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Abstract

Image registration is a fundamental task in computer vision and it significantly contributes to high-level
computer vision and benefits numerous practical applications. Although many image registration techniques have
been proposed in the past, there is still a need for further research because many issues such as the parallax
problem remain to be solved. The traditional image registration algorithms suffer from the parallax problem due to
their underling assumption that the scene can be regarded approximately planar which is not satisfied when large
depth variations exist in the images with high-rise objects. To address the parallax problem, we present a new
strategy for 2D image registration by leveraging the depth information from 3D image reconstruction. The novel
idea is to recover the depth in the image region with high-rise objects to build accurate transform function for
image registration. We use a geometric segmentation algorithm to partition 3D point cloud to multiple geometric
structures and at the same time, estimate the parameters of each geometric structure. Experimental results show
that our proposed method is able to mitigate the parallax problem and achieve better performance than the existing
image registration scheme.

Index Terms

3D reconstruction, image registration, depth estimation, parallax problem, geometric segmentation

I. INTRODUCTION

Image registration is a fundamental task in image processing and computer vision, which matches two
or more images taken at different times and different viewpoints, by geometrically aligning reference
and sensed images. There has been a broad range of techniques developed over the years in literature.
A comprehensive survey of image registration methods was published in 1992 by Brown [1], including
many classic methods still in use. Due to the rapid development of image acquisition devices, more image
registration techniques emerged afterwards and were covered in another survey published in 2003 [2].

Different applications due to distinct image acquisition require different image registration techniques.
In general, manners of the image acquisition can be divided into three main groups:

o Different viewpoints (multiview analysis). Images of the same scene are acquired from different

viewpoints. The aim is to gain a larger 2D view or a 3D representation of the scanned scene.

o Different times. Images of the same scene are acquired at different times, often on regular basis,
and possibly under different conditions. The aim is to find and evaluate changes in the scene which
appeared between the consecutive image acquisitions.

« Different sensors. Images of the same scene are acquired by different sensors. The aim is to integrate
the information obtained from different source streams to gain more complex and detailed scene
representation.

Due to the diversity of images to be registered and various types of degradations, it is impossible to
design a universal method applicable to all registration tasks. Every method should take into account not
only the assumed type of geometric deformation between the images but also the radiometric deformations
and noise corruption, required registration accuracy and application-dependent data characteristics. Nev-
ertheless, the majority of the registration methods consists of the following four steps: feature detection,
feature matching, transform model estimation, image resampling and transformation.



A widely used feature detection method is corner detection. Kitchen and Rosenfeld [3] proposed to
exploit the second-order partial derivatives of the image function for corner detection. Dreschler and
Nagel [4] searched for the local extrema of the Gaussian curvature. However, corner detectors based on
the second-order derivatives of the image function are sensitive to noise. Thus Forstner [5] developed a
more robust, although time consuming, corner detector, which is based on the first-order derivatives only.
The reputable Harris detector [6] also uses first-order derivatives for corner detection.

Feature matching includes area-based matching and feature-based matching. Classical area-based method
is cross-correlation (CC) [7] exploit for matching image intensities directly. For feature-based matching,
Goshtasby [8] described the registration based on the graph matching algorithm. Clustering technique,
presented by Stockman et al. [9], tries to match points connected by abstract edges or line segments.

After the feature correspondence has been established the mapping function is constructed. The mapping
function should transform the sensed image to overlay it over the reference image [10][11][12][13].

Finally interpolation methods such as nearest neighbor function, bilinear, and bicubic functions are
applied to the output of the registered images.

The prevailing image registration methods, such as Davis and Keck’s algorithm [14], [15], assume all
the feature points are coplanar and build a homography transform matrix to do registration. The advantage
is that they have low computational cost and can handle planar scenes conveniently; however, with the
assumption that the scenes are approximately planar, they are inappropriate in the registration applications
when the images have large depth variation due to the high-rise objects, known as the parallax problem.
Parallax is an apparent displacement of difference of orientation of an object viewed along two different
lines of sight, and is measured by the angle or semi-angle of inclination between those two lines. Nearby
objects have a larger parallax than further objects when observed from different positions. Therefore, as
the viewpoint moves side to side, the objects in the distance appear to move slower than the objects close
to camera.

In this paper, we propose a depth based image registration algorithm by leveraging the depth information.
Our method can mitigate the parallax problem caused by high-rise scenes in the images by building
accurate transform function between corresponding feature points in multiple images. Given an image
sequence, we first select a number of feature points and then match the features in all images. Then we
estimate the depth of each feature point from feature correspondences. With the depth information, we
can project the image in 3D instead of using a homography transform. Further more, fast and robust
image registration algorithm can be achieved by combining the traditional image registration algorithms
and depth based image registration method proposed in this paper. The idea is that we first compute the
3D structure of a sparse feature points set and then divide the 3D point cloud (obtained by sparse 3D
reconstruction) into multiple approximately planar regions. For each region, we can perform a depth based
image registration. Accordingly, our proposed image registration is able to mitigate the parallax problem
due to the use of depth information.

The remainder of this paper is organized as follows. Section II describes the overall structure of our
image registration system. Section III reviews the 3D reconstruction algorithm we used in our new method.
In Section IV, we describe how to use 3D depth information for 2D image registration and propose a non-
linear deterministic annealing algorithm for geometric segmentation. Section V presents the experimental
results and we compare our algorithm with Davis and Keck’s algorithm. We conclude this paper in
Section VI.

II. SYSTEM OVERVIEW

Due to the diversity of images to be registered and various types of degradations, it is impossible to
design a universal method applicable to all registration tasks. Every method should take into account not
only the assumed type of geometric deformation between the images but also the radiometric deformations
and noise corruption, required registration accuracy and application-dependent data characteristics. Nev-
ertheless, the majority of the registration methods consists of the following four steps: feature detection,
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Fig. 1. Flowchart for 2D image registration.

feature matching, transform model estimation, image resampling and transformation. Although they may
differ in some specific part, most image registration approaches are generally based on the same procedure.
The procedure is given in Fig. 1.

Instead of matching the whole image pixel to pixel directly, the technique of feature detection and
matching is widely used in image registration algorithms in order to find the relation between the two
images to be registered. A feature is also known as point of interest, including edges, corners, blobs and
ridges. Feature matching is to establish the feature correspondence between the features extracted from
two images. With the feature correspondence, a mapping function can be constructed and transform the
sensed image to the reference image.

In our new image registration system, we use a 3D model instead of 2D motion model used in existing
works. Our system is slightly different from the previous one. As shown in Fig. 2, in our new system,
we first apply 3D reconstruction to the input images and recover the 3D geometric structure of the scene
in the images. The 3D model is more accurate compared to the 2D motion models estimated in the
previous works. Then we segment the 3D point cloud into multiple regions, each of which is modeled by
a plane. With the segmentation, we can estimate the 3D depth for every pixel in each region and recover the
dense structure of the 3D scene. The 3D dense structure allows us to obtain pixel-by-pixel correspondence
between two consecutive images. We describe the 3D reconstruction algorithm in Section III. In Section IV,
we present the geometric segmentation and depth based mapping in 3D, and also propose a expanded
deterministic annealing algorithm for geometric segmentation.

III. 3D RECONSTRUCTION FROM VIDEO SEQUENCES

Here, we simply review the classic eight point 3D reconstruction algorithm [16][17]. When developing
a stereo vision algorithm for registration, the requirements for accuracy vary from those of standard stereo
algorithms used for 3D reconstruction. For example, a multi-pixel disparity error in an area of low texture,
such as a white wall, will result in significantly less intensity error in the registered image than the same
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Fig. 2.  Our new image registration system.

disparity error in a highly textured area. In particular, edges and straight lines in the scene need to be
rendered correctly.

The 3D reconstruction algorithm is implemented using the following steps. First, geometric features are
detected automatically in each individual images. Secondly, feature correspondence is established across
all the images. Then the camera motion is retrieved and the camera is calibrated. Finally the Euclidean
structure of the scene is recovered.

A. Feature selection

The first step in 3D reconstruction is to select candidate features in all images for tracking across
different views. Ma et al. [17] use point feature in reconstruction which is measured by Harris’ criterion,

C(x) = det(G) + k x trace*(Q) (1)

where x = [z,y]” is a candidate feature, C'(x) is the quality of the feature, k is a pre-chosen constant
parameter and GG is a 2 x 2 matrix that depends on X, given by

2
G = ZW(X) Ix ZW(X) ngy
W (x) 113/ W(x) Iy

2)

where W (x) is a rectangular window centered at x and [, and I, are the gradients along the x and y
directions which can be obtained by convolving the image [ with the derivatives of a pair of Gaussian
filters. The size of the window can be decided by the designer, for example 7 x 7. If C'(x) exceeds a
certain threshold, then the point x is selected as a candidate point feature.

B. Feature matching

Once the candidate point features are selected, the next step is to match them across all the images. In
this subsection, we use a simple feature tracking algorithm based on a translational model.

We use the sum of squared differences (SSD) [18] as the measurement of the similarity of two point
features. Then the correspondence problem becomes looking for the displacement d that satisfies the
following optimization problem:

min= Y [L(x+d)-L(x) (3)

d
xeW (x)



where d is the displacement of a point feature of coordinates x between two consecutive frames /; and
I5. Lucas and Kanade also give the closed form solution of 3

d=-G'b 4)
where
b = Zw(x) L1y (5)
ZW(X> IyIt

G is the same matrix we used to compute the quality of the candidate point feature in Eq. (1), and
I, =1, — 1.

C. Estimation of camera motion parameters

In this subsection, we recover the projective structure of the scene from the established feature corre-
spondence. We will follow the notation used in Ma et al.’s book [17].

The method for estimating camera motion parameters [17] is based on a perspective projection model
with a pinhole camera. Suppose we have a generic point p € R? with coordinates X, = [X,Y, Z, 1]7
relative to a world coordinate frame. Given two image frames of one scene which is related by a motion
g = (R, T), the two image projection point X; and X, are related as follows:

Ax =10X,, Aok = ILX, (6)

where X = [x,y, 1]7 is measured in pixels; \; and )\, are the depths of x; and x», respectively; I1; = [J, 0]
and IIy = [JR, JT| are the camera projection matrices; and J is the camera calibration matrix. In order
to estimate Aj, Ao, [1; and II,, we need to introduce the epipolar constraint. From Eq. (6), we have

LT TTRI %, =0 (7)
The fundamental matrix is defined as: A
F,=JTTRJ! (8)

With the above model, we could estimate the fundamental matrix F;,, via Algorithm 1, which is given in
Ref. [17]. Then we could decompose the fundamental matrix to recover the projection matrices I1; and
I, and the 3D structure. We only give the solution here by canonical decomposition:

MX; = X, Aoy = (T FX, + T 9)

D. Depth estimation
The Euclidean structure X, is related to the projective reconstruction X,, by a linear transform H €

]R4X4
I, ~ L H ' X, ~ HX,,i =1,2,....,m (10)
where ~ means equality up to a scale factor and
o J O 4x4
H = [—VTJ J eR (11)

With the assumption that J is constant, we could estimate the unknowns J and v with a gradient decent
optimization algorithm [17]. In order to obtain a unique solution, we also assume that the scene is generic
and the camera motion is rich enough.

Fig. 3 shows the first frame and the 88th frame of the video sequence ‘house’. In our experiment, we
will register all the frames in the video sequence to the first frame. Fig. 4 show the selected feature points
on the first frame which are used for camera pose estimation. Fig. 5 show the estimated 3D positions of
the feature points and the estimated camera pose of the 1st and 88th frame.



Algorithm 1 Eight-point algorithm

Input: a set of initial feature correspondences expressed in pixel coordinates
(x4, x") for j =1,2,...n:
1)Construct the matrix y € R™*? from the transformed correspondences %] = [#/,7,1]” and
%) = [#),7,1]7, where the jth row of y is given by [# &, #. # 7@, 7 4b, 7. @, 4, 1] € R.
2)Find the vector F** € RY of unit length such that ||y F*|| is minimized as follows:
a)Compute the singular value decomposition (SVD) of y = UXV7T and define I to be the
ninth column of V.
b)Unstack the nine elements of F** into a square 3 X 3 matrix F.
3)Imposing the rank-2 constraint:
a)Compute the SVD of the matrix F recovered from data to be F=U rdiag{oy, o9, ag}VFT .
b)Impose the rank-2 constraint by letting o3 = 0 and reset the fundamental matrix to be
F = Urdiag{oy, 02,0} VL.
Output: F.

(a) The 1st frame in the ‘house’ video sequence (b) The 88th frame in the ‘house’ video sequence

Fig. 3. Frames used for image registration

I'V. IMAGE REGISTRATION WITH DEPTH INFORMATION

Once we obtain the 3D structure of the feature points, the motion, and calibration of the camera, we can
start to register the rest of the pixels in the images with the estimated depth information. The traditional
image registration algorithms, such as the algorithm proposed by Davis and Keck [14], [15], try to register
the two images by computing the homography matrix H between corresponding feature points. The limit
of this algorithm is that they assume all the points in the physical world are coplanar or approximately
coplanar, which is not true with high-rise scenes. In order to mitigate this problem, we propose a novel
algorithm which first segment the image geometrically and then perform the registration to each region
with depth estimation.

A. Geometric Segmentation and Surface Fitting

Not all points in an image are suitable for matching or tracking. The feature points that we have
selected are only a small portion of a whole image. Therefore, the first reconstruction is a sparse 3D
reconstruction. The sparse structure is not suitable for human visualization. For this reason, a dense
matching is necessary to establish a 3D geometric view. It is known that the most popular solution for
dense matching is based on the epi-polar constraint. This approach uses geometric constraints to restrict
correspondence search from 2D to 1D range. The main disadvantage of this approach is that the dense



Fig. 4. Feature points selected on the 1st frame.
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Fig. 5. Estimated camera pose of the 1st and 88th frame, and estimated 3D positions of feature points.

depth map is not smooth because of outliers. Lhuillier and Quan [19] proposed a dense matching method
called quasi-dense approach. However, the non-smoothness problem still exists.

In this section, we propose an expanded deterministic annealing approach for space partitioning and
surface fitting in 3D Euclidean space. Under the assumption that the 3D scene under study consists of a
few geometric structures, we design a non-linear function to map the data point from geometrical space to
surface model space and apply deterministic annealing in the feature space to partition the feature space
into multiple regions. For each region, we use a linear plane model to fit the 3D points in the region.



We call our method as expanded deterministic annealing method. Our method has three merits: 1) the
ability to avoid many poor local optima; 2) the ability to minimize the cost function even if its gradients
vanish almost everywhere; 3) the ability to achieve non-linear separation of 3D points. However, there
is no closed form solution to the expanded deterministic annealing problem; therefore we use a gradient
descent algorithm to solve this problem. Next, we present the problem of geometric segmentation and
surface fitting.

Given a set of 3D points {y;}, we would like to find multiple geometric surfaces that best fit the 3D
point cloud {y;}. The problem can be formulated as below

K
min Z Z d(yi, 9e,) (12)

K
{ek}kzl k=1 y;€Cy

where K is the number of surfaces (i.e., planes here); {6, }5 | denotes the set {0;,0s, - - - ,0x}; Ci, denotes
the cluster of 3D points that belong to the k-th plane; y; = [x;,y;, ;] is the i-th point; 0y = [ay, bg, cx|T
is the parameter vector of the k-th plane model, where ai, i, and i are intercepts of the plane on z-axis,
y-axis, and z-axis, respectively; and dik is the squared distance (fitting error) between y; and plane model
9o, (y) = y' 0, = 1, which is defined as

&2y, = d*(yi, 9o,) = (y! O — 1) (13)

This is a joint problem of model selection and parameter estimation, i.e., we need to determine how
many surfaces (or the number of clusters of 3D points) and estimate the parameters of the parametric
model of each surface. This problem is particularly challenging because the more surfaces, the smaller
fitting error but the higher probability of over-fitting; the fewer surfaces, the larger fitting error.

The problem in (12) can be solved by deterministic annealing (DA) [20]. The DA approach to clustering
has demonstrated substantial performance improvement over traditional supervised and unsupervised
learning algorithms. DA mimics the annealing process. DA works as below. First, it minimizes the cost
function subject to a constraint on the degree of randomness of the solution. The constraint on Shannon
entropy, is gradually shrunk as the temperature reduces, and the constraint eventually vanishes as the
temperature goes to zero; hence the solution of DA converges to the solution of minimizing the original
cost function. Similar to the simulated annealing [21], the cooling schedule allows DA to avoid many poor
local optima. The DA approach has been adopted in a variety of research fields, such as graph-theoretic
optimization and computer vision. Rao et al. [22] apply DA to solving a piecewise regression problem.

In this paper, we propose a new approach, called expanded deterministic annealing (EDA), to solve
the geometric segmentation and surface fitting problem. Specifically, we first use a non-linear function to
map the input 3D points to a high dimensional feature space using the local geometric structure of each
3D point. Then we apply deterministic annealing to the points in the feature space for clustering (i.e.,
geometric segmentation) and surface fitting. Different from Ref. [22], our EDA approach leverages local
geometric structure for clustering. Next, we present our EDA approach.

The input data is a set of 3D points, y; = [z, ¥, 27 (i = 1,---, N). Under the assumption that L
nearest 3D points of a given point y; are on the same local plane, we use the least squares method to
estimate this local plane model parameters, denoted by L; = [a;, b;, ¢;|T. Let

Y
o= |

So we expand a 3D point y; to 6D point f;; then we apply DA to this expanded 6D space to solve the
geometric segmentation and surface fitting problem. Define
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In our EDA algorithm, we use the following (new) distortion function
D(f;, go,) = B x Di(Pifi, go,) + Do Pofi, go,), (14)
where Dy (y;, gs,) = dj ., which is defined in (13); Da(Paf;, go,) is defined by
Dy(Pofi, go,) = 1 — (A" - 0)7; (15)

and [ is a positive real number, which balances the two types of distortions D; and D,. Note that D,
quantifies the fitting error between a given 3D point y; and the global plane, which y; belongs to; D-
quantifies the difference between the local plane model of y; and the global plane model of y;; and
Pof! - 0 is a cosine similarity between the two plane models. One novelty of our EDA algorithm is the
introduction of D,, which can be regarded as locally averaged distortion and help mitigate the effect of
outliers, i.e., an outlier 3D point only contributes distortion D, weighted by 3. E.g., if we choose 5 = 0.1,
then the contribution from D) is reduced by a factor of 10.

Denote the number of clusters by K. We apply DA to partition {y;} into K clusters and estimate the
parameters of planes, each of which corresponds to one cluster. Since K is not a given parameter, our
EDA algorithm will search for the optimal value of K, as shown in Algorithm 2. For a given value K,
our EDA algorithm solves the following problem.

min F=D-TH (16)
{ek}le
where 0, = [ag, b, cx]? (k=1,--- ,K) is the surface model parameter to be estimated; D is defined in

(14); and H 1is the entropy constraint. We define D and H as follows:

1

- N Z P(y: € g9k> X D(fi799k)’ ("

=1 k=1

N K
1

:_NZZP Yi € go,) X 1og P(yi € goy), (1%)

i=1 k=1

where exp(— D(fi,90,,) )
B T
P(yi € go,) = % D(fi,90,) )
ijl exp(— T )

We use a gradient descent algorithm to solve the problem (16) as shown in Algorithm 2. We explain
Step 2 of Algorithm 2 as below. Since a plane model is specified by equation gy(y) = y'6 = 1, given
3D points {y;}¥,, for K = 1, we can estimate the parameter vector § of the plane that fits all the 3D
points, by solving the following problem

5 _ : Ty 1\2
0 = arg min Z(yl 6 —1)°. (20)

0=(Y'Y) 'Y 1y, 1)

where Y = [y1,ya, - ,yn]7 is a matrix of dimension N x 3, and 1y = [1,1,---,1]7 is a vector of
dimension N. In Step 4b, © = [07, 07 ... 0L]7; VoF denotes the gradient of F' with respect to ©.



Algorithm 2 EDA based joint geometrical segmentation and surface fitting

1) Input: yi, y2, ..., yn;
K,,.-: maximum number of clusters
Tini: starting temperature
Tnin: Minimum temperature
a: cooling rate (must be < 1)
1,022 Maximum iteration number
e: threshold for F
e: threshold for plane merging
o?: variance of Gaussian perturbation
2) Initialization
Compute 6, via 21); T = Tyni; K = 2;05 = 015 P(y; € go,) = P(yi € 90,) = 3.
3) Perturb
Generate Gaussian vector 0 of zero mean and covariance matrix o21; 05, < 0 + 0y, (k = 1,2);
Foaq=D —TH,
j=0;
4) Loop until convergence
4a) For each i and each k, compute P(y; € gy, ) via (19);
4b) Update the surface models
O < © —yVgF (v is obtained by Armijo rule);
F=D-TH,
J=7+1L
If (] < Imaw and (Fold - F)/Fold > 5)
F,4 = F; Goto Step 4a;
5) Model size determination
{ if (||0x — Om|]2 < €), then replace 0y and 6,, by (0 + 0.,)/2 } Yk, m;
K = number of planes after merging;
6) Cooling
T =aoT;
perform Step 4a, 4b and Step 5 for 7' =0
Goto Step 9
7) Duplication
Replace each plane by two planes at the same location; K = 2K;
8) Goto Step 3
9) Output: {0, }< ..

Vi.

B. 3D Point Correspondence

Here, we only consider two images. Suppose for the first image, we have the 3D point set {X/ i1

which could be divided into N, clusters, denoted by X, X, ---, Xn,. For each cluster, we assume there
are at least three non-collinear points, which usually can be satisfied. Then we model each cluster by a
plane. We use X as an example. We can use the following plane model to fit the points in A7,

X p=1 (22)

where p = [a, b, c,0]” is the plane parameter vector and can be estimated by the least squares method,
given 3D points in X;.



For an arbitrary image point x* = [z*, y']”, which is an image of a 3D point in X}, we could estimate

its depth A’ by solving the following equation,
Nx = H{ L XE (23)

where %' = [2%,%%, 1], H; ' and II; are estimated by Eq. (9) and Eq. (11), respectively. In Eq. (23), only
A" is unknown and with the constraint on X' via Eq. (22), we can obtain the value of \'.

Then, with II; = [7, 0], we could have X? = [X 2", \{y’, A{, 1]". from Eq. (6), we can get the relation
between two image projection point x| and x4 as follows:

X, = I,X7. (24)

where X5 = [Azh, Ayi, Ao]T. We could then get the position of the corresponding point x4 = [z, 35|
in the second image.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments to demonstrate that our proposed approach is able to segment
3D point cloud into appropriate geometric structures and register the images more accurately. The rest of
the section is organized as below. Subsection V-A shows the estimation accuracy of our proposed EDA
algorithm for synthetic data with the knowledge of ground truth. Subsection V-B investigates the accuracy
of our proposed image registration algorithm for real-world data.

A. EDA on Synthetic Data

In this subsection, we show the estimation accuracy of EDA algorithm for synthetic data with the
knowledge of ground truth; the synthetic data here does not contain noise. We also compare EDA to
both PI algorithm and API algorithm. PI algorithm is a projection based iterative geometric segmentation
algorithm (PI for short) based on the same principle of the Lloyd algorithm (a.k.a., K-means) [23]. API
algorithm is an adaptive projection based iterative algorithm (API for short) based on the same principle
of ISODATA, which generalizes K-means by allowing K to be unspecified.

To generate synthetic data, we first determine the number of planes, denoted by K; then specify the
analytic form of each of the K planes and the area of each plane; for each plane, we uniformly generate
100 3D points on the plane area. The same data set is applied to the three algorithms. In the experiment,
we run each algorithm 1000 times; in different run, a different set of 3D points are (randomly) generated;
then we compute the average performance of each algorithm in terms of average squared approximation
error and correct identification rate.

Table I shows average squared approximation error for PI, API, and EDA algorithms, where the squared
approximation error is quantified by the Euclidean norm of the estimation error for the plane model
parameters. We test four different number of planes, i.e., K = 3,4,5,6. As observed from Table I, the
approximation error of EDA is negligible comparing to that of PI and API, which demonstrates that the
EDA algorithm significantly outperforms both PI and API algorithms in terms of estimation accuracy for
the plane models. This is because EDA is able to separate the 3D point cloud in a non-linear manner,
and can avoid many poor local optima.

Table II shows correct identification rate for PI, API, and EDA algorithms. The correct identification
rate is quantified by the percentage of 3D points whose plane memberships are correctly identified. Note
that there are K planes and we have the ground truth of which plane a 3D point belongs to. We observe
that the correct identification rates of EDA and API are much higher than that of the PI algorithm. The
reason why the API algorithm outperforms the PI algorithm is that the API algorithm is not sensitive
to initialization while the PI algorithm is very sensitive to initialization. Again, EDA performs the best
among the three algorithms in terms of correct identification rate. This is again because EDA is able
to separate the 3D point cloud in a non-linear manner, and can avoid many poor local optima. We also
observe that if the number of plane is too large, like K > 10, the performance get worse. The reason is



TABLE I

AVERAGE SQUARED APPROXIMATION ERROR.

K PI API EDA
3 [377x107 1| 3.00x107°7 | 1.17x 1072
4 1401x107t | 981x107% | 221 x 1072
5 [243x107T | 286 x 1077 | 3.06 x 102
6 [ 294x107T | 8801 x 107 | 3.00 x 10~ 2
10 | 538 x 1071 | 332x 1078 [ 7.81 x 101
20 1.01 6.73x 1077 | 5.28 x 10~
TABLE II

CORRECT IDENTIFICATION RATE.

K PI API | EDA
3 83% | 96% | 99%
4 79% | 93% | 99%
5 82% | 94% | 9%
6 78% | 97% | 98%
10 | 73% | 92% | 95%
20 | 66% | 88% | 91%

that as the total number of planes increases, it becomes harder to distinguish two similar planes and it
becomes possible that many of the points may be classified into wrong categories. Therefore, we consider
it as one of the limitations of the EDA algorithm.

B. EDA on Real World Data

In this section, we show the registration accuracy of our proposed method for real world data. In our
experiment, given a set of images to be registered, we regard the first image’s local coordinate system
as world coordinate system. So the first image can be viewed as a reference image. Then the rest of
the images are registered to the reference image. We also applied the algorithm proposed by Davis and
Keck [14] to register the input images for comparison purpose.

The experiment is conducted on several video sequences. Here, we use the ‘oldhouse’ test sequence
as an example. The data includes a sequence of 88 images captured from one camera. We first select 72
feature points in the first image and then find the corresponding feature points in the rest of the images.
The depth estimates of these points are calculated by the algorithm introduced in Section III.

Fig. 3 is the 1st frame and the 88th frame in the test image sequence. Fig. 6 is the registration result
using our algorithm and Fig. 7 is the output of the algorithm proposed by Davis and Keck [14]. Fig. 8
shows the difference image between the registered image and the first image using our algorithm and
Fig. 9 shows the difference image from the algorithm of Davis and Keck [14]. We can see that our result
can mitigate the parallax problem since the roof and wall corners are registered correctly; on the contrary,
the registered image by the algorithm of Davis and Keck [14] has a lot of artifacts caused by the parallax
problem. We also show some registration results using our algorithm in Fig. 10 and Fig. 11.

In order to further compare our algorithm to the algorithm proposed by Davis and Keck, we compute
the root of mean squared errors (RMSE) of the registration results from both algorithms. Fig. 12 shows
that the registration error of our algorithm is less than 50% than that of the algorithm proposed by Davis
and Keck.

We also show some experimental results with test sequence ‘break dancers’. Fig. 13 shows the original
image captured by the 4th camera. Fig. 14 is the registration result using our algorithm and Fig. 15 is the
output of the algorithm proposed by Davis and Keck.

The result shows that our image registration algorithm can mitigate the parallax problem because most
of the scene is registered without vibration, as opposed to registration results under the algorithm of Davis
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Fig. 6. Result of our algorithm, in which the 88th frame is registered to the 1st frame.

Fig. 7. The test result under the algorithm of Davis and Keck, in which the 88th frame is registered to the 1st frame.

and Keck in which the high-rise scene in the sensed images significantly moved after registration to the
reference images. The reason is that the algorithm of Davis and Keck assumes all the points in the images
are coplanar. While this assumption is satisfied when the distance between the camera and the interested
scene is so large that the small depth variation can be neglected, it fails in the case of high-rise scene.
Therefore, depth information should be used to accomplish the registration for this specific high-rise region
of the images.

Finally, we would like to point out that the algorithm proposed by Davis and Keck [14] assumes
a planar registration. Their scheme was designed for use with high-altitude aerial imagery where planar
transformations are fairly good approximations. Furthermore, their scheme uses RANSAC to remove poor
matching points during the computation. This can help to deal with some depth discontinuities that may be
present in the high-altitude aerial images. In our experiments, the test images contain salient 3D scenes;
these images are out of the domain for the algorithm of Davis and Keck. This is the reason why the
algorithm of Davis and Keck does not perform well.



Fig. 8. The difference image between the registered 88th image (using our algorithm) and the 1st image.

Fig. 9. The difference image between the registered 88th image (using the algorithm of Davis and Keck) and the 1st image.

VI. CONCLUSION

In this paper, we propose a new 2D image registration method by leveraging depth information. While
traditional image registration algorithms fail to register high-rise scene accurately because the points cannot
be assumed to be simply planar, our image registration algorithm can mitigate the parallax problem.

Our future works include:

« Develop a robust 3D model based on the state-of-the-art depth estimate algorithm [24][25] given a
video sequence. The reliability of the depth estimates is crucial to depth-based registration algorithm;
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Fig. 10. The 37th frame in the ‘house’ video sequence.

Fig. 11. Result of our algorithm, in which the 37th frame is registered to the 1st frame.

therefore, the highly robust 3D reconstruction technique is required to implement our algorithm. Up
to now, most recent depth recovery algorithms reported in the literature claim to recover consistent
depth from some challenging video sequences [24][25]. We can apply or modify this state-of-the-art
depth map recovery method to develop depth-based image registration algorithm.

« Combine depth-based image registration method with traditional algorithms. In other words, we can
use depth information to register high-rise region while applying traditional registration algorithm for
other planar region of the image. The purpose is to tradeoff between the accuracy of the registration
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Fig. 12. Result of our algorithm, compared to that under the algorithm of Davis and Keck, in which all the 88 frames are registered to the
1st frame.

Fig. 13. Original image of sequence ’break dancers’.

and the high computational cost introduced by 3D reconstruction. The combined algorithm thus can
enjoy both the high efficiency of the traditional algorithm and the high robustness of the depth-based
registration method.

« We would use our depth-based image registration algorithm in practical applications to further verify
the performance of our algorithm compared to the traditional ones.



Fig. 14. Result of our algorithm, in which the image captured by the 4th camera is registered to the image from the 3rd camera.
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