
L(i)∑

j=L(i)−m+1

B(j)

(g(i)
j )2

· 1(n ≥ L(i)− j + 1)

fCH(g(i)
j )

=
L(i)∑

j=L(i)−min(m,n)+1

B(j)

(g(i)
j )2fCH(g(i)

j )
.

(86)

It is easy to see that h
(i)
m1,n1 = h

(i)
m2,n2 if min(m1, n1) =

min(m2, n2), and h
(i)
m1,n1 > h

(i)
m2,n2 if min(m1, n1) >

min(m2, n2). From Lemma 2, H is positive definite. There-
fore, ki(pi) is convex in pi.

F. Proof of Proposition 3

Proof: Let p1 = [pT
10,p

T
11, · · · ,pT

1M ]T , p2 =
[pT

20,p
T
21, · · · ,pT

2M ]T
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Pavg(λp1 + (1− λ)p2) =
M∑

i=0

πiki(λp1i + (1− λ)p2i)

(a)
<

M∑

i=0

πi[λki(p1i) + (1− λ)ki(p2i)]

= λPavg(p1) + (1− λ)Pavg(p2).
(87)

where (a) follows from Lemma 3.

G. Proof of Lemma 4

Proof: For x ≥ 0, let

fk(x) =
M∑

i=U(k)

πiFCH(B(L(i)− k + 1)x). (88)

fk(x) is a continuous and decreasing function of x. Since
0 ≤ FCH(x) ≤ 1, we have

0 ≤ fk(x) ≤
M∑

i=U(k)

πi. (89)

Because 0 ≤ ∑k−1
i=U(k) πi ≤

∑M
i=U(k) πi, there must exists ŷk

such that fk(ŷk) =
∑k−1

i=U(k) πi, and ŷk ≥ 0.

H. Proof of Lemma 5

Proof:
(1) By (33),

L(i)∑

j=1

p̂i,j = 1− FCH(g(i)
L(i)) ≤ 1. (90)

(2) p̂i,L(i) = 1− FCH(B(1)ŷj) ≥ 0.
(3) If B(k + 1)/B(k) = c, for i > U(j), µ ≤ j < M , we

have

p̂i,j = FCH(B(L(i)−j)ŷj+1)−FCH(B(L(i)−j)cŷj). (91)

Therefore, p̂i,j > 0 if and only if ŷj+1/ŷj < c, which is
irrelevant to i; p̂i,j < 0 if and only if ŷj+1/ŷj > c; p̂i,j = 0
if and only if ŷj+1/ŷj = c. I.e., p̂i,j has the same sign for
each column j except for the upper most element pU(j),j ,
j ∈ {µ, · · · ,M}.

(4) Assume the ratio B(k + 1)/B(k) takes a value of c,
i.e., B(k + 1)/B(k) = c. For 1 ≤ j ≤ µ − 1, we have
fj(ŷj) = fj+1(cŷj) =

∑j−1
i=0 πi ≤

∑j
i=0 πi = fj+1(ŷj+1).

Therefore, cŷj ≥ ŷj+1. Hence, we have

p̂i,j = FCH(B(L(i)− j)ŷj+1)− FCH(B(L(i)− j)cŷj) ≥ 0.
(92)

I. Lemma 6 and Its Proof

Lemma 6: The solution to (93), denoted by y∗j,j0 , exists,
and 0 ≤ y∗j,j0 ≤ ŷj for j ∈ {F(j0) + 1, · · · , j0}.

U(j0)∑

i=U(j)

πi(1− FCH(B(L(i)− j + 1)y∗j,j0) =
j0∑

i=j

πi. (93)

Proof: For x ≥ 0, define f∗j (x) by

f∗j (x) =
U(j0)∑

i=U(j)

πi(1− FCH(B(L(i)− j + 1)x). (94)

f∗j (x) is a continuous and increasing function of x. Substitut-
ing (52) into (44), then substituting (44) into (50), and letting
(50) equal to the r.h.s. of (47), we have

M∑

i=U(j)

πi(1− FCH(B(L(i)− j + 1)yj)) =
M∑

i=j

πi. (95)

yj is the only unknown variable in (95). Notice that (95) is
equivalent to (51), ŷk is also the solution to (95). So we have

M∑

i=U(j)

πi(1− FCH(B(L(i)− j + 1)ŷj)) =
M∑

i=j

πi. (96)

Substituting (94) into l.h.s. of (96), we have

M∑

i=j

πi = f∗j (ŷj) +
M∑

i=U(j0)+1

πi(1− FCH(B(L(i)− j + 1)ŷj)

(a)

≤ f∗j (ŷj) +
M∑

i=U(j0)+1

πi(1− FCH(B(L(i)− j0)ŷj0+1)

(b)
= f∗j (ŷj) +

M∑

i=U(j0+1)

πi(1− FCH(B(L(i)− j0)ŷj0+1)

(c)
= f∗j (ŷj) +

M∑

i=j0+1

πi,

(97)

where (a) holds because of πi ≥ 0 and (36), i.e., for any
j ∈ {F(j0) + 1, · · · , j0},

FCH(B(L(i)− j0)ŷj0+1) < FCH(B(L(i)− j + 1)ŷj); (98)

and (b) holds because from Lemma 4, j0 ∈ {µ, · · · , M − 1};
and (c) holds because of (96).

Therefore, we have

f∗j (ŷj) ≥
j0∑

i=j

πi. (99)

Since f∗j (0) = 0 ≤
j0∑

i=j

πi ≤ f∗j (ŷj), and f∗j (x) is a continuous

increasing function, hence the solution to f∗j (x) =
j0∑

i=j

πi must

exist, i.e., f∗j (y∗j,j0) =
j0∑

i=j

πi, and we have 0 ≤ y∗j,j0 ≤ ŷj .
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J. Lemma 7 and Its Proof
Lemma 7: If B(k + 1)/B(k) = c for all k ≥ 1, then

y∗j+1,j0
≤ cy∗j,j0 .

Proof:

f∗j+1(cy
∗
j,j0)

(a)
= f∗j (y∗j,j0)

=
j0∑

i=j

πi

≥
j0∑

i=j+1

πi

= f∗j+1(y
∗
j+1,j0).

(100)

(a) holds because B(k + 1)/B(k) = c. Since f∗j+1(x) is a
continuous increasing function, hence y∗j+1,j0

≤ cy∗j,j0 .

K. Lemma 8 and Its Proof
Lemma 8: p∗i,F(j0)

(j0) ≥ 0 for i ∈ {U(j0) + 1, · · · ,M},
where p∗i,F(j0)

(j0) is defined in (54).
Proof: For i ∈ {U(j0) + 1, · · · ,M}, we have

p∗i,F(j0)
(j0)

(a)
=

j0∑

j=F(j0)

p̂i,j

(b)
= FCH(B(L(i)− j0)ŷj0+1)

− FCH(B(L(i)−F(j0) + 1)ŷF(j0)).
(101)

where (a) due to (54), and (b) due to (53). Since F(j0) satisfies
(36b), hence the r.h.s. of (101) is greater than or equal to zero.
Therefore, p∗i,F(j0)

(j0) ≥ 0.

L. Lemma 9 and Its Proof
Lemma 9: If B(k + 1)/B(k) = c for all k ≥ 1,

then p∗i,j(j0) ≥ 0 for j = {F(j0), · · · , j0} and i ∈
{U(j), · · · , U(j0)}, where p∗i,j(j0) is defined in (54).

Proof: Consider three cases as below.
• Case 1 (j = j0): i can only take one value, i.e., U(j0). We

have p∗U(j0),j0
= p̂U(j0),j0 = 1− FCH(B(1)y∗j0,j0

) ≥ 0.
• Case 2 (j = F(j0)): From (54), the definition of

p∗i,F(j0)
(j0), and the fact that y∗F(j0),j0

= ŷF(j0), we have

p∗i,F(j0)
(j0) = FCH(B(L(i)−F(j0))y∗F(j0)+1,j0

)

− FCH(B(L(i)−F(j0) + 1)ŷF(j0)). (102)

From Lemma 6, y∗F(j0)+1,j0
≤ ŷF(j0)+1; hence

FCH(B(L(i) − F(j0))y∗F(j0)+1,j0
) ≥ FCH(B(L(i) −

F(j0))ŷF(j0)+1). Then, from (102), we have

p∗i,F(j0)
(j0) ≥ FCH(B(L(i)−F(j0))ŷF(j0)+1)

− FCH(B(L(i)−F(j0) + 1)ŷF(j0)).
(103)

In addition, we have

FCH(B(L(i)−F(j0))ŷF(j0)+1)
(a)
> FCH(B(L(i)− j0)ŷj0+1)

(b)

≥ FCH(B(L(i)−F(j0) + 1)ŷF(j0)), (104)

where (a) because j = F(j0) is the largest j that satisfies
(36b), and hence j = F(j0) + 1 does not satisfy (36b);
(b) due to (36b). Combining (103) and (104), we have
p∗i,F(j0)

(j0) ≥ 0.
• Case 3 (j ∈ {F(j0) + 1, · · · , j0 − 1}):

p∗i,j
(a)
= FCH(B(L(i)− j)y∗j+1,j0)

− FCH(B(L(i)− j + 1)y∗j,j0)
= FCH(B(L(i)− j)y∗j+1,j0)

− FCH(B(L(i)− j)cy∗j,j0)
(b)

≥ 0.

(105)

where (a) is from (54) and (55), and (b) is due to
Lemma 7.

M. Proof of Proposition 4

To prove Proposition 4, we need Lemma 6 in Appendix I,
Lemma 7 in Appendix J, Lemma 8 in Appendix K, and
Lemma 9 in Appendix L. In (54), the value of p∗i,j(j0) is given
in four regions. For simplicity of the subsequent derivations,
we decompose the last region into two regions. Denote these
five regions as R1 through R5.




R1 = {(i, j)|j ∈ {1, · · · ,F(j0)− 1}⋃{j0 + 1, · · · ,M},
i ∈ {U(j), · · · , M}}

R2 = {(i, j)|j = F(j0), i ∈ {U(j0) + 1, · · · ,M}}
R3 = {(i, j)|j = {F(j0) + 1, · · · , j0},

i ∈ {U(j0) + 1, · · · ,M}}
R4 = {(i, j|j = {F(j0) + 1, · · · , j0},

i ∈ {U(j), · · · , U(j0)}}
R5 = {(i, j|j = F(j0), i ∈ {U(F(j0)), · · · , U(j0)}}.

(106)
Proof: The condition pi,j ≥ 0 is equivalent to πipi,j ≥ 0.

Define a new Lagrangian function by

J(p, λ, δ) =
M∑

i=0

πiki(pi) +
M∑

j=1

λj(
M∑

i=U(j)

πipi,j − πj)

−
M∑

i=0

L(i)∑

j=1

πiδi,jpi,j , (107)

where δ is a matrix with elements δi,j . The optimal solution
p∗i,j(j0) should satisfy

∂

∂pi,j
J(p,λ, δ) = 0 (108a)

M∑

i=U(j)

πipi,j = πj (108b)

pi,j ≥ 0 (108c)
δi,jpi,j = 0 (108d)

δi,j ≥ 0. (108e)

From Lemmas 8 and 9, p∗i,j(j0) ≥ 0, (108c) is satisfied.
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Notice that p∗i,j(j0) = 0 in region R3. Let δi,j = 0 outside
R3, (108d) is satisfied.

Differentiate J(p, λ, δ) w.r.t. pi,j and let the derivative
equal to zero, i.e.,

∂

∂pi,j
J(p,λ, δ) = πi

L(i)∑

k=L(i)−j+1

−B(k)

g
(i)
k

+λjπi−πiδi,j = 0.

(109)
Following the same steps as in (43) to (52), we have

pi,j = FCH(B(L(i)− j)y(i)
j+1)− FCH(B(L(i)− j + 1)y(i)

j ).
(110)

where
y
(i)
j =

1
λj − δi,j − λj−1 + δi,j−1

. (111)

And y
(i)
j should satisfy the following equation:

M∑

i=U(j)

πi(1− FCH(B(L(i)− j + 1)y(i)
j )) =

M∑

i=j

πi, (112)

(112) and (110) are derived from (108a) and (108b). Satis-
fying (108a) and (108b) is equivalent to satisfying (112) and
(110).

Let

y
(i)
j =





ŷj (i, j) ∈ R1
⋃

R2
⋃

R5

y∗j,j0 (i, j) ∈ R4
B(L(i)− j0)

B(L(i)− j + 1)
ŷj0+1 (i, j) ∈ R3

.

(113)
We will prove that y

(i)
j defined in (113) satisfies (112), and

pi,j obtained by substituting (113) into (110) is exactly p∗i,j(j0)
defined by (54), i.e., the optimal solution. The final step is to
prove δi,j , {i, j} ∈ R3, obtained by substituting (113) into
(111) satisfies (108e) (δi,j outside R3 is set to zero to meet
(108d)).

From (96), y
(i)
j in R1

⋃
R2

⋃
R5 satisfies (112). In region

R3

⋃
R4, substitute (113) into l.h.s. of (112), i.e.,

M∑

i=U(j)

πi(1− FCH(B(L(i)− j + 1)y(i)
j ))

=
U(j0)∑

i=U(j)

πi(1− FCH(B(L(i)− j + 1)y∗j,j0))+

M∑

i=U(j0)+1

πi(1− FCH(B(L(i)− j0)ŷj0+1))

(a)
=

j0∑

i=j

πi +
M∑

j0+1

πi

=
M∑

i=j

πi

(114)

where (a) is due to (56) and (96), respectively. Thus, y
(i)
j

satisfies (112) in all five regions.
By substituting (113) into (110), it is easy to verify that the

resulting pi,j is identical to p∗i,j(j0).

Next we will prove that there exist δi,j ≥ 0, (i, j) ∈ R3

such that (108e) is satisfied. From (111), δi,j within R3 is
determined by y

(i)
j , j ∈ {F(j0) + 1, · · · , j0 + 1}.

From (111), ∀(i, j) ∈ R4, we have

1
λj − λj−1

= y
(i)
j = y∗j,j0 . (115)

When j = F(j0) + 1, i ∈ {U(j0) + 1, · · · ,M} (the leftmost
column of R3), substitute (111) and (115) into (113), i.e.,

δi,F(j0)+1 = λF(j0)+1 − λF(j0) −
B(L(i)−F(j0))

B(L(i)− j0)ŷj0+1

=
1

y∗F(j0)+1,j0

− B(L(i)−F(j0))
B(L(i)− j0)ŷj0+1

.

(116)

From (36), and Lemma 6, ∀j ∈ {F(j0) + 1, · · · , j0}, we
have

B(L(i)− j0)
B(L(i)− j + 1)

ŷj0+1 > ŷj ≥ y∗j,j0 ≥ 0. (117)

Therefore δi,F(j0)+1 > 0. Similarly, when j ∈ {F(j0) +
2, · · · , j0}, we have

δi,j =
1

y∗j,j0
− B(L(i)− j + 1)

B(L(i)− j0)ŷj0+1
+ δi,j−1 > 0. (118)

When j = j0 + 1, substitute (111) into (113), i.e.,

δi,j0 =
1

ŷj0+1
+ λj0 − λj0+1. (119)

(119) implies that the value of δi,j0 does not depend on i.
This is consistent with δi,j0 given in (118): because B(k +
1)/B(k) = c and the value of δi,F(j0)+1 does not depend on
i. Therefore δi,j exists in region R3, and is non-negative. This
completes the proof.

N. Proof of Proposition 5

Proof: p̂i,j and p∗i,j(j0) differs only in columns j ∈
{F(j0), · · · , j0}, i.e., in function G(j0, i, j). Assume there are
two negative columns in p̂i,j , denoted by j01 < j02. From
Lemma 5, we have j01 ≥ µ, and j0n < M .

If j01 < F(j02), by the same method as in the proof of
Proposition 4, we can prove that the optimal solution is

p∗i,j =





G(j01, i, j) j ∈ {F(j01), · · · , j01}
G(j02, i, j) j ∈ {F(j02), · · · , j02}
p̂i,j otherwise

. (120)

If j01 ≥ F(j02), column j01 will be non-negative in
p∗i,j(j02), i.e., G(j02, i, j). Because in the proof of Proposition
4, we do not require columns j ∈ {F(j0), · · · , j0} in p̂i,j

to be non-negative. Therefore p∗i,j(j02) is indeed the optimal
solution to (23).

The above two cases can be implemented in a unique way,
i.e., updating the negative columns sequentially from right to
left (here updating negative column means changing the value
of columns j ∈ {F(j0),j0} from p̂i,j to G(j0, i, j), where j0
is the column index of the negative column). It is possible
that the left negative column becomes non-negative during the
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procedure of updating the right negative column. Then after
updating the right negative column, updating the left negative
column is not needed.

The above algorithm can be generalized to situations where
arbitrary number of negative columns are present in p̂i,j , which
is indeed Algorithm 1.
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