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Abstract—This paper studies large-scale dynamical networks such as econometrics, finance and bioinformatics [1, 2,.3, 4]
where the current state of the system is a linear transform@bn  The transition matrixA determines how the current state of the
of the previous state, contaminated by a multivariate Gausan —nenvork evolves from the previous state. It can be trandlate
noise. Examples include stock markets, human brains and . o
gene regulatory networks. We introduce a transition matrix to to a directed Granger trans'_t'on graphGTG) that shows
describe the evolution, which can be translated to a directt the Granger causal connections between the nodes [5, 6, 7].
Granger transition graph, and use the concentration matrixof The modern challenge is that the number of unknowns in
the Gaussian noise to capture the second-order relations beeen A ¢ RP*? is usually much larger than the number of available
nodes, which can be translated to an undirected conditional observationsz:, - - - ,x,, i.e., p> > n, and consequently

dependence graph. We propose regularizing the two graphs - - . . . .
jointly in topology identification and dynamics estimation. Based most conventional methods fail in estimation or identifwat

on the notion of joint association graph (JAG), we develop From astatistical perspective, shrinkage estimation [@$trbe
a joint graphical screening and estimation (JGSE) framewok applied, and sparsity-promoting regularizations are eprefi

for efficient network learning in big data. In particular, our pecause they can produce interpretable networks [9, 10].
method can pre-determine and remove unnecessary edges bdse Indeed, in many applications, there only exist a few sigaiftc

on the joint graphical structure, referred to as JAG screenig, . ; .
and can decompose a large network into smaller subnetworks nodes that directly influence a given node. Sparse graph-lear

in a robust manner, referred to as JAG decomposition. JAG iNg also complies with the principle of Occam’s razor from
screening and decomposition can reduce the problem size anda philosophical perspective. Nevertheless, existing ouh

search space for fine estimation at a later stage. Experimesit ysually assume that the componentsepfare i.i.d., i.e., the

on bqth synthetic data and real-world appllcatlons show the covariance matrix ofe;, or Cov(z;|z;_1), is proportional

effectiveness of the proposed framework in large-scale nsbrk - . - . !

topology identification and dynamics estimation. to t.he. identity matrix. This totally ignores theecond-order

statistical structure of the network. Most real-world netks

violate this assumption because even conditioning on past

observations, node correlations widely exist.

. INTRODUCTION Assuming, ideally, the trued is known, the dependence
structure of a network can be captured by the sparse Gaussian

Topology learning and parameter estimation of dynamiyaoh learning, which has attracted a lot of research atent
cal networks have become popular research topics receq Wly (cf. [11, 12, 13, 14] among many others). Under
because such studies can reveal the underling mechanisms’ y; (g, ) the (,i j)t’h entry of the concentration matrix

of many real-world complex systems. For example, a stogk & -1 gives the conditional dependence between node

market which consists of a large number of stocks intergctin 4 nodej given all the other nodes. This can be translated to

with each other and evolving over time can be characterizgf|\,ngirectedconditional dependence grapG), in which

as a dynamical network. Here, a node stands for the price fse again, sparsity @is desirable. Unfortunately, Gaussian
a stock and an edge or link resembles stock interaction.

) _ _ "g‘:fbph learning is not directly applicable to our dynamical
z be ap-dimensional random vector with each component,qe| hecause as discussed above, the task of estimating
being a time series associated with a node. We are interested; |ess challenging as the task of estimatiagNote that

in inferring the topology and dynamics of a linear dynamicg,pgfituting the sample mean for the true mean is inapgatEpri

networkz, = Az, + €, with €, as the system disturbance e 4 is a large matrix, which is a well known example of
Such a model has been proposed and studied in many arggs,s phenomenoja].
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to reliably identify the sparse network topology and actelya Il. THE JOINT GRAPHICAL MODEL

estimate the system parameters. Suppose there exigt nodes in a dynamical network and

As a real example, we use the Energy category of tf  be ap-dimensional random vector with each component
S&P 500 stock data to illustrate our motivation. Figure @ssociated with a node. To describe the node behaviorslat eac
shows the graphs obtained by sole GTG learning (sGTG féine point, we define a linear dynamical network model
short) which ignores the second-order node correlationd, a _ N
by sole CDG learning (SCDG for short) which ignores the first- Te= Azt €~ N(O,Z). @)
order Granger causalities. Common isolated nodes have béée current state of the system is determined by two com-
removed. Some edges exist in both graphs, which suggegstsients: The first component is a linear transformation ef th
that thejoint regularization of (A, €) might be helpful previous state; the second compongnibllows a multivariate
in detecting the joint graphical structure. In fact, statily Gaussian distribution and characterizes node correlmtion-
speaking, even when similarities between the two graphs alitioned onx;_;. The transition matrixd can be translated to
not clear or even do not exist, joint regularization can ioyer a directedGranger transition grap{GTG): a,; # 0 indicates
the overall estimation accuracy in high dimensions, sag, ethat node;j Granger-causes node [5]. The concentration
[8, 17]. Another interesting observation from Figure 1 iatth matrix & £ 7' can be translated to an undirectedndi-
the network can be decomposed into smaller subnetwotignal dependence grapfCDG): w;; = wj;; = 0 indicates
including isolated indices. Similar decomposability hdsoa that nodei and node;j are conditionally independent given
been noticed in brain connectivity networks [18] and U.She other nodes [11, 12] ane,_;. Givenn + 1 snapshots of
macroeconomics [19]. If such a network decomposition coutble systemg;, - - - , x,,+1, we would like to recover the first-
be detected in an early stage, complex learning algorithnesder statisticA and the second-order statisz as well as
such as MRCE and Gaussian graph learning, would applyfind out their sparsity patterns (or topological structir&¥e
a much more efficient way (in a possibly parallel mannerqre particularly interested in dynamical networks with ot
Of course, the decomposition based on sGTG or sCDG aloa@G and CDG beingparseor approximately sparse for the
may not be trustworthy. Whep is large and both GTG and following reasons. First, many real-world dynamical netkgo
CDG are unknown, the graph screening/decomposition basw#é indeed sparse. For example, in regulatory networksne ge
on A and§?, jointly, is much more reasonable. is only regulated by several other genes [3]. Second, when th

) o o ) ~ number of observations is small compared with the number
~ This work proposes jointly regularizing the directed tiansgf ynknown variables, the sparsity assumption reduces the
tion graph and the undirected dependence graph for topolqgymper of model parameters so that estimating the system
|de|_1t|f|cat|qn_ and dynam_ms estimation. We will introdube t pecomes possible. Third, from a philosophical point of view
notion of joint association graph (JAG) and propose JAG gparse model is consistent with the principle of Occam’s
screening and decomp05|_t|on_t0 ch_lhtate large-scal&o®t 5,01 and is easier to interpret in practice.

Iearnmg. The JAG screening identifies and removes unnecesp g pointed out by a referee, SCDG which estimates (z)
sary links. The JAG structure can also be used for netwo[%ica”y yields a less sparse graph tHan!, because the tran-

decomposition, so that GTG or CDG can be estimated fQfiqn matrix A, together with the autoregressive mechanism,
each subnetwork separately. With search space and probjex gs in further node dependence (see, e.g., [23] for more
size substantially reduced, computational and statlspea details)

formance can be enhanced. Similar ideas have proved to be '

very successful in Gaussian graph learning, such as thé bléc Joint regularization in network learning

diagonal screeni_ng rule (BDSR) [20, 21]. Our approach .is Using the Markov property and chain rule, we can
based on JAG instead of CDG alone. Moreover, we Wil o the joint likelihood of A and € (conditioned
develop a robust JAG decomposition that does not incy 21) as U(A,Q) = f(Toy1,- - wolzr, A, Q) =
excessive estimation bias as BDSR does [22]. Our appro F(@o |0 :4 Q). So the 7}oir;t MI’_ estirr’1ati70n solves
does not mask authentic edges to guarantee decomposability~ 1 Zn’ (’w —Az) Tz 1 — Azy)— 2 log |9

To the best of our knowledge, no workjoint graph screening Let;"’nj?; .'tflm tH]T X i @ t“ 2|7 ;ndQB - AT.

or decomposition is available in the literature. We write thQé ML p:(;rbller’n in_mat?i’x ot T

The remainder of this paper is organized as follows. Sec- ) 1 T
tion Il describes the joint graphical model and proposes, ggﬂgpxpL(B’Q) :itr{(Y—XB)Q(Y—XB) }

a learning framework callegbint graphical screening and Q-0 (2)
estimation(JGSE). Section Ill develops an algorithm of graph- _n log |€2|.

ical iterative screening via thresholding to be used for JAG 2

screening and robust decomposition. Section IV gives a fintere 2 - 0 means thaf2 is positive definite (which implies
learning of graphs (FLOG) algorithm that estimatésandQ  that € is symmetric). From now on, we usB, in place of
after screening. In Section V, synthetic-data experimengs A, to represent the GTG.

conducted to show the performance of JGSE. In Section VI, To enforce sparsity, a straightforward idea is to add penal-
we apply JGSE to real S&P 500 and NASDAQ-100 stock dates, Pg(B; Ag) and P, (€2; A\q), to the loss in (2)Ps and Py,

for network learning. can be of the/; type [24, 25, 15]. In this paper, we propose
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Figure 1:The sGTG and sCDG for th8& P 500 indices from the “Energy” category. Common isolatedamodave been removed. Two nodes are connected
with a line directedin GTG, undirectedin CDG) if and only if their connection weight is nonzero.

jointly regularizing B andf2 via penaltyPo(C(B,Q); A\¢), association grapHJAG), an undirected graph where any two
whereC is constructed based aB and€2. This leads to the nodes are connected if they are connected in either GTG or
following optimization problem CDG. Define the “association strength” between neded
min L(B, Q)+ Po(C(B, 9): Ae)+ Pa(B: Ap)+Pa(@: Aa). "0 &

| 3) Cij = cji = \ [V + 3 + 202, (4)

The design of Pc(C(B, 2);Ac) is 10 capture the joint where¢ is a weight parameter (sag,= 1); the matrixC =
structure of GTG and CDG. Of course, joint regularization pxp he JAG

can reinforce the detection of common edges if they exis[%.”] € RPP represents the '

But why does one care about the joint graphical structure in T give an illustration of JAG, we show a toy example in
computation and statistics? Some motivations are givesvbel Figure 2, where the JAG in Figure 2c is obtained from (4).

1) First, due to the sparsity assumption eh and €2, The GTG ano_l C_ZDG share many common edge_s. Furthermore,
the union of the two graphs is still sparse. That is, maﬁpey both exhibit subnetwork structures. In fact, in bothgdrs,
nodes have no direct influences. Hence one can perfoR@des 1-4 form a cluster. On the other hand, the two graphs
graph screening in an earlier stage for dimension redugtion differ from each other in some S|gn|f|can_t ways. For example_,
facilitate fine GTG and CDG learnings afterwards. A goofjode 9 and node 10 are disconnected in GTG, but not so in
screening process should take both graphs into accountGRG- JAG, by integrating the connections in GTG and CDG,
removing unnecessary hypothetical edges. provides a comprehensive picture of the network topology.

2) Many very large dynamical networks demonstrate In reality, both the GTG and CDG are unknown and to be
smaller-scale subnetwork structures or clusters. For pl@m estimated. If one had the JAG learned beforehand, its streict
a human brain connectivity network revealed by EEG daesuld be used to perform graph screening and help improve
can be divided into several functionality regions [18]. @&ls the estimation ofB and (2. For example, in Figure 2c, node
in the U.S. macroeconomic network, economic indices can #eand node 5 are disconnected, so settbag = bs4 =
divided to different categories [19]. It is desirable to dee wis = wss = 0 beforehand facilitates network estimation and
pose a large-scale network into small subnetworks, if ptessi identification. Particularly, if the JAG, after permutatjoex-
for both computational and statistical concerns [20, 2d]. hibits a block-diagonal structure—dig@'11,-- - , Cqa}, then
the dynamical network setting, such a decomposition must beth B and @ must have the same block-diagonal structure,
based on both GTG and CDG. diag{ B11,- -, Baa} and diagQi,---,Qaqa}, respectively.

3) Finally, the joint regularization helps improve the aadér It is not difficult to show that such a network can be de-
identification and estimation accuracy based on some cldssicomposed intal independent subnetworks with its dynamics
statistics literature [8, 17, 26]. properties completely intact. For example, the networkasho
in Figure 2 can be decomposed into two mutually disconnected
subnetworks according to its JAG. We can estimate and infer

Model (1) shows the network evolves through both firstsTG and CDG for each subnetwork separately. Explicitly
order and second-order statistical relations betweendhdes) estimating the JAG based on (4) also facilitates computatio
To capture the joint structure, we introduce the notiofoaft and algorithm design, as will be shown in Section I11-B.

B. Joint association graph
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Figure 2:Demonstration of the joint graphical model.

C. The JGSE learning computing.
. . - : . Both sGTG and sCDG are special cases of (3), and can
Directly tackling the jointly regularized problem (3) Spe learned by screening + fine estimation as well. Ignoring

extremely challenging. (Even withou;, the existing algo- lihe second-order network structure and assunaitgs i.i.d.
rithms are inefficient or even infeasible for moderatesca 9
components, i.eQ2 = I/0?, the joint graphical model degen-

F:;?]?lgtrp usc?cul—:%flgya(r)\]:jtgef(?raggklSu:gts)i;elcgr?;it;::lslﬁiatlheates to the sGTG model where a sparse transition mBtrix
: P an be obtained by solvin§ = argminp LY - XB|3 +

performance boost. We proposdaint Graphical Screening P (B: \p). Assuming the data have been centered Bne

and Estimation (JGSE) learning framework which con5|st% the joint graphical model degenerates to the SCDG model
of two stages:l) JAG screening and decomposition; 2) fine’ here a sparse can be obtained by Gaussian graph learning

estimation

. . . = arg ming. o tr{SQ} —log |Q| + QPQ(Q )\Q) with S =
. .Ir: Stagle 1 v;{e |dentg|y the structure of JAG by solving th?’TY/n Another instance is the multivariate regression with
joint regularization problem covariance estimation (MRCE) [15hing q. o L(B,Q) +

min fo(B,Q;\c) = L(B,Q) + Po(B,Q;M¢), (5) Pp(B;Ap) + Pa(f2; A\q). MRCE estimates bottB and Q
B,Q-0 but imposes no joint regularization. In our experience MRCE

where the penalty (or constraint) takes the form is only feasible for small-scale network learning, whichais
main motivation of our JAG screening. In the following two
Po(B, Qs \¢) = \/52 + 0%+ 2¢%wi; Ac). (6)  sections, we present computational algorithms for the two-
1<1<J<P stage JGSE learning framework.

That is, we placéb;;, b;;,w;;) into the same group, and use a m
sparsity-inducing penalty at the group level. The groupsipa

pursuit ensures that as long as any type of connection batweeThe objective function (5) is nonconvex and nonsmooth
node: and nodej exists, the group will be kept, and so willand there are a large number of unknown variables. One
the corresponding edge in JAG. The grouping of variables cRassible way to minimize (5) is to use coordinate descent;
be arbitrary. Our algorithms apply provided that the grougBe resulting algorithm design is however quite cumberseme
do not overlap. For example, if we know a priori that sever@ineé must consider different cases depending on whether the
nodes form a cluster, we can put the corresponding elemewiiables appearing in (6) are zero or not. Our experiments
of B and Q into a group. The form of (6) serves for theshow that such an algorithm is only feasible for< 120.
general case where no particular prior information is given More efficient algorithms are in great need. We propose a

Stage 2 estimateB, Q) finely, given the pattern of JAG: novel GIST algorithm based on the gro@pestimator with
asynchronous Armijo-type line search.
BngnOL(B,Q) + Pp(B;Ap) + Pa(; A\a),
82

. JAG SCREENING AND DECOMPOSITION

(7) A. Group©-estimator

Sst.Ep CE~, FEq C Es .
B ¢ ¢ To solve (5), we start from thresholding rules rather than

whereE denotes the set of nonzero edgesfimndEB,Ec penalty functions, considering that different penaltynisr

are similarly defined. The constraints maintain the sparsimay result in the same estimator (and the same thresholding
structure ofC' learned from Stage 1. In this fine estimatioroperator) [27].

stage, the number of variables to be estimated has beer thresholding ruled(-; \) is required to be an odd nonde-
substantially reduced. Packages for sparse matrix opagticreasing unbounded shrinkage function [28]. Examplesidel
can be used. When JAG decomposition is possible, popullae soft-thresholding operat@rs (t; A) = sgn(t)([t| = A) 14>
graph learning algorithms can be directly applied to subneind the hard-thresholdin@g (t; A\) = t1}4~. (Throughout
works, and parallelism can be employed for high performantee paper, the sign function is defined as ($ge= 1 if ¢ > 0,



—1if t < 0, and 0 ift = 0.) Whent is a vector, the algorithm to get a grou@-estimator of (5) becomes
thresholding rule is defined componentwise. Tindtivariate I BT — alGh: ), (13)

version of®, denoted byd(t; \), is defined by
with (P, ©) coupled through (10).

0 otherwise B. JAG screening

(8) Equation (13) can deliver a local minimum to problem (5)
Now we formulate a general framework for solving dor any penalty function constructed from a thresholdinig ru

3 -t ift£0
B(t: ) = £°0(||t]: \), wheret® — {ntnz it

general group penalized problem via (10). This coverdy, ¢;, SCAD [29],4, (0 < p < 1), and
K many other penalties [28]. The problem now boils down to
min —1(3) + Zpk(H/@kHQ;)‘k)v (9) choosing a proper penalty form for JAG screening. Another
B | issue that cannot be ignored is parameter tuning, which is a

nontrivial task especially for nonconvex penalties.

Among all sparsity-promoting penalties, it is of no doubt

at the groupf, penalty is ideal in enforcing sparsity.

However, its parameter tuning is not easy, and most tuning
) 5 approaches, e.g., cross validation, become prohibitivart

ate thresholding procedug. ™ = 6,(3% — o a,a )|ﬁJ PPN bp 9 P ge

twork applications. Rather than using the grdympenalty,
for 1 < k < K is guaranteed to converge under a umvers\?fe propose using a groufy constraint for JAG screening
choice ofa; moreover, the convergent solution (referred to as a

wherel is the log-likelihood function, ané,, are penalty func-
tions possibly nonconvex (and discrete) with correspogldlnh
thresholding rules as described in (10). [28] shows thaergw
any thresholding operatof3,, - - - O, the |terat|ve multivari-

group ©-estimatoj is a local minimum point of (9), provided Z Ly, i) 20 < M (14)
that P, and©;, are coupled through the following equation: 1<i<j<p
Pr.(t; Ag) — Pr(0; \g) This particular{, form enables one to directly control the
It] (10) cardinality* of the network. (Note that the constraint excludes
= / (sup(s : Or(s; \) < u} —u)du + qr(t; M) the diagonal entries aB and2.) The upper boundr can be
0 loose for the JAG screening step. This grodgpconstrained
for some nonnegative, (-; A\r) satisfyinggr (©x(s; Ax); A\x) =  problem can be solved using the technique in Section IlI-A,

0, Vs. We emphasize that the conclusion holdsday thresh- resulting in aquantile version of (13):

olding rules, and most practically used penalties (convex o 141 4 el Ll

nonconvex) are covered by (10). Two important examples ' =07 (" —a'Gym). (15)
that will play an_important role in the work are given agyere, the multivariate quantile thresholding oper&df(-; m)
follows. When all©, take the form of group soft- -thresholding[30] for any ' € RP*2” is defined to be a new matrik
Os(:; ), the correspondlng penalty in (9) becomes the groypth I, = I, if ||T';||» is among them largest norms in the
2 penalty)\zk 1 I8kll2. When all O are chosen to be get of {|[Tkll2 : k = (4,§),1 <i < j <p}, andl}, = 0
group hard-thresholding ;(-; \), (10) yields infinitely many otherwise. This iterative quantile screening was propdeed

penalties even wherP(0; 1) = 0, one of which is the [28] and has found successful applications in group selecti
exact grouply penalty>- A*1ys, |,20/2 by settingq(t; A) = rank reduction, and network screening [30, 31, 32, 6, 7].
0.5(A — |t|)210<\t|<>\- An equivalent way to perform the multivariate quantile

‘We now use the group-estimator to deal with problem (5). thresholding®#(I';m) for any I' = [B, ¢€] is based on
Divide the variables inB and(2 into K = p(p+1)/2 groups, the JAG. First, compute the JAG matri by (4) explicitly
where variables at entrfy, j) and entry(j,i) (1 <i<j <p) for all i # j, and set all its diagonal entries to k&

belong to thekth group withk = (i,j). LetT = [B,$Q] € Then performelementwisenard-thresholding orC with the
RP*?P_ It is not difficult to compute the gradients @f(B, 2) threshold set as th@m + 1)th largest element i. Finally,
with respect toB and 2 (details omitted) zero out ‘small’ entries irl’ or (B,Q): for anyi # j, set
Vel =(X"XB-X"Y)Q2 Gy, bij = wij = 0, if ¢;j = 0. See Algorithm 1 for more details.
1 n (11) From [30], we can similarly show that the |tera}t|ye guantile
Val = 5(Y -XB)'(Y - XB) - 59*1 2 Ga. thresholding converges and leads to a local minimum of the

- following ¢y-constrained problem:
Thus the gradient of.(T') £ L(B, Q) with respect tal" is

min L(B,Q) st |C|9T < ¢ -
Vol = [Go.o-1Go] & G. 12) guin L(B.€) ICIE" <a® —p),  (16)
Given1 < i < j < p, let Ty, = [, Vji» Yici4p)s Vitiim] | Whe_re |\_C’||8ff denotes the number of nonzero off-diagonal
or [bi;,bji,dwij, dwii]T, consisting of all elements il entries inC, andg (0 < ¢ < 1), call_ed thequantile parameter
that belong to thekth group, and similarly, letG), — puts an upper bound on the sparsity level of the network .t ca
(967 95> Gii+0): gj(z+p)] We extend the multivariate thresh- be customized by the user based on the belief of how sparse

olding to such matrices. Given any thresholdiagdefine its the network could be. Prior knowledge or specific appligatio

mUItiV%riate threShmdm@(I‘ A) as a new matrif” satisfying 1The cardinality of a network refers to the number of nonzarksl in C
'y, = ©(Tk; N), VE, with O given by (8). Then, the iterative in this paper.



needs can be incorporated. Thus this upper bound is usudiigorithm 1 GIST for JAG screening

not difficult to specify in sparse network learning. Input: Data matricesX,Y, S x x, Exy; quantile g; parameters for AA
. . . . line searchci, c2; maximum iteration numbed/; error toleranc&c; ¢:
In the generalized linear model setting, the proposed it-weight parameter in JAG construction; initial estimaf@8, QO.

erative multivariate thresholding procedure is guarahtee 1) Initialization: f «+ L(B°, Q°);1 + 0;

converge with a simple analytical expression for the step si rze)pZirtform the AA line search:

o' [28, 30]. However, in our dynamical network which has 4 « 1:

both B and€2 unknown, there seems to be no simple formula repeat

for the step size in (16). The constraint caile- 0 increases ﬁ'?igz‘é?&fﬂamnz

the difficulty in deriving a universal step size. We propose GfB « (BxxB!-Zxy)QL B « Bl—alGly; 1
a simple but effective asynchronous Armijo-type (denoted Qf Al —tr{(B'" - BTG}

. . . . e|se
as AA) line search approach in the next subsection, which GL « Ly — XBYT(Y — XB') - 2(2)-; @+

guarantees a convergent solution with- 0 automatically Ql — alGL; B« Bl Al (@ — )T G )
satisfied. end if
22)C'*!  [cif!), wheredl ! =0 (1 <i<p), [t =t =
H . I+1\2 I4+1y2 o0 I+1IN2 vy L ..
C. The AA line search and the GIST algorithm VO + O + 202l 2 Wi i # s

2.3) M*1 « the (2[q(p? — p)] + 1)th largest element iC!+1;

_ " . . 2.4)S + sgnO@g (C'T1; \I+1) 4+ T), where sgn is the elementwise
The basic idea of the Armijo-type line search, when restrict sign function and® i performs elementwise hard-thresholding;

ing to problem (16), is to select a step size along the descent 2.5 Bi+! « B+l o g Q! « Q!+l S, where %" denotes

direction that satisfies the Armijo rule [33]: the Hadamard product;
fl+1 — L(J_?Hl,nllﬂ); ?l «— al/10;
7T < H+1 _ ph\T until fF1H1 < L4 ciAl oral <o
L) S L) +at{(@H -T)T6} @) il

i iofi +1 until |f! — fi=1| <€ orl > M or the pattern oiC' stops changing
I the. Conc.“tlo_n IS Sa“?ﬂed’ we acceﬁlt and carry on to th.e Output: JAG estimateC' = C' and its screening patted(i, j) : é;; # 0}.
next iteration; otherwise, decreaseand try the new update in
(15) till either the condition is satisfied of becomes smaller

than a threshold,. The values ofci,co can be set to, for
instance,c; = 10~% and ¢, = 10-6. At each iteration we D. Robust JAG decomposition via spectral clustering

initialize o' as1 and decrease’ according toa’ « o' /10 if Nowadays, a great challenge in modern network analysis
the condition (17) is not satisfied. comes from big data, which makes many methods compu-
Empirical studies show thaG'z and G usually have tationally infeasible. Fortunately, very large networkiten

different orders of magnitude and so using the same stégmonstrate subnetwork structures and thus one can decom-
size for updatingl'z and TI'n may be suboptimal. (In fact, pose the network in an early stage, and then apply complex
with only one step size parameter, it is often difficult to findearning algorithms to each subnetwork individually. Sani
an o! satisfying (17), and the algorithm converges slowlyifleas have appeared in Gaussian graph learning [20, 21],
Therefore, we propose using different step sizes@gy and where a simple one-step thresholding is applied to the sampl
Ggq. This can be implemented by updating tBecomponent covariance matrix to pre-determine if the associated aence
and theQ-component asynchronously in computi@f To be tration matrix estimate is decomposable, referred to as the
more specific, we modify (12) as block diagonal screening rulBBDSR). Yet it ignores the first-

. o order statistical structure of our dynamical model (1), #rel
o FG&m if 1 is odd

_ l b (18) resulting CDG may not reliably capture the network topology
0,07'Gg] if Lis even. See Section VI-A for some experiments.

The AA line search can implicitly guarantee the positive We propose decomposing the Whol_eAnetwork based on the
definiteness of2. If we setlog Q2] = —oo for any £ not GIST estimate. For example, after.gettﬁg,we can apply the
positive definite, then suck's will naturally be rejected by Pulmage-Mendelsohn Decompositif8b] to detect if there

(17). The same treatment has been used in Gaussian gr&plitS @n exact block diagonal form 6f. However, the noise
learning, see, e.g., [34]. contamination makes perfect decomposition seldom pe@ssibl

i ) ) : . Therefore, we treaC as a similarity matrix where the “as-
The final form of ourgraph iterative screening via thresh-gqiation strengthz;; indicates how close nodeand node
olding (GIST) is proposed in Algorithm 1, under the as; 4re and so pursuing an approximate block diagonal form

sumption that the datX' has been centered Aand Tnormallzeg now identified as a nodelustering problem. Specifically,
CO'“mQ'W'ﬁe'Y has been centered, adilyx = X' X and e apply Spectral Clusteringo € to obtain a robust JAG
Ixy = XY, decomposition. Refer to [36] for a comprehensive introuunct
The GIST algorithm is very simple to implement and runand [37] for its ability in suppressing the noise. There assyn
efficiently. If the purpose is to get the convergent sparsigffective ways to determine the number of clusters [38, 89, 4
pattern instead of the precise estimate, one can termihate t Unlike [20] and [21], our JAG decomposition does not
algorithm as long as the sign of the iterates stabilizes—allysu rely on settingg low in (16) to yield subnetworks. An
within 50 steps. Even for a network with 500 nodes, GISdver-sparse estimate may be problematic in estimation or
takes less than 1 second. structure identification. The philosophy is different frahat



of the BDSR. In fact, BDSR is purely computational—it pre- repeat

determines, for each, if the associated graph estimate is B'™ « Og(B' — aG'3; Ap);

perfectly decomposable or not. To ensure decomposability « + «/10;

on noisy data, one tends to specify overtly high sparsity until f5™ < fLtcitr{(B"™'—B")T (G +sgnApoB'))}
levels to obtain subnetworks—see, e.g., Section 4 in [21]or a < ¢; (by conventionco - 0 = 0)

and our data example in Section VI-A. This may remove [ < [ + 1;

genuine connections. Therefore, the resultant decomposit Eyperimentation shows that the line search performance
could be misleading, and excessive bias may be incurredidnnot sensitive to the values @f and co: we simply set
estimation (cf. [22]). Our JAG decomposition can deal witlg1 — 10~* and c; = 1079, following [41]. As for the

noise effectively ar)d is much more robust in thig sense.  -optimization (21), this is just the Gaussian graph learn-
If the network is decomposable (or approximately SOjg problem with the sample covariance matrix given by

system (1) can be re-written a§ = Ayw; , + €, € ~ Ly _ XB)T(Y — XB). The popular graphical lasso [12]

N(0,%;), for i = 1,---,d, whered is the number of (an be used.

subnetworks ana* corresponds to the nodes that belong to the g4 me related works The MRCE algorithm solves a similar

ith subnetwork. We can thereby conduct fine estimatioBgf o learning problem to (19), but there exist no screening

and{2;; for each subnetwork (in a possibly parallel fashion}ongtraints. Lee and Liu [16] generalized MRCE to handle
There are two ways to use the GIST screening outcome.|fjghted penalties. Both algorithms use cyclical cooretina
each subnetwork is of relatively small size such that fiNg.gcent in theB-optimization step, which has a worst case
Iearning algprithms can.be appjigd smoothly, one can drep t@ostO(p4) [15]. In contrast, the proposeB-update in FLOG
constraints in (7.).. In this casé€, is only_ used to reveal the . complexityO(p?®), which comes from the x p matrix
block decomposition structure. Alternatively, one canoesé 1 ipjication for computing the gradien® 5. Experiments
all within-block sparsity constraints (determined B%;) in g\ that FLOG is more efficient than MRCE under the same
sub-network learning. The latter is usually faster, but Whesging of error tolerance and maximum iteration numbers.
the value ofq is set too low, one should caution against such With FLOG introduced, the two-stage JGSE learning frame-
a manner. work is complete. We point out that although FLOG is more
IV. FINE (B, ) LEARNING efficient and scalable than MRCE, the main contribution of

In this stage of JGSE we perform fine estimation of thiCSE lies in Stage 1 which reduces the problem size and

graph matrices. Recall the optimization problem to take aa?amh space for fine estimation.

vantage of the JAG screening pattern given by Stage 1 V. EXPERIMENTS ON SYNTHETIC DATA
guin L(B, Q) + Pp(B; As) + Pa((¥ Ao) In this section, we show the performance of GIST and
st Ep C B, Bo C B, FLOG in the JGSE network learning using synthetic data.

Sometimes the screening constraints may be dropped. kereith- ldentification and estimation accuracy
case, we can state the optimization problem as instances of We compare the proposed JGSE with some relevant meth-

min L(B,Q) + Pp(B;Ap) + Po(% Ag), (19) ods in the literature:

B0 « SGTG estimates the spar&eonly, assuming?2 o I. It is
where A = [Ag,i;] and Aq = [A\q,;] are regularization pa- implemented using the coordinate descent algorithm [42].
rameter matrices. Indeed, to enforce the screening camsira » SCDG estimates the sparse concentration mé&iafter
we can set\gp;; = oo if é&; = 0 and Ap otherwise, and centering the data. It is implemented using the graphical
Aq,ij = oo if ¢; = 0, and Aq otherwise. lasso [12].

To solve for B with © held fixed, it suffices to study « MRCE [15] jointly estimatedB and(2 subject to separate

1 ) penalties, and its implementation is given by the R
Irgn fB(B;Ap) :§tr{(Y - XB)Q(Y - XB)"} package “MRCE".
) In all the methods, thé, penalty function is used faPg/F,.
+ Pg(B;Ap), ) | )
Experiments are performed for the following networks with
With B fixed, the problem of interest reduces to different sizes and topologies.
o Example 1:p = 40,n = 100. The network consists of
two equally sized subnetworks.

(21) . Example 2:p = 80,n = 200. The network consists of
Fortunately, the optimization still falls into the framesko three subnetworks of sizes 40, 20, 20.

described in Section IlI-A. We introduce ttime learning of « Example 3:p = 160,n = 300. The network consists of

graphs(FLOG) algorithm as follows. For simplicity, suppose  four equally sized subnetworks.

Pp and Py are ¢; penalties. Algorithm 1 can be adapted to , Example 4:p = 20,n = 50, @ = I. B has no

the B-optimization (20) (with2 fixed at its current estimate subnetwork structure.

Q, and under the initializatioh= 0, a = 1 andBl = B) . Examp|e 5p=20,n=50,B=0.Qis non-diagonaL
G, — (TxxB' — Zxy)Q; and shows no subnetwork structure.

(20)

1 R A
min 5tr{(Y—XB)Q(Y—XB)T}—g log | Q|+ Po(€; Ag).
—



The identification accuracy is measured by the true posiecomposition. More importantly, JGSE shows remarkable
tive rate TPR= #{i’f()f?;f?’;gf()} and false positive rate improvements in estimation in almost all cases. (The only
FPR — #{(i,j)féfaj‘#?,iijzof_' |rJ] Examples 1-4, the estimation€Xception is Example 5, Wher_g JGSE has cqmparable perfor-
F#8)iei5=0} N mance to FLO®.) These positive results validate the power
accTuracy is measured by the model erMEB. - tr{(B — . of GIST in removing lots of unnecessary edges and reducing
B)'YXxx(B _B)}, [25]. In Example 5, only is e2st|mated, the search space for topology identification. In all, our-two
and the accuracy is measured hjEq = [|$2 — Q|7 stage JGSE (GIST+FLOG) successfully beats the existimg joi
In each of the settings, the number of unknown varlablesdﬁaph learning method MRCE.
much larger than the number of observations, e+ p(p +

1)/2 = 9,640 > 200 in Example 2. The diagonal blocks & B. GIST in Decomposition

and(? are all sparse random matrices generated independentlyn, this subsection, we examine the performance of GIST in
following the scheme in [25]. The data observations are th@gatwork decomposition. The rand index (RI) [43] is used for
generated from the multivariate time series model (1). W&/aluation. It is obtained by comparing the memberships of
repeat the synthetic data experiment in each setting for §8ch pair of nodes assigned by an algorithm with the true
times and summarize the performance of an algorithm gfemberships. If a pair coming from the same cluster are
follows. Mean TPR and FPR are reported. The distribution gksigned to a single cluster, it is defined as a true positive

ME appears non-Gaussian and multimodal; for robustness gngp); if a pair coming from different clusters are assigned
stability, the 25% trimmed-mean of model errors from mi#ip o different clusters, it is defined as a true negati¥eV(;

runs is reported. The algorithms include sGTG, sCDG, MRCEE:y and FP are defined similarly. Then RI is defined as
FLOG" and JGSE. FLOG is to make a comparison with (TP+TN)/(TP+TN + FP +FN).
MRCE, and denotes FLOG applied to the whole network, i.e.,\ve fix a small sample size. = 30 and varyp in this

running the second stage algorithm of JGSE without the firskperiment. The time series data are again generated augord
stage JAG screening. (We point out however that thiads t the multivariate auto-regression (1). All networks dehef

the recommended way of network estimation in the paper; oy equally-sized subnetworks; each diagonal blockBofs
proposed JGSE applies FLG#Rter GIST screening.) The JAG generated as a random sparse matrix, and each diagonal block
weight parametep is taken to be 1 throughout all experimentsyf 53 has diagonal elements 1 and all off-diagonal elements
In Examples 1-3, spectral clustering is called after_ rugniny 5 Each experiment is repeated 50 times.

sGTG, sCDG, MRCE, and _FLC_}G because of the existence gjyen any network data, we apply GIST to obtain a JAG
of subnetworks. All regularization parameters are choSen Bstimate and perform robust decomposition (cf. Sectio®)II
minimizing the model validation error, evaluated on 1,009pe decompositions of sole GTG (assumifgcre = I)
validating samples independently generated in additioiéo 5,4 sole CDG (assuming?scpg = 0 after centering the
training data. We set the value gfto be 0.3, which is large  yata) are obtained as well. All decompositions are via spkct

enough for screening. (Tuning the quantile parameter stowgystering. Although GIST considers a more complex model,
no observable difference; its robustness is also seen 8eCheacause of its screening nature, it runs efficiently. Thermea

V-B.) Table | shows the results. RI results are shown in Figure 3.

In Examples 1-3, both sGTG and sCDG suffer from over- | gj| the settings, GIST achieves more reliable decomposi-
simplified model assumptions and fail to identify networkion and outperforms sGTG and sCDG by a large margin. This
connections accurately. Indeed, we frequently observethiea shows that the network decomposition based on the jointgrap
conditional dependence graph from sCDG is not sufficientjy trystworthy. Moreover, its performance is ratiesensitive
sparse. It seems that sSCDG tries to rephrase first-order @ythe choice of the guantile parameteas long as;p? bounds
namics as node correlations and consequently results iRpa true network cardinality. This offers great ease in fitac
dense second-order topology. sGTG shows lowest TPR valueg|ST is also superfast: for any network in the experiments,
and misses many true connections, which is a sign of ov@rjyst takes a few seconds to obtain the graphical screening
shrinkage. Not surprisingly, in the two degenerate cas&¥(5 pattern or subnetwork structure. A more comprehensive com-

behaves well in Example 4 (becauge= I), and similarly, pytational cost investigation is given in the next subsecti
sCDG does a good job in Example 5 whdBe= 0.

MRCE estimates both first-order and second-order statist
and achieves much lower error rates than sGTG (except in ExNow we study how much computational cost can be saved
ample 4). However, MRCE is quite computationally expensiugy applying GIST before fine learning. All simulated netwsrk
and may be infeasible for large-scale problems. In Examplecbnsist of multiple equally-sized subnetworks, with theako
it took MRCE around 40 minutes to run a single experimemiumber of nodes denoted lyand the number of nodes in
In Example 3, MRCE became computationally intractableach subnetwork denoted by. The diagonal blocks oB
FLOGY did not show such computational limitations thereand 2 are generated in the same manner as in Section V-B.
The two algorithm designs resulted in different estimateset 7,55z be the total computation time of JGSE learning
(Recall that the objective criterion is nonconvex.) MRCE ig'GIST+FLOG”), and T}(«}Z)oc be the computation time by
less accurate in general. applying FLOG directly to thevhole network without graph

The complete JGSE learning is even more efficient, owereening or decomposition. (We did not include MRCE in
ing to the first stage GIST for robust JAG screening arttie comparison because it is extremely slow for large data).

I%. Computation time reduction via graph screening



Table I: Method comparison in terms of true positive rate (TPR),efgissitive rate (FPR) and model error (ME).

Example 1 Example 2 Example 3 Example 4 Example 5
(TPR, FPR), ME  (TPR, FPR), ME (TPR, FPR), ME  (TPR, FPR), ME RTFPR), ME

SGTG | (24%, 4%), 1947.8 (16%, 2%), 6404.6 (12%, 1%), 21360.3  (8208%), 53.5 (29%, 6%), 182.1
sCDG | (47%, 28%), NIA  (32%, 17%), N/A  (26%, 10%), NJ/A  (70%, 46%),AN/ (93%, 38%), 2.8
MRCE | (63%, 13%), 106.6  (61%, 8%), 187.9 Infeasible (88%, 29%)6 98 (76%, 20%), 7.3
FLOG" | (83%, 25%), 100.9 (91%, 21%), 166.8  (88%, 13%), 635.1  (87%$)268.8  (88%, 45%), 5.6
JGSE| (91%, 28%),74.6 (95%, 23%),140.8 (95%, 14%),549.4 (85%, 10%),53.6 (87%, 44%),5.6
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(a) RI versus quantilep(= 500) (b) RI versus network sizeg(= 0.5)

Figure 3:Rand index comparison on simulated networks consistingvofequally-sized subnetworks.

Table II: Computation time reduction offered by JGSE on dated networks, withp denoting the total number of nodes and
ps the number of nodes for each subnetwork.

(P ps) (500,250) (500,100) (500,50) (1000,500) (1000,200) (1000)
Tiose/T . | 0.427 0.161  0.133 0.404 0.148 0.112

Solution paths of B and © are computed for a grid of algorithm [44]. Although no ground truth is available, in-
values for(\g, \q) that covers various sparsity patterns. Theerestingly, we found that the obtained 10 subnetworks are
guantile parameter is set as 0.3 in GIST. We report thgghly consistent with the 10 given categories in the data
ratios TJGSE/TI(;Z)OG for different combinations ofy(, p,) documentation—the corresponding RI is almost as high as 0.9
in Table Il, wheren = 100 in all experiments. (cf. Figure 4b).

Table 1l shows that at least half of the running time can We then varied; and systematically studied the clustering
be reduced when the network is decomposable. The larger thgults based on GIST. The RIs with respect to the 10 stock
ratio p/p; is, the more computational cost can be saved. Wategories are shown in Figure 4b. For comparison, sGTG and
conducted the experiment on a PC, but if parallel computis§¢GD clusterings are also included. Our JAG decomposition
resources are available, the computational efficiency @an ib quite robust to the choice af in GIST. It seems that the
further boosted. The network decomposition technique makk0-category structure in the documentation is reflectechen t
an otherwise computationally expensive or even infeasibieal stock data.
problem much easier to solve. We also applied the popular BDSR [21, 20] (which is
designed under the sole CDG learning setup), to decompose
S&P 500 into 10 subnetworks. Figure 5a shows that the

In this section, we analyze real data frofi& P 500 and network is now decomposed into a giant cluster and nine
NASDAQ-100 stock using JGSE. isolated nodes, which is more difficult to interpret than GIS
A S&P 500 Such a decomposition provides little help in reducing the

' computational cost. Furthermore, Figure 5b shows the best

This dataset keeps a record of the closing prices obthé tuned sCDG estimate (using the R packégme [22] with
500 stocks from Jan. 1, 2003 to Jan. 1, 2008. It consists défault parameters) at* = 0.08. To achieve a 10-subnetwork
1258 samples for 452 stocks. The data have been preprocesidmposition, we found that must be greater than or equal
by taking logarithm and differencing transformations [22] to 0.22. This is the dilemma discussed in Section IlI-D: BDSR

We first applied GIST (with quantile = 0.1) and the robust resorts to setting an overly large value fdrto yield graph
JAG decomposition. Figure 4a shows the resulting clustedicomposition, while such a high thresholding level maykmas
where the nodes are placed by tReuchterman-Reingold many truly existing edges and result in an inaccurate ettima

VI. APPLICATIONS
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Figure 4:GIST onS&P 500.

Correspondingly, its decomposition structure is unrédiadf 2, 2011 before opening the market—see http://ir.nasdagomx
course, the poor performance of BDSR also has a lot to dom/releasedetail.cfm?releaseid=561718. More everdilslet
with the fact that the transition matrix or GTG estimation isan be found at http://en.wikipedia.org/wiki/NASDAQ- 190
ignored in the sCDG learning. Changesin_2011. In consideration of such major changes,

We next investigate the forecasting capability of JGSE, e focus on the following segments. Segment 1 consists of
use of the conventional rolling MSE scheme (see, e.g., [45§2 samples from Jan. 1 to Apr. 4; Segment 2 consists of 23
Denote the rolling window size d4/. Standing at time point samples from Apr. 4 to May 2; Segment 3 consists of 32
to, apply the estimation algorithm to the most recdfit samples from May 31 to Jul. 14; and Segment 4 consists of
observations in the past, i-e{wt}iiter- Then use the 98 samples from Jul.15 to Dec. 2.

estimateB,; to forecastr; : &5 = Bt &yip_q for h>1, We present the analysis of Segment 4 as an example. To
and&; £ x;. Repeat the forecasting procedure till the rollinget a conservative idea of the network cardinality, we aupli
window slides to the end of the time series. The rolling MSEGTG and sCDG to the data respectively. Sparse graphs are
is defined asM SE = ng‘;”mt% — @&;,p,||3. obtained with aroundl% connections. We sey = 0.02

We set the window sizé/ = 0.8n and horizonh = 1 and in running the GIST algorithm. After removing the isolated
compared sGTG, MRCE, and JGSE in each category. Becainsices, we applied the FLOG algorithm to obtain the GTG
of the limited sample size, the large-data validation used @nd CDG estimates. The whole procedure only took a few
synthetic experiments is not applicable. Following [25,4%, minutes. We are particularly interested in the hub nodes in
we chose the tuning parameters by BIC, where the numbertbe JAG. Figure 6 shows all connections to and from the
degrees of freedom is given bzi_j L 4o+ ZKJ_ Lo, 20 hub nodes. Nicely, the three hubs, PCLN (Priceline.com) Inc.

if both B and © are estimated, a”‘ti e —if only GOOG (Google Inc.) and ISRG (Intuitive Surgical Inc.), come
B is estimated. Table IIl reports the rolling MSEs (time&om the three largest sectors of the NASDAQ-100, namely
le+4 for better readability) for the first five categoriesh¢T Consumer ServicdlechnologyandHealth Care respectively.
conclusions for the last five categories are similar but tHCLN is a commercial website that helps customers obtain dis
first five have relatively larger dimensions.) Even comparé@unts for travel-related purchases, and it is not sunmithat

with the widely acknowledged MRCE, JGSE offers better dfCLN is related to some companies providing similar sessice

comparable forecasting performance. such as EXPE (Expedia Inc.), and some hospitality companies
such as WYNN (Wynn Resorts, Limited). Similarly, GOOG,
B. NASDAQ-100 as a world-famous technology company, is related to many

The NASDAQ-100 consists of 100 of the largest norf€chnology based companies, such as AAPL (Apple Inc.),
financial companies listed on the NASDAQ stock market XN (Texas Instruments Inc.), LLTC (Linear Technology

We collect the closing prices of the stocks for each tradirfgerPoration) and so on. ISRG, a corporation that manufastur
day from Jan.1 , 2011 to Dec. 31, 2011, which gives oggbotic surgical systems, is connected with INTC (Intel(@sr

samples in total (the data is downloaded from finance.yahégtion), MRVL (Marvell Technology Group Ltd.) and KLAC
com). Differencing is applied to remove trends. There wef§LA-Tencor Corporation), which all produce semiconducto

several significant changes to the indices during 2011. FgiPS and nanoelectronic products to be used in robotics.
example, NASDAQ rebalanced the index weights on May The obtained GTG and CDG share some common con-
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(a) Block diagonal screening (b) Optimal sCDG estimate

Figure 5:Gaussian graph learning (or sCDG) 6@z P 500.

Table IlI: Rolling MSE comparison on S&P 500.

Model & Method | Category 1 Category 2 Category 3 Category 4 Category 5
sGTG 236.6 883.5 237.4 1859.1 456.5
MRCE 28.4 742.6 5.0 250.1 7.9
JGSE 14 3.7 2.0 5.4 7.9

nections. For example, PCLN not only has a negative causatler connections can be captured by a directed Granger tran
influence over EXPE, but shows negatively correlation with sition graph and the second-order correlations by an uctdide
conditioned on the other nodes. On the other hand, the twonditional dependence graph. To jointly regularize the tw
graphs differ in some ways. For example, although PCLraphs in topology identification and dynamics estimation,
strongly Granger-causes SIRI (Sirius XM Holdings, Inc.)we proposed the 2-stage JGSE framework. The GIST algo-
they are conditionally independent. The interaction betwerithm was developed for JAG screening and decomposition.
LLTC and GOOG is of second order, purely due to theiAs demonstrated by extensive synthetic-data experimernts a
conditional dependence without any direct Granger caysalireal-world applications, our proposed algorithms beat the
Fortunately, JAG encompasses all significant links on eitheommonly used BDSR and MRCE in graph decomposition
GTG or CDG, and provides comprehensive network screenirand estimation.

We have performed similar analysis for other segments and

examined the changes of the network topology. Due to page REFERENCES

limitation, details are not reported here. ] ) .

Next, we call the rolling scheme to investigate the forecastl] C. A. Sims, “Macroeconomics and realityconomet-
ing performance of JGSE. For comparison, sGTG was also  'ic&, vol. 48, no. 1, pp. 1-48, Jan. 1980. _
included; MRCE is however computationally intractableener [2] C. Gourieroux and J. Jasiak, “Financial econometrics
and so we applied our FLOGinstead. BIC was used for problems, models and methods/hiversity Presses of
regularization parameter tuning. The rolling MSEs of three  California, Columbia and Princeton: New Jerse3002.
methods are shown in Table IV, with window siZé = 0.8n  [3] A. Fujita, J. Sato, H. Garay-Malpartida, R. Yamaguchi,
and horizom, = 1. We see that the joint estimation by FLOG S. Miyano, M. Sogayar, and C. Ferreira, “Modeling gene
outperforms the popular transition estimation (sGTG) ire¢h expression regulatory networks with the sparse vector
of the four segments. This suggests the existence of widgran ~ autoregressive modelBMC Systems Biologyvol. 1,
conditional dependence between the stocks, and it is balefic  NO- 1, 2007. ]
to take into account such correlations in statistics mogeli [4] E- Bullmore and O. Sporns, “Complex brain networks:
JGSE is able to further improve the forecasting performance 9raph theoretical analysis of structural and functional
by joint regularization, which is however not surprisingrfr systems,”Nature Reviews Neuroscienceol. 10, pp.
Stein et al.’s classical works (e.g., [8]). It also has a totlb 186-198, Mar. 2009. o .
with the success of GIST in reducing the search space for tHe] C. W. J. Granger, “Investigating causal relations by

fine graph learning. These echo the findings in synthetic data €conometric models and cross-spectral methdetsgho-
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network learning,'d. Mach. Learn. Resvol. 14, p. 3073,
We studied large-scale dynamical networks with sparse first  2013.
order and second-order statistical structures, where the fi [7] Y. She, Y. He, and D. Wu, “Learning topology and

VII. CONCLUSION
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Figure 6:The JAG, GTG and CDG of NASDAQ-100. The size of node is prapoe to its degree. The edge width indicates the weight efabnnection
Solid/dotted lines represent positive/negative weights.

Table 1V: Rolling MSE comparison on NASDAQ-100.

Model & Method | Segment 1 Segment 2 Segment 3 Segment 4
sGTG 24.3 30.8 20.6 32.2
FLOGY 21.9 314 20.1 18.4
JGSE 18.6 28.7 18.6 15.1
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