
1

Improved Estimation of Transmission Distortion for
Error-resilient Video Coding

Zhifeng Chen1, Peshala Pahalawatta2, Alexis Michael Tourapis2, and Dapeng Wu1,*

1Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
2Dolby Laboratories, 3601 W Alameda Ave, Burbank, CA 91505

Abstract—This paper presents an improved technique for
estimating the end-to-end distortion, which includes both quan-
tization error after encoding and random transmission error,
after transmission in video communication systems. The proposed
technique mainly differs from most existing techniques in that
it takes into account filtering operations, e.g. interpolation in
subpixel motion compensation, as introduced in advanced video
codecs. The distortion estimation for pixels or subpixels under
filtering operations requires the computation of the second
moment of a weighted sum of random variables. In this paper,
we prove a proposition for calculating the second moment of a
weighted sum of correlated random variables without requiring
knowledge of their probability distribution. Then, we apply
the proposition to extend our previous error-resilient algorithm
for prediction mode decision without significantly increasing
complexity. Experimental results using an H.264/AVC codec
show that our new algorithm provides an improvement in both
rate-distortion performance and subjective quality over existing
algorithms. Our algorithm can also be applied in the upcoming
high efficiency video coding (HEVC) standard, where additional
filtering techniques are under consideration.

Index Terms—Error-resilient Rate Distortion Optimization
(ERRDO), filtering, subpixel-level distortion estimation, frac-
tional motion estimation, ERMPC, mode decision, wireless video

I. INTRODUCTION

In a typical video encoder, two kinds of compression tech-
niques are usually involved, lossless and lossy compression.
Lossless compression can be applied by reducing the redun-
dancy between spatio-temporal neighboring pixels, i.e. through
intra/inter prediction, and through the design and use of better
codeword representations for a given probability distribution,
i.e. using entropy coding techniques. Lossy compression is
used to further compress the video by reducing fidelity, e.g.
through quantization. In traditional video coding or video
compression designs, rate-distortion (R-D) theory [1], [2] is
proposed to study the relationship between bit rate and video
distortion induced by the lossy quantization operation. With
a R-D function, the redundancy of video sequences can be
maximally exploited and distortion can be controlled by an
acceptable quantization scheme through a R-D optimization

*Correspondence author: Prof. Dapeng Wu, wu@ece.ufl.edu,
http://www.wu.ece.ufl.edu. This work was supported in part by the US
National Science Foundation under grant ECCS-1002214. Copyright (c)
2011 IEEE. Personal use of this material is permitted. However, permission
to use this material for any other purposes must be obtained from the IEEE
by sending an email to pubs-permissions@ieee.org.

(RDO) technique. However, in error-prone channels, reducing
the redundancy also reduces the resilience to random trans-
mission errors which may incur an increase in the end-to-
end distortion. On the other hand, increasing error resilience,
e.g. through random intra refreshing, may reduce compression
efficiency. Error-resilient RDO (ERRDO), or sometimes called
loss-aware RDO, is one method that can be used to alleviate
the adverse effects of both bandwidth limitations and random
transmission errors.

The problem of minimizing the distortion given a bit rate
constraint can be formulated as a Lagrangian optimization.
Due to its discrete characteristics, however, the rate distortion
function is not guaranteed to be convex [3]. Therefore, in this
case, the traditional Lagrange multiplier solution for continu-
ous convex function optimization is infeasible. The discrete
version of Lagrangian optimization was first introduced in
Ref. [4], and then applied in a source coding application
in Ref. [3]. Due to its simplicity and effectiveness, this
optimization method is widely used in traditional video coding
applications [5], [6], [7]. In the case of ERRDO, however, the
end-to-end distortion is caused by both quantization and packet
transmission errors. While the quantization error is known to
the encoder, the transmission error depends on the particular
channel realization and is therefore unknown to the encoder.
Instead, ERRDO can use an estimate of the expected end-
to-end distortion through characterizing the channel behavior,
e.g. packet loss probability (PLP), to help the RDO process.

However, predicting end-to-end distortion is particularly
challenging due to 1) the spatio-temporal correlation in the
input video sequence, that is, a packet error will degrade
not only the video quality of the current frame but also that
of the subsequent frames due to error propagation; 2) the
nonlinearity of both the encoder and the decoder, which makes
the instantaneous transmission distortion not equal to the sum
of distortions caused by individual error events; and 3) varying
PLP in time-varying channels, which makes the distortion
process into a non-stationary random process.

Some pixel-level end-to-end distortion estimation algo-
rithms have been proposed to assist mode decision as in
Ref. [8], [9], [10], [11]. Stockhammer et al. [8], [9] proposed a
distortion estimation algorithm by simulating K independent
decoders at the encoder during the encoding process and then
averaging their simulated distortion. This algorithm, which we
will refer to as LLN, is based on the Law of Large Numbers.
That is, the estimated result will asymptotically approach the



2

expected distortion when K goes to infinity. In the H.264/AVC
JM reference software [7], this method is adopted to estimate
the end-to-end distortion for mode decision. However, in
the LLN algorithm more simulated decoders lead to higher
computational complexity and larger memory requirements.
Also for the same video sequence and the same PLP, different
encoders may have different estimated distortions due to the
randomly produced error events at each encoder.

In Ref. [10], the Recursive Optimal Per-pixel Estimate
(ROPE) algorithm is proposed to estimate the pixel-level end-
to-end distortion by recursively calculating the first and second
moments of the reconstructed pixel value. However, non-
linear clipping that contributes to the transmission distortion is
neglected [12]. In addition, enhancing ROPE to support pixel
averaging operations, e.g., interpolation filtering, requires in-
tensive approximation computation of cross-correlation terms.
In Ref. [13], the authors extend ROPE by using the upper
bound, obtained from the Cauchy-Schwarz approximation, to
approximate the cross-correlation terms. However, such an
approximation requires very high complexity. For example, for
an N -tap filter interpolation, each subpixel requires N integer
multiplications1 for calculating the second moment terms;
N(N − 1)/2 floating-point multiplications and N(N − 1)/2
square root operations for calculating the cross-correlation
terms; and N(N − 1)/2 + N − 1 additions and 1 shift for
calculating the estimated distortion. On the other hand, the
upper bound approximation is not accurate for practical video
sequences since it assumes that the correlation coefficient is
1, for any two neighboring pixels. In Ref. [14], the authors
propose several models to approximate the correlation coeffi-
cient of two pixels as functions, e.g., an exponentially decaying
function, of their distance. However, due to the random behav-
ior of individual pixel samples, the statistical model does not
produce an accurate pixel-level distortion estimate. In addition,
such approximations incur extra complexity compared to the
Cauchy-Schwarz upper bound approximation, since they need
additional N(N−1)/2 exponential operations and N(N−1)/2
floating-point multiplications for each subpixel. Therefore,
the complexity incurred is prohibitively high for real-time
video encoders. On the other hand, since both the Cauchy-
Schwarz upper bound and the correlation coefficient model ap-
proximations require floating-point multiplications, additional
round-off errors are unavoidable, which further reduce their
estimation accuracy.

In Ref. [12], we proposed a divide-and-conquer method to
quantify the effects of four individual terms on transmission
distortion, i.e. 1) residual concealment error, 2) Motion Vector
(MV) concealment error, 3) propagation error and clipping
noise, and 4) correlations between any two of them. Based
on our theoretical results, we proposed the RMPC algorithm
in Ref. [11] for error-resilient rate-distortion optimized mode
decision with pixel-level end-to-end distortion estimation. In
state-of-the-art video codecs, such as H.264/AVC [15] and
HEVC [16], fractional pixel motion compensation with inter-

1One common method to simplify the multiplication of an integer variable
and a fractional constant is as follows: first scale up the fractional constant
by a certain factor; round it off to an integer; perform integer multiplication;
finally scale down the product.

polation filtering can have a substantial R-D performance gain.
However, distortion estimation for pixels or subpixels under
filtering operations requires the computation of the second
moment of a weighted sum of random variables. In this paper,
we first theoretically derive a proposition for calculating the
second moment of a weighted sum of correlated random vari-
ables using a closed-form function of the second moments of
those individual random variables. This proposition is general
in estimating the distortion for any pixels after a filtering
operation. Then, we apply the proposition to extend our pre-
vious RMPC algorithm to subpixel-level distortion estimation
for prediction mode decision without significantly increasing
complexity. This algorithm is referred to as ERMPC. The
ERMPC algorithm only requires N integer multiplications,
N − 1 additions, and 1 shift to calculate the second moment
for each subpixel. Experimental results show that, ERMPC
achieves an average PSNR gain of 0.25dB over the existing
RMPC algorithm for the ‘mobile’ sequence when PLP equals
2%; and ERMPC achieves an average PSNR gain of 1.34dB
over the the LLN algorithm for the ‘foreman’ sequence when
PLP equals 1%.

The rest of this paper is organized as follows. Section II
presents the system description and the necessary preliminaries
of the RMPC algorithm, and serves as a starting point for
understanding the following sections. In Section III, we first
derive the general proposition for the second moment of
a weighted sum of correlated random variables, and then
apply this proposition to design a low-complexity and high-
accuracy algorithm for mode decision. Section IV shows the
experimental results, which demonstrate the advantages of the
ERMPC algorithm over existing algorithms for H.264/AVC
mode decision in error prone environments. Section V con-
cludes the paper.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

A. Structure of a Wireless Video Communication System

Fig. 1 shows the structure of a typical hybrid video coding
system. Note that in this system, both the residual and the
MV channels are application-layer channels. These channels
can be separated for more general applications, e.g. for slice
data partitioning under Unequal Error Protection (UEP). If the
residual and MV packets are transmitted in the same channel
with the same error protection, this becomes a special case
where the two channels have the same characteristics and are
fully correlated.

In Fig. 1, for any pixel u in the k-th frame, fk
u is the input

pixel value at the encoder; f̂k
u and f̃k

u are the reconstructed
pixel values at the encoder and decoder respectively. Suppose
the pixel u in the k-th frame uses the k − j-th frame as a
reference, where j ∈ {1, 2, ..., J} and J is the number of ref-
erence frames. If motion estimation is performed before mode
decision as in the JM16.0 reference software, the best MV
value mvk

u for each prediction mode and the corresponding
residual value eku = fk

u − f̂k−j
u+mvk

u
for each prediction mode

are known. As a result, after the transform, quantization, de-
quantization, and inverse transform processes at the encoder,
the reconstructed residual êku and the reconstructed pixel value



3

Video
capture

Input

T/Q-
Q-1/T-1

Residual
Channel

+

Motion
compensation

Memory

Motion
estimation

MV
Channel

Q-1/T-1

+

Motion
compensation

MV Error
concealment

ChannelEncoder Decoder

Video
display

Output

Clipping Clipping

Memory

keu

k
uvm

(

keuˆ

kfûjkf −
û

jk
kf −

+ umvu
ˆ '

~
~ jk

kf −
+ uvmu

keu
~

kfu

~

'~ jkf −
u

Residual Error
Concealment

keuˆ

keu
(

kfu

k
umv

S(r)

S(m)

‘0’

‘0’

‘1’

‘1’

Fig. 1. System structure, where T, Q, Q−1, and T−1 denote transform, quantization, inverse quantization, and inverse transform, respectively.

f̂k
u = Γ(f̂k−j

u+mvk
u
+ êku) are known for each prediction mode.

Γ(·) is the clipping function and is defined by

Γ(x) =


γL, x < γL

x, γL ≤ x ≤ γH

γH , x > γH ,

(1)

where γL and γH are low threshold and high threshold of
pixel values. In this paper, we let γL = 0 and γH = 255.

Let us define fk
u − f̂k

u as quantization error and

ζ̃ku , f̂k
u − f̃k

u (2)

as transmission error. While the quantization error is known
to the encoder after the encoding process, the transmission
error is caused from any combinations of three error events,
i.e. residual packet, MV packet, and propagated errors. In
Fig. 1, the residual used for reconstruction in the decoder, i.e.
ẽku, may be either the quantized residual êku or the concealed
residual ěku depending on the error status of residual packet
S(r); The MV used for motion compensation in the decoder,
i.e. m̃v

k
u, may be either the true MV mvk

u or the concealed
MV m̌vk

u depending on the error status of MV packet S(m);
as a result, the reconstructed pixel value in the decoder is
f̃k
u = Γ(f̃k−j′

u+m̃vk
u

+ ẽku) where f̃k−j′

u+m̃vk
u

is the reference pixel
value for reconstruction at the decoder, which recursively
depends on all error events in the reference trajectory till the
intra coded pixel.

Depending on whether the MV is correctly received or not,
the propagated error can be calculated, according to (2), by

ζ̃k−j′

u+m̃vk
u

=

{
ζ̃k−j
u+mvk

u
= f̂k−j

u+mvk
u
− f̃k−j

u+mvk
u
, S(m)=0

ζ̃k−j′

u+m̌vk
u
= f̂k−j

u+mvk
u
− f̃k−j′

u+m̌vk
u
, S(m)=1,

(3)

where the concealed MV may point to a different reference
frame j′ from the true reference frame j.

Clipping noise is defined as ∆̂k
u , (f̂k−j

u+mvk
u
+ êku) −

Γ(f̂k−j
u+mvk

u
+ êku) at the encoder and as ∆̃k

u , (f̃k−j′

u+m̃vk
u

+

ẽku) − Γ(f̃k−j′

u+m̃vk
u

+ ẽku) at the decoder. That is, the clipping

noise at the decoder is a function of the residual concealment,
MV concealment, and propagated errors. Denote {r̄, m̄} as the
error event that both residual and MV are correctly received
at the decoder for pixel uk; the clipping noise under this event
will be ∆̃k

u{r̄, m̄} = (f̃k−j
u+mvk

u
+ êku)− Γ(f̃k−j

u+mvk
u
+ êku).

Some important notations used in this paper are listed in
Table I. Throughout this paper, we addˆonto the reconstructed
variables at the encoder; addˇonto the concealed variables at
the decoder; and add˜onto the variables, which are subject to
the random channel error at the decoder.

B. Preliminaries about the RMPC algorithm

In Ref. [12], we take a divide-and-conquer approach to de-
rive the second moment of ζ̃ku, i.e. E[(ζ̃ku)

2]. We first divide the
transmission reconstructed error into four components: three
random errors (residual concealment, MV concealment, and
propagated errors) due to their different physical causes, and
clipping noise, which is a non-linear function of these three
random errors. This error decomposition allows us to quantify
the effects of below four terms on transmission distortion: (1)
residual concealment error (R), (2) MV concealment error
(M), (3) propagated error plus clipping noise (P), and (4)
correlations between any two of the error sources (C). Based
on this decomposition, we developed a practical algorithm,
called RMPC algorithm, to estimate the pixel-level end-to-end
distortion (PEED) for mode decision in Ref. [11].

In Ref. [11], the end-to-end distortion function for each
pixel u in the k-th frame is defined as Dk

u,ETE , E[(fk
u −

f̃k
u)

2], and can be derived by

Dk
u,ETE = E[(fk

u − f̃k
u)

2] = E[(fk
u − f̂k

u + ζ̃ku)
2]

= (fk
u − f̂k

u)
2 + E[(ζ̃ku)

2] + 2(fk
u − f̂k

u) · E[ζ̃ku].
(4)

Define εku , êku−ěku as the residual concealment error when
the residual packet is lost; define ξku , f̂k−j

u+mvk
u
− f̂k−j′

u+m̌vk
u

as the MV concealment error when the MV packet is lost;
and denote P k

u as the PLP for pixel u in the k-th frame.
Under the assumptions that S(r) is independent of eku and



4

TABLE I
NOTATIONS

fk
u : Value of the pixel with position u in the k-th frame, i.e. pixel uk .

eku : Residual value of the pixel uk .
mvk

u : MV of the pixel uk .
∆k

u : Clipping noise of the pixel uk .
∆k

u{r̄, m̄}: Clipping noise of the pixel uk under the condition that both residual and MV are correctly received at the decoder.
ζku : Transmission error of the pixel uk , defined in (2).
εku : Residual concealment error of the pixel uk .
ξku : MV concealment error of the pixel uk .
ζ̃k−j

u+mvk
u

: 1) propagated error of the pixel uk whose reference pixel is pointed to the k − j-th frame by the true MV mvk
u;

: 2) transmission error of the pixel with position u+mvk
u in the k − j-th frame according to (2).

ζ̃k−j′

u+m̌vk
u

: 1) propagated error of the pixel uk whose reference pixel is pointed to the k − j′-th frame by the concealed MV m̌vk
u;

: 2) transmission error of the pixel with position u+ m̌vk
u in the k − j′-th frame according to (2).

S(m) is independent of ξku, i.e. the packet transmission error
is independent from the values of residual and MV, we proved
in Refs. [12], [11] that without slice data partitioning, E[ζ̃ku]
and E[(ζ̃ku)

2] can be calculated by (5) and (6) 2,

E[ζ̃ku] = P k
u · (εku + ξku + E[ζ̃k−j′

u+m̌vk
u
])

+ (1− P k
u ) · E[ζ̃k−j

u+mvk
u
+ ∆̃k

u{r̄, m̄}],
(5)

E[(ζ̃ku)
2] = P k

u · ((εku + ξku)
2 + 2(εku + ξku) · E[ζ̃k−j′

u+m̌vk
u
]

+ E[(ζ̃k−j′

u+m̌vk
u
)2]) + (1− P k

u ) · E[(ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄})2],
(6)

where E[ζ̃k−j′

u+m̌vk
u
] and E[(ζ̃k−j′

u+m̌vk
u
)2] in the k − j′-th frame

have been calculated by (5) and (6) and stored in memory
during encoding of the k−j′-th frame; E[ζ̃k−j

u+mvk
u
+∆̃k

u{r̄, m̄}]
and E[(ζ̃k−j

u+mvk
u
+ ∆̃k

u{r̄, m̄})2] can be calculated by (7)

and (8), where E[ζ̃k−j
u+mvk

u
] and E[(ζ̃k−j

u+mvk
u
)2] have been

calculated and stored in memory during encoding of the k−j-
th frame. Note that in this paper, for simplicity, we use E(·)
to also represent the estimate of E(·), i.e. Ê(·), in Ref. [11].

Existing pixel-level algorithms, e.g., the RMPC algorithm,
are based on the integer pixel MV assumption to derive an esti-
mate of Dk

u,ETE . In order words, in (5), (6), (7) and (8), mvk
u

is with integer-pixel accuracy. Therefore, their application in
state-of-the-art encoders is limited due to the possible use of
fractional motion compensation. For subpixel motion compen-
sation, E[ζ̃k−j

u+mvk
u
] and E[(ζ̃k−j

u+mvk
u
)2] need to be estimated

based on the interpolated pixel values, i.e. a weighted sum
of several neighboring pixels. That is, E[(ζ̃k−j

u+mvk
u
)2] requires

the computation of the second moment of a weighted sum of
correlated random variables and therefore the computation of
several cross-correlation terms. This is also true for distortion
estimation for pixels or subpixels under other filtering opera-
tions. In Section III, we will extend RMPC algorithm to solve
this problem with low complexity.

III. THE EXTENDED RMPC ALGORITHM FOR MODE
DECISION

In this section, we first derive a general proposition for
any second moment of a weighted sum of correlated random

2In Ref. [12], [11], we assume that if S(m) = 1, the reference pixel,
pointed by the concealed MV m̌vk

u, comes from the k − 1-th frame; in
this paper, we denote the k − j′-th frame for reference pixel pointed by the
concealed MV m̌vk

u without such an assumption.

variables; then we apply it to extend RMPC to estimate the
end-to-end distortion for subpixel motion compensation and
design the algorithm for mode decision.

A. Subpixel-level Distortion Estimation for Error Resilient
Video Encoding

Typically, the rate distortion optimized mode decision con-
sists of two steps. First, the R-D cost is calculated by

J(ωm) = Dk(ωm) + λ ·R(ωm), (9)

where Dk = 1
|Vk

l |
∑

u∈Vk
l
Dk

u; Vk
l is the set of pixels in the

l-th MB (or sub-MB, i.e. any block size for a given prediction
mode) of the k-th frame; ωm is the prediction mode [17];
R(ωm) is the encoded bit rate for mode ωm, ωm ∈ Ωm and
Ωm is the mode set for mode decision; λ is the preset Lagrange
multiplier. Then, the optimal prediction mode that minimizes
the rate-distortion (R-D) cost is found by

ω̂m = arg min
ωm∈Ωm

{J(ωm)}. (10)

For the RMPC algorithms, if the MV of one block for
encoding is fractional, the MV has to be rounded to the
nearest integer. This block will use the reference block pointed
to by the rounded MV as a reference. However, in state-of-
the-art codecs, such as H.264/AVC and HEVC, interpolation
filters are used to interpolate a reference block. Therefore, the
distortion of nearest neighbor approximation is not optimal for
such an encoder. In order to optimally estimate the distortion
for pixels with interpolation filtering, or any other filtering in
general, we need to extend the existing RMPC algorithm.

In H.264/AVC, motion compensation accuracy is in units
of one quarter of the distance between luma samples. 3 The
prediction values at half-sample positions are obtained by
applying a one-dimensional 6-tap Finite Impulse Response
(FIR) filter horizontally and vertically. The prediction values at
quarter-sample positions are generated by averaging samples
at integer- and half-sample positions [17]. Take ζ̃k−j

u+mvk
u

in
(5), (6), (7) and (8) for example. Denote vk−j = u + mvk

u

and v is in a subpixel position in the k − j-th frame. All
neighboring pixels in the integer position, used to interpolate
the reconstructed pixel value at v, are denoted by vi and with
a weight wi, i ∈ 1, 2, ..., N , where N = 6 for the half-sample

3Note that considering the chroma distortion does not always improve the
R-D performance but induces more complexity. Therefore, we only consider
luma components in this paper.



5

E[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}] =


f̂k
u − 255, E[ζ̃k−j

u+mvk
u
] < f̂k

u − 255

f̂k
u , E[ζ̃k−j

u+mvk
u
] > f̂k

u

E[ζ̃k−j
u+mvk

u
], f̂k

u − 255 ≤ E[ζ̃k−j
u+mvk

u
] ≤ f̂k

u ,

(7)

E[(ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄})2] =


(f̂k

u − 255)2, E[ζ̃k−j
u+mvk

u
] < f̂k

u − 255

(f̂k
u)

2, E[ζ̃k−j
u+mvk

u
] > f̂k

u

E[(ζ̃k−j
u+mvk

u
)2], f̂k

u − 255 ≤ E[ζ̃k−j
u+mvk

u
] ≤ f̂k

u ,

(8)

interpolation, and N = 2 for the quarter-sample interpolation
in H.264/AVC. Therefore, the interpolated reconstructed pixel
value at the encoder is

f̂k−j
v =

N∑
i=1

wi · f̂k−j
vi

, (11)

and at the decoder

f̃k−j
v =

N∑
i=1

wi · f̃k−j
vi

. (12)

From (2), we have

ζ̃k−j
v =

N∑
i=1

wi · f̂k−j
vi

−
N∑
i=1

wi · f̃k−j
vi

=
N∑
i=1

wi · (f̂k−j
vi

− f̃k−j
vi

) =
N∑
i=1

wi · ζ̃k−j
vi

.

(13)

Since E[ζ̃k−j
vi

] has been calculated by the RMPC algorithm,
E[ζ̃k−j

v ] can be very easily calculated by

E[ζ̃k−j
v ] =

N∑
i=1

wi · E[ζ̃k−j
vi

]. (14)

However, calculating E[(ζ̃k−j
v )2] is not straightforward since

E[(ζ̃k−j
v )2] = E[(

N∑
i=1

wi · ζ̃k−j
vi

)2] (15)

is in fact the second moment of a weighted sum of correlated
random variables.

B. A Proposition for Calculating the Second Moment of a
Weighted Sum of Correlated Random Variables

The Moment Generating Function (MGF) can be used
to calculate the second moment for random variables [18].
However, to estimate the second moment of a weighted sum of
random variables, the traditional moment generating function
usually requires knowing their probability distribution and
assumes they are independent. However, in a practical video
codec, most random variables, e.g. those involved in the
averaging operations, are not independent and their probability
distributions are unknown. Therefore, some approximations,
such as the Cauchy-Schwarz upper bound approximation [13]
or the correlation coefficient model approximation [14], are
usually adopted. However, those approximations are of high
complexity. For example, for each subpixel, with the N -tap
filter interpolation, the Cauchy-Schwarz upper bound approx-
imation requires N integer multiplications for calculating the
second moment terms, N(N − 1)/2 floating-point multipli-
cations and N(N − 1)/2 square root operations for calculat-
ing the cross-correlation terms, and N(N − 1)/2 + N − 1

additions and 1 shift for calculating the estimated distor-
tion. The correlation coefficient model requires an additional
N(N−1)/2 exponential operations and N(N−1)/2 floating-
point multiplications when compared to the Cauchy-Schwarz
upper bound approximation.

In a wireless video communication system, the computa-
tional capability of the real-time encoder is usually very lim-
ited, and floating-point processing is undesirable. Therefore,
it is desirable to design a new algorithm for the calculation
of the second moment in (15) using only integer operations.
Proposition 1 is a result of this motivation.

Proposition 1: For any N correlated random variables
{X1, X2, ..., XN} and wi ∈ ℜ, i ∈ {1, 2, ..., N}, the second
moment of the weighted sum of these random variables is
given by (16).

E[(

N∑
i=1

wi ·Xi)
2] =

N∑
i=1

wi ·
N∑
j=1

[wj · E(X2
j )]−

N−1∑
k=1

N∑
l=k+1

[wk · wl · E(Xk −Xl)
2]

(16)

The proof of Proposition 1 is provided below. Note that in
H.264/AVC, most averaging operations, e.g., interpolation, de-
blocking, and bi-prediction, are special cases of Proposition 1
in that

∑N
i=1 wi = 1. Therefore, we can extend the RMPC

algorithm through the consideration of Proposition 1. In (16),
since E(X2

j ) has been estimated by the RMPC algorithm,
the only unknown is

∑N−1
k=1

∑N
l=k+1[wk ·wl ·E(Xk −Xl)

2].
However, we will see that this unknown can be assumed to be
negligible for the purposes of mode decision.

C. The Extended RMPC Algorithm for Mode Decision

1) Algorithm design: Replacing Xk and Xl in (16) by ζ̃kui

and ζ̃kuj
, and from (2) we have

E[(Xk −Xl)
2] = E[(ζ̃kui

− ζ̃kuj
)2]

= E[f̂k
ui

− f̃k
ui

− (f̂k
uj

− f̃k
uj
)]2

= E[(f̂k
ui

− f̂k
uj
)− (f̃k

ui
− f̃k

uj
)]2.

(17)

In (17), both f̂k
ui
−f̂k

uj
and f̃k

ui
−f̃k

uj
depend on the spatial cor-

relation of the reconstructed pixel values in position ui and uj .
When ui and uj are located in the same neighborhood, they
are very likely to be transmitted in the same packet. In other
words, either both f̃k

ui
and f̃k

uj
use the true MV and residual

for reconstruction, or both f̃k
ui

and f̃k
uj

use the concealed MV
and residual for reconstruction. Therefore, f̃k

ui
− f̃k

uj
will not

change too much from f̂k
ui

− f̂k
uj

, and hence E[(ζ̃kui
− ζ̃kuj

)2]



6

Proof:

E[(
N∑
i=1

wi ·Xi)
2] = E[

N∑
j=1

(w2
j ·X2

j ) +
N∑

k=1

N∑
l=1

(l̸=k)

(wk · wl ·Xk ·Xl)]

= E[
N∑

j′=1

wj′

N∑
j=1

(wj ·X2
j )−

N∑
j=1

N∑
j′=1

(j′ ̸=j)

(wj · wj′ ·X2
j ) +

N∑
k=1

N∑
l=1

(l̸=k)

(wk · wl ·Xk ·Xl)]

=
N∑
i=1

wi

N∑
j=1

[wj · E(X2
j )]− E{

N−1∑
k=1

N∑
l=k+1

[wk · wl · (X2
k +X2

l )] +
N−1∑
k=1

N∑
l=k+1

(2 · wk · wl ·Xk ·Xl)}

=
N∑
i=1

wi

N∑
j=1

[wj · E(X2
j )]−

N−1∑
k=1

N∑
l=k+1

[wk · wl · E(Xk −Xl)
2].

is much smaller than E[(ζ̃kui
)2] and E[(ζ̃kuj

)2] in (16). On
the other hand, distortion is estimated for one MB or one
sub-MB as in (9) for mode decision. When the cardinality
|Vk

l | is large,
∑

v∈Vk
l

∑N−1
i=1

∑N
j=i+1[wi ·wj ·E(ζ̃kui

− ζ̃kuj
)2]

converges to a constant for all modes with high probability due
to the summation over the same samples in each mode. For
simplicity, we will call it “negligible term” in the following
sections. Therefore, in (16) only the first term on the right-
hand side needs to be calculated without too much loss in
precision.

Since
∑N

i=1 wi = 1, we calculate E[(ζ̃kv)
2] for mode

decision by

E[(ζ̃kv)
2] =

N∑
i=1

[wi · E(ζ̃kui
)2]. (18)

With the N -tap filter interpolation, the complexity in (18)
is dramatically reduced to only N integer multiplications,
N − 1 additions, and 1 shift. Here, we propose the following
algorithm to extend the RMPC algorithm for mode decision.

Algorithm 1: Rate distortion optimized mode decision for
an MB in the k-th frame (k >= 1).

1) Input: QP, PLP.
2) Initialization of E[ζ̃0u] and E[(ζ̃0u)

2] for all pixel u.
3) Loop for all available modes for each MB.

3a) estimate E[ζ̃k−j
u+mvk

u
] via (14) and

E[(ζ̃k−j
u+mvk

u
)2] via (18) for all pixels in the MB,

3b) estimate E[ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄}] via (7) and

E[(ζ̃k−j
u+mvk

u
+ ∆̃k

u{r̄, m̄})2] via (8) for all pixels
in the MB,
3c) estimate E[ζ̃ku] via (5) and E[(ζ̃ku)

2] via (6)
for all pixels in the MB,
3d) estimate Dk

u via (4) for all pixels in the MB,
3e) estimate R-D cost for the MB via (9),

End
4) Via (10), select the best mode with minimum R-D
cost for the MB.
5) Output: the best mode for the MB.

Algorithm 1 is referred to as the Extended RMPC
(ERPMC). Note that if an MV packet is lost, in order to
reduce both the MV concealment and distortion estimation
complexity, the concealed MV m̌vk

u does not necessary use
fractional accuracy. That is, the ERMPC algorithm conceals

the MV with integer accuracy. Therefore, E[ζ̃k−j′

u+m̌vk
u
] and

E[(ζ̃k−j′

u+m̌vk
u
)2] in (5) and (6) do not require (18).

2) Complexity analysis: In Ref. [11], we compare the
complexity of RMPC to that of ROPE and LLN in the-
ory. In this section, we first compare the complexity of
ERMPC to RMPC in theory. Then, we test the complexity
of ERMPC/RMPC/ROPE in JM16.0 and compare them to the
default ERRDO algorithm in JM16.0, i.e. LLN; we also test
the RDO without error-resilient algorithms as a benchmark.

RMPC computational complexity is calculated from (4),
(5), (6), (7) and (8), where the first moment and the second
moment of the reconstructed error of the best mode should
be stored after the mode decision (Note that the reconstructed
error in previous frames could be regarded as the propagated
error in the current frame, recursively). Therefore, 2 units of
memory are required to store those two moments for each
pixel. Note that the first moment E[ζ̃k−j

u+mvk
u
] takes values

in {−255,−254, ..., 255}, i.e., 8 bits plus 1 sign bit per
pixel, and the second moment E[(ζ̃k−j

u+mvk
u
)2] takes values

in {0, 1, ..., 2552}, i.e., 16 bits per pixel. From the discus-
sion above, we know that the difference, in computational
complexity, of ERMPC compared to RMPC is the estimation
of E[ζ̃k−j

u+mvk
u
] in (7) and E[(ζ̃k−j

u+mvk
u
)2] in (8). To be more

specific, in ERMPC E[ζ̃k−j
u+mvk

u
] and E[(ζ̃k−j

u+mvk
u
)2] include a

fractional MV while in RMPC E[ζ̃k−j
u+mvk

u
] and E[(ζ̃k−j

u+mvk
u
)2]

include only an integer MV. Therefore, the additional complex-
ity of ERMPC compared to RMPC is the calculation of (14)
and (18).

Note that (14) and (18) are not needed in ERMPC if: 1)
the prediction mode is intra; 2) the MV is an integer MV. For
MVs pointing to half-pixel positions, the values of {wi} are
{1,−5, 20, 20,−5, 1} in (14) and (18); i.e., there are N = 6
integer multiplications, N − 1 = 5 additions, and 1 right shift
with 5 bits to make sure

∑N
i=1 wi = 1. By using the same

simplification of the JM interpolation implementation, (18) can
be calculated by E(ζ̃ku3.5

)2 = {20 · [E(ζ̃ku3
)2 +E(ζ̃ku4

)2]− 5 ·
[E(ζ̃ku2

)2 + E(ζ̃ku5
)2] + [E(ζ̃ku1

)2 + E(ζ̃ku6
)2] + 16} >> 5.

In fact, we may further simplify the implementation of (18)
by replacing the integer multiplication operations by additions



7

and shifts as

E(ζ̃ku3.5
)2 = {[E(ζ̃ku3

)2 + E(ζ̃ku4
)2] ≪ 4

+ [E(ζ̃ku3
)2 + E(ζ̃ku4

)2] ≪ 2− [E(ζ̃ku2
)2 + E(ζ̃ku5

)2] ≪ 2

− [E(ζ̃ku2
)2 + E(ζ̃ku5

)2] + [E(ζ̃ku1
)2 + E(ζ̃ku6

)2] + 16} ≫ 5.
(19)

Note that in (19), E(ζ̃ku3
)2+E(ζ̃ku4

)2 and E(ζ̃ku2
)2+E(ζ̃ku5

)2

are invoked two times, but are counted only once since the
temporary result is saved in the CPU register. As a result, the
half-pixel position needs 8 additions (ADDs) and 4 shifts only.

For quarter-pixel positions additional computations will
need to be performed. We observe that there are two prac-
tical implementations for ERMP, each one having different
computational complexity and memory requirements. In the
first, we can store the first and second moments of the
transmission error for half-pixel positions, which will require
3 times the memory compared to storing only the integer
pixel moments. However, this will reduce the complexity of
calculating the moments for quarter-pixel positions. In the
second, the moments for all fractional positions are calculated
on the fly. This is also the method used in the LLN algorithm
available in the JM. The complexity of this method is analyzed
below. Note that the computational complexity of calculating
(14) and (18) for different subpixel positions is different.

In this paper we only show the complexity analysis for
those half-pixel positions interpolated by integer pixels. It is
very easy to extend this analysis for all fractional positions.
Since (14) and (18) are calculated on the fly, there is no
additional memory requirement for ERMPC. Note that in most
CPUs, a shift can be integrated into an ADD, therefore not
impacting complexity. As a result, the complexity of ERMPC
can be found in Table II 4. For LLN, half-pixel position
motion compensation requires 8 ADDs and 4 shifts more than
LLN with integer-pixel position motion compensation for each
simulated decoder; that is LLN is 8Nd ADDs more than the
complexity of that in Ref. [11], where Nd means the number
of simulated decoders at the encoder; the default value in JM is
Nd = 30. We also cite the complexity of ROPE and LLN with
integer MV accuracy from Ref. [11] in Table II for reference.

Since the theoretical complexity comparison only accounts
for half-pixel positions, it would be beneficial to evaluate com-
plexity in a real encoding environment. In reality, MVs could
point to any position, integer or fractional. The nearest integer
MV is used to approximate the fractional MV in RMPC and
ROPE. NO ERRDO means the normal RDO mode decision
process, without any error resiliency considerations available
in the JM. Table III shows the results for the mobile sequence
at CIF resolution with PLP = 5%. The experimental setup is
the same as those in Section IV. A system based on an AMD
Opteron(tm) 2356 processor at 2.29GHz was used. It can be
seen that the executation time of ERMPC/RMPC/ROPE is
only slightly higher of that of ERRDO. However, LLN requires
considerable more execution time than these schemes. Other
sequences and channel conditions show similar results.

4Note that in H.264/AVC seven inter prediction modes are supported, i.e.,
16× 16, 16× 8, 8× 16, 8× 8, 8× 4, 4× 8, and 4× 4. Nine intra 4× 4
and 8 × 8 modes, as well as four 16 × 16 modes for luma intra prediction
are supported. Total complexity is calculated for all prediction modes.

D. Merits and Limitations of ERMPC Algorithm

1) Merits: Since both the Cauchy-Schwarz upper bound
approximation [13] and the correlation coefficient model ap-
proximation [14] induce floating-point multiplications, round-
off error is unavoidable. The algorithm by Yang et al. [14]
needs extra complexity to mitigate the effect of round-off error
during distortion estimation. In contrast, one of the merits of
Proposition 1 is that it only needs integer multiplications and
additions. In H.264/AVC and HEVC, wi (and wi ·wj) can be
scaled to an integer value without any round-off error for all
coding modes. As a result, round-off error can be avoided in
the ERMPC algorithm.

In Ref. [19], the authors prove that a low-pass interpolation
filter will decrease the frame-level propagated error under
some assumptions. In fact, it is easy to prove that when∑N

i=1 wi = 1 and |Vk
l | is large, the negligible term is larger

than or equal to zero. Even at the MB-level, the negligible
term is larger than or equal to zero with very high probability.
From (16), we see that the block-level distortion decreases,
with very high probability, after the interpolation filtering.

One additional benefit of (16) is to guide the design of the
interpolation filter. Traditional interpolation filter design aims
to minimize the prediction error. With (16), we may design
an interpolation filter by maximizing

∑N
k=1

∑N
l=k+1[wk ·wl ·

E(Xk −Xl)
2] under the constraint of

∑N
j=1[wj · E(X2

j )].
2) Limitations: In Algorithm 1, the second moment of

propagated error E[(ζ̃k−j
u+mvk

u
)2] is estimated by ignoring the

negligible term to reduce the complexity. A more accurate
alternative method is to estimate E(ζ̃kui

− ζ̃kuj
)2] recursively

by storing the value in memory. This will be considered in
our future work.

IV. EXPERIMENTAL RESULTS

In this section, we compare the R-D performance and
subjective performance of the ERMPC algorithm with that
of the RMPC and the LLN algorithms for mode decision in
H.264/AVC. Since the original ROPE does not support the
interpolation filtering operation and its extensions [13], [14]
induce many floating-point operations and round-off errors, we
only use the same nearest integer MV approximation to show
how its R-D performance differs from ERMPC, RMPC, and
LLN. To compare all algorithms under multi-reference picture
motion compensated prediction, we also enhance the original
ROPE algorithm [10] with multi-reference capability.

A. Experimental Setup

The JM encoder and decoder were used in the experiments.
The first 100 frames from several CIF resolution, 30fps test
video sequences were tested under different PLP settings from
0.5% to 5%. The co-located pixel copy from the previous
frame method was used for error concealment in all algo-
rithms. The first frame is assumed to be correctly received.
The High profile of H.264/AVC, using CABAC for entropy
coding but without B slices, with 3 slices per picture and 3
reference frames, was used. Constrained intra prediction was
also enabled. In the LLN algorithm, the number of simulated
decoders is 30.



8

TABLE II
COMPLEXITY COMPARISON IN THEORY

Algorithms computational complexity memory requirement
inter mode 25 ADDs, 8 MULs

ERMPC (half-pixel) intra mode 7 ADDs, 6 MULs 25 bits/pixel
total complexity 266 ADDs, 134 MULs

inter mode 9 ADDs, 8 MULs
RMPC intra mode 7 ADDs, 6 MULs 25 bits/pixel

total complexity 154 ADDs, 134 MULs
inter mode 10Nd ADDs, Nd MULs

LLN (half-pixel) intra mode Nd ADDs, Nd MULs 8Nd bits/pixel
total complexity 83Nd ADDs, 20Nd MULs

inter mode 2Nd ADDs, Nd MULs
LLN (integer pixel) intra mode Nd ADDs, Nd MULs 8Nd bits/pixel

total complexity 27Nd ADDs, 20Nd MULs
inter mode 7 ADDs, 8 MULs

ROPE intra mode 4 ADDs, 7 MULs 24 bits/pixel
total complexity 101 ADDs, 147 MULs

TABLE III
COMPLEXITY COMPARISON IN EXPERIMENT

Algorithm ERMPC RMPC LLN ROPE NO ERRDO
Time in second 105.828 105.126 137.393 104.766 102.719

B. R-D Performance

Due to space limitations, we only show the plots of PSNR
vs. bit rate for video sequences ‘foreman’ and ‘mobile’ under
PLP = 0.5% and PLP = 2% in Figs. 2 and 3 respectively.
The experimental results show that ERMPC achieves the
best R-D performance; RMPC achieves the second best R-
D performance; ROPE achieves better performance than LLN
in some cases such as at high rate in Fig. 2, but worse
performance than LLN in other cases such as in Fig. 3 and at
the low rate in Fig. 2.

It is interesting to see that for some sequences and chan-
nel conditions, ERMPC achieves a notable PSNR gain over
RMPC. This is, for example, evident in ‘mobile’ and ‘fore-
man’. For some other cases, however, ERMPC only achieves
a marginal PSNR gain over RMPC (e.g., ‘coastguard’ and
‘football’). From the analysis in Section III-A, we know
that the only difference between RMPC and ERMPC is the
estimate of the propagated error ζ̃k−j

u+mvk
u

in (7) and (8).
Therefore, the performance gain of ERMPC over RMPC only
comes from inter modes, since they both use exactly the same
estimates for intra modes. Thus, the higher percentage of intra
modes in ‘coastguard’ and ‘football’ may result in a marginal
PSNR gain of ERMPC over RMPC.

For most sequences and channel conditions, we observe that
in most cases the higher the bit rate for encoding, the more
the PSNR gain of ERMPC over RMPC, such as in Fig. 2
and Fig. 3(a). In (4), the end-to-end distortion consists of
both quantization and transmission distortion. The ERMPC
algorithm gives a more accurate estimation of propagated error
in transmission distortion than the RMPC algorithm. When the
bit rate for source encoding is very low, with rate control the
controlled Quantization parameter (QP) is large, and hence
the quantization distortion becomes the dominant part in the
end-to-end distortion. Therefore, the PSNR gain of ERMPC
over RMPC is marginal. On the contrary, when the bit rate for
source encoding is high, the transmission distortion becomes
the dominant part in the end-to-end distortion. Therefore, the
PSNR gain of ERMPC over RMPC is notable. However, this
is not always true as observed in Fig. 3(b). The reason is
as follows. In the JM, the Lagrange multiplier in (9) is a

function of QP. A higher bit rate or smaller QP also causes
a smaller Lagrange multiplier; therefore, the rate cost in (9)
becomes smaller, which may produce a higher percentage
of intra modes. In such a case, the PSNR gain of ERMPC
over RMPC decreases. As a result, different sequences give
different results depending on whether the effect of increase
of intra modes dominates over the effect of decrease of
quantization distortion.

LLN has poorer R-D performance than ERMPC. This may
be since 30 simulated decoders are still not enough to achieve a
reliable distortion estimate. Meanwhile, complexity increase is
considerable compared to ERMPC. It is also interesting to see
that the integer MV approximation for ROPE is only valid for
some sequences, such as ‘foreman’, while this approximation
gives poor R-D performance for some other sequences, such
as ‘mobile’. However, the nearest neighbor approximation for
RMPC in all sequences achieves good performance. This is
because RMPC approximates the first and second moments of
the propogated error ζ̃k−j

u+mvk
u

by the rounded MV, while ROPE
approximates the first and second moments of the reference
pixel value f̃k−j

u+mvk
u

by the rounded MV. Since the propagated
errors are much smaller and more stable than the reference
pixel values, RMPC shows better and more stable performance
using integer MV approximation.

Table IV shows the average PSNR gain (in dB) of ERMPC
over RPMC, LLN, and ROPE for different video sequences
and different PLP. The average PSNR gain is obtained using
the BD-PSNR method in Ref. [20], which measures the
average distance (in PSNR) between two R-D curves. From
Table IV, we see that ERMPC achieves an average PSNR
gain of 0.25dB over RMPC for the sequence ‘mobile’ under
PLP = 2%; it achieves an average PSNR gain of 1.34dB
over LLN for the ‘foreman’ sequence under PLP = 1%; and
it achieves an average PSNR gain of 3.18dB over ROPE for
the ‘mobile’ sequence under PLP = 0.5%.

C. Subjective Performance

Since PSNR may not be as meaningful for error conceal-
ment, subjective performance is also evaluated. Fig. 4 shows
the subjective quality of the 84-th frame and the 99-th frame
of ‘foreman’ sequence under a PLP of 1% and a bit rate of



9

200 400 600 800 1000 1200 1400 1600 1800 2000
31

32

33

34

35

36

37

38

39

40

41

Bit rate (kb/s)

P
S

N
R

 (
dB

)

RMPC
ROPE
LLN
ERMPC

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
30

31

32

33

34

35

36

37

38

39

Bit rate (kb/s)

P
S

N
R

 (
dB

)

RMPC
ROPE
LLN
ERMPC

(a) (b)
Fig. 2. PSNR vs. bit rate for ‘foreman’: (a) PLP=0.5%, (b) PLP=2%.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
23

24

25

26

27

28

29

30

31

32

33

Bit rate (kb/s)

P
S

N
R

 (
dB

)

RMPC
ROPE
LLN
ERMPC

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
22

23

24

25

26

27

28

29

30

Bit rate (kb/s)

P
S

N
R

 (
dB

)

RMPC
ROPE
LLN
ERMPC

(a) (b)
Fig. 3. PSNR vs. bit rate for ‘mobile’: (a) PLP=0.5%, (b) PLP=2%. TABLE IV

AVERAGE PSNR GAIN (IN DB) OF ERMPC OVER RMPC, LLN AND ROPE
Sequence coastguard football foreman mobile

PLP 5% 2% 1% 0.5% 5% 2% 1% 0.5% 5% 2% 1% 0.5% 5% 2% 1% 0.5%
ERMPC vs. RMPC 0.09 0.08 0.08 0.06 0.01 0.01 0.01 0.03 0.08 0.13 0.21 0.17 0.20 0.25 0.21 0.21
ERMPC vs. LLN 0.32 0.36 0.46 0.37 0.28 0.39 0.36 0.26 0.64 1.07 1.34 1.24 0.50 0.82 0.56 0.54

ERMPC vs. ROPE 0.58 0.46 0.52 0.62 0.47 0.25 0.27 0.33 1.59 1.37 1.41 1.42 1.11 1.89 2.79 3.18

250kbps. These results suggest a similar performance as those
presented in Section IV-B. We can thus conclude that ERMPC
achieves the best performance.

D. Discussion

1) Effect of clipping noise on the mode decision: Since
ROPE does not consider the effect of clipping noise on
the transmission distortion, it over-estimates the end-to-end
distortion for inter modes. Hence, ROPE would tend to select
intra modes more often than ERMPC, RMPC, and LLN, which
will lead to higher encoding bit rates. To verify this conjecture,
we tested all sequences under the same QP settings, from 20 to
32, without rate control. We observed that the ROPE algorithm
always produced a higher bit rate than other schemes as shown
in Fig. 5 and Fig. 6.

2) Effect of transmission errors on mode decision: One can
observe three characteristics for ERMPC/RMPC/LLN/ROPE

algorithms vs NO ERRDO. 1) The number of intra MBs
increases since the transmission error is accounted for during
mode decision; 2) The number of skip mode MBs also
increases, since the transmission error will increase the trans-
mission distortion in all other modes except for this mode; 3)
if we allow the first frame to be erroneous, the second frame
will have high percentage of intra MBs. This is because only
the value of 128 can be used to conceal the reconstructed pixel
values if the first frame is lost, while if other frames are lost the
collocated pixel in the previous frame can be used to conceal
the reconstructed pixel values. Therefore, the propagated error
from the first frame will be much higher than the error from
other frames. As a result, if the first frame is allowed to be
lost with a certain probability, the second frame will contain
a high percentage of intra MBs due to ERRDO.



10

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4. (a) ERMPC at the 84-th frame, (b) RMPC at the 84-th frame, (c) LLN at the 84-th frame, (d) ROPE at the 84-th frame, (e) ERMPC at the 99-th
frame, (f) RMPC at the 99-th, (g) LLN at the 99-th frame, (h) ROPE at the 99-th frame.

0 500 1000 1500 2000 2500 3000 3500
33

34

35

36

37

38

39

40

41

42

Bit rate (kb/s)

P
S

N
R

 (
dB

)

RMPC
ROPE
LLN
ERMPC

0 500 1000 1500 2000 2500 3000 3500 4000
31

32

33

34

35

36

37

38

39

40

Bit rate (kb/s)

P
S

N
R

 (
dB

)

RMPC
ROPE
LLN
ERMPC

(a) (b)
Fig. 5. PSNR vs. bit rate for ‘foreman’: (a) PLP=0.5%, (b) PLP=2%.

V. CONCLUSION

In this paper, we proved a new proposition for calculating
the second moment of a weighted sum of correlated random
variables without requiring knowledge of the random vari-
able probability distributions. Then, we apply this proposi-
tion to extend our previous RMPC algorithm in estimating
the fractional-level end-to-end distortion for prediction mode
decision without significantly increasing complexity. Experi-
mental results show that ERMPC achieves on average a PSNR
gain of 0.25dB over the existing RMPC algorithm for the
‘mobile’ sequence when PLP equals 2%; ERMPC achieves an
average PSNR gain of 1.34dB over the the LLN algorithm for
the ‘foreman’ sequence when PLP equals 1%. Experimental
results also show that subjective quality was also improved.

REFERENCES

[1] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
criterion,” IRE Nat. Conv. Rec. Part, vol. 4, pp. 142–163, 1959.

[2] T. Berger, Rate distortion theory: A mathematical basis for data com-
pression. Prentice-Hall, Englewood Cliffs, NJ, 1971.

[3] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of
quantizers.” IEEE Trans. Acoust. Speech Signal Process., vol. 36, no. 9,
pp. 1445–1453, 1988.

[4] H. Everett III, “Generalized Lagrange multiplier method for solving
problems of optimum allocation of resources,” Operations Research,
vol. 11, no. 3, pp. 399–417, 1963.

[5] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and
video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6,
pp. 23–50, 1998.

[6] G. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp.
74–90, 1998.

[7] “H.264/AVC reference software JM16.0,” Jul. 2009. [Online]. Available:
http://iphome.hhi.de/suehring/tml/download

[8] T. Stockhammer, M. Hannuksela, and T. Wiegand, “H. 264/AVC in
wireless environments,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, no. 7, pp. 657–673, 2003.

[9] T. Stockhammer, T. Wiegand, and S. Wenger, “Optimized transmission
of h.26l/jvt coded video over packet-lossy networks,” in IEEE ICIP,
2002.

[10] R. Zhang, S. L. Regunathan, and K. Rose, “Video coding with optimal
inter/intra-mode switching for packet loss resilience,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 6, pp. 966–976, Jun.
2000.

[11] Z. Chen and D. Wu, “Prediction of Transmission Distortion for Wireless
Video Communication: Algorithm and Application,” Journal of Visual
Communication and Image Representation, vol. 21, no. 8, pp. 948–964,
2010.



11

0 2000 4000 6000 8000 10000 12000
28

30

32

34

36

38

40

42

Bit rate (kb/s)

P
S

N
R

 (
dB

)

RMPC
ROPE
LLN
ERMPC

0 2000 4000 6000 8000 10000 12000
26

28

30

32

34

36

38

Bit rate (kb/s)

P
S

N
R

 (
dB

)

RMPC
ROPE
LLN
ERMPC

(a) (b)
Fig. 6. PSNR vs. bit rate for ‘mobile’: (a) PLP=0.5%, (b) PLP=2%.

[12] ——, “Prediction of Transmission Distortion for Wireless Video Com-
munication: Part I: Analysis,” IEEE Transactions on Image Processing,
2011, accepted.

[13] A. Leontaris and P. Cosman, “Video compression for lossy packet net-
works with mode switching and a dual-frame buffer,” IEEE Transactions
on Image Processing, vol. 13, no. 7, pp. 885–897, 2004.

[14] H. Yang and K. Rose, “Advances in recursive per-pixel end-to-end
distortion estimation for robust video coding in H. 264/AVC,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 17,
no. 7, p. 845, 2007.

[15] ITU-T Series H: Audiovidual and Multimedia Systems, Advanced video
coding for generic audiovisual services, Nov. 2007.

[16] T. Wiegand, W.-J. Han, B. Bross, J.-R. Ohm, and G. J. Sullivan, WD1:
Working Draft 1 of High-Efficiency Video Coding, Guangzhou, Oct.
2010, JCTVC-C403, 3rd JCT-VC Meeting.

[17] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the h.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, Jul.
2003.

[18] G. Casella and R. L. Berger, Statistical Inference, 2nd ed. Duxbury
Press, 2001.

[19] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, “Analysis of video
transmission over lossy channels,” IEEE Journal on Selected Areas in
Communications, vol. 18, pp. 1012–1032, Jun. 2000.

[20] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves, 13th VCEG-M33 Meeting,” Austin, USA, 2001.

Zhifeng Chen received Ph.D. degree in Electrical
and Computer Engineering from the University of
Florida, Gainesville, Florida, in 2010. From 2002
to 2003, he was an engineer in EPSON (China),
and from 2003 to 2006, he was a senior engineer
in Philips (China), both working in mobile phone
system solution design. He joined Interdigital Inc. in
2010, where he is currently a staff engineer working
on video coding research.

Peshala V. Pahalawatta received his Ph.D. degree
in electrical engineering from Northwestern Uni-
versity, Evanston, IL, in 2007. He is currently a
Staff Engineer with the Image Technology group at
Dolby Laboratories Inc., Burbank, CA. His research
interests include image and video compression and
transmission, image and video quality evaluation,
and computer vision.

Alexis M. Tourapis received the Diploma degree
in Electrical and Computer Engineering from the
National Technical University of Athens (NTUA),
Greece, in 1995 and the Ph.D. degree in Elec-
trical and Electronic Engineering from the Hong
Kong University of Science & Technology, HK, in
2001. Alexis has held in the past various research
and development positions with companies such
as Microsoft, Thomson, DoCoMo Labs USA, and
Dolby Laboratories. He is currently with Magnum
Semiconductor Inc. as a Senior Director of Video

Algorithm Engineering focusing on the development of next generation video
processing and compression hardware system designs.

Alexis is a senior member of the IEEE, and a member of the ACM, SPIE,
and SMPTE. In 2000 he received the IEEE HK section best postgraduate
student paper award for his work, and in 2006 he was acknowledged as
one of 10 most outstanding reviewers by the IEEE Transactions on Image
Processing. Alexis currently holds 7 US patents and has more than 90 US
and international patents pending. Alexis has made several contributions to
several video coding standards, and in particular to H.264/MPEG-4 AVC, on a
variety of topics, such as motion estimation and compensation, rate distortion
optimization, rate control and others, and currently serves as a co-chair of the
development activity on the H.264 Joint Model (JM) reference software.

Dapeng Wu (S’98–M’04–SM’6) received Ph.D. in
Electrical and Computer Engineering from Carnegie
Mellon University, Pittsburgh, PA, in 2003. Cur-
rently, he is a professor of Electrical and Computer
Engineering Department at University of Florida,
Gainesville, FL.


