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Abstract—This paper studies large-scale dynamical networks
where the current state of the system is a linear transformation
of the previous state, contaminated by a multivariate Gaussian
noise. Examples include stock markets, human brains and
gene regulatory networks. We introduce a transition matrix to
describe the evolution, which can be translated to a directed
Granger transition graph, and use the concentration matrix of
the Gaussian noise to capture the second-order relations between
nodes, which can be translated to an undirected conditional
dependence graph. We propose regularizing the two graphs
jointly in topology identification and dynamics estimation. Based
on the notion of joint association graph (JAG), we develop
a joint graphical screening and estimation (JGSE) framework
for efficient network learning in big data. In particular, ou r
method can pre-determine and remove unnecessary edges based
on the joint graphical structure, referred to as JAG screening,
and can decompose a large network into smaller subnetworks
in a robust manner, referred to as JAG decomposition. JAG
screening and decomposition can reduce the problem size and
search space for fine estimation at a later stage. Experiments
on both synthetic data and real-world applications show the
effectiveness of the proposed framework in large-scale network
topology identification and dynamics estimation.

Index Terms—Large-scale linear dynamical systems, graph
learning, shrinkage estimation, variable selection.

I. I NTRODUCTION

Topology learning and parameter estimation of dynami-
cal networks have become popular research topics recently
because such studies can reveal the underling mechanisms
of many real-world complex systems. For example, a stock
market which consists of a large number of stocks interacting
with each other and evolving over time can be characterized
as a dynamical network. Here, a node stands for the price of
a stock and an edge or link resembles stock interaction. Let
x be a p-dimensional random vector with each component
being a time series associated with a node. We are interested
in inferring the topology and dynamics of a linear dynamical
networkxt = Axt−1+ ǫt, with ǫt as the system disturbance.
Such a model has been proposed and studied in many areas
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such as econometrics, finance and bioinformatics [1, 2, 3, 4].
The transition matrixA determines how the current state of the
network evolves from the previous state. It can be translated
to a directed Granger transition graph (GTG) that shows
the Granger causal connections between the nodes [5, 6, 7].
The modern challenge is that the number of unknowns in
A ∈ R

p×p is usually much larger than the number of available
observationsx1, · · · ,xn, i.e., p2 ≫ n, and consequently
most conventional methods fail in estimation or identification.
From a statistical perspective, shrinkage estimation [8] must be
applied, and sparsity-promoting regularizations are preferred
because they can produce interpretable networks [9, 10].
Indeed, in many applications, there only exist a few significant
nodes that directly influence a given node. Sparse graph learn-
ing also complies with the principle of Occam’s razor from
a philosophical perspective. Nevertheless, existing methods
usually assume that the components ofǫt are i.i.d., i.e., the
covariance matrix ofǫt, or Cov(xt|xt−1), is proportional
to the identity matrix. This totally ignores thesecond-order
statistical structure of the network. Most real-world networks
violate this assumption because even conditioning on past
observations, node correlations widely exist.

Assuming, ideally, the trueA is known, the dependence
structure of a network can be captured by the sparse Gaussian
graph learning, which has attracted a lot of research attention
lately (cf. [11, 12, 13, 14] among many others). Under
ǫt ∼ N(0,Σ), the (i, j)th entry of the concentration matrix
Ω , Σ

−1 gives the conditional dependence between nodei
and nodej given all the other nodes. This can be translated to
anundirectedconditional dependence graph (CDG), in which
case, again, sparsity onΩ is desirable. Unfortunately, Gaussian
graph learning is not directly applicable to our dynamical
model, because as discussed above, the task of estimatingA

is no less challenging as the task of estimatingΩ. Note that
substituting the sample mean for the true mean is inappropriate
whenA is a large matrix, which is a well known example of
Stein’s phenomenon[8].

To obtain a comprehensive picture of the dynamical net-
work, it is necessary to estimate bothA and Ω based on
their joint likelihood. There are few studies in the literature
that consider the joint sparse estimation of the two matrices
[15, 16]. In our experience, the existing methods are slow and
can not handle big network data. For example, the MRCE
algorithm [15] is already infeasible forp > 120 on an
ordinary PC. Note that the number of unknown variables,
p2+ p(p+1)/2, can be very large, thereby making it difficult
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to reliably identify the sparse network topology and accurately
estimate the system parameters.

As a real example, we use the Energy category of the
S&P 500 stock data to illustrate our motivation. Figure 1
shows the graphs obtained by sole GTG learning (sGTG for
short) which ignores the second-order node correlations, and
by sole CDG learning (sCDG for short) which ignores the first-
order Granger causalities. Common isolated nodes have been
removed. Some edges exist in both graphs, which suggests
that the joint regularization of (A, Ω) might be helpful
in detecting the joint graphical structure. In fact, statistically
speaking, even when similarities between the two graphs are
not clear or even do not exist, joint regularization can improve
the overall estimation accuracy in high dimensions, see, e.g.,
[8, 17]. Another interesting observation from Figure 1 is that
the network can be decomposed into smaller subnetworks
including isolated indices. Similar decomposability has also
been noticed in brain connectivity networks [18] and U.S.
macroeconomics [19]. If such a network decomposition could
be detected in an early stage, complex learning algorithms,
such as MRCE and Gaussian graph learning, would apply in
a much more efficient way (in a possibly parallel manner).
Of course, the decomposition based on sGTG or sCDG alone
may not be trustworthy. Whenp is large and both GTG and
CDG are unknown, the graph screening/decomposition based
on A andΩ, jointly, is much more reasonable.

This work proposes jointly regularizing the directed transi-
tion graph and the undirected dependence graph for topology
identification and dynamics estimation. We will introduce the
notion of joint association graph (JAG) and propose JAG
screening and decomposition to facilitate large-scale network
learning. The JAG screening identifies and removes unneces-
sary links. The JAG structure can also be used for network
decomposition, so that GTG or CDG can be estimated for
each subnetwork separately. With search space and problem
size substantially reduced, computational and statistical per-
formance can be enhanced. Similar ideas have proved to be
very successful in Gaussian graph learning, such as the block
diagonal screening rule (BDSR) [20, 21]. Our approach is
based on JAG instead of CDG alone. Moreover, we will
develop a robust JAG decomposition that does not incur
excessive estimation bias as BDSR does [22]. Our approach
does not mask authentic edges to guarantee decomposability.
To the best of our knowledge, no work ofjoint graph screening
or decomposition is available in the literature.

The remainder of this paper is organized as follows. Sec-
tion II describes the joint graphical model and proposes
a learning framework calledjoint graphical screening and
estimation(JGSE). Section III develops an algorithm of graph-
ical iterative screening via thresholding to be used for JAG
screening and robust decomposition. Section IV gives a fine
learning of graphs (FLOG) algorithm that estimatesA andΩ
after screening. In Section V, synthetic-data experimentsare
conducted to show the performance of JGSE. In Section VI,
we apply JGSE to real S&P 500 and NASDAQ-100 stock data
for network learning.

II. T HE JOINT GRAPHICAL MODEL

Suppose there existp nodes in a dynamical network and
let x be ap-dimensional random vector with each component
associated with a node. To describe the node behaviors at each
time point, we define a linear dynamical network model

xt = Axt−1 + ǫt, ǫt ∼ N (0,Σ). (1)

The current state of the system is determined by two com-
ponents: The first component is a linear transformation of the
previous state; the second componentǫt follows a multivariate
Gaussian distribution and characterizes node correlations con-
ditioned onxt−1. The transition matrixA can be translated to
a directedGranger transition graph(GTG): aij 6= 0 indicates
that nodej Granger-causes nodei [5]. The concentration
matrix Ω , Σ

−1 can be translated to an undirectedcondi-
tional dependence graph(CDG): ωij = ωji = 0 indicates
that nodei and nodej are conditionally independent given
the other nodes [11, 12] andxt−1. Givenn+ 1 snapshots of
the system,x1, · · · ,xn+1, we would like to recover the first-
order statisticA and the second-order statisticΩ as well as
find out their sparsity patterns (or topological structures). We
are particularly interested in dynamical networks with both
GTG and CDG beingsparseor approximately sparse for the
following reasons. First, many real-world dynamical networks
are indeed sparse. For example, in regulatory networks, a gene
is only regulated by several other genes [3]. Second, when the
number of observations is small compared with the number
of unknown variables, the sparsity assumption reduces the
number of model parameters so that estimating the system
becomes possible. Third, from a philosophical point of view,
a sparse model is consistent with the principle of Occam’s
razor and is easier to interpret in practice.

As pointed out by a referee, sCDG which estimatesCov(xt)
typically yields a less sparse graph thanΣ

−1, because the tran-
sition matrixA, together with the autoregressive mechanism,
brings in further node dependence (see, e.g., [23] for more
details).

A. Joint regularization in network learning

Using the Markov property and chain rule, we can
write the joint likelihood of A and Ω (conditioned
on x1) as l(A,Ω) = f(xn+1, · · · ,x2|x1,A,Ω) =
∏n

t=1 f(xt+1|xt,A,Ω). So the joint ML estimation solves
minA,Ω≻0

1
2

∑n

t=1(xt+1−Axt)
T
Ω(xt+1−Axt)−

n
2 log |Ω|.

Let Y = [x2, · · · ,xn+1]
T,X = [x1, · · · ,xn]

T andB = AT.
We write the ML problem in matrix form

min
B,Ω∈R

p×p

Ω≻0

L(B,Ω) =
1

2
tr{(Y −XB)Ω(Y −XB)T}

−
n

2
log |Ω|.

(2)

HereΩ ≻ 0 means thatΩ is positive definite (which implies
that Ω is symmetric). From now on, we useB, in place of
A, to represent the GTG.

To enforce sparsity, a straightforward idea is to add penal-
ties,PB(B;λB) andPΩ(Ω;λΩ), to the loss in (2).PB andPΩ

can be of theℓ1 type [24, 25, 15]. In this paper, we propose
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(b) sCDG

Figure 1:The sGTG and sCDG for theS&P 500 indices from the “Energy” category. Common isolated nodes have been removed. Two nodes are connected
with a line (directed in GTG, undirectedin CDG) if and only if their connection weight is nonzero.

jointly regularizing B andΩ via penaltyPC(C(B,Ω);λC),
whereC is constructed based onB andΩ. This leads to the
following optimization problem

min
B,Ω≻0

L(B,Ω)+PC(C(B,Ω);λC)+PB(B;λB)+PΩ(Ω;λΩ).

(3)
The design ofPC(C(B,Ω);λC) is to capture the joint
structure of GTG and CDG. Of course, joint regularization
can reinforce the detection of common edges if they exist.
But why does one care about the joint graphical structure in
computation and statistics? Some motivations are given below.

1) First, due to the sparsity assumption onA and Ω,
the union of the two graphs is still sparse. That is, many
nodes have no direct influences. Hence one can perform
graph screening in an earlier stage for dimension reduction, to
facilitate fine GTG and CDG learnings afterwards. A good
screening process should take both graphs into account in
removing unnecessary hypothetical edges.

2) Many very large dynamical networks demonstrate
smaller-scale subnetwork structures or clusters. For example,
a human brain connectivity network revealed by EEG data
can be divided into several functionality regions [18]. Also,
in the U.S. macroeconomic network, economic indices can be
divided to different categories [19]. It is desirable to decom-
pose a large-scale network into small subnetworks, if possible,
for both computational and statistical concerns [20, 21]. In
the dynamical network setting, such a decomposition must be
based on both GTG and CDG.

3) Finally, the joint regularization helps improve the overall
identification and estimation accuracy based on some classical
statistics literature [8, 17, 26].

B. Joint association graph

Model (1) shows the network evolves through both first-
order and second-order statistical relations between the nodes.
To capture the joint structure, we introduce the notion ofjoint

association graph(JAG), an undirected graph where any two
nodes are connected if they are connected in either GTG or
CDG. Define the “association strength” between nodei and
nodej as

cij = cji =
√

b2ij + b2ji + 2φ2ω2
ij , (4)

whereφ is a weight parameter (say,φ = 1); the matrixC =
[cij ] ∈ R

p×p represents the JAG.

To give an illustration of JAG, we show a toy example in
Figure 2, where the JAG in Figure 2c is obtained from (4).
The GTG and CDG share many common edges. Furthermore,
they both exhibit subnetwork structures. In fact, in both graphs,
nodes 1-4 form a cluster. On the other hand, the two graphs
differ from each other in some significant ways. For example,
node 9 and node 10 are disconnected in GTG, but not so in
CDG. JAG, by integrating the connections in GTG and CDG,
provides a comprehensive picture of the network topology.

In reality, both the GTG and CDG are unknown and to be
estimated. If one had the JAG learned beforehand, its structure
could be used to perform graph screening and help improve
the estimation ofB andΩ. For example, in Figure 2c, node
4 and node 5 are disconnected, so settingb45 = b54 =
ω45 = ω54 = 0 beforehand facilitates network estimation and
identification. Particularly, if the JAG, after permutation, ex-
hibits a block-diagonal structure—diag{C11, · · · ,Cdd}, then
both B andΩ must have the same block-diagonal structure,
diag{B11, · · · ,Bdd} and diag{Ω11, · · · ,Ωdd}, respectively.
It is not difficult to show that such a network can be de-
composed intod independent subnetworks with its dynamics
properties completely intact. For example, the network shown
in Figure 2 can be decomposed into two mutually disconnected
subnetworks according to its JAG. We can estimate and infer
GTG and CDG for each subnetwork separately. Explicitly
estimating the JAG based on (4) also facilitates computation
and algorithm design, as will be shown in Section III-B.
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Figure 2:Demonstration of the joint graphical model.

C. The JGSE learning

Directly tackling the jointly regularized problem (3) is
extremely challenging. (Even withoutPC , the existing algo-
rithms are inefficient or even infeasible for moderate-scale
problems.) The key of the paper is to detect and utilize the
joint structure ofB andΩ for computational and statistical
performance boost. We propose aJoint Graphical Screening
and Estimation (JGSE) learning framework which consists
of two stages:1) JAG screening and decomposition; 2) fine
estimation.

In Stage 1, we identify the structure of JAG by solving the
joint regularization problem

min
B,Ω≻0

fC(B,Ω;λC) = L(B,Ω) + PC(B,Ω;λC), (5)

where the penalty (or constraint) takes the form

PC(B,Ω;λC) =
∑

1≤i<j≤p

P (
√

b2ij + b2ji + 2φ2ω2
ij ;λC). (6)

That is, we place(bij , bji, ωij) into the same group, and use a
sparsity-inducing penalty at the group level. The group sparsity
pursuit ensures that as long as any type of connection between
nodei and nodej exists, the group will be kept, and so will
the corresponding edge in JAG. The grouping of variables can
be arbitrary. Our algorithms apply provided that the groups
do not overlap. For example, if we know a priori that several
nodes form a cluster, we can put the corresponding elements
of B and Ω into a group. The form of (6) serves for the
general case where no particular prior information is given.

Stage 2 estimates(B,Ω) finely, given the pattern of JAG:

min
B,Ω≻0

L(B,Ω) + PB(B;λB) + PΩ(Ω;λΩ),

s.t.EB ⊂ E
Ĉ
, EΩ ⊂ E

Ĉ

(7)

whereE
Ĉ

denotes the set of nonzero edges inĈ andEB, EC

are similarly defined. The constraints maintain the sparsity
structure ofĈ learned from Stage 1. In this fine estimation
stage, the number of variables to be estimated has been
substantially reduced. Packages for sparse matrix operations
can be used. When JAG decomposition is possible, popular
graph learning algorithms can be directly applied to subnet-
works, and parallelism can be employed for high performance

computing.
Both sGTG and sCDG are special cases of (3), and can

be learned by screening + fine estimation as well. Ignoring
the second-order network structure and assumingǫ has i.i.d.
components, i.e.,Ω = I/σ2, the joint graphical model degen-
erates to the sGTG model where a sparse transition matrixB

can be obtained by solvinĝB = argminB
1
2‖Y −XB‖22 +

PB(B;λB). Assuming the data have been centered andB =
0, the joint graphical model degenerates to the sCDG model
where a sparseΩ can be obtained by Gaussian graph learning
Ω̂ = argminΩ≻0 tr{SΩ}− log |Ω|+ 2

n
PΩ(Ω;λΩ), with S =

Y TY /n. Another instance is the multivariate regression with
covariance estimation (MRCE) [15]:minB,Ω≻0 L(B,Ω) +
PB(B;λB) + PΩ(Ω;λΩ). MRCE estimates bothB and Ω

but imposes no joint regularization. In our experience MRCE
is only feasible for small-scale network learning, which isa
main motivation of our JAG screening. In the following two
sections, we present computational algorithms for the two-
stage JGSE learning framework.

III. JAG SCREENING AND DECOMPOSITION

The objective function (5) is nonconvex and nonsmooth
and there are a large number of unknown variables. One
possible way to minimize (5) is to use coordinate descent;
the resulting algorithm design is however quite cumbersome—
one must consider different cases depending on whether the
variables appearing in (6) are zero or not. Our experiments
show that such an algorithm is only feasible forp < 120.
More efficient algorithms are in great need. We propose a
novel GIST algorithm based on the groupΘ-estimator with
asynchronous Armijo-type line search.

A. GroupΘ-estimator

To solve (5), we start from thresholding rules rather than
penalty functions, considering that different penalty forms
may result in the same estimator (and the same thresholding
operator) [27].

A thresholding ruleΘ(·;λ) is required to be an odd nonde-
creasing unbounded shrinkage function [28]. Examples include
the soft-thresholding operatorΘS(t;λ) = sgn(t)(|t|−λ)1|t|>λ

and the hard-thresholdingΘH(t;λ) = t1|t|>λ. (Throughout
the paper, the sign function is defined as sgn(t) = 1 if t > 0,
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−1 if t < 0, and 0 if t = 0.) When t is a vector, the
thresholding rule is defined componentwise. Themultivariate
version ofΘ, denoted by~Θ(t;λ), is defined by

~Θ(t;λ) = t◦Θ(‖t‖2;λ), wheret◦ =

{

t
‖t‖2

if t 6= 0

0 otherwise.
(8)

Now we formulate a general framework for solving a
general group penalized problem

min
β
−l(β) +

K
∑

k=1

Pk(‖βk‖2;λk), (9)

wherel is the log-likelihood function, andPk are penalty func-
tions possibly nonconvex (and discrete) with corresponding
thresholding rules as described in (10). [28] shows that given
any thresholding operatorsΘ1, · · ·ΘK , the iterative multivari-
ate thresholding procedureβl+1

k = ~Θk(β
l
k−α∂l(β)

∂βk
|β=βl ;λk)

for 1 ≤ k ≤ K is guaranteed to converge under a universal
choice ofα; moreover, the convergent solution (referred to as a
groupΘ-estimator) is a local minimum point of (9), provided
thatPk andΘk are coupled through the following equation:

Pk(t;λk)− Pk(0;λk)

=

∫ |t|

0

(sup{s : Θk(s;λk) ≤ u} − u)du+ qk(t;λk)
(10)

for some nonnegativeqk(·;λk) satisfyingqk(Θk(s;λk);λk) =
0, ∀s. We emphasize that the conclusion holds forany thresh-
olding rules, and most practically used penalties (convex or
nonconvex) are covered by (10). Two important examples
that will play an important role in the work are given as
follows. When all~Θk take the form of group soft-thresholding
~ΘS(·;λ), the corresponding penalty in (9) becomes the group
ℓ1 penalty λ

∑K

k=1 ‖βk‖2. When all ~Θk are chosen to be
group hard-thresholding~ΘH(·;λ), (10) yields infinitely many
penalties even whenP (0;λ) = 0, one of which is the
exact groupℓ0 penalty

∑

λ21‖βk‖2 6=0/2 by settingq(t;λ) =
0.5(λ− |t|)210<|t|<λ.

We now use the groupΘ-estimator to deal with problem (5).
Divide the variables inB andΩ into K = p(p+1)/2 groups,
where variables at entry(i, j) and entry(j, i) (1 ≤ i ≤ j ≤ p)
belong to thekth group withk = (i, j). Let Γ = [B, φΩ] ∈
R

p×2p. It is not difficult to compute the gradients ofL(B,Ω)
with respect toB andΩ (details omitted)

∇BL = (XTXB −XTY )Ω , GB,

∇ΩL =
1

2
(Y −XB)T(Y −XB)−

n

2
Ω

−1
, GΩ.

(11)

Thus the gradient of̄L(Γ) , L(B,Ω) with respect toΓ is

∇ΓL̄ = [GB, φ
−1GΩ] , G. (12)

Given 1 ≤ i ≤ j ≤ p, let Γk = [γij , γji, γi(j+p), γj(i+p)]
T

or [bij , bji, φωij , φωji]
T, consisting of all elements inΓ

that belong to thekth group, and similarly, letGk =
[gij , gji, gi(j+p), gj(i+p)]

T. We extend the multivariate thresh-
olding to such matrices. Given any thresholdingΘ, define its
multivariate thresholding~Θ(Γ;λ) as a new matrix̃Γ satisfying
Γ̃k = ~Θ(Γk;λ), ∀k, with ~Θ given by (8). Then, the iterative

algorithm to get a groupΘ-estimator of (5) becomes

Γ
l+1 ← ~Θ(Γl − αlGl;λC), (13)

with (P,Θ) coupled through (10).

B. JAG screening

Equation (13) can deliver a local minimum to problem (5)
for any penalty function constructed from a thresholding rule
via (10). This coversℓ0, ℓ1, SCAD [29], ℓp (0 < p < 1), and
many other penalties [28]. The problem now boils down to
choosing a proper penalty form for JAG screening. Another
issue that cannot be ignored is parameter tuning, which is a
nontrivial task especially for nonconvex penalties.

Among all sparsity-promoting penalties, it is of no doubt
that the groupℓ0 penalty is ideal in enforcing sparsity.
However, its parameter tuning is not easy, and most tuning
approaches, e.g., cross validation, become prohibitive inlarge
network applications. Rather than using the groupℓ0 penalty,
we propose using a groupℓ0 constraint for JAG screening

∑

1≤i<j≤p

1(bij ,bji,ωij) 6=0 ≤ m. (14)

This particularℓ0 form enables one to directly control the
cardinality1 of the network. (Note that the constraint excludes
the diagonal entries ofB andΩ.) The upper boundm can be
loose for the JAG screening step. This groupℓ0 constrained
problem can be solved using the technique in Section III-A,
resulting in aquantileversion of (13):

Γ
l+1 ← ~Θ#(Γl − αlGl;m). (15)

Here, the multivariate quantile thresholding operator~Θ#(·;m)
[30] for any Γ ∈ R

p×2p is defined to be a new matrix̃Γ
with Γ̃k = Γk if ‖Γk‖2 is among them largest norms in the
set of {‖Γk‖2 : k = (i, j), 1 ≤ i < j ≤ p}, and Γ̃k = 0

otherwise. This iterative quantile screening was proposedin
[28] and has found successful applications in group selection,
rank reduction, and network screening [30, 31, 32, 6, 7].

An equivalent way to perform the multivariate quantile
thresholding~Θ#(Γ;m) for any Γ = [B, φΩ] is based on
the JAG. First, compute the JAG matrixC by (4) explicitly
for all i 6= j, and set all its diagonal entries to be0.
Then performelementwisehard-thresholding onC with the
threshold set as the(2m+1)th largest element inC. Finally,
zero out ‘small’ entries inΓ or (B,Ω): for any i 6= j, set
bij = ωij = 0, if cij = 0. See Algorithm 1 for more details.
From [30], we can similarly show that the iterative quantile
thresholding converges and leads to a local minimum of the
following ℓ0-constrained problem:

min
B,Ω≻0

L(B,Ω) s.t. ‖C‖off
0 ≤ q(p2 − p), (16)

where ‖C‖off
0 denotes the number of nonzero off-diagonal

entries inC, andq (0 < q ≤ 1), called thequantile parameter,
puts an upper bound on the sparsity level of the network. It can
be customized by the user based on the belief of how sparse
the network could be. Prior knowledge or specific application

1The cardinality of a network refers to the number of nonzero links in C

in this paper.
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needs can be incorporated. Thus this upper bound is usually
not difficult to specify in sparse network learning.

In the generalized linear model setting, the proposed it-
erative multivariate thresholding procedure is guaranteed to
converge with a simple analytical expression for the step size
αl [28, 30]. However, in our dynamical network which has
bothB andΩ unknown, there seems to be no simple formula
for the step size in (16). The constraint coneΩ ≻ 0 increases
the difficulty in deriving a universal step size. We propose
a simple but effective asynchronous Armijo-type (denoted
as AA ) line search approach in the next subsection, which
guarantees a convergent solution withΩ ≻ 0 automatically
satisfied.

C. The AA line search and the GIST algorithm

The basic idea of the Armijo-type line search, when restrict-
ing to problem (16), is to select a step size along the descent
direction that satisfies the Armijo rule [33]:

L̄(Γl+1) ≤ L̄(Γl) + c1tr{(Γl+1 − Γ
l)TGl}. (17)

If the condition is satisfied, we acceptΓ
l+1 and carry on to the

next iteration; otherwise, decreaseαl and try the new update in
(15) till either the condition is satisfied orαl becomes smaller
than a thresholdc2. The values ofc1, c2 can be set to, for
instance,c1 = 10−4 and c2 = 10−6. At each iteration we
initialize αl as1 and decreaseαl according toαl ← αl/10 if
the condition (17) is not satisfied.

Empirical studies show thatGB and GΩ usually have
different orders of magnitude and so using the same step
size for updatingΓB and ΓΩ may be suboptimal. (In fact,
with only one step size parameter, it is often difficult to find
an αl satisfying (17), and the algorithm converges slowly.)
Therefore, we propose using different step sizes forGB and
GΩ. This can be implemented by updating theB-component
and theΩ-component asynchronously in computingC. To be
more specific, we modify (12) as

Gl =

{

[Gl
B,0] if l is odd

[0, φ−1Gl
Ω] if l is even.

(18)

The AA line search can implicitly guarantee the positive
definiteness ofΩ. If we set log |Ω| = −∞ for any Ω not
positive definite, then suchΩ’s will naturally be rejected by
(17). The same treatment has been used in Gaussian graph
learning, see, e.g., [34].

The final form of ourgraph iterative screening via thresh-
olding (GIST) is proposed in Algorithm 1, under the as-
sumption that the dataX has been centered and normalized
column-wise,Y has been centered, andΣXX , XTX and
ΣXY , XTY .

The GIST algorithm is very simple to implement and runs
efficiently. If the purpose is to get the convergent sparsity
pattern instead of the precise estimate, one can terminate the
algorithm as long as the sign of the iterates stabilizes—usually
within 50 steps. Even for a network with 500 nodes, GIST
takes less than 1 second.

Algorithm 1 GIST for JAG screening
Input: Data matricesX,Y ,ΣXX ,ΣXY ; quantile q; parameters for AA

line searchc1, c2; maximum iteration numberM ; error toleranceξC ; φ:
weight parameter in JAG construction; initial estimatesB

0,Ω0.
1) Initialization: f ← L(B0,Ω0); l← 0;
2) Perform the AA line search:
repeat

αl ← 1;
repeat

2.1) UpdateB andΩ:
if l is odd then

G
l
B ← (ΣXXB

l−ΣXY )Ωl; Bl+1 ← B
l−αl

G
l
B ; Ωl+1 ←

Ω
l; ∆l ← tr{(Bl+1 −B

l)TGl
B};

else
G

l
Ω
← 1

2
(Y − XB

l)T(Y − XB
l) − n

2
(Ωl)−1; Ω

l+1 ←

Ω
l − αl

G
l
Ω; Bl+1 ← B

l; ∆l ← tr{(Ωl+1 −Ω
l)TGl

Ω};
end if
2.2)Cl+1 ← [cl+1

ij ], wherecl+1
ii = 0 (1 ≤ i ≤ p), cl+1

ij = cl+1
ji =

√

(bl+1
ij )2 + (bl+1

ji )2 + 2φ2(ωl+1
ij )2,∀i, j : i 6= j;

2.3) λl+1 ← the (2⌈q(p2 − p)⌉+ 1)th largest element inCl+1;
2.4)S ← sgn(ΘH (Cl+1; λl+1)+I), where sgn is the elementwise
sign function andΘH performs elementwise hard-thresholding;
2.5) Bl+1 ← B

l+1 ◦ S,Ωl+1 ← Ω
l+1 ◦ S, where “◦” denotes

the Hadamard product;
f l+1 ← L(Bl+1,Ωl+1); αl ← αl/10;

until f l+1 ≤ f l + c1∆l or αl ≤ c2
l← l+ 1;

until |f l − f l−1| ≤ ξ or l ≥M or the pattern ofCl stops changing
Output: JAG estimateĈ = C

l and its screening pattern{(i, j) : ĉij 6= 0}.

D. Robust JAG decomposition via spectral clustering

Nowadays, a great challenge in modern network analysis
comes from big data, which makes many methods compu-
tationally infeasible. Fortunately, very large networks often
demonstrate subnetwork structures and thus one can decom-
pose the network in an early stage, and then apply complex
learning algorithms to each subnetwork individually. Similar
ideas have appeared in Gaussian graph learning [20, 21],
where a simple one-step thresholding is applied to the sample
covariance matrix to pre-determine if the associated concen-
tration matrix estimate is decomposable, referred to as the
block diagonal screening rule(BDSR). Yet it ignores the first-
order statistical structure of our dynamical model (1), andthe
resulting CDG may not reliably capture the network topology.
See Section VI-A for some experiments.

We propose decomposing the whole network based on the
GIST estimate. For example, after gettinĝC ,we can apply the
Dulmage-Mendelsohn Decomposition[35] to detect if there
exists an exact block diagonal form of̂C. However, the noise
contamination makes perfect decomposition seldom possible.
Therefore, we treat̂C as a similarity matrix where the “as-
sociation strength”cij indicates how close nodei and node
j are, and so pursuing an approximate block diagonal form
is now identified as a nodeclustering problem. Specifically,
we apply Spectral Clusteringto Ĉ to obtain a robust JAG
decomposition. Refer to [36] for a comprehensive introduction,
and [37] for its ability in suppressing the noise. There are many
effective ways to determine the number of clusters [38, 39, 40].

Unlike [20] and [21], our JAG decomposition does not
rely on setting q low in (16) to yield subnetworks. An
over-sparse estimate may be problematic in estimation or
structure identification. The philosophy is different fromthat
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of the BDSR. In fact, BDSR is purely computational—it pre-
determines, for eachλ, if the associated graph estimate is
perfectly decomposable or not. To ensure decomposability
on noisy data, one tends to specify overtly high sparsity
levels to obtain subnetworks—see, e.g., Section 4 in [21]
and our data example in Section VI-A. This may remove
genuine connections. Therefore, the resultant decomposition
could be misleading, and excessive bias may be incurred in
estimation (cf. [22]). Our JAG decomposition can deal with
noise effectively and is much more robust in this sense.

If the network is decomposable (or approximately so),
system (1) can be re-written asxi

t = Aiix
i
t−1 + ǫit, ǫit ∼

N (0,Σii), for i = 1, · · · , d, where d is the number of
subnetworks andxi corresponds to the nodes that belong to the
ith subnetwork. We can thereby conduct fine estimation ofBii

andΩii for each subnetwork (in a possibly parallel fashion).
There are two ways to use the GIST screening outcome. If
each subnetwork is of relatively small size such that fine
learning algorithms can be applied smoothly, one can drop the
constraints in (7). In this case,̂C is only used to reveal the
block decomposition structure. Alternatively, one can enforce
all within-block sparsity constraints (determined bŷCii) in
sub-network learning. The latter is usually faster, but when
the value ofq is set too low, one should caution against such
a manner.

IV. F INE (B,Ω) LEARNING

In this stage of JGSE we perform fine estimation of the
graph matrices. Recall the optimization problem to take ad-
vantage of the JAG screening pattern given by Stage 1

min
B,Ω≻0

L(B,Ω) + PB(B;λB) + PΩ(Ω;λΩ)

s.t.EB ⊂ E
Ĉ
, EΩ ⊂ E

Ĉ
.

Sometimes the screening constraints may be dropped. In either
case, we can state the optimization problem as instances of

min
B,Ω≻0

L(B,Ω) + PB(B;ΛB) + PΩ(Ω;ΛΩ), (19)

whereΛB = [λB,ij ] andΛΩ = [λΩ,ij ] are regularization pa-
rameter matrices. Indeed, to enforce the screening constraints,
we can setλB,ij = ∞ if ĉij = 0 and λB otherwise, and
λΩ,ij =∞ if ĉij = 0, andλΩ otherwise.

To solve forB with Ω held fixed, it suffices to study

min
B

fB(B;ΛB) =
1

2
tr{(Y −XB)Ω̂(Y −XB)T}

+ PB(B;ΛB),
(20)

With B fixed, the problem of interest reduces to

min
Ω≻0

1

2
tr{(Y −XB̂)Ω(Y −XB̂)T}−

n

2
log |Ω|+PΩ(Ω;ΛΩ).

(21)
Fortunately, the optimization still falls into the framework
described in Section III-A. We introduce thefine learning of
graphs(FLOG) algorithm as follows. For simplicity, suppose
PB andPΩ are ℓ1 penalties. Algorithm 1 can be adapted to
theB-optimization (20) (withΩ fixed at its current estimate
Ω̂, and under the initializationl = 0, α = 1 andBl = B̂):

Gl
B ← (ΣXXBl −ΣXY )Ω̂;

repeat
Bl+1 ← ΘS(B

l − αGl
B;ΛB);

α← α/10;
until f l+1

B ≤ f l
B+c1tr{(Bl+1−Bl)T(Gl

B+sgn(ΛB◦B
l))}

or α ≤ c2 (by convention∞ · 0 = 0)
l← l + 1;

Experimentation shows that the line search performance
is not sensitive to the values ofc1 and c2; we simply set
c1 = 10−4 and c2 = 10−6, following [41]. As for the
Ω-optimization (21), this is just the Gaussian graph learn-
ing problem with the sample covariance matrix given by
1
n
(Y −XB̂)T(Y −XB̂). The popular graphical lasso [12]

can be used.
Some related works.The MRCE algorithm solves a similar

fine learning problem to (19), but there exist no screening
constraints. Lee and Liu [16] generalized MRCE to handle
weighted penalties. Both algorithms use cyclical coordinate
descent in theB-optimization step, which has a worst case
costO(p4) [15]. In contrast, the proposedB-update in FLOG
has complexityO(p3), which comes from thep × p matrix
multiplication for computing the gradientGB. Experiments
show that FLOG is more efficient than MRCE under the same
setting of error tolerance and maximum iteration numbers.

With FLOG introduced, the two-stage JGSE learning frame-
work is complete. We point out that although FLOG is more
efficient and scalable than MRCE, the main contribution of
JGSE lies in Stage 1 which reduces the problem size and
search space for fine estimation.

V. EXPERIMENTS ON SYNTHETIC DATA

In this section, we show the performance of GIST and
FLOG in the JGSE network learning using synthetic data.

A. Identification and estimation accuracy

We compare the proposed JGSE with some relevant meth-
ods in the literature:

• sGTG estimates the sparseB only, assumingΩ ∝ I. It is
implemented using the coordinate descent algorithm [42].

• sCDG estimates the sparse concentration matrixΩ, after
centering the data. It is implemented using the graphical
lasso [12].

• MRCE [15] jointly estimatesB andΩ subject to separate
penalties, and its implementation is given by the R
package “MRCE”.

In all the methods, theℓ1 penalty function is used forPB/PΩ.
Experiments are performed for the following networks with
different sizes and topologies.

• Example 1:p = 40, n = 100. The network consists of
two equally sized subnetworks.

• Example 2:p = 80, n = 200. The network consists of
three subnetworks of sizes 40, 20, 20.

• Example 3:p = 160, n = 300. The network consists of
four equally sized subnetworks.

• Example 4: p = 20, n = 50, Ω = I. B has no
subnetwork structure.

• Example 5:p = 20, n = 50, B = 0. Ω is non-diagonal,
and shows no subnetwork structure.
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The identification accuracy is measured by the true posi-
tive rate TPR=

#{(i,j):ĉij 6=0,cij 6=0}
#{(i,j):cij 6=0} and false positive rate

FPR =
#{(i,j):ĉij 6=0,cij=0}

#{(i,j):cij=0} . In Examples 1-4, the estimation

accuracy is measured by the model errorMEB = tr{(B̂ −
B)TΣXX(B̂−B)} [25]. In Example 5, onlyΩ is estimated,
and the accuracy is measured byMEΩ = ‖Ω̂−Ω‖2F .

In each of the settings, the number of unknown variables is
much larger than the number of observations, e.g.,p2+ p(p+
1)/2 = 9, 640≫ 200 in Example 2. The diagonal blocks ofB
andΩ are all sparse random matrices generated independently,
following the scheme in [25]. The data observations are then
generated from the multivariate time series model (1). We
repeat the synthetic data experiment in each setting for 50
times and summarize the performance of an algorithm as
follows. Mean TPR and FPR are reported. The distribution of
ME appears non-Gaussian and multimodal; for robustness and
stability, the 25% trimmed-mean of model errors from multiple
runs is reported. The algorithms include sGTG, sCDG, MRCE,
FLOGw and JGSE. FLOGw is to make a comparison with
MRCE, and denotes FLOG applied to the whole network, i.e.,
running the second stage algorithm of JGSE without the first
stage JAG screening. (We point out however that this isnot
the recommended way of network estimation in the paper; our
proposed JGSE applies FLOGafter GIST screening.) The JAG
weight parameterφ is taken to be 1 throughout all experiments.
In Examples 1-3, spectral clustering is called after running
sGTG, sCDG, MRCE, and FLOGw, because of the existence
of subnetworks. All regularization parameters are chosen by
minimizing the model validation error, evaluated on 1,000
validating samples independently generated in addition tothe
training data. We set the value ofq to be0.3, which is large
enough for screening. (Tuning the quantile parameter showed
no observable difference; its robustness is also seen in Section
V-B.) Table I shows the results.

In Examples 1-3, both sGTG and sCDG suffer from over-
simplified model assumptions and fail to identify network
connections accurately. Indeed, we frequently observe that the
conditional dependence graph from sCDG is not sufficiently
sparse. It seems that sCDG tries to rephrase first-order dy-
namics as node correlations and consequently results in a
dense second-order topology. sGTG shows lowest TPR values
and misses many true connections, which is a sign of over-
shrinkage. Not surprisingly, in the two degenerate cases, sGTG
behaves well in Example 4 (becauseΩ = I), and similarly,
sCDG does a good job in Example 5 whereB = 0.

MRCE estimates both first-order and second-order statistics
and achieves much lower error rates than sGTG (except in Ex-
ample 4). However, MRCE is quite computationally expensive
and may be infeasible for large-scale problems. In Example 2,
it took MRCE around 40 minutes to run a single experiment.
In Example 3, MRCE became computationally intractable.
FLOGw did not show such computational limitations there.
The two algorithm designs resulted in different estimates.
(Recall that the objective criterion is nonconvex.) MRCE is
less accurate in general.

The complete JGSE learning is even more efficient, ow-
ing to the first stage GIST for robust JAG screening and

decomposition. More importantly, JGSE shows remarkable
improvements in estimation in almost all cases. (The only
exception is Example 5, where JGSE has comparable perfor-
mance to FLOGw.) These positive results validate the power
of GIST in removing lots of unnecessary edges and reducing
the search space for topology identification. In all, our two-
stage JGSE (GIST+FLOG) successfully beats the existing joint
graph learning method MRCE.

B. GIST in Decomposition

In this subsection, we examine the performance of GIST in
network decomposition. The rand index (RI) [43] is used for
evaluation. It is obtained by comparing the memberships of
each pair of nodes assigned by an algorithm with the true
memberships. If a pair coming from the same cluster are
assigned to a single cluster, it is defined as a true positive
(TP ); if a pair coming from different clusters are assigned
to different clusters, it is defined as a true negative (TN );
FN and FP are defined similarly. Then RI is defined as
(TP + TN)/(TP + TN + FP + FN).

We fix a small sample sizen = 30 and varyp in this
experiment. The time series data are again generated according
to the multivariate auto-regression (1). All networks consist of
two equally-sized subnetworks; each diagonal block ofB is
generated as a random sparse matrix, and each diagonal block
of Σ has diagonal elements 1 and all off-diagonal elements
0.5. Each experiment is repeated 50 times.

Given any network data, we apply GIST to obtain a JAG
estimate and perform robust decomposition (cf. Section III-D).
The decompositions of sole GTG (assumingΩ̂sGTG = I)
and sole CDG (assuminĝBsCDG = 0 after centering the
data) are obtained as well. All decompositions are via spectral
clustering. Although GIST considers a more complex model,
because of its screening nature, it runs efficiently. The mean
RI results are shown in Figure 3.

In all the settings, GIST achieves more reliable decomposi-
tion and outperforms sGTG and sCDG by a large margin. This
shows that the network decomposition based on the joint graph
is trustworthy. Moreover, its performance is ratherinsensitive
to the choice of the quantile parameterq as long asqp2 bounds
the true network cardinality. This offers great ease in practice.

GIST is also superfast: for any network in the experiments,
it just takes a few seconds to obtain the graphical screening
pattern or subnetwork structure. A more comprehensive com-
putational cost investigation is given in the next subsection.

C. Computation time reduction via graph screening

Now we study how much computational cost can be saved
by applying GIST before fine learning. All simulated networks
consist of multiple equally-sized subnetworks, with the total
number of nodes denoted byp and the number of nodes in
each subnetwork denoted byps. The diagonal blocks ofB
andΩ are generated in the same manner as in Section V-B.
Let TJGSE be the total computation time of JGSE learning
(“GIST+FLOG”), and T

(w)
FLOG be the computation time by

applying FLOG directly to thewhole network without graph
screening or decomposition. (We did not include MRCE in
the comparison because it is extremely slow for large data).
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Table I: Method comparison in terms of true positive rate (TPR), false positive rate (FPR) and model error (ME).

Example 1 Example 2 Example 3 Example 4 Example 5
(TPR, FPR), ME (TPR, FPR), ME (TPR, FPR), ME (TPR, FPR), ME (TPR, FPR), ME

sGTG (24%, 4%), 1947.8 (16%, 2%), 6404.6 (12%, 1%), 21360.3 (89%,20%), 53.5 (29%, 6%), 182.1
sCDG (47%, 28%), N/A (32%, 17%), N/A (26%, 10%), N/A (70%, 46%), N/A (93%, 38%), 2.8

MRCE (63%, 13%), 106.6 (61%, 8%), 187.9 Infeasible (88%, 29%), 98.6 (76%, 20%), 7.3
FLOGw (83%, 25%), 100.9 (91%, 21%), 166.8 (88%, 13%), 635.1 (87%, 21%), 68.8 (88%, 45%), 5.6

JGSE (91%, 28%),74.6 (95%, 23%),140.8 (95%, 14%),549.4 (85%, 10%),53.6 (87%, 44%),5.6
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Figure 3:Rand index comparison on simulated networks consisting of two equally-sized subnetworks.

Table II: Computation time reduction offered by JGSE on simulated networks, withp denoting the total number of nodes and
ps the number of nodes for each subnetwork.

(p, ps) (500,250) (500,100) (500,50) (1000,500) (1000,200) (1000,100)

TJGSE/T
(w)
FLOG 0.427 0.161 0.133 0.404 0.148 0.112

Solution paths ofB and Ω are computed for a grid of
values for(λB , λΩ) that covers various sparsity patterns. The
quantile parameter is set as 0.3 in GIST. We report the
ratios TJGSE/T

(w)
FLOG for different combinations of (p, ps)

in Table II, wheren = 100 in all experiments.
Table II shows that at least half of the running time can

be reduced when the network is decomposable. The larger the
ratio p/ps is, the more computational cost can be saved. We
conducted the experiment on a PC, but if parallel computing
resources are available, the computational efficiency can be
further boosted. The network decomposition technique makes
an otherwise computationally expensive or even infeasible
problem much easier to solve.

VI. A PPLICATIONS

In this section, we analyze real data fromS&P 500 and
NASDAQ-100 stock using JGSE.

A. S&P 500

This dataset keeps a record of the closing prices of theS&P
500 stocks from Jan. 1, 2003 to Jan. 1, 2008. It consists of
1258 samples for 452 stocks. The data have been preprocessed
by taking logarithm and differencing transformations [22].

We first applied GIST (with quantileq = 0.1) and the robust
JAG decomposition. Figure 4a shows the resulting clusters,
where the nodes are placed by theFruchterman-Reingold

algorithm [44]. Although no ground truth is available, in-
terestingly, we found that the obtained 10 subnetworks are
highly consistent with the 10 given categories in the data
documentation—the corresponding RI is almost as high as 0.9
(cf. Figure 4b).

We then variedq and systematically studied the clustering
results based on GIST. The RIs with respect to the 10 stock
categories are shown in Figure 4b. For comparison, sGTG and
sCGD clusterings are also included. Our JAG decomposition
is quite robust to the choice ofq in GIST. It seems that the
10-category structure in the documentation is reflected on the
real stock data.

We also applied the popular BDSR [21, 20] (which is
designed under the sole CDG learning setup), to decompose
S&P 500 into 10 subnetworks. Figure 5a shows that the
network is now decomposed into a giant cluster and nine
isolated nodes, which is more difficult to interpret than GIST.
Such a decomposition provides little help in reducing the
computational cost. Furthermore, Figure 5b shows the best
tuned sCDG estimate (using the R packagehuge [22] with
default parameters) atλ∗ = 0.08. To achieve a 10-subnetwork
decomposition, we found thatλ must be greater than or equal
to 0.22. This is the dilemma discussed in Section III-D: BDSR
resorts to setting an overly large value forλ to yield graph
decomposition, while such a high thresholding level may mask
many truly existing edges and result in an inaccurate estimate.
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(a) JAG decomposition (q = 0.1).
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(b) Rand index comparison.

Figure 4:GIST onS&P 500.

Correspondingly, its decomposition structure is unreliable. Of
course, the poor performance of BDSR also has a lot to do
with the fact that the transition matrix or GTG estimation is
ignored in the sCDG learning.

We next investigate the forecasting capability of JGSE, by
use of the conventional rolling MSE scheme (see, e.g., [45]).
Denote the rolling window size asW . Standing at time point
t0, apply the estimation algorithm to the most recentW
observations in the past, i.e.,{xt}

t0
t=t0−W+1. Then use the

estimateB̂t to forecastxt+h: x̂t+h = B̂
T

t x̂t+h−1 for h ≥ 1,
and x̂t , xt. Repeat the forecasting procedure till the rolling
window slides to the end of the time series. The rolling MSE
is defined asMSE = 1

n−h−W+1

∑n−h

t=W ‖xt+h − x̂t+h‖22.
We set the window sizeW = 0.8n and horizonh = 1 and
compared sGTG, MRCE, and JGSE in each category. Because
of the limited sample size, the large-data validation used in
synthetic experiments is not applicable. Following [25, 46, 47],
we chose the tuning parameters by BIC, where the number of
degrees of freedom is given by

∑

i,j 1b̂ij 6=0 +
∑

i≤j 1ω̂ij 6=0

if both B and Ω are estimated, and
∑

i,j 1b̂ij 6=0 if only
B is estimated. Table III reports the rolling MSEs (times
1e+4 for better readability) for the first five categories. (The
conclusions for the last five categories are similar but the
first five have relatively larger dimensions.) Even compared
with the widely acknowledged MRCE, JGSE offers better or
comparable forecasting performance.

B. NASDAQ-100

The NASDAQ-100 consists of 100 of the largest non-
financial companies listed on the NASDAQ stock market.
We collect the closing prices of the stocks for each trading
day from Jan.1 , 2011 to Dec. 31, 2011, which gives 252
samples in total (the data is downloaded from finance.yahoo.
com). Differencing is applied to remove trends. There were
several significant changes to the indices during 2011. For
example, NASDAQ rebalanced the index weights on May

2, 2011 before opening the market—see http://ir.nasdaqomx.
com/releasedetail.cfm?releaseid=561718. More event details
can be found at http://en.wikipedia.org/wiki/NASDAQ-100#
Changesin 2011. In consideration of such major changes,
we focus on the following segments. Segment 1 consists of
62 samples from Jan. 1 to Apr. 4; Segment 2 consists of 23
samples from Apr. 4 to May 2; Segment 3 consists of 32
samples from May 31 to Jul. 14; and Segment 4 consists of
98 samples from Jul.15 to Dec. 2.

We present the analysis of Segment 4 as an example. To
get a conservative idea of the network cardinality, we applied
sGTG and sCDG to the data respectively. Sparse graphs are
obtained with around1% connections. We setq = 0.02
in running the GIST algorithm. After removing the isolated
indices, we applied the FLOG algorithm to obtain the GTG
and CDG estimates. The whole procedure only took a few
minutes. We are particularly interested in the hub nodes in
the JAG. Figure 6 shows all connections to and from the
hub nodes. Nicely, the three hubs, PCLN (Priceline.com Inc.),
GOOG (Google Inc.) and ISRG (Intuitive Surgical Inc.), come
from the three largest sectors of the NASDAQ-100, namely
Consumer Service, TechnologyandHealth Care, respectively.
PCLN is a commercial website that helps customers obtain dis-
counts for travel-related purchases, and it is not surprising that
PCLN is related to some companies providing similar services,
such as EXPE (Expedia Inc.), and some hospitality companies
such as WYNN (Wynn Resorts, Limited). Similarly, GOOG,
as a world-famous technology company, is related to many
technology based companies, such as AAPL (Apple Inc.),
TXN (Texas Instruments Inc.), LLTC (Linear Technology
Corporation) and so on. ISRG, a corporation that manufactures
robotic surgical systems, is connected with INTC (Intel Corpo-
ration), MRVL (Marvell Technology Group Ltd.) and KLAC
(KLA-Tencor Corporation), which all produce semiconductor
chips and nanoelectronic products to be used in robotics.

The obtained GTG and CDG share some common con-
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(a) Block diagonal screening (b) Optimal sCDG estimate

Figure 5:Gaussian graph learning (or sCDG) onS&P 500.

Table III: Rolling MSE comparison on S&P 500.

Model & Method Category 1 Category 2 Category 3 Category 4 Category 5
sGTG 236.6 883.5 237.4 1859.1 456.5
MRCE 28.4 742.6 5.0 250.1 7.9
JGSE 1.4 3.7 2.0 5.4 7.9

nections. For example, PCLN not only has a negative causal
influence over EXPE, but shows negatively correlation with it
conditioned on the other nodes. On the other hand, the two
graphs differ in some ways. For example, although PCLN
strongly Granger-causes SIRI (Sirius XM Holdings, Inc.),
they are conditionally independent. The interaction between
LLTC and GOOG is of second order, purely due to their
conditional dependence without any direct Granger causality.
Fortunately, JAG encompasses all significant links on either
GTG or CDG, and provides comprehensive network screening.
We have performed similar analysis for other segments and
examined the changes of the network topology. Due to page
limitation, details are not reported here.

Next, we call the rolling scheme to investigate the forecast-
ing performance of JGSE. For comparison, sGTG was also
included; MRCE is however computationally intractable here,
and so we applied our FLOGw instead. BIC was used for
regularization parameter tuning. The rolling MSEs of three
methods are shown in Table IV, with window sizeW = 0.8n
and horizonh = 1. We see that the joint estimation by FLOGw

outperforms the popular transition estimation (sGTG) in three
of the four segments. This suggests the existence of wide range
conditional dependence between the stocks, and it is beneficial
to take into account such correlations in statistics modeling.
JGSE is able to further improve the forecasting performance
by joint regularization, which is however not surprising from
Stein et al.’s classical works (e.g., [8]). It also has a lot to do
with the success of GIST in reducing the search space for the
fine graph learning. These echo the findings in synthetic data
experiments in Section V-A.

VII. C ONCLUSION

We studied large-scale dynamical networks with sparse first-
order and second-order statistical structures, where the first-

order connections can be captured by a directed Granger tran-
sition graph and the second-order correlations by an undirected
conditional dependence graph. To jointly regularize the two
graphs in topology identification and dynamics estimation,
we proposed the 2-stage JGSE framework. The GIST algo-
rithm was developed for JAG screening and decomposition.
As demonstrated by extensive synthetic-data experiments and
real-world applications, our proposed algorithms beat the
commonly used BDSR and MRCE in graph decomposition
and estimation.
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graphs and variable selection with the lasso,”The Annals
of Statistics, vol. 34, no. 3, pp. 1436–1462, 2006.

[15] A. J. Rothman, E. Levina, and J. Zhu, “Sparse multi-
variate regression with covariance estimation,”Journal of
Computational and Graphical Statistics, vol. 19, no. 4,
2010.

[16] W. Lee and Y. Liu, “Simultaneous multiple response
regression and inverse covariance matrix estimation via
penalized gaussian maximum likelihood,”Journal of
Multivariate Analysis, 2012.

[17] W. James and C. Stein, “Estimation with quadratic loss,”
Berkeley, Calif., pp. 361–379, 1961.

[18] A. Fink, R. H. Grabner, M. Benedek, G. Reishofer,
V. Hauswirth, M. Fally, C. Neuper, F. Ebner, and A. C.
Neubauer, “The creative brain: Investigation of brain
activity during creative problem solving by means of eeg
and fmri,” Human Brain Mapping, vol. 30, no. 3, pp.
734–748, 2009.

[19] J. H. Stock and M. W. Watson, “Generalized shrinkage
methods for forecasting using many predictors,”Journal
of Business & Economic Statistics, vol. 30, no. 4, pp.
481–493, 2012.

[20] D. M. Witten, J. H. Friedman, and N. Simon, “New
insights and faster computations for the graphical lasso,”
Journal of Computational and Graphical Statistics,
vol. 20, no. 4, pp. 892–900, 2011.

[21] R. Mazumder and T. Hastie, “Exact covariance threshold-
ing into connected components for large-scale graphical
lasso,”J. Mach. Learn. Res., vol. 13, pp. 781–794, Mar.
2012.

[22] T. Zhao, H. Liu, K. Roeder, J. Lafferty, and L. Wasser-
man, “The huge package for high-dimensional undirected
graph estimation in r,”J. Mach. Learn. Res., vol. 13,
no. 12, pp. 1059–1062, Jun. 2012.

[23] H. Lütkepohl,New Introduction to Multiple Time Series

Analysis, 1st ed. Springer, Oct. 2007.
[24] R. Tibshirani, “Regression shrinkage and selection via

the lasso,” Journal of the Royal Statistical Society,
vol. 58, no. 1, pp. 267–288, 1996.

[25] M. Yuan and Y. Lin, “Model selection and estimation in
the gaussian graphical model,”Biometrika, vol. 94, no. 1,
pp. 19–35, 2007.

[26] B. Efron and C. Morris, “Stein’s estimation rule and its
competitors–an empirical bayes approach,”Journal of the
American Statistical Association, vol. 68, no. 341, pp. pp.
117–130, 1973.

[27] Y. She, “Thresholding-based iterative selection proce-
dures for model selection and shrinkage,”Electron. J.
Statist, vol. 3, pp. 384–415, 2009.

[28] ——, “An iterative algorithm for fitting nonconvex penal-
ized generalized linear models with grouped predictors,”
Computational Statistics and Data Analysis, vol. 9, pp.
2976–2990, 2012.

[29] J. Fan and R. Li, “Variable selection via nonconcave
penalized likelihood and its oracle properties,”Journal of
the American Statistical Association, vol. 96, pp. 1348–
1360, Dec. 2001.

[30] Y. She, H. Li, J. Wang, and D. Wu, “Grouped iterative
spectrum thresholding for super-resolution sparse spec-
trum selection,”IEEE Transactions on Signal Processing,
vol. 61, pp. 6371–6386, 2013.

[31] Y. She, “Reduced rank vector generalized linear models
for feature extraction,”Statistics and Its Interface, vol. 6,
pp. 197–209, 2013.

[32] ——, “Selectable factor extraction in high dimensions,”
arXiv:1403.6212.

[33] L. Armijo, “Minimization of functions having Lipschitz
continuous first partial derivatives,”Pacific Journal of
Mathematics, vol. 16, no. 1, pp. 1–3, 1966.

[34] J. Duchi, S. Gould, and D. Koller, “Projected subgradient
methods for learning sparse Gaussians,” inProceedings
of the Twenty-fourth Conference on Uncertainty in AI
(UAI), 2008.

[35] A. L. Dulmage and N. S. Mendelsohn, “Coverings of
bipartite graphs,”Canadian Journal of Mathematics,
vol. 10, no. 4, pp. 516–534, 1958.

[36]
[37] U. von Luxburg, M. Belkin, and O. Bousquet, “Consis-

tency of spectral clustering,”The Annals of Statistics, pp.
555–586, 2008.

[38] C. Fraley and A. E. Raftery, “How many clusters? which
clustering method? answers via model-based cluster anal-
ysis,” The Computer Journal, vol. 41, no. 8, pp. 578–588,
1998.

[39] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the
number of clusters in a data set via the gap statistic,”
Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), vol. 63, no. 2, pp. 411–423, 2001.

[40] C. A. Sugar and G. M. James, “Finding the number of
clusters in a dataset: An information-theoretic approach,”
Journal of the American Statistical Association, vol. 98,
no. 463, pp. 750–763, 2003.

[41] J. Nocedal and S. J. Wright,Numerical Optimization,



14

2nd ed. New York: Springer, 2006.
[42] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani,
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