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Summary

To evaluate mobile communication systems, it is important to develop accurate and concise fading channel models.
However, fading encountered in mobile communication is usually non-stationary, and the existing methods can only
model quasi-stationary or piecewise-stationary fading instead of general non-stationary fading. To address this, this
paper proposes an evolutionary-spectrum (ES) based approach to modeling non-stationary fading channels. Our ES
approach is more general than the existing piecewise-stationary models, and is capable of characterizing a general
non-stationary fading channel that has an arbitrary evolutionary spectrum (or time-varying power spectral density);
our ES approach is parsimonious, and is also able to generate stationary fading processes. As an example, we show
how to apply our ES approach to generating stationary and non-stationary correlated Nakagami-m fading channel
processes. Simulation results show that the evolutionary spectrum of the channel gain process produced by our
ES-based channel model agrees well with the user-specified evolutionary spectrum, indicating the accuracy of our
ES-based channel model. Copyright c© 0000 John Wiley & Sons, Ltd.
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channel.

1. Introduction

Time-varying fading channels pose a great chal-
lenge to mobile communication. To evaluate the
performance of mobile communication systems, it
is important to develop accurate and parsimonious
fading channel models. Existing channel models can
be classified into two categories: large-scale path
loss and small-scale fading. Large-scale path loss
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models, also called propagation models, characterize
the underlying physical mechanisms (i.e., reflection,
diffraction, scattering) for specific paths. These
models specify signal attenuation as a function of
distance, which is affected by prominent terrain
contours (buildings, hills, forests, etc.) between
the transmitter and the receiver. Path loss models
describe the mean signal attenuation vs. distance in
a deterministic fashion (e.g., nth-power law [1]), and
also the statistical variation about the mean (e.g., log-
normal distribution [1]).

Small-scale fading models describe the character-
istics of generic radio paths in a statistical fashion.
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Small-scale fading refers to the dramatic changes in
signal amplitude and phase that can be experienced
as a result of small changes (as small as a half-
wavelength) in the spatial separation between the
receiver and the transmitter [2]. Small-scale fading
can be slow or fast, depending on the Doppler rate.
Small-scale fading can also be flat or frequency-
selective, depending on the delay spread of the
channel. The statistical time-varying nature of the
envelope of a flat-fading signal is characterized by
distributions such as Rayleigh, Ricean, Nakagami,
etc. [1]. Uncorrelated scattering is often assumed, to
extend these distributions to the frequency-selective
case. The large-scale path loss and small-scale fading
together characterize the received signal power over a
wide range of distances.

However, small-scale fading encountered in mobile
communication is usually non-stationary, and the
existing methods can only model quasi-stationary
or piecewise-stationary fading channels [3, 4, 5,
6, 7, 8] instead of general non-stationary fading
channels. To address this, this paper proposes an
evolutionary-spectrum (ES) [9] based approach to
modeling non-stationary fading channels. Our ES
approach is more general than the existing piecewise-
stationary models, and is capable of characterizing
a general non-stationary fading channel that has
an arbitrary evolutionary spectrum (which represents
time-varying power spectral density); our ES approach
is parsimonious, and is also able to generate
stationary fading processes. As an example, we
show how to apply our ES approach to generating
stationary and non-stationary correlated Nakagami-
m fading channels. Simulation results show that the
evolutionary spectrum of the channel gain process
produced by our ES-based channel model agrees well
with the user-specified evolutionary spectrum; this
indicates the accuracy of our ES-based channel model.

In contrast, in the near few years, with respect
to the measurement-based V2V propagation channel
models given by [10][11] in which we note that,
first, the LOS (Line Of Sight), diffuse scatters and
discrete scatters are all considered. Specifically, (i)
diffuse scatterers are modeled as GSCM (Geometry-
based Stochastic Channel Model), i.e., with random
complex Gaussian amplitudes; and (ii) the amplitude
of the LOS and the discrete scatterers are modeled
according to a Rayleigh distribution. In addition
to fading, the Doppler spectrum can be large and
hence can change rapidly with time. Second, for a
practical mobile scene, the mobile fading channel
may be rather complicated. To model it accurately,

several measurement-based algorithms and empirical
modeling approaches have been proposed (See,
for example, [10][11]). Such approaches may be
more accurate. However, the loss of simple closed
form solution of the channel fading description
makes the analysis of the system performance quite
difficult. This is because the modeling steps for these
approaches completely rely on the realtime estimation
of the channel response. Therefore, our approach
overcomes this and provides both the feasibility of
theoretical derivation and modeling accuracy.

The rest of the paper is organized as follows. In
Section 2, we review the ES theory [9]. Section 3
presents our ES-based approach to modeling non-
stationary fading channels. In Section 4, we show how
to apply our ES approach to generating stationary
and non-stationary correlated Nakagami-m fading
channels. Section 5 shows simulation results to
demonstrate the accuracy of our ES-based channel
model. Section 6 concludes the paper.

2. Review of the Evolutionary Spectrum
Theory

We first review the spectral representation of a
stationary process X(t) as follows [9, page 246]

X(t) =
∫ +∞

−∞
ejωtdZ(ω) (1)

where Z(ω) is an orthogonal process. The auto-
correlation function of X(t) admits the following
spectral representation

R(s, t) = E[X(s)X(t)] =
∫ +∞

−∞
ejω(t−s)dH(ω)

(2)
where E[|dZ(ω)|2] = dH(ω), and H(ω) is the
integrated power spectrum of X(t); the derivative of
H(ω) with respect to (w.r.t.) ω is the power spectral
density of X(t). If we let t = s, then we get the power
of X(t) as below

E[X2(t)] = R(t, t) =
∫ +∞

−∞
dH(ω) (3)

According to Parzen’s work [12, 13], the auto-
correlation function R(s, t) of a non-stationary
process X(t) can be represented in a form similar
to (2), provided that we replace the functions {ejωt}
by a more general family of functions {φt(ω)}.
Specifically, there exist a family F of functions
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{φt(ω)} (ω ∈ R) indexed by t and a measure µ(ω)
(ω ∈ R) such that for any s ∈ R and t ∈ R, the
auto-correlation function R(s, t) admits the following
representation:

R(s, t) =
∫ +∞

−∞
φ∗s(ω)φt(ω)dµ(ω) (4)

where φ∗s(ω) is complex conjugate of φs(ω). In
addition, in order for the variance of {X(t)} to
be finite for each t, φt(ω) must be quadratically
integrable w.r.t. the measure µ(ω) for each t; in other
words, this is the condition of {X(t)} having finite
instantaneous power at each t.

Similarly, the general process X(t), which can
be non-stationary or stationary, admits the following
representation:

X(t) =
∫ +∞

−∞
φt(ω)dZ(ω) (5)

where Z(ω) is a stochastic process with
E[|dZ(ω)|2] = dµ(ω). The measure µ(ω) here
plays the same role as the integrated power spectrum
H(ω) of a stationary process. If X(t) is a stationary
process, a choice for a family F of functions {φt(ω)}
is the family of complex exponential functions, i.e.,
φt(ω) = ejωt.

Next, we describe a family F of functions {φt(ω)}
for a non-stationary process as below [9]:

φt(ω) = At(ω)ejθ(ω)t (6)

where for each fixed ω, the modulus of the Fourier
transform of t-function At(ω), denoted by |Kω(θ)|,
has an absolute maximum at frequency θ = 0. Hence,
for each fixed ω, we may regard φt(ω) as an amplitude
modulated (AM) signal, i.e., At(ω) modulates ejθ(ω)t,
where ejθ(ω)t can be regarded as a sinusoid of
frequency θ(ω). We now formalize this approach in
the following definition [9, page 823].

Definition 1 The function of t, φt(ω), will be said
to be an oscillatory function if, for some (necessarily
unique) θ(ω), it may be written in the form (6) where
At(ω) is of the form

At(ω) =
∫ +∞

−∞
ejθtdKω(θ) (7)

with |dKω(θ)| having an absolute maximum at θ = 0.

Actually, Kω(θ) is the integrated frequency
spectrum of the t-function At(ω) for any fixed ω, over
the frequency axis θ.

The function At(ω) can be regarded as the envelope
of φt(ω). If, further, the family {φt(ω)} is such that
θ(ω) is the single-valued function of ω (i.e., if no
two distinct members of this family have Fourier
transforms whose maxima occur at the same point),
then we may transform the variable in the integral in
(4) from ω to θ(ω), and by suitably redefining At(ω)
and the measure µ(ω), we can write

R(s, t) =
∫ +∞

−∞
A∗s(ω)At(ω)ejω(t−s)dµ(ω)

=
∫ +∞

−∞
A∗s(ω)At(ω)ejω(t−s)h(ω)dω

(8)

where dµ(ω) = h(ω)dω, and correspondingly,

X(t) =
∫ +∞

−∞
At(ω)ejωtdZ(ω) (9)

where E[|dZ(ω)|2] = dµ(ω). Then, we have

E[X2(t)] = R(t, t) =
∫ +∞

−∞
|At(ω)|2dµ(ω) (10)

Since E[X2(t)] may be interpreted as the power
of X(t) at time t, (10) gives a decomposition of
power, in which the contribution from frequency ω
is |At(ω)|2dµ(ω). This leads to the definition of
Evolutionary Spectrum as follows[9, page 824].

Definition 2 Let F denote a particular family of
oscillatory functions, {φt(ω)} ≡ {At(ω)ejωt}, and
let X(t) be a process having a representation of the
form (9) in terms of the family F . We define the
evolutionary power spectrum at time t with respect to
the family F , dHt(ω), by

dHt(ω) = |At(ω)|2dµ(ω) (11)

and |At(ω)|2h(ω) is called evolutionary spectral
density function.

Note that when X(t) is stationary and F is chosen
to be the family of complex exponential functions
{ejωt}, the Evolutionary Spectrum dHt(ω) reduces to
conventional power spectrum.
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3. Evolutionary Spectrum Approach to
Modeling Non-stationary Fading Channels

This section is organized as follows. In Section 3.1,
we present an evolutionary spectrum approach to
modeling non-stationary fading channels. Section 3.2
describes an evolutionary spectrum approach to
simulating a non-stationary fading process that
matches a given measured channel gain process.

3.1. Evolutionary Spectrum Approach to
Channel Modeling

Fig. 1. The ES-based channel model

Fig. 1(a) shows a system that generates a non-
stationary fading process using evolutionary spectrum.
As shown in Fig. 1(a), the ES-based channel model is
characterized by S(t), kt(u) and X(t), where input
S(t) is a stationary stochastic process, kt(u) is the
impulse response of the linear time varying filter, and
output X(t) is a non-stationary fading process. Thus,
our key idea is that, to model a non-stationary process
X(t), we need to find a stationary process S(t) as
stimulus and a proper time varying impulse response
kt(u), and then use the linear time varying system in
Fig. 1(a) to generate the non-stationary process X(t).

Actually, in signal processing, the same approach
as that in Fig. 1(a) has been used to generate
a non-stationary process [9]. However, in wireless
channel modeling, this approach has not been explored
previously; this approach is able to produce a more
general non-stationary fading process than the existing
piecewise stationary channel models such as the
VTFAR (Vector Time-Frequency AR) model [14].
Moreover, the model in Fig. 1(a) facilitates the
generation of a non-stationary fading process that
matches channel measurements, i.e., the channel gains
measured from a realistic channel can help determine
kt(u) and the power spectrum density of S(t), and
then the fading process generated by the model in

Fig. 1(a) will have similar statistical properties to
those of the channel measurements. This trace-driven
simulator is particularly useful for evaluating the
performance of a communication system.

Next, we explain why a non-stationary channel can
be modeled by the system shown in Fig. 1(a). Let
X(t) be of the form (9) with the evolutionary spectrum
equal to |At(ω)|2dµ(ω). For fixed t, we take inverse
Fourier transform of At(ω) w.r.t. ω, i.e.,

kt(u) =
∫ +∞

−∞
At(ω)ejωudω. (12)

Its forward Fourier transform is

At(ω) =
∫ +∞

−∞
kt(u)e−jωudu (13)

Note that parameter u is a new variable different from
time t. Actually, u is considered as the time lapse from
epoch t. Substituting At(ω) in (9) by its expression in
(13), we obtain

X(t) =
∫ +∞

−∞
S(t− u)kt(u)du (14)

where S(t) =
∫ +∞
−∞ ejωtdZ(ω). So S(t) is a station-

ary process with power spectrum dµ(ω). According
to (14), X(t) can be generated by a linear time
varying filter whose impulse response is kt(u), with
input S(t), which is a stationary process with power
spectrum dµ(ω). This explains why a non-stationary
fading channel can be modeled by the system shown
in Fig. 1(a).

In summary, our ES-based channel model can be
described as below: given the evolutionary spectrum
of the channel |At(ω)|2dµ(ω), we can use At(ω) to
obtain kt(u) via (12), and use the power spectrum
dµ(ω) to generate stationary process S(t); i.e., a non-
stationary fading channel is modeled by the system
shown in Fig. 1(b), where the linear time-invariant
filter has a frequency response of

√
dµ(ω).

3.2. ES-based Channel Simulator

Algorithm 1 shows an ES-based channel simulator
that generates a non-stationary fading process, given
a user-specified time-varying autocorrelation function
R(s, t).

Algorithm 1 ES-based channel simulator.

1. Input: R(s, t)
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2. Decompose R(s, t) and obtain At(ω) and h(ω)
that satisfy (8).

3. Computer the inverse Fourier transform of
At(ω), i.e., (12), and obtain kt(u).

4. Given h(ω) and kt(u), generate X(t) via the
system shown in Fig. 1(b).

5. Output: X(t).

In Step 2 of Algorithm 1, there are two cases for
decomposition of R(s, t). The first case is that the
closed form of At(ω) exists and can be easily obtained
by decomposing R(s, t); in this case, we can directly
obtain At(ω) by the decomposition. An example of
this case is given in Section 4.2. The second case
is that the closed form of At(ω) is very difficult to
identify or does not exist; in this case, we can use
some numerical methods such as the joint frequency
discrimination and amplitude demodulation strategy
to extract At(ω) for each fixed value of ω.

If the channel gain measurements of a fading
channel (rather than R(s, t)) are given, we can first
estimate R(s, t) from the channel gain measurements;
then use the estimated R(s, t) as the input and
run Algorithm 1 to produce a non-stationary fading
process, which shares similar R(s, t) to that of the
measured channel.

4. ES-based Model for Correlated
Nakagami-m Fading Channels

In Section 3, we present an evolutionary spectrum
approach to modeling non-stationary fading channels.
In this section, as an example, we show how to
apply our ES approach to generating stationary and
non-stationary correlated Nakagami-m fading channel
processes. This section is organized as follows. In
Section 4.1, we derive R(s, t) of a non-stationary
Nakagami-m fading channel. In Section 4.2, we use
the formula of R(s, t) derived in Section 4.1 to design
an ES-based channel simulator that generates a non-
stationary correlated Nakagami-m fading process.
Section 4.3 presents an ES-based channel simulator
that generates a stationary correlated Nakagami-m
fading process.

4.1. Auto-correlation Function of a
Non-stationary Correlated Nakagami-m Fading
Process

In this section, we derive the auto-correlation function
R(s, t) of a non-stationary correlated Nakagami-m
fading channel. In this paper, we only consider the case
where m is a positive integer.

Proposition 1 Let X(t) (t ∈ R) denote a Nakagami-
m fading process. Assume that for any s ∈ R and
t ∈ R (s 6= t), the joint probability density function
(pdf) of X(s) and X(t) is given by [15, 16]

f(x, y) =
4(xy)me−(ηyx2+ηxy2)/(ηxηy(1−ρ))

Γ(m)ηxηy(1− ρ)(ηxηyρ)(m−1)/2

· Im−1(
2
√

ρxy√
ηxηy(1− ρ)

),
(15)

where (for simplicity of notation) x = X(s) and y =
X(t); x ≥ 0; y ≥ 0; m ≥ 1

2 ; ηx = E[x2]/m; ηy =
E[y2]/m; ρ = Cov(x2, y2)/

√
var(x2)var(y2),

which is the power cross correlation coefficient;
ρ 6= 0; ρ 6= 1; and Ik(·) is the modified Bessel
function of the k-th order. Then the auto-correlation
function R(s, t) of X(t) is given by

R(s, t) =
π
√

ηsηt(1− ρ(s, t))m+1

4
[
(2m− 1)!!
(2m− 2)!!

]2

· 2F1(m +
1
2
,m +

1
2
;m; ρ(s, t)),

(16)

where 2F1(·, ·; ·; ·) is a hypergeometric function [17];
ηs = E[X2(s)]/m; ηt = E[X2(t)]/m; and ρ(s, t) =

Cov(X2(s),X2(t))√
var(X2(s))var(X2(t))

.

A proof for Proposition 1 is given in Appendix .1.
By using the expression of 2F1(m + 1

2 ,m +
1
2 ;m; ρ) and using the Taylor series expansion of
(1− ρ)m, i.e., (1− ρ)m =

∑m
k=0(−1)kCk

mρk where
ρ 6= 1 and Ck

m = m!
k!(m−k)! , we can further simplify

(16) and obtain

R(s, t) =
π
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2
∞∑

k=0

C(m, k)ρk(s, t),

(17)
where C(m, k) is defined in Table I, in which P (m, k)
and Q(m, k) are given by

P (m, k) =
{

(−1)kCk
m+1, k ≤ m + 1, (18)

0, k ≥ m + 2.(18′)

Q(m, k) =
{[2(m + k)− 1]!!}2(2m− 2)!!

(2k)!![2(m + k − 1)]!![(2m− 1)!!]2
,

k = 0, 1, · · · ,∞.

(19)

(17) can be further simplified. First, C(m, k) is
a positive and dramatically decreasing sequence of
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Table I. The expression of C(m, k)

C(m, 0) = P (m, 0)Q(m, 0)
C(m, 1) = P (m, 0)Q(m, 1) + P (m, 1)Q(m, 0)

C(m, 2) = P (m, 0)Q(m, 2) + P (m, 1)Q(m, 1) + P (m, 2)Q(m, 0)
...

C(m,m) = P (m, 0)Q(m,m) + P (m, 1)Q(m,m− 1) + · · ·+ P (m,m)Q(m, 0)
C(m,m + 1) = P (m, 0)Q(m,m + 1) + P (m, 1)Q(m,m) + · · ·+ P (m,m + 1)Q(m, 0)

...
C(m,m + n) = P (m, 0)Q(m,m + n) + P (m, 1)Q(m,m + n− 1) + · · ·+ P (m,m + 1)Q(m,n− 1)

...

index k, which can be easily proved or verified
numerically. As shown in Fig. 2, for a fixed m,
C(m, k) decreases quickly with the increase of
k; moreover, the larger m is, the faster C(m, k)
decreases as k increases. Note that when k ≥ 2, the
values of C(m, k) become negligible and ρk(s, t)
also becomes smaller; hence, from (17), the auto-
correlation function of a correlated Nakagami-m
fading channel can be approximated by

R(s, t) ≈ π
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2 · [C(m, 0)

+ C(m, 1)ρ(s, t)]

(a)
=

π
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2(1 + C(m, 1)ρ(s, t)),

(20)

where (a) is because C(m, 0) = 1 for all m.
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1

k

C
(m

,k
)

C(1,k)
C(2,k)
C(5,k)
C(10,k)

Fig. 2. C(m, k) is a positive and dramatically decreasing
series as k increases, for any positive integer m

For a correlated Rayleigh fading channel, i.e.,
Nakagami-m fading channel with m = 1, we have the
following corollary.

Corollary 1 The auto-correlation function R(s, t) of
a correlated Rayleigh fading process X(t) is given by

R(s, t) =
π

4
√

ηsηt(1− ρ(s, t))2 · 2F1(
3
2
,
3
2
; 1; ρ(s, t)).

(21)

(21) can be obtained by plugging m = 1 in (16).
Similarly, using the expression of

2F1( 3
2 , 3

2 ; 1; ρ(s, t)) and using the Taylor series
expansion of (1− ρ)2, we can simplify (21) and
obtain

R(s, t) =
π

4
√

ηsηt(1− ρ(s, t))2

·
∞∑

k=0

[
(2k + 1)!!

(2k)!!
]2ρk(s, t)

=
π

4
√

ηsηt

∞∑

k=0

A(k)ρk(s, t),

(22)

where A(k) = B(k)− 2B(k − 1) + B(k − 2), in
which B(n) = [ (2n+1)!!

(2n)!! ]2 and B(−2) = B(−1) = 0.
Furthermore, if |ρ(s, t)| < 1, then

limk→∞A(k)ρk(s, t) = 0. This can be easily
proved or verified numerically by the fact that A(k) is
a positive and dramatically decreasing sequence. As
shown in Fig. 2, C(1, k) = A(k) decreases quickly
with k. For example, A(0) = C(1, 0) = 1, A(1) =
C(1, 1) = 0.25, A(2) = C(1, 2) = 0.0156, · · · . Note
that when k ≥ 2, the values of A(k) become negligible
and meanwhile, ρk(s, t) also becomes smaller; hence,
from (22), the auto-correlation function of a Rayleigh
fading channel can be approximated by

R(s, t) ≈ π

4
√

ηsηt(A(0) + A(1)ρ(s, t)). (23)
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It is known that R(s, t) = Cov(s, t) + µsµt, where
Cov(s, t) is the covariance between X(s) and X(t),
and µt = E[X(t)]. Hence, non-stationary R(s, t) can
be decomposed into non-stationary second moment
and non-stationary first moment. The expectation µt

of a Nakagami-m fading process is given by

µt =
∫ ∞

0

x · 2
Γ(m)ηm

t

x2m−1e−x2/ηt · dx

=
√

πηt

2
(2m− 1)!!
(2m− 2)!!

,

(24)

where ηt = E[X2(t)]/m. Then we have

Cov(s, t) = R(s, t)− µsµt

(a)
=

π
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2

·
∞∑

k=1

C(m, k)ρk(s, t) (25)

(b)≈ π
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2

C(m, 1) · ρ(s, t), (26)

where (a) is due to (17) and (24); (b) is due to the
approximation of R(s, t) in (20). Hence, Cov(s, t) is
determined by ηs, ηt, and ρ(s, t).

Similarly, for the Nakagami-m fading with m = 1,
i.e., Rayleigh fading, we have

Cov(s, t)
(a)
=

π

4
√

ηsηt

∞∑

k=1

A(k)ρk(s, t)

(b)≈ π
√

ηsηt

4
A(1) · ρ(s, t), (27)

where (a) is due to (22) and (24); (b) is due to the
approximation of R(s, t) in (23).

From the ES theory, Cov(s, t) can be represented
by

Cov(s, t) =
∫ +∞

−∞
Ã∗s(ω)Ãt(ω)ejω(s−t)dµ̃(ω)

=
∫ +∞

−∞
Ã∗s(ω)Ãt(ω)ejω(s−t)h̃(ω)dω,

(28)

where the measure µ̃(ω) is absolutely continuous
and h̃(ω) is the corresponding evolutionary spectral
density function, i.e., dµ̃(ω) = h̃(ω)dω. Note that we
use Ãt(ω) and h̃(ω) instead of At(ω) and h(ω) to
distinguish Cov(s, t) from R(s, t).

4.2. Non-stationary Nakagami-m Fading
Channel Simulator

Algorithm 2 shows an ES-based channel simulator
that generates a non-stationary Nakagami-m fading
process, given user-specified ηt and ρ(s, t).

Algorithm 2 Non-stationary Nakagami-m fading
channel simulator.

1. Input: ηt (∀t) and ρ(s, t) (∀s,∀t)
2. Given ηs, ηt, and ρ(s, t), compute Cov(s, t) via

(25).
3. Decompose Cov(s, t) and obtain Ãt(ω) and

h̃(ω) that satisfy (28).
4. Compute the inverse Fourier transform of

Ãt(ω), i.e., (12), and obtain kt(u).
5. Given h̃(ω) and kt(u), generate X(t) via the

system shown in Fig. 1(b).
6. Y (t) = X(t) +

√
πηt

2
(2m−1)!!
(2m−2)!! .

7. Output: Y (t).

Next, we show an example for Algorithm 2.
In this example, the input for Algorithm 2 is given

as below.

• ηt can be any bounded deterministic function of
time t and ηt > 0 (∀t).

• ρ(s, t) is given by

ρ(s, t) =

√
2(|t|+ ε)(|s|+ ε)

(|t|+ ε)2 + (|s|+ ε)2

· e−
(s−t)2

4((|s|+ε)2+(|t|+ε)2) ,

(29)

where ε can be any positive real number.

There are five reasons why we choose the form
of ρ(s, t) given in (29). First, it has a simple
form (i.e., Gaussian form). Second, ρ(s, t) = ρ(t, s).
Third, according to (17), the resulting auto-correlation
function R(s, t) cannot be simplified to a function of
|s− t|. Fourth, the given ρ(s, t) satisfies |ρ(s, t)| ≤ 1,
which can be easily proved. Fifth, the given ρ(s, t)
satisfies the properties that 1) for fixed s, ρ(s, t)
reduces as |s− t| increases, and 2) ρ(s, t) reaches its
maximum value only when s = t.

Next, we show a decomposition of Cov(s, t), for
ρ(s, t) given in (29).

Proposition 2 Given ρ(s, t) in (29), its corresponding
Cov(s, t) can be represented by (28), where

Ãt(ω) =
√

ηt · (|t|+ ε)e−ω2(|t|+ε)2 , (30)
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8 QING WANG, DAPENG WU AND PINGYI FAN

h̃(ω) =
√

2πC(m, 1)
4

[
(2m− 1)!!
(2m− 2)!!

]2. (31)

In other words, Ãt(ω) in (30) and h̃(ω) in (31) satisfy
(28), for ρ(s, t) given in (29).

Proposition 2 is proved in Appendix .2. Obviously,
h̃(ω) in (31) is a constant. Moreover, kt(u) is given
by

kt(u) =
∫ +∞

−∞
Ãt(ω)ejωudω

=
√

ηtπ

(|t|+ ε)
3
2
e
− u2

4(|t|+ε)2 .

(32)

Now, we can run Step 5 and Step 6 of Algorithm 2,
and output non-stationary Nakagami-m fading process
Y (t).

4.3. Stationary Nakagami-m Fading Channel
Simulator

In this section, we show an example that illustrates
Algorithm 2 can also generate a stationary Nakagami-
m fading process, i.e., a stationary channel model is a
special case for our ES-based non-stationary channel
model.

In this example, the input for Algorithm 2 is given
as below.

• ηt = η (∀t), where η > 0 is a constant.
• ρ(s, t) is given by

ρ(s, t) = e−|s−t|. (33)

According to (33), (26), (28), and the following
equality

1
2π

∫ +∞

−∞

2
1 + ω2

ejω|τ |dω = e−|τ |, (34)

we obtain the following Ãt(ω) and h̃(ω) that satisfy
(28):

h̃(ω) =
πηC(m, 1)
2(1 + ω2)

[
(2m− 1)!!
(2m− 2)!!

]2, (35)

Ãt(ω) = 1. (36)

Then, kt(u) is given by

kt(u) =
∫ +∞

−∞
Ãt(ω)ejωudω = δ(u). (37)

Now, we can run Step 5 and Step 6 of Algorithm 2, and
output stationary Nakagami-m fading process Y (t).
Obviously, if the simulator is to generate a stationary
fading process, Part (ii) in Fig. 1(b) is not needed and
can be removed.

4.4. Trace-Driven Non-stationary Nakagami-m
Fading Channel Simulator

In this section, we present a trace-driven non-
stationary channel simulator. Since we only know
one analytically tractable ES-based channel model
(presented in Section 4.2), the trace-driven non-
stationary channel simulator shown in Algorithm 3
will use the non-stationary Nakagami-m fading
process in Section 4.2 as a reference model. In
the future, if more analytically tractable ES-based
channel models are identified, we will use Bayesian
Information Criterion (BIC) or Minimum Description
Length (MDL) criterion to choose a channel model
that matches the statistics of the given trace of channel
gains.

Algorithm 3 Trace-driven non-stationary Nakagami-
m fading channel simulator.

1. Input: a measured channel gain sequence x(t)
(t = 1, · · · , Nx); Ns, which is odd.

2. Use a maximum likelihood estimator [18] or a
moment-based estimator [19][20] to estimate
m of Nakagami-m distribution, which matches
the marginal distribution of x(t).

3. Estimate ηt via (42).
4. Estimate ρ(s, t) via (44).
5. Estimate ε by solving minε ||ρr(s, t)−

ρ(s, t)||2, where || · ||2 is 2-norm in L2 space,
ρr(s, t) is given by (29), and ρ(s, t) is given by
(44).

6. Given m, compute h̃(ω) via (31).
7. Given ηt and ε, compute kt(u) via (32).
8. Given h̃(ω) and kt(u), generate X(t) via the

system shown in Fig. 1(b).
9. Y (t) = X(t) +

√
πηt

2
(2m−1)!!
(2m−2)!! .

10. Output: Y (t).

Given x(t) and Ns, we estimate ηt and ρ(s, t), for
s, t = (Ns − 1)/2 + 1, · · · , Nx − (Ns − 1)/2, by the
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AN EVOLUTIONARY SPECTRUM APPROACH TO MODELING NON-STATIONARY FADING CHANNELS 9

following equations:

µ̂Xt
=

1
Ns

t+ Ns−1
2∑

k=t−Ns−1
2

x(k), (38)

ν̂2
Xt

=

∑t+ Ns−1
2

k=t−Ns−1
2

(x(k)− µ̂Xt
)2

Ns − 1
, (39)

µ̂X2
t

= ν̂2
Xt

+ µ̂2
Xt

, (40)

ν̂2
X2

t
=

∑t+ Ns−1
2

k=t−Ns−1
2

(x2(k)− µ̂X2
t
)2

Ns − 1
, (41)

η̂t =
µ̂X2

t

m
, (42)

Ĉov(s, t) =
1

Ns

Ns−1
2∑

k=−Ns−1
2

x2(s + k)x2(t + k)

−µ̂X2
s
· µ̂X2

t
, (43)

ρ̂(s, t) =
Ĉov(s, t)√
ν̂2

X2
s
· ν̂2

X2
t

. (44)

Now, we discuss how to choose the value of Ns.
First, we assume that the sampling interval ∆t for
measuring the channel gain x(t) is sufficiently small
so that for the time period that contains a large number
of samples, i.e., Ns samples of x(t), the channel gain
process x(t) can be regarded as relatively stationary.

5. Simulation Results

In this section, we conduct simulations to study
the accuracy of our ES-based channel model. This
section is organized as below. Section 5.1 presents an
algorithm for estimating the evolutionary spectrum of
a stochastic process, which is summarized in Ref. [9]
and originally proposed in Ref. [21]. Section 5.2
shows simulation results.

5.1. Algorithm for Estimating ES

Suppose that a general process X(t) has an expression
of the form (9) and consider a more general linear
transform below.

Y (t) =
∫ +∞

−∞
g(u)X(t− u)ejω0(t−u)du, (45)

where ω0 ∈ R is an arbitrary frequency. Replacing
X(t) by (9), we have

Y (t) =
∫ +∞

−∞
Gt,ω+ω0(ω)At(ω + ω0)ejωtdZ(ω + ω0),

(46)

E[|Y (t)|2] =
∫ +∞

−∞
|Gt,ω+ω0(ω)|2|At(ω + ω0)|2

· dµ(ω + ω0),
(47)

where, for any t, λ, θ,

Gt,λ(θ) =
∫ +∞

−∞
g(u)

At−u(λ)
At(λ)

e−jθudu. (48)

It can be seen that the function Gt,λ(θ) is
approximately equal to the Fourier transform of g(u),
denoted by G(θ), if, for any λ, the value of At−u(λ)

At(λ) is
close to 1, which means that At−u(λ) is slowly time
varying compared with the function g(u) as time lapse
u increases. Thus, we assume that g(u) decays rapidly
to zero as |u| → ∞ and that At−u(λ) is approximately
constant over the range of u for which g(u) is not very
close to zero. In this case, we consider that Gt,λ(θ) ≈
G(θ) holds for any t, λ and θ. Then, we may write

dHY
t (ω) ≈ |G(ω)|2dHX

t (ω + ω0), (49)

where dHX
t (ω + ω0) = |At(ω + ω0)|2dµ(ω + ω0),

according to the definition of evolutionary spectrum
(11). The formula (49) provides the basis for the
algorithm of estimating the evolutionary spectrum of
the process X(t). The details is given as below.

First, to define a slowly time varying function
whose Fourier transform must be highly concentrated
in the region of zero frequency, a new variable BF is
introduced for a family of functionsF ≡ {At(ω)ejωt}
to characterize its slowly time varying degree. That is,

BF = [sup
ω
{BF (ω)}]−1;BF (ω) =

∫ +∞

−∞
|θ||dKω(θ)|,

(50)
where BF (ω) is a measure of “width” of the spectrum
of At(ω). For a fixed ω, the reciprocal of BF (ω)
describes the slowly time varying degree of At(ω).
Thus, the physical meaning of BF is the minimum
time interval during which, for all ω, At(ω) can be
considered slowly time varying.

Next, to measure the “width” of a sharply
decreasing filter g(u), another parameter Bg is defined
by

Bg =
∫ +∞

−∞
|u||g(u)|du. (51)

Moreover, suppose that the filter g(u) is square
integrable and normalized, so that

2π

∫ +∞

−∞
|g(u)|2du =

∫ +∞

−∞
|G(ω)|2dω = 1. (52)
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10 QING WANG, DAPENG WU AND PINGYI FAN

Now, we consider the case that if the filter g(u) and
the family of oscillatory functions F satisfies

Bg ¿ BF . (53)

Then, according to Eq. (47) to Eq. (49), we may
write

E[|Y (t)|2] ≈
∫ +∞

−∞
|G(ω)|2dHX

t (ω + ω0)

=
∫ +∞

−∞
|G(ω)|2hX

t (ω + ω0)dω.

(54)

Furthermore, if |G(ω)|2 in (52) is sharply decreas-
ing as |ω| increases, then |G(ω)|2 is approximately
equal to the δ-function of ω. Combining this with (53)
and (54), we have

he
t (ω0) ≈ E[|Y (t)|2], (55)

where he
t (ω0) denotes the estimated evolutional

spectrum of X(t) at frequency ω0.
The following summarizes the algorithm for

estimating the ES of X(t).

1. Choose a sharply decreasing filter g(u) satisfy-
ing (52) and (53).

2. Take the following linear transform of samples
of X(t) in time interval [t− T, t] for each ω0,

Ŷ (t) =
∫ t

t−T

g(u)X̂(t− u)ejω0(t−u)du,

(56)
where X̂(t) denotes the realization/sample of
X(t). Eq. (56) is for continuous time t. For
discrete time, we have

Ŷ (n) = ΣN
n=0gnX̂N−nejω0(N−n)du. (57)

3. Compute the time average of Ŷ (t) in time
interval [t− T, t] for each ω0, which is the
estimate he

t (ω0) due to (55).

5.2. Simulation Results

In this section, we show simulation results to verify
whether our ES-based channel model is able to
produce a channel gain process whose evolutionary
spectrum matches user-specified ES. The section is
organized as below. Section 5.2.1 demonstrates the
generality of our ES based model by showing that
it can also be used to generate stationary channel
gain processes with good accuracy in terms of user-
specified ES. In Section 5.2.2, we use our ES based

model to generate a non-stationary channel gain
process and study its accuracy. Section 5.2.3 shows the
accuracy of Algorithm 2 in simulating a non-stationary
channel gain process under a mobility pattern. In
Section 5.2.4, we present the results of our trace-
driven channel simulator, i.e., Algorithm 3.

5.2.1. Accuracy of Algorithm 2 in Simulating a
Stationary Channel Gain Process

In this section, we use Algorithm 2 to generate a
stationary channel gain process, given user-specified
ES, and study the accuracy of Algorithm 2.

For a stationary channel gain process, we have
ρ(s, t) = e−|s−t|. Since At(ω) ≡ 1, the linear time-
varying filter in the channel simulator in Fig. 1(b)
can be removed. We assume ηt = 1 (∀t) and the
sampling interval is 1ms. We use the Rice model
[22, 23, 24] with the number of branches N = 20 to
implement the linear time-invariant filter in Fig. 1(b)
and generate a stationary channel gain process whose
psd is given by h(ω) = πηC(m,1)

2(1+ω2) [ (2m−1)!!
(2m−2)!! ]

2. Since
the ES of a stationary process reduces to the power
spectral density (psd) of the process, we can use
the classical spectral estimation algorithm, e.g., Burg
spectral estimation method, to estimate the psd of
the stationary channel gain process generated by
Algorithm 2.

0 0.5 1 1.5 2 2.5 3 3.5
−60

−50

−40

−30

−20

−10

0

ω

h(
ω

) 
(d

B
) 

 

 
analysis
estimation via Burg method

Fig. 3. Power spectral density of a stationary channel gain
process

Fig. 3 shows 1) user-specified psd h(ω) =
πηC(m,1)
2(1+ω2) [ (2m−1)!!

(2m−2)!! ]
2, labeled as ‘analysis’, and 2) the

estimated psf of the channel gain process generated by
Algorithm 2 via Burg method, labeled as ‘estimation
via Burg method’. It is observed that the psd obtained
by Burg method agrees well with the user-specified
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psd. This indicates high degree of accuracy of
Algorithm 2 in simulating a stationary channel gain
process.

5.2.2. Accuracy of Algorithm 2 in Simulating a
Non-stationary Channel Gain Process

In this section, we use Algorithm 2 to generate a non-
stationary channel gain process, given user-specified
ES, and study its accuracy.

For a non-stationary channel gain process, we let

ρ(s, t) =
√

2(|t|+ε)(|s|+ε)
(|t|+ε)2+(|s|+ε)2 e

− (s−t)2

4((|s|+ε)2+(|t|+ε)2) . We
set the carrier frequency to 2GHz and the Doppler
frequency spread to 30Hz. In the simulation, we
choose

g(u) =





1
2
√

hπ
, |u| ≤ h, (58a)

0, |u| > h. (58b)

Then |G(ω)|2 = 1
π

sin2(hω)
hω2 . We let h = 7. Moreover,

according to (51), we can find that the filter width
corresponding to g(u) of the above form is given by

Bg = 73/2/(2
√

π)

and for the family F given by (30), according to (50),
after simplification, we have

BF (ω) ≈ 2
√

πεω
3
2

and then

BF = [sup
ω
{BF (ω)}]−1 ≈ ε−1/(2

√
πω

3
2
m)

For a sufficiently small ε and finite Doppler spread,
i.e., ωm < ∞, the algorithm for estimating ES is
accurate. We let ε = 10−5 and ωm = 30Hz in the
simulation. Thus, we have Bg/BF ≈ 0.03.

We first examine the ES at t = 50ms for Nakagami-
m fading with m = 1. Fig. 4(a) shows user-specified
ES dHt(ω) = |Ãt(ω)|2h̃(ω), where Ãt(ω) is given
by (30) and h̃(ω) is given by (31). Fig. 4(b) shows
the estimated ES of the non-stationary channel gain
process generated by Algorithm 2 for the given user-
specified ES; the estimated ES is obtained by the
estimation method in Section 5.1. It is observed that
the estimated ES agrees well with the user-specified
ES.

We then examine the ES at t = 100ms for
Nakagami-m fading with m = 2. Fig. 5(a) shows user-
specified ES dHt(ω) = |Ãt(ω)|2h̃(ω), where Ãt(ω)

0 0.5 1 1.5 2 2.5 3 3.5
0
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0.01
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0.03

0.035

ω

(a) Analysis  

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

ω

(b) Estimation  

Fig. 4. Analytical and estimated evolutionary spectrum for
a non-stationary process at t = 50ms (m = 1)

is given by (30) and h̃(ω) is given by (31). Fig. 5(b)
shows the estimated ES of the non-stationary channel
gain process generated by Algorithm 2 for the given
user-specified ES. We again observe that the estimated
ES agrees well with the user-specified ES. This
indicates high degree of accuracy of Algorithm 2 in
simulating a non-stationary channel gain process.
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(a) Analysis  
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0.1

0.12

0.14

ω

(b) Estimation  

Fig. 5. Analytical and estimated evolutionary spectrum for
a non-stationary process at t = 100ms (m = 2)

5.2.3. Accuracy of Algorithm 2 in Simulating a
Non-stationary Channel Gain Process under a
Mobility Pattern

In this section, we use Algorithm 2 to generate a non-
stationary channel gain process, for a given mobility
pattern, and study its accuracy.

We consider a mobility pattern shown in Fig. 6.
First, the vehicle accelerates with acceleration of
2.682m/s2 till its speed reaches 60 miles per hour
(mph). This takes about 10 seconds. Then, the vehicle
keeps the speed of 60 mph for 20 seconds. Finally,
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v(t)

t0

v0
10s 10s20s

accelerate decelerate2.682m/s 2 -2.682m/s 260mph
TT1 T2

Fig. 6. Mobility pattern

the acceleration becomes −2.682m/s2 and it takes 10
seconds for the vehicle to stop.

The maximum Doppler frequency fm can be
computed by

fm = fc · υ

c
cos θ (59)

where υ is the velocity of the vehicle, c is the speed
of light, θ is the angle between the moving direction
and the signal receiving direction and fc is the carrier
frequency. In the simulation, we let fc = 2GHz and
θ = 30◦. From (59), we have fm = 154.87Hz for
υ = 60 mph.

The Gans’ Doppler spectrum SEz
(f) is given by [1]

SEz (f) =
1.5

πfm

√
1− ((f − fc)/fm)2

,

f ∈ [fc − fm, fc + fm].
(60)

As shown in Fig. 6, the velocity υ is time varying.
Hence, from (59), the Doppler frequency is also time
varying; we denote it by fm(t). Consequently, the
Gans’ Doppler spectrum is also time varying. We
denote it by SEz,t(ω), where ω = 2πf , and write

SEz,t(ω) =
3

ωm(t)
√

1− ((ω − ωc)/ωm(t))2
,

ω ∈ [ωc − ωm, ωc + ωm].
(61)

According to the definition of evolutionary spec-
trum, we have

At(ω) =
√

SEz,t(ω)

=
√

3√
ωm(t)

√
1− ((ω − ωc)/ωm(t))2

,

ω ∈ [ωc − ωm(t), ωc + ωm(t)],
(62)

under the condition that h(ω) = 1. Then, kt(u) is
given by

kt(u) =
∫ +∞

−∞
At(ω)ejωudω

=
∫ +∞

−∞

√
SEz,t(ω)ejωudω

=
∫ ωc+ωm(t)

ωc−ωm(t)

√
3ejωudω

2
√

ωm(t)
√

1− ((ω − ωc)/ωm(t))2
+

∫ −ωc+ωm(t)

−ωc−ωm(t)

√
3ejωudω

2
√

ωm(t)
√

1− ((−ω + ωc)/ωm(t))2

=
√

3
2
{
∫ ωc+ωm(t)

ωc−ωm(t)

[ω2
m(t)− (ω − ωc)2]−

1
4 ejωudω+

∫ −ωc+ωm(t)

−ωc−ωm(t)

[ω2
m(t)− (−ω + ωc)2]−

1
4 ejωudω}

(a)
= cos(ωcu)

∫ +ωm(t)

−ωm(t)

(ω2
m(t)− x2)−

1
4 ejxudx

(b)
= cos(ωcu)

∫ +1

−1

√
ωm(t)(1− t2)−

1
4 ejωm(t)·utdt

(c)
=
√

πΓ(
3
4
)(

2ωm(t)
u

)
1
4 J 1

4
(ωm(t) · u) cos(ωcu),

(63)

where (a) is due to replacing (ω − ωc) by x; (b) is due
to replacing x by t× ωm(t); (c) is due to the use of
the following integral,

∫ 1

−1

(1− t2)ν− 1
2 ejztdt =

√
πΓ(ν + 1/2)

(z/2)ν
Jν(z),

Re(ν) > −1
2
,

(64)

where Γ(·) is the Gamma function and Jν(·) is the ν-
th order Bessel function of the first kind and we let
ν = 1

4 and z = ωm(t) · u.
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We first examine the ES at t = 3s where Doppler
frequency fm = 46.45Hz according to the velocity
in Fig. 6 and (59). Fig. 7 shows user-specified ES
dHt(ω) = |At(ω)|2h(ω), where At(ω) is given by
(62) and h(ω) = 1, compared with the estimated ES
of the non-stationary channel gain process generated
by Algorithm 2 for the given user-specified ES; the
estimated ES is obtained by the estimation method in
Section 5.1. It is observed that the estimated ES agrees
well with the user-specified ES.
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Fig. 7. Analytical and estimated evolutionary spectrum at
t = 3s with Doppler frequency 46.45Hz

We then examine the ES at t = 33s where Doppler
frequency fm = 108.39Hz according to the velocity
in Fig. 6. Fig. 8 shows user-specified ES dHt(ω) =
|At(ω)|2h(ω), where At(ω) is given by (62) and
h(ω) = 1, compared with the estimated ES of the
non-stationary channel gain process generated by
Algorithm 2 for the given user-specified ES. We
again observe that the estimated ES agrees well
with the user-specified ES. Hence, Algorithm 2 is
able to accurately simulate a non-stationary channel
gain process according to the user-specified mobility
pattern.

5.2.4. Accuracy of Algorithm 3

In this section, we use Algorithm 3 to generate a non-
stationary channel gain process whose ES matches
the ES of a given channel gain trace, and study its
accuracy.

The two channel gain traces used in this section,
were collected on a moving vehicle, which was
moving at a time-varying speed between 50 mph and
70 mph on a highway in the San Francisco Bay
Area, California. The channel gain, actually, signal-to-
interference-plus-noise-ratio (SINR), was measured
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Fig. 8. Analytical and estimated evolutionary spectrum at
t = 33s with Doppler frequency 108.39Hz

every 1.67ms for approximately one hour. The
wireless system is 3G Evolution-Data Optimized (EV-
DO). For Algorithm 3, we choose Ns = 129.

For the first trace, Step 2 of Algorithm 3 produces an
estimate of 1.77 for m. Since our analysis requires that
m be a positive integer, we let m = 2. We examine the
ES at t = 30min. Fig. 9(a) shows the estimated ES of
the non-stationary channel gain process generated by
Algorithm 3; Fig. 9(b) shows the estimated ES of the
channel gain trace. The estimated ES is obtained by
the estimation method in Section 5.1. It is observed
that the estimated ES of the non-stationary channel
gain process generated by Algorithm 3 agrees well
with that of the channel gain trace.
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Fig. 9. Estimated evolutionary spectrum for the model-
based regenerated process from simulation and original

mobile-trace-1 process

For the second trace, Step 2 of Algorithm 3
produces an estimate of 1.96 for m. Since our analysis
requires that m be a positive integer, we let m =
2. We examine the ES at t = 30min. Fig. 10(a)
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shows the estimated ES of the non-stationary channel
gain process generated by Algorithm 3; Fig. 10(b)
shows the estimated ES of the channel gain trace.
The estimated ES is obtained by the estimation
method in Section 5.1. We again observe that the
estimated ES of the non-stationary channel gain
process generated by Algorithm 3 agrees well with
that of the channel gain trace. Hence, Algorithm 3 is
able to accurately simulate a non-stationary channel
gain process according to the given trace of channel
gain.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

ω

(a) Simulation  

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

0.03

ω

(b) Estimation  

Fig. 10. Estimated evolutionary spectrum for the model-
based regenerated process from simulation and original

mobile-trace-2 process

6. Conclusion

In this paper, we proposed a new methodology
for modeling non-stationary fading channels; we
call it evolutionary-spectrum (ES) based approach.
Our ES approach is capable of characterizing a
general non-stationary fading channel that has an
arbitrary ES (or time-varying power spectral density),
indicating that it is more general than the existing
piecewise-stationary models. Furthermore, our ES
approach is concise. To implement our approach in
practical systems, we developed Algorithm 2, i.e.,
an ES-based channel simulator that generates a non-
stationary correlated Nakagami-m fading process,
given user-specified ηt and ρ(s, t). We also developed
Algorithm 3, i.e., a trace-driven non-stationary
channel simulator. Simulation results show that the
evolutionary spectrum of the channel gain process
produced by our ES-based channel model agrees well
with the user-specified evolutionary spectrum or that
of the trace, indicating the accuracy of our ES-based
channel model in practical mobile communication
systems.
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.1. Proof of Proposition 1

Proof 1 For simplicity of notation, we replace X(s)
by x, replace X(t) by y, and replace ρ(s, t) by ρ in
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the derivation of R(s, t).

R(s, t)

=
∫ ∞

0

∫ ∞

0

xyf(x, y)dxdy

=
∫ ∞

0

∫ ∞

0

4(xy)m+1e−(ηyx2+ηxy2)/(ηxηy(1−ρ))

Γ(m)ηxηy(1− ρ)(ηxηyρ)(m−1)/2

· Im−1(
2
√

ρxy√
ηxηy(1− ρ)

)dxdy

=
∫ ∞

0

∫ ∞

0

4(xy)m+1e−(ηyx2+ηxy2)/(ηxηy(1−ρ))

Γ(m)ηxηy(1− ρ)(ηxηyρ)(m−1)/2

·
∞∑

k=0

1
k!Γ(m + k)

(
√

ρxy√
ηxηy(1− ρ)

)m+2k−1dxdy

=
∞∑

k=0

4 · (
√

ρ√
ηxηy(1−ρ) )

m+2k−1

Γ(m)ηxηy(1− ρ)(ηxηyρ)(m−1)/2k!Γ(m + k)

·
∫ ∞

0

x2(m+k)e−x2/(ηx(1−ρ))dx

·
∫ ∞

0

y2(m+k)e−y2/(ηy(1−ρ))dy

=
∞∑

k=0

4 · (
√

ρ√
ηxηy(1−ρ) )

m+2k−1

Γ(m)ηxηy(1− ρ)(ηxηyρ)(m−1)/2k!Γ(m + k)

· [ηx(1− ρ)]m+k
√

ηx(1− ρ)π
[2(m + k)− 1]!!

2m+k+1

· [ηy(1− ρ)]m+k
√

ηy(1− ρ)π
[2(m + k)− 1]!!

2m+k+1

=
∞∑

k=0

π{[2(m + k)− 1]!!}2√ηxηy(1− ρ)m+1ρk

Γ(m)Γ(m + k)k!22(m+k)

=
π
√

ηxηy(1− ρ)m+1

Γ(m)2m+1

∞∑

k=0

{[2(m + k)− 1]!!}2ρk

(2k)!![2(m + k − 1)]!!

=
π
√

ηxηy(1− ρ)m+1

Γ(m)2m+1

[(2m− 1)!!]2

(2m− 2)!!

· 2F1(m +
1
2
,m +

1
2
;m; ρ)

=
π
√

ηxηy(1− ρ)m+1

4
[
(2m− 1)!!
(2m− 2)!!

]2

· 2F1(m +
1
2
,m +

1
2
;m; ρ).

(65)

This completes the proof.

.2. Proof of Proposition 2

Proof 2 According to (26), we may write

Cov(s, t) ≈π
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2C(m, 1)ρ(s, t)

(a)
=

π
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2C(m, 1)

·
√

2(|t|+ ε)(|s|+ ε)
(|t|+ ε)2 + (|s|+ ε)2

· e−
(s−t)2

4((|s|+ε)2+(|t|+ε)2) ,

(66)

where (a) is because ρ(s, t) is given by (29).
On the other hand, by substituting Ãt(ω) in (30)

and h̃(ω) in (31) into the right hand side of (28), we
obtain∫ +∞

−∞
Ã∗s(ω) · Ãt(ω) · ejω(s−t) · h̃(ω)dω

=
∫ +∞

−∞

√
ηs(|s|+ ε)e−ω2(|s|+ε)2

·
√

ηt(|t|+ ε)e−ω2(|t|+ε)2 · ejω(s−t)

·
√

2πC(m, 1)
4

[
(2m− 1)!!
(2m− 2)!!

]2dω

=
C(m, 1)

√
ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2
√

2π(|t|+ ε)(|s|+ ε)

·
∫ +∞

−∞
e−ω2[(|s|+ε)2+(|s|+ε)2] · ejω(s−t)dω

(a)
=

C(m, 1)
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2
√

2π(|t|+ ε)(|s|+ ε)

·
√

π

(|t|+ ε)2 + (|s|+ ε)2
e
− (s−t)2

4((|s|+ε)2+(|t|+ε)2)

=
π
√

ηsηt

4
[
(2m− 1)!!
(2m− 2)!!

]2C(m, 1)

·
√

2(|t|+ ε)(|s|+ ε)
(|t|+ ε)2 + (|s|+ ε)2

e
− (s−t)2

4((|s|+ε)2+(|t|+ε)2) ,

(67)

where (a) is due to the following equality
∫ +∞

−∞
e−ω2a2 · ejωbdω =

√
π

a
e−b2/(4a2), a > 0,

(68)
with b = s− t and a =

√
(|s|+ ε)2 + (|t|+ ε)2.

Obviously, the right hand side of (66) is the same as
the right hand side of (67). Hence, Ãt(ω) in (30) and
h̃(ω) in (31) satisfy (28), for ρ(s, t) given in (29). This
completes the proof.
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