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Abstract

The rate distortion function in information theory provides performance bounds

for lossy source coding. However, it is not clear how to causally encode a Gaus-

sian sequence under rate constraints while achieving R-D optimality. This prob-

lem has significant implications in the design of rate control for video communi-

cation. To address this problem, we take distortion fluctuation into account and

develop a new theory, called gamma rate theory, to quantify the trade-off between

rate and distortion fluctuation. The gamma rate theory implies that, to evaluate the

performance of causal rate controls in source coding, the traditional R-D metric

needs to be replaced by a new GRD metric. The gamma rate theory identifies the

trade-off between quality fluctuation and bandwidth, which is not known previ-

ously. To validate the gamma rate theory, we design a rate control algorithm for

video coding; our experimental results demonstrate the utility of the gamma rate

theory in video coding.
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coding.

1. Introduction

In this paper, we consider the problem of causal rate control in source coding.

This problem has significant implications for the design of practical rate con-

trol schemes in video coding. In video coding, rate control is needed to achieve

user-specified bit-rate target while minimizing distortion. In video compression

for Digital Video Disc (DVD), the user-specified bit-rate target is applied to the

whole video sequence; e.g., a user may require that the entire compressed video

sequence be contained in a single DVD-4 disk of 5.32 Gigabytes. In the past ten

years, due to the rapid growth of streaming video over the Internet and wireless

networks, compression for streaming video has become a major topic of source

coding. The existing compression modules for streaming video usually use rate

control to adjust the compressed bit rate to the channel condition or channel ca-

pacity; i.e., in video compression for video communication or Internet television

(IPTV for short), the user-specified bit-rate target is applied to each video frame

or each second; e.g., a user may require that the compressed bit-rate be at most

300 kilo-bits per second (kb/s) to meet the channel capacity constraint.

To achieve optimal rate distortion performance under the user-specified bit-

rate budget, one needs to design a rate control scheme to determine how many

bits Ri is needed to compress the i-th frame (i = 1, 2, · · · , N , where N is the

total number of frames) in order to minimize the average distortion, which is av-

eraged over all the frames. Rate-distortion (R-D) theory provides the theoretical

foundation for lossy data compression [1][2][3][4] and rate control in video cod-

ing. It addresses the problem of minimizing the average distortion subject to a
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compression data rate constraint. The R-D function provides a performance limit

for practical lossy data compression systems. If a non-causal rate control (which

has access to all the future frames) is used, the R-D-optimal rate control is in the

form of reverse water-filling for a Gaussian random sequence of finite length1 [5,

Page 314]. But the non-causal rate control that has access to all the future frames,

is not feasible for video communication and IPTV. For video communication and

IPTV, causal rate control or a nearly causal rate control that buffers a few frames,

is usually employed [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]; however,

the existing rate control laws only consider performance in terms of rate and aver-

age distortion but do not consider distortion fluctuation over frames quantitatively

when designing algorithms, although variance of video quality (e.g. PSNR) is

a commonly used metric for comparisons.[20] claimed to consider video quality,

but only average PSNR was reported and no consistency measurement is reported.

From visual psychophysics [21], it is well known that large changes in distortion

over frames are much more annoying from a viewer’s perspective, compared to

the case with constant distortion (over frames) and the same average distortion

value. For this reason, it is desirable to design a rate control scheme that achieves

optimal performance in terms of rate, average distortion, and distortion fluctua-

tion. However, none of the existing works provides optimal performance bounds

for causal or nearly causal rate control in terms of rate, average distortion, and dis-

tortion fluctuation. To address this, we propose a new theory called gamma rate

theory, which provides optimal performance bounds for causal or nearly causal

rate control under the former mentioned three metrics.

1A Gaussian random sequence of length N is treated as an N -dimensional Gaussian random

vector.
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The main contributions of this paper are 1) gamma rate theory, which serves as

the theoretical guide for rate control algorithm design, and 2) a new performance

metric for evaluating video coding algorithms, i.e., a triplet of {γD, R,D}, where

γD is the maximum distortion variation between two adjacent samples. The pro-

posed gamma rate theory includes 1) definition of a few new concepts such as the

gamma rate function and the rate gamma function, and 2) important properties of

the gamma rate function.

The rest of this paper is organized as follows. Section 2 formulates the prob-

lem. In Section 3, we present the gamma rate theory; i.e., define a few new

concepts needed in the gamma rate theory, and study important properties of the

gamma rate function. Section 4 presents a rate control algorithm for video cod-

ing, which is used to demonstrate the utility of the proposed gamma rate theory.

Section 5 shows simulation results to verify the gamma rate theory. Section 6

concludes the paper. Mathematical proofs are provided in Section 7.

2. Problem Formulation

In this section, we formulate the problems of non-causal and causal rate con-

trol in source coding.

We first define a few concepts as below.

Definition 1. {Xi}Ni=1 is said to be an independent Gaussian sequence if Xi (i =
1, · · · , N ) are independent Gaussian random variables and Xi has fixed variance
σ2
i (i = 1, · · · , N ) and zero mean.

Since this paper only considers Gaussian random variables, the distortion used

in this paper is quadratic distortion.

Definition 2. Let Ri denote the number of bits allocated to Xi; Ri ≥ 0 (i =
1, · · · , N ). A rate allocation strategy R (specified by {Ri}Ni=1) for an independent
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Gaussian sequence {Xi}Ni=1 is said to be R-D optimal if the resulting distortion
for Xi is Di(Ri) (i = 1, · · · , N ), where Di(Ri) is the distortion rate function of
Xi.

Definition 3. A rate allocation strategy R (specified by {Ri}Ni=1) for an indepen-
dent Gaussian sequence {Xi}Ni=1 is said to be causal under rate constraint R if

n∑
i=1

Ri ≤ n×R, n = 1, · · · , N,

Ri ≥ 0, i = 1, · · · , N.

Otherwise, R is non-causal.

2.1. Non-causal Rate Control

We first begin with optimal non-causal rate control.

For an independent Gaussian sequence {Xi}Ni=1, an optimal non-causal rate

control problem can be formulated by

min
{Ri}Ni=1

N∑
i=1

Di(Ri) (1a)

s.t.
N∑
i=1

Ri = r (1b)

Ri ≥ 0 (i = 1, · · · , N) (1c)

where Di(Ri) is the distortion rate function of Xi (i = 1, · · · , N ), and r is the

total bit budget for N random variables {Xi}Ni=1. Denote {R∗
i }Ni=1 the optimal

solution to (1). The resulting optimal non-causal rate allocation strategy Rnc is

specified by {R∗
i }Ni=1.

Denote Dnc(r) the distortion rate function of {Xi}Ni=1, which can (roughly)

be regarded as the inverse function of the rate distortion function defined in [5,

Page 313]. Then, it is easy to show that Dnc(r) =
∑N

i=1Di(R
∗
i ), i.e., at rate r, the

minimum distortion is
∑N

i=1Di(R
∗
i ). So we have the following proposition.
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Proposition 1. For an independent Gaussian sequence {Xi}Ni=1 with variances
{σ2

i }Ni=1 and zero mean, its distortion rate function is given by

Dnc(r) =
N∑
i=1

σ2
i e

−2Ri , (2)

where

Ri =

{
1
2
log

σ2
i

λ
if λ < σ2

i

0 otherwise
, (3)

where λ is chosen so that
∑N

i=1Ri = r.

2.2. Causal Rate Control

For an independent Gaussian sequence {Xi}Ni=1, an optimal causal rate control

problem can be formulated as below.

Upon the arrival of Xi (i = 1, · · · , N ), solve the following problem

min
Ri

Di(Ri) (4a)

s.t. Ri ≤ n×R−
i−1∑
j=1

R∗
j (4b)

Ri ≥ 0 (4c)

where R∗
j is the solution to (4) in previous steps (i.e., j < i).

2.3. Causal Rate Control with Smooth Distortion Change

Since distortion fluctuations will affect perceptual video quality, to study this

effect, we introduce constraints on distortion fluctuations.
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For an independent Gaussian sequence {Xi}Ni=1, an optimal causal rate control

problem with constraints on distortion fluctuations can be formulated by

min
{Ri}Ni=1

N∑
i=1

Di(Ri) (5a)

s.t.
n∑

i=1

Ri ≤ n×R (n = 1, · · · , N), (5b)

Ri ≥ 0 (n = 1, · · · , N), (5c)

|∆Di| ≤ γD (i = 1, · · · , N − 1), (5d)

where ∆Di = Di+1 − Di (i = 1, · · · , N − 1), and γD is the maximal tolerable

fluctuation in distortion.

Taking the constraint on distortion fluctuations into account, we will explore

the relationship between the rate R (given in (5b)) and the maximum change of

distortion γD (given in (5d)) and derive a series of theorems, which form the foun-

dation for what we call Gamma Rate Theory. The key principle of Gamma Rate

Theory is that reducing (increasing, respectively) the rate will result in increased

(reduced, respectively) distortion fluctuation, or vice versa. The gamma rate the-

ory tells that there is a fundamental tradeoff between the rate and the distortion

fluctuation. In the next section, we present our gamma rate theory.

3. Gamma Rate Theory

We first define a few concepts as below.

Definition 4. An independent Gaussian sequence {Xi}Ni=1 is said to be control-
lable w.r.t. R and γD (R ≥ 0 and γD ≥ 0) if there exists a causal R-D optimal
rate allocation strategy R such that |∆Di(R)| < γD (∀i), where

∆Di(R) = Di+1(Ri+1)−Di(Ri), i = 1, · · · , N − 1,
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n∑
i=1

Ri ≤ nR, n = 1, · · · , N,

Ri ≥ 0, i = 1, · · · , N.

Definition 5. (R, γD) is said to be controllable w.r.t. an independent Gaussian
sequence {Xi}Ni=1 if {Xi}Ni=1 is controllable w.r.t. γD and R.

Definition 6. For an independent Gaussian sequence {Xi}Ni=1, its controllable
region in R–γD plane is the closure of the set of all controllable (R, γD) pairs.
Denote the controllable region by C{Xi}.

Definition 7. The gamma rate function Γ(R) of {Xi}Ni=1 is the infimum of all γD
such that (R, γD) is in the controllable region of {Xi}Ni=1 for a given R.

Definition 8. The rate gamma function R(γD) of {Xi}Ni=1 is the infimum of all R
such that (R, γD) is in the controllable region of {Xi}Ni=1 for a given γD.

Remark: Just like a distortion rate function, there exists a gamma rate func-

tion that serves as the boundary of the controllable region of {Xi}Ni=1 as shown in

Figure 1.

Theorem 1. Given an independent Gaussian sequence {Xi}Ni=1 with variances
{σ2

i }Ni=1, denote the minimum of {σ2
i }Ni=1 by σ2

min = mini∈{1,··· ,N} σ
2
i . The gamma

rate function Γ(R) has the following properties:
1) Γ(R) ≥ 0.
2) Γ(R) is a decreasing function for R ∈ [0, Ř), where

Ř = min
R∈{R:Γ(R)=0}

R; (6)

3)

Ř = max
n=1,··· ,N

1

2
log2

n
√∏n

i=1 σ
2
i

σ2
min

(7)

4) Γ(R) = 0 for R ∈ [Ř,∞).
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Figure 1: Controllable region in R–γD plane.

Remark: Since Γ(R) is a decreasing function in [0, Ř), it identifies a trade-

off between distortion fluctuation γD and data rate R; in other words, there is a

trade-off between viewer friendliness (i.e., small distortion fluctuation) and

network friendliness (i.e., low data rate) in video coding. This is not known

previously.

Corollary 2. Γ(R) is a non-increasing function in [0,∞).

Corollary 3. The maximum of Γ(R) is achieved at R = 0.

In a real codec, the achievable number of bits is not continuous but discrete.

There might be control errors between the target rate and the real rate after encod-

ing. Then Theorem 1 will be modified with errors in rate.
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Theorem 4. An independent Gaussian sequence {Xi}Ni=1 is encoded subject to
causal rate constraints

∑n
i=1Ri ≤ nR (∀n ∈ {1, 2, · · · , N}) and there are ran-

dom values {En, n = 1, 2, · · · , N} such that R1 + E1 ≤ R and Rn + En ≤
nR −

∑n−1
i=1 Ri (∀n ∈ {2, · · · , N}). {En, n = 1, 2, · · · , N} are uniformly dis-

tributed between −Emax and Emax, where 0 < Emax < R. The following proper-
ties still hold.

1) Γ(R) ≥ 0.
2) Γ(R) is a decreasing function for R ∈ [0, Ř), where Ř = minR∈{R:Γ(R)=0} R
3) Γ(R) = 0 for R ∈ [Ř,∞).

In practical video systems, there is always a buffer available for rate control

algorithms. The buffer enables the current frame to borrow bit budget from future

frames. Intuitively, we may think that the buffer will improve the performance of

Γ(R). However, a buffer does not help here.

Theorem 5. An independent Gaussian sequence {Xi}Ni=1 is encoded by a R-D
optimal rate allocation strategy {Ri}Ni=1 with a buffer, which is

∑n
i=1 Ri ≤ nR +

B, where B is the buffer size and n ∈ {1, · · · , N}. The buffer will not change
Γ(R).

4. Rate Control in Video Coding

To demonstrate the utility of our proposed gamma rate theory in real-world

problems, we use rate control in video coding as an example. In this section,

we show our design of a new rate control scheme. In Section 5, we will show

experimental results to illustrate the usefulness of the gamma rate theory.

4.1. Problem Formulation

To present our rate control algorithm, we first begin with a scenario of encod-

ing two video frames using predictive coding (P-frame). Suppose a video codec

has finished encoding the (n − 1)th frame. Let Rt denote the total bit budget for

the nth and (n+1)th frames. The rate allocation for the two frames is ηRt for the
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nth frame and (1−η)Rt for the (n+1)th frame, where η ∈ [0, 1] is a bit-allocation

parameter. Then the problem (1) is reduced to

min
η

Dn(ηRt) +Dn+1((1− η)Rt) (8)

where Dn(R) is the rate-distortion function for the nth frame.

We can partition a video frame into SKIP macroblocks (MBs) and non-SKIP

MBs. A SKIP MB consumes negligible number of bits from the bit budget since

only one flag to indicate SKIP MB and no other information for a SKIP MB will

be sent to the decoder. Then the distortion of the nth frame is

Dn(ηRt) = ρTnD
S
n + (1− ρTn )D

N
n (ηRt), (9)

where ρTn is the percentage of SKIP MBs, DS
n is the average distortion of a SKIP

MB, and DN
n (ηRt) is the average distortion of a non-SKIP MB. The reconstructed

pixel values in a SKIP MB are exactly the same as the corresponding MB in

the previous frame. Hence, considering the high similarity between two adjacent

frames, we assume that DS
n+1 ≈ Dn(ηRt) and DS

n is independent of η and Rt.

Then the goal of our rate control algorithm is to minimize the total distortion of

two frames, given by

D(Rt) = Dn(ηRt) +Dn+1((1− η)Rt) (10)

= ρTnD
S
n + (1− ρTn )D

N
n (ηRt) + ρTn+1(ρ

T
nD

S
n + (1− ρTn )D

N
n (ηRt))(11)

+ (1− ρTn+1)D
N
n+1((1− η)Rt).

Then the problem becomes

min
η

ρTnD
S
n+(1−ρTn )D

N
n (ηRt)+ρTn+1(ρ

T
nD

S
n+(1−ρTn )D

N
n (ηRt))+(1−ρTn+1)D

N
n+1((1−η)Rt).

(12)
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Eq. (12) can be easily extended to K frames (K > 2) by introducing (K − 1)

bit-allocation parameters (similar to η).

A closed form solution to (12) can be obtained if the closed form of the rate-

distortion functions in (12) are given. Different rate-distortion functions will yield

different solutions for (12). In video coding systems, prediction residual errors

are usually modeled by Gaussian, or Laplacian [22], or Cauchy distribution [23].

In the next subsection, we will derive a closed form solution to (12) based on

Gaussian distribution as a model for prediction residual errors.

4.2. R-D Model

Assume that the prediction residual error follows a Gaussian distribution. Then

its rate-distortion function is given by

D = σ2 · 2−2R (13)

where σ2 is the variance of the residual error, and D is mean squared error (MSE).

For the nth and (n+1)th frame, all the bits are used for encoding non-SKIP MBs.

So we have

DN
n (ηRt) = σ2

n · 2−2ηRt (14)

DN
n+1((1− η)Rt) = σ2

n+1 · 2−2(1−η)Rt (15)

where σ2
n and σ2

n+1 are the variances of a non-SKIP MB of the nth and (n + 1)th

frame, respectively. Then Eq. (12) becomes

min
η

ρTnD
S
n + (1− ρTn )σ

2
n2

−2ηRt + ρTn+1(ρ
T
nD

S
n + (1− ρTn )σ

2
n2

−2ηRt) + (1− ρTn+1)σ
2
n+12

−2(1−η)Rt(16)

Letting ∂D/∂η = 0 gives the optimal solution η∗ as below

η∗ =
1

2
+

1

4Rt

[log2(
(1− ρTn )(1 + ρTn+1)

1− ρTn+1

) + log2(
σ2
n

σ2
n+1

)]. (17)
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Once η∗ is obtained, the bit budget for the nth frame and the (n + 1)th frame

is η∗Rt and (1 − η∗)Rt, respectively. In the next subsection, we determine the

quantization step size for quantizing residual errors, given a bit budget for a video

frame.

4.3. R-Q Model

To determine the quantization step size for quantizing residual errors, we need

a R-Q model to map a bit budget R to quantization step size Q. Since 1) our R-Q

model only describes the relationship between the bits for encoding residual errors

and Q, and 2) the bit budget of a frame includes texture bits for encoding residual

errors and header bits for encoding motion vectors and overheads, hence we need

to estimate the bit budget for encoding residual errors. A simple method is to use

the number of header bits in the previous frame as a prediction of the number of

header bits in the current frame; then the bit budget for residual errors is simply

the bit budget of the frame minus the predicted number of header bits.

An quadratic R-Q model [24] is given by

R = x1
MAD

Q
+ x2

MAD

Q2
(18)

where x1 and x2 are model parameters, MAD denotes the mean absolute dif-

ference between the original pixel value and its reconstructed one, and Q is the

quantization step size. The MAD of the current frame can be predicted by the

MAD of the previous frames, i.e.,

˜MADn = α1 ∗MADn−1 + α2 (19)

where MADn−1 is the actual MAD of the (n − 1)th frame, and α1 and α2 are

model parameters.
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Using (19), we can obtain an estimate ˜MADn. Plugging this estimated MAD

into (18), we can obtain the quantization step size Q since the bit budget R for

residual error and x1 and x2 are known. Using the obtained Q to quantize the

residual errors, we obtain the coded bits for the current frame. After finishing

encoding the current frame, we use the least-squares method to estimate the model

parameters x1, x2, α1 and α2 of the current frame, and use these updated model

parameters for encoding the next frame. This procedure is conducted iteratively.

4.4. Rate Control Algorithm

In this subsection, we describe our rate control algorithm. For each frame, our

rate control algorithm operates as follows.

1. Initialize the bit budget for the frame.

Allocate a certain bit budget to the current frame R′
t according to the ap-

proach in JVT-G012 [25]. Then Rt = 2R′
t since Rt is the bit budget for two

frames. Initialize model parameters to initial values.

2. Calculate the target bit budget.

Compute (17) to obtain η∗, where σn can be estimated by the statistics in

the previous frame, and ρT can be specified by a user or automatically de-

termined by (20). Then the target bit budget for the current frame is η∗Rt.

3. Determine the quantization step size Q.

The bit budget for residual errors is equal to η∗Rt minus the predicted num-

ber of header bits. Use (19) to obtain an estimate ˜MADn. Plug this esti-

mated MAD into (18) to obtain the quantization step size Q.

4. Update of model parameters.

Use the least-squares method to estimate the model parameters of the cur-

rent frame, given the encoded data of the current frame and the previous
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frames.

We implement the above rate control algorithm in JM15.1 [26].

In the above algorithm, ρT can be specified by a user. ρT can also be automat-

ically determined by the following procedure.

We estimate ρTn by a linear model

ρ̂Tn = β1ρ
T
n−1 + β2 (20)

where ρTn−1 is the actual ρT of (n−1)th frame and β1 and β2 are model parameters,

which are updated after a frame is encoded. ρTn+1 is estimated by (20) with (n+1)

replacing n and ρ̂Tn replacing the actual ρTn .

5. Simulation Results

In this section, we use simulations to validate the gamma rate theory presented

in Section 3. This section is organized as below: Section 5.1 presents simulation

results for synthetic data, and Section 5.2 presents simulation results for real-

world data.

5.1. Simulation with Synthetic Data

In this section, we use synthetic data to validate that Γ(R) function is indeed a

non-increasing function of R. To achieve this, we generate N samples, denoted by

{σ2
i , i = 1, ..., N}. Specifically, each σ2

i (i = 1, ..., N ) follows the same uniform

distribution whose support is [0, σ2
max], where σ2

max is a user-specified parameter.

In this simulation, we choose N = 100. Using Definition 7, we can compute

the gamma rate function Γ(R) of independent Gaussian sequence {Xi}Ni=1 with

zero means and variances σ2
i (i = 1, ..., N). Figure 2 shows the resulting Γ(R).
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As shown in the figure, the Γ(R) function obtained from the simulation has the

following properties.

1) Γ(R) ≥ 0.

2) Γ(R) is a decreasing function for R ∈ [0, Ř), where

Ř = min
R∈{R:Γ(R)=0}

R. (21)

From Figure 2, we observe that Ř = 372, which is obtained from simulation.

3) Given {σ2
i , i = 1, ..., N}, we can compute

Ř = max
n=1,··· ,N

1

2
log2

n
√∏n

i=1 σ
2
i

σ2
min

= 375. (22)

Hence the value of Ř obtained from the simulation (which is 372) is very close to

the theoretical value of Ř (which is 375). This validates the correctness of Eq. (7).

4) Γ(R) = 0 for R ∈ [Ř,∞).

The above observations validate Theorem 1.

5.2. Simulation with Real-World Data

In this section, we would like to show the importance of the proposed Gamma

Rate Distortion (GRD) metric in real-world applications. We use rate control in

video coding as an example. Based on the gamma rate theory, conventional per-

formance measures, i.e., average rate and average distortion, are not sufficient to

quantify the overall performance of a rate control algorithm in video coding; in-

stead, we need to use the triplet (R,D, γD) to quantify the overall performance,

where R denotes the average rate, D denotes the average distortion, and γD de-

notes the maximum distortion fluctuation.

To show this, we implement the rate control algorithm described in Section 4

on reference software JM15.1 of H.264 [26]. Let ρ denote the percentage of the
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Figure 2: Γ(R) function.

number of MBs in the SKIP mode to the total number of MBs in a frame. When

ρ = 0, the rate control algorithm reduces to the JVT-G012 algorithm for rate

control in H.264 [25]. To illustrate the utility of GRD metric, we consider two

cases, i.e., ρ = 0 and ρ = 0.6, and evaluate the rate control algorithm in terms of

(R,D, γD) performance.

In our experiments, we use 150 video frames of Common Intermediate Format

(CIF); all frames are encoded as P-frames except that the first frame is encoded

as an I-frame. We run the rate control algorithm under four different target rates,

i.e., 64, 128, 256, 384 kb/s. The rate control algorithm operates at the frame level

only; in other words, the rate control is not applied to the slice level; nor at the
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MB level. The average rate difference between the two cases ρ = 0.6 and ρ = 0

under the same distortion is calculated via the method proposed in Ref. [27]. The

normalized average rate difference is defined by (r0.6 − r0)/r0 where r0.6 and r0

denote the rate of the coded bit-stream for ρ = 0.6 and ρ = 0 (under the same

distortion), respectively. The γD difference is equal to γD for ρ = 0.6 minus γD

for ρ = 0.

Table 1 shows target bit rate in unit of kb/s, actual average bit rate in kb/s,

average distortion in terms of peak signal to noise ratio (PSNR) in dB, normalized

average rate difference under the same distortion, and γD difference in dB, for

four widely-used test video sequences, namely, hall-monitor, paris, news, and

waterfall.

From Table 1, we observe that the rate control scheme with ρ = 0.6 achieves

bit saving (i.e., using less number of bits while achieving the same distortion, as

shown by negative values in the column of normalized average rate difference in

Table 1), compared to the rate control scheme with ρ = 0. This is mainly due

to the R-D optimization in (12). If we use conventional performance measures,

i.e., average rate and average distortion, we would declare the rate control scheme

with ρ = 0.6 is better than the rate control scheme with ρ = 0 in R-D sense, since

the former uses less number of bits on average under the same average distortion

(PSNR). However, this bit saving is obtained at a cost of larger fluctuation in dis-

tortion, as shown by positive values in the column of γD difference in Table 1.

A larger fluctuation in distortion is annoying to a viewer. Hence, conventional

performance measures, i.e., average rate and average distortion, are not sufficient

to quantify the overall performance of a rate control algorithm in video coding.

Based on the gamma rate theory, we advocate the use of triplet (R,D, γD) to
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quantify the performance of a video codec. Furthermore, this experimental re-

sult also validates that there is a tradeoff between distortion fluctuation γD and

data rate R; in other words, there is a trade-off between viewer friendliness (i.e.,

small distortion fluctuation) and network friendliness (i.e., low data rate) in video

coding. This is not known previously.

6. Conclusion

In this paper, we consider the problem of causal rate control in source coding

including video coding. This problem is significant for the design of practical rate

control schemes in video coding. To address this problem, we consider distortion

fluctuation in our problem formulation and develop a new theory, called gamma

rate theory, to quantify the trade-off between rate and distortion fluctuation. Based

on the gamma rate theory, conventional performance measures, i.e., average rate

and average distortion, are not sufficient to quantify the performance of a rate con-

trol algorithm in video coding; instead, we advocate the use of triplet (R,D, γD)

to quantify the performance of a video codec, where R denotes the average rate,

D denotes the average distortion, and γD denotes the maximum distortion fluctu-

ation. In addition, our gamma rate theory identifies the trade-off between viewer

friendliness (i.e., smooth video quality over time) and network friendliness (i.e.,

low bit rate) in video coding, which is not known previously. To validate the

gamma rate theory, we design a rate control algorithm for video coding. Our sim-

ulation and experimental results validate the gamma rate theory and demonstrate

the utility of the gamma rate theory in video coding.
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Table 1: Performance comparison for ρ = 0 and ρ = 0.6 where ρ = 0 serves as a benchmark.

Sequence Target rate ρ = 0 ρ = 0.6 Normalized

average

γD differ-

ence

Actual

rate

PSNR Actual

rate

PSNR rate

difference

(dB)

hall monitor 64 64.27 34.45 64.62 34.73 -11.9% 0.48

128 130.37 36.47 129.41 36.79

256 256.69 38.11 257.3 38.54

384 384.48 39.11 384.45 39.29

paris 64 66.36 26.57 67.7 26.42 -6.8% 0.29

128 128.16 28.91 129.49 29.19

256 256.33 31.7 258.48 32.25

384 383.84 33.55 385.43 34.52

news 64 64.33 32.72 66.76 32.59 -4.1% 0.07

128 128.12 35.54 128.89 36.05

256 256.19 39.54 256.99 39.64

384 384.48 41.55 383.98 41.58

waterfall 64 67.01 28.34 66.91 28.26 -1.3% 0.16

128 129.15 31.87 129.77 31.56

256 256.47 34.75 257.33 35.46

384 383.32 36.27 385.8 36.96
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7. Appendix

7.1. Proof of Proposition 1
Proof 1. Since the distortion rate function of {Xi}Ni=1 can be obtained by solving
(1), using Lagrange multipliers, we construct the functional

J(R1, R2, · · · , RN) =
N∑
i=1

(σ2
i e

−2Ri) + λ′

(
N∑
i=1

Ri

)
. (23)

Differentiating (23) with respect to Ri and setting it equal to zero, we have

∂J

∂Ri

= −2σ2
i e

−2Ri + λ′ = 0. (24)

Let λ = λ′/2. From (24), we have

λ = σ2
i e

−2Ri ∀i. (25)

Hence the optimum allocation of r bits to code {Xi}Ni=1 results in the same dis-
tortion for all random variables {Xi}Ni=1, if λ in (25) is less than the minimum of
{σ2

i }Ni=1. If λ in (25) is not less than the minimum of {σ2
i }Ni=1, we use the Karush-

Kuhn-Tucker conditions to find the minimum in (23). The Karush-Kuhn-Tucker
conditions yield

∂J

∂Ri

= −2σ2
i e

−2Ri + λ′, (26)

where λ′ is chosen so that
∑N

i=1Ri = r and

∂J
∂Ri

= 0 if λ′ < 2σ2
i ,

∂J
∂Ri

≤ 0 if λ′ ≥ 2σ2
i .

(27)

The conditions ∂J
∂Ri

≤ 0 and λ′ ≥ 2σ2
i imply that Ri ≤ 0; since data rate Ri has

to be non-negative, we have Ri = 0 for λ ≥ σ2
i . For λ′ < 2σ2

i , ∂J
∂Ri

= 0 implies

λ = σ2
i e

−2Ri , i.e., Ri =
1
2
log

σ2
i

λ
. This completes the proof.
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7.2. Proof of Theorem 1
Proof 2. Γ(R) is defined by

Γ(R) = max
i∈{1,··· ,N−1}

|Di+1(Ri+1)−Di(Ri)| (28)

1) From (28), it is obvious that Γ(R) ≥ 0.
2) Now we prove that Γ(R) is a decreasing function for R ∈ [0, Ř), where

Ř = minR∈{R:Γ(R)=0}R.
For two arbitrary points R1 and R2 in [0, Ř). Without loss of generality, as-

sume R1 < R2. In case there is only one source (say, source k) achieving the
maximum value of ∆Di, i.e., k = argmaxi∈{1,··· ,N−1} |∆Di|, we let R̃1 = R1 + ϵ,
where ϵ > 0 and ϵ is so small that ϵ bits can only be used to reduce |∆Dk|,
while the resulting |∆D̃k| under R̃1 is still the maximum among {|∆D̃i|} un-
der R̃1. So Γ(R̃1) = |∆D̃k| since |∆D̃k| is the maximum among {|∆D̃i|}; and
|∆D̃k| < |∆Dk| since |∆Dk| is reduced to |D̃k| due to ϵ bits. Since Γ(R1) =
|∆Dk| > |∆D̃k| = Γ(R̃1), we have Γ(R1) > Γ(R̃1).

In case there are L sources achieving the maximum value of ∆Di, i.e., kj =
argmaxi∈{1,··· ,N−1} |∆Di| (j = 1, · · · , L), we let R̃1 = R1 + ϵ, where ϵ > 0 and
ϵ is so small that there exist {ϵj}Lj=1 (

∑L
j=1 ϵj = ϵ) and a bit allocation strategy

that guarantee that ϵj bits (j = 1, · · · , L) can only be used to reduce |∆Dkj |,
while the resulting |∆D̃kj | under R̃1 is still the maximum among |∆D̃i| under R̃1;
in other words, the set of sources achieving the maximum value, i.e., I = {i∗ :
i∗ = argmaxi∈{1,··· ,N−1} |D̃i|}, contains the L sources (sources {kj}Lj=1) and the
cardinality |I| ≥ L; in other words, there could be new sources achieving the
maximum value. Since Γ(R1) = |∆Dkj | > |∆D̃kj | = Γ(R̃1), we have Γ(R1) >

Γ(R̃1).
Following the same proof for Γ(R1) > Γ(R̃1), for a sufficiently large M , there

exist {R̃i}Mi=2 and {εi}Mi=1 such that Γ(R1) > Γ(R̃1) > Γ(R̃2) > · · · > Γ(R̃M) >
Γ(R2), where R̃i+1 = R̃i + εi (i = 1, · · · ,M − 1) and R2 = R̃M + εM .

Since for two arbitrary points R1 and R2 in [0, Ř) and R1 < R2, we have
Γ(R1) > Γ(R2), hence Γ(R) is a decreasing function in [0, Ř).

3) Now we prove that Ř = maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

and Γ(Ř) = 0, where

Ř = minR∈{R:Γ(R)=0} R. There are two steps to finish the proof. In the first step,
we prove there exists R̄ such that Γ(R̄) = 0. In the second step, we prove that

Ř = maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

, where Ř = minR∈{R:Γ(R)=0} R and Γ(Ř) = 0.
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Firstly, let R̄ = maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

. Then we have

R̄ ≥ 1

2
log2

n
√∏n

i=1 σ
2
i

σ2
min

, n = {1, · · · , N} (29)

Then

σ2
min ≥ 2−2R̄ n

√√√√ n∏
i=1

σ2
i , n = {1, · · · , N} (30)

So there exists a D̄ such that

σ2
min ≥ D̄ ≥ 2−2R̄ n

√√√√ n∏
i=1

σ2
i , n = {1, · · · , N} (31)

Therefore, we have

1

2
log2

∏n
i=1 σ

2
i

D̄n
≤ nR̄, n = {1, · · · , N} (32)

Then we have
n∑

i=1

(
1

2
log2

σ2
i

D̄
) ≤ nR̄, n = {1, · · · , N} (33)

Then we can find a rate allocation strategy R with {Ri = 1
2
log2

σ2
i

D̄
}Ni=1. This

strategy is a causal and R-D optimal strategy verified by Eq. (33). {Ri =
1
2
log2

σ2
i

D̄
}Ni=1

implies consistent distortion for all sources, which is Di = D̄, i ∈ {1, · · · , N}.
Then ∆Di(R) = 0, i ∈ {1, · · · , N−1}. So we have Γ(R̄) = maxi=1,··· ,N−1 |∆Di(R)| =

0. So there exists R̄ such that Γ(R̄) = 0. Here R̄ = maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

.

Secondly, we prove that Ř = maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

, where Ř = minR∈{R:Γ(R)=0}R

and Γ(Ř) = 0. We prove this by contradiction.

Assume Ř < maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

. Then there must exist a k ∈
{1, · · · , N} such that

Ř <
1

2
log2

k

√∏k
i=1 σ

2
i

σ2
min

(34)

⇔ σ2
min < 2−2Ř k

√√√√ k∏
i=1

σ2
i (35)
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Since Γ(Ř) = 0, then there must exist a causal rate allocation strategy R with
rates {Ri}Ni=1 and distortions {Di}Ni=1 for Ř such that maxi=1,··· ,N−1 |∆Di(R)| =
0. Then |∆Di| = 0. So |Di+1 − Di| = 0, i = 1, · · · , N − 1 and denote
Ď = Di, i = {1, · · · , N}. The causal strategy R will have

n∑
i=1

(
1

2
log2

σ2
i

Ď
) ≤ nŘ n = {1, · · · , N} (36)

Rate distortion function of Gaussian sources implies that

Di ≤ σ2
i i = {1, · · · , N} (37)

Then we have
Ď ≤ σ2

i i = {1, · · · , N} (38)

Then we have
Ď ≤ σ2

min (39)

Combining Eq. (36) and Eq. (39), we have

σ2
min ≥ Ď ≥ 2−2Ř n

√√√√ n∏
i=1

σ2
i , n = {1, · · · , N} (40)

Eq. (40) conflicts with Eq. (35), so the assumption of Ř < maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

is not correct. Then we must have Ř ≥ maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

. Since

we have proven that Γ(R̄) = 0 for R̄ = maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

and Ř =

minR∈{R:Γ(R)=0} R, we have Ř = maxn=1,··· ,N
1
2
log2

n
√∏n

i=1 σ
2
i

σ2
min

.

4) Finally, we prove Γ(R) = 0 for R ∈ (Ř,∞).
Assume a causal rate allocation strategy Ř for Ř with rates {Ri}Ni=1 and dis-

tortions {Di}Ni=1, where Ď = Di i ∈ {1, · · · , N}. For an arbitrary R∗ = Ř+ ϵ
where ϵ > 0, we can find a rate allocation strategy R∗ with rates {R∗

i }Ni=1 and
distortions {D∗

i }Ni=1. When changing from Ř to R∗ , we add ϵ bits to each source.
That is R∗

i = Ri + ϵ for i ∈ {1, · · · , N}.
Thus

n∑
i=1

R∗
i =

n∑
i=1

(Ri + ϵ) =
n∑

i=1

Ri + nϵ (41)
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Since
∑n

i=1Ri ≤ nŘ, we have

n∑
i=1

R∗
i ≤ n(Ř + ϵ) = nR∗ (42)

So R∗ is causal and R-D optimal rate allocation strategy.
The distortion of R∗ are

D∗
i = σ2

i 2
−2R∗

i = σ2
i 2

−2(Ri+ϵ) = 2−2ϵDi (43)

Since Ď = Di i ∈ {1, · · · , N}, we have

D∗
i = 2−2ϵĎ, i ∈ {1, · · · , N} (44)

Then
∆Di(R∗) = D∗

i+1 −D∗
i = 0, i ∈ {1, · · · , N − 1} (45)

So
Γ(R∗) = max

i∈{1,··· ,N−1}
|∆Di(R∗)| = 0 (46)

Since Γ(R∗) = 0 for an arbitrary R∗ > Ř, we proved Γ(R) = 0 in R ∈
(Ř,∞).

7.3. Proof of Corollary 2
Proof 3. According to the properties 2) and 4) in Theorem 1, Γ(R) is a non-
increasing function in [0,∞). Specifically, Γ(R) is a decreasing function for R ∈
[0, Ř), where Γ(Ř) = 0; and Γ(R) = 0 for R ∈ [Ř,∞).

7.4. Proof of Corollary 3
Proof 4. According to the properties 2) and 4) in Theorem 1, Γ(R) is a non-
increasing function in [0,∞). Specifically, Γ(R) is a decreasing function for R ∈
[0, Ř), where Γ(Ř) = 0; and Γ(R) = 0 for R ∈ [Ř,∞).
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7.5. Proof of Theorem 4
Proof 5. To prove the gamma rate theory with control errors, we try to con-
vert the control errors to the variation of sources. Given {Xi}Ni=1 and {Ei, i =
1, 2, · · · , N}, there exists an equivalent source {X̃i}Ni=1 with variances {σ̃2

i },
which satisfies

Ri + Ei =
1

2
log2

σ̃2
i

D
i = 1, · · · , N (47)

For a fixed distortion D, the equivalent source has relationship with the original
source as

σ̃i = 2Eiσi (48)

Then the proof reduces to the proof of Theorem 1 with modified sources {X̃i}Ni=1.
As long as the original source {X̃i}Ni=1 is controllable, Theorem 4 is correct.

7.6. Proof of Theorem 5
Proof 6. We rewrite the strategy as

n∑
i=1

Ri ≤ n(R +
B

n
) n ∈ {1, · · · , N} (49)

When n → ∞, B
n

→ 0. The strategy with buffer reduces to a bufferless causal
strategy asymptotically. Then Γ(R) of the strategy with buffers stays the same as
the bufferless strategy.
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