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Abstract: Vector quantisation provides better rate-distortion performance over scalar quantisation even for a random vector with
independent dimensions. However, the design and implementation complexity of vector quantisers is much higher than that of
scalar quantisers. To reduce the complexity while achieving performance close to optimal vector quantisation or better than scalar
quantisation, the authors propose a new quantisation scheme, which consists of transformation and scalar quantisation. The
transformation is to decorrelate and raise the dimensionality of the input data, for example, to convert a two-axis
representation in two-dimensional into a tri-axis representation; then scalar quantisation is applied to each of the raised
dimensions, for example, along three axes. The proposed quantiser is asymptotically optimal/suboptimal for low/high rate
quantisation, especially for the quantisation with certain prime number of quantisation levels. The proposed quantiser has
O(N2) design complexity, whereas the design complexity of VQ is O(N!), where N is the number of quantisation levels per
dimension. The experimental results show that the average bit-rate achieves 0.4–24.5% lower than restricted/unrestricted polar
quantisers and rectangular quantisers for signals of circular and elliptical Gaussian and Laplace distributions. It holds the
potential of improving the performance of the existing image and video coding schemes.
1 Introduction

Quantisation is a critical technique for analogue-to-digital
conversion and signal compression [1]. Scalar quantisation
is simple, fast and easily amenable to a hardware
implementation, whereas vector quantisation in high
dimension could achieve smaller mean-square error (MSE)
and better rate-distortion (R-D) performance, by jointly
considering all the dimensions [2, 3], but at the cost of an
exponentially increasing quantiser design time and more
quantisation computations, that is, at the cost of more
codebook design and look-up time.
To reduce the cost, a lot of research has focused on

two-dimensional (2D) random variables, especially those of
circular Gaussian distributions, since circular distributions
have a lot of elegant closed-form expressions [4, 5]. The
earliest work referred to Huang and Schultheiss’s method
[6], which quantises each dimension of random variables in
Gaussian distributions with separate 1D Lloyd–Max
quantisers [7]. It is efficient and effective, but definitely
could be improved. Later, Zador [8] and Gersho [9] studied
quantisation by using companders with a large number of
quantisation levels theoretically. They used a compressor to
transform the data into a uniform distribution, and then
applied the optimal quantisers for the uniform distribution,
and then transformed the data with an expander. However,
this scheme does not work well under a small number of
quantisation levels. Another major method for designing
quantisers for circular distributions uses polar coordinates,
termed as polar quantisation. Polar quantisation includes
separable magnitude quantisation and phase quantisation.
Uniform polar quantisation was studied by Moo and Neuho
[10] with uniform magnitude and phase quantisation. The
optimal ratio between the number of magnitude quantisation
levels and the number of phase quantisation levels was
studied by Pearlman [11] and Bucklew and Gallagher [12,
13], and an minimum mean square error (MMSE) restricted
polar quantiser is implemented by using a uniform
quantiser for the phase angles and a scaled Lloyd–Max
quantiser of Rayleigh distribution for the magnitude.
However, their MMSE scheme does not always consider
the centre of a circular distribution as a quantisation level
and is restricted by the number of quantisation levels, thus,
its MSE performance is sometimes worse than rectangular
quantisers and other lattice quantisers, and it does not work
well for elliptical distributions neither. Wilson [14]
proposes a series of non-continuous quantisation lattices
which provide almost the optimal performance among the
existing polar quantisation. It is a kind of unrestricted polar
quantisation with arc boundaries. Swaszek and Thomas [15]
improved Wilson’s scheme by replacing arc boundaries
with Dirichlet boundaries. He showed the optimal circularly
symmetric quantisers for circular Gaussian distributions
with a small number of quantisation levels.
Most of the previous work focuses on Gaussian

distributions, and provide numerical results only for
Gaussian distributions. Gaussian source is considered as the
‘worst case’ source for data compression. The quantisers for
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Guassion distributions are instructive to construct robust
quantisers for other distributions [16], but the quantisers for
Gaussian distributions are far from the optimal quantisers
for other distributions. They did not consider the elliptical
distributions neither, whose optimal quantisers are
obviously different from those for circular distributions.
Also, they did not provide a unified framework for arbitrary
distributions. Therefore the optimal quantisers for other
distributions such as circular Laplace distributions, elliptical
Gaussian and Laplace distributions need investigation under
a unified framework.
To address these problems, we propose a unified

quantisation system to approach the optimal vector
quantisers by using transforms and scalar quantisers. The
function of transforms, especially unitary transforms and
volume-preserving scaling transforms, on signal entropy
and distortion is discussed. The optimal decorrelation
transform is illustrated which turns an arbitrary memory
source into a memoryless source in a mixed distribution
model. Then we focus on the scalar quantiser design for
memoryless circular and elliptical sources. The tri-axis
coordinate system is proposed to determine the quantisation
lattice, that is, the positions of quantisation levels, inspired
by the well-known optimal hexagonal lattice for 2D
uniformly distributed signals [17]. It provides a unified
framework for both circular and elliptical distributions [A
multivariate distribution is said to be elliptical if its
characteristic function is of the form eit

′nf(t′ St) for a
specified vector ν, positive-definite matrix Σ and
characteristic generator φ. When Σ = I, it is circular
distribution.], and encompasses the polar quantisation as a
special case. The proposed quantiser is also a kind of
adaptive elastic lattice quantiser. We will present the simple
design methodology, which utilises the Lloyd–Max
quantisers for the corresponding 1D distributions. The
merits of this scheme are verified on elliptical/circular
Gaussian and Laplace distributions. The methodology
description and experiments are focused on the bivariate
random variables, and the extension to high-dimensional
random variables is also discussed.
The advantages of our scheme include the following:
1. It provides an elegant quantisation lattice for arbitrary
number of quantisation levels, especially for prime numbers.
2. It almost always has smaller MSE than the other
quantisers.
3. It considers both memoryless and memory sources of
arbitrary distributions, which include circular distributions,
elliptical distributions and mixed distributions.
4. It is in a unified framework of a tri-axis coordinate system.
5. It has small design and implementation complexity.
Fig. 1 General encoding and decoding pipeline with transforms and sc
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The rest of the paper is organised as follows. Section 2
describes the system architecture of transform plus scalar
quantisation to approximate the optimal vector quantiser.
The preprocessing with transforms is discussed in Section 3
to decorrelate signals. In Section 4, we present a tri-axis
coordinate system, and the methodology to design the
optimal scalar quantiser for both circular and elliptical
distributions in detail. Experimental results are shown in
Section 5. Finally, Section 6 concludes the paper.

2 System architecture

2.1 Quantisation for compression

The general coding system usually includes transform,
quantisation and entropy coding as shown in Fig. 1. The
optimal transform could simplify vector quantisation
scheme into scalar quantisation, and even replace
variable-length entropy coding in the coding system with
fixed length coding. R-D code is an optimal code proposed
by Shannon listed in [3]. It is an optimal vector code when
block length n→∞. Only is known its existence, but not
its design in general. Vector quantisation has the ability to
approach R-D bound when the number of quantisation
levels N→∞, but is overwhelmed by the exponentially
increasing complexity. Therefore vector quantisation is
desired to be replaced by transformation followed by scalar
quantisation with the same R-D performance but much less
design and implementation complexity, as adopted by a
general transform compression system shown in Fig. 1.
Therefore an optimal transform plus an optimal scalar
quantiser gives us a new promising guideline to achieve
R-D bound as presented in the next sections.

2.2 Theorem and system framework

Theorem 1: The MMSE vector quantisation of uniform
distribution sources could be achieved by transformation
followed by scalar quantisation.

It will be proved in Section 4.
Following Theorem 1, we propose a system architecture as

shown in Fig. 2. A vector quantiser is implemented by a
transform and a scalar quantiser. The transform we focus on
can be a linear transform with high decorrelation ability.
We will discuss the unitary transforms, volume-preserving
scaling transforms and the optimal decorrelation transforms
in Section 3. The scalar quantiser is implemented in the
‘tri-axis coordinate system’ which will be described in
detail in Section 4. The transformation plus scalar
quantisation has the advantage of possible small complexity
and good R-D performance. The system still has a tradeoff
alar quantisation
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Fig. 2 System architecture to implement VQ with a transform plus
scalar quantisation
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issue between complexity (C ), rate (R) and distortion (D).
Therefore the system design should comprise the C–R–D
theory. Best R-D performance with least complexity is
desired.
The proposed system is flexible, in which the companding

technique could also be plugged in as shown in Fig. 3. As we
will show later, the companding technique is asymptotically
optimal, but may not work well in low rate situation.
However, our method with the tri-axis coordinate system
works almost universally.
Fig. 4 2D tri-axis coordinate system
3 Preprocessing with transforms

Transformation is helpful for quantisation. Any mapping is a
transform. Non-linear transforms introduce undesired
non-linear error after quantisation. Therefore linear
transform is considered in this section. To preserve signal
energy constant, linear transforms are focused on, such as
unitary transforms and volume-preserving scaling
transforms, represented by matrices with unitary
determinant. Such transforms can also be implemented
lossless with PLUS factorisation [18].
Unitary transform is highlighted in our system, due to MSE

invariance and high decorrelation ability.

Lemma 1: MMSE vector quantisation of random vectors
transformed with a unitary transformation is equivalent to
MMSE vector quantisation of the untransformed vectors
and unitary transformation of quantised vectors.

Usually the MSE and energy of signals change after
non-trivial scaling transformation or scaling transformation
with unitary determinant. The rate-distortion theory requires
the MSE be uniformly distributed for every component of
the random vector, if the MSE does not exceed the variance
of that component. Therefore the MMSE vector quantiser
for an elliptical distribution could not be obtained from the
MMSE vector quantiser for a circular distribution by a
simple scaling. That is why the existing works seldom
consider elliptical distributions, or independently consider
Fig. 3 Pipeline of transform plus scalar quantisation with companding
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the circular and elliptical distributions. However, they are
unified in our system.
4 Optimal scalar quantisers in tri-axis
coordinate system

After transformation, we can obtain random vectors with
independent components. For Theorem 1, 1D vector
quantisation is scalar quantisation. No transform is needed.
It is a trivial case. For 2D vector quantisation, we will
prove this theorem for uniform distributions in a tri-axis
coordinate system. For high-dimensional vector
quantisation, a multi-axis coordinate system is needed.
4.1 Tri-axis coordinate system
Definition 1: The tri-axis coordinate system in a 2D space has
three axes X, Y and Z, and the angles are 120° between the
three axes X, Y and Z.

The tri-axis coordinate system is shown in Fig. 4. Every point
in the 2D space can be represented by a point in this tri-axis
coordinate system.
4.2 Orthonormal property of tri-axis coordinate
system
Proposition 1: Any point in the tri-axis coordinate system (x,
y, z) satisfies x + y + z = 0.
technique
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Proof: Unit vectors along three axes X, Y and Z could be X =

(1,0)T, Y = −1/2,
��
3

√
/2

( )T
and Z = −1/2, − ��

3
√

/2
( )T

. A
point P = (u, v) in Cartesian coordinate system could be
represented by (x, y, z) in tri-axis coordinate system with x
= P·X, y = P·Y and z = P·Z. Then x + y + z = P·X + P·Y +
P·Z = P·(X + Y + Z ) = P·0 = 0. □

The big advantage of the tri-axis system is that the coordinate
lattice is hexagonal, which is what we need for optimal vector
quantisation, whereas bi-axis systems can only give
quadrilateral coordinate lattices. Linear transforms preserve
linearity and parallelism, therefore if a linear transform is
applied, the coordinate lattice is still hexagonal and with
three pairs of parallel edges although the angles are not
necessarily 120°. The optimal vector quantiser for a
uniform distribution can be perfectly represented by the
tri-axis coordinate system as shown in Proposition 2, but
not by polar coordinate system.
The coordinates (x, y, z) are highly correlated. For some

symmetrical distributions, two axes or one axis is sufficient.
For example, the optimal 2D vector quantisation for
uniform distributions could be determined by two axes X, Y
of 120° in spanning a hexagonal lattice. The optimal 2D
vector quantisation for circular distributions also needs two
axes, one of which determines the magnitude quantisation,
another determines the phase quantisation. It is
rotation-invariant for circular distributions, but not for
elliptical distributions. We will show them in next
subsections.
4.3 Tri-axis coordinate system for uniform
distribution

It is well known that the optimal vector quantiser for uniform
distributions in a 2D space is regular honeycomb [17], which
is from the geometry of numbers, also from discrete geometry
in the Euclidean space. We will implement it with scalar
quantisation in tri-axis system as shown in Fig. 5.

Proposition 2: Hexagonal lattice in tri-axis system is still R-D
optimal for quantisation of uniform distributions.

Proof:

1. Vector quantisation levels are the centroids of the
hexagons. The centroid of each hexagon of the optimal
Fig. 5 2D optimal uniform vector quantiser
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quantiser could be represented by a fixed length code. R =
log2N, where N is the number of quantisation levels.
2. Every point in the 2D space could be represented by the
vector r = c1r1 + c2r2, as shown in Fig. 5, where r1 and r2 are
the basis vectors of VQ. c1 and c2 are integers and
uniformly distributed if the centroid is uniformly distributed.
3. Scalar quantisers compose of two independent scalar
quantisers along two axes r′1 and r′2. Every point could be
represented by two indices in the codebook. The indices are
obtained by projecting the point to the nearest code on the
axes. For example, a point representation is r = xr′1 + yr′2
which is quantised to r = xmr

′
1 + ynr

′
2.

4. Let r1 = r′1 and r2 = r′2, then we have c1 = xm and c2 = ym.
The sum of square error of SQ is the inner product of
x− xm
( )

r′1 and y− ym
( )

r′2, and the sum of square error of
VQ is the inner products of x− c1

( )
r1 and y− c2

( )
r2.

Thus, VQ and SQ have the same distortion.
5. For uniform distribution, only one codebook is needed for
two axes r′1 and r′2. The indices could be coded with a fixed
length. Ri = log2Ni, where Ni is the number of quantisation
levels along axis i (i = 1, 2).
6. N1 × N2 =N asymptotically, that is, R1 + R2 = log2N1 +
log2N2 = log2N = R, VQ and SQ have the same rate.
7. Therefore SQ and VQ are with the same R-D performance.

Therefore the optimal MMSE vector quantisation could be
achieved by a transform (an identity transform) followed by a
uniform scalar quantiser for a 2D ideal uniform distribution.
□

In this way, SQ and VQ have the same R-D performance,
while the codebook size of SQ is around the square root of
that of VQ, because N1 ×N2 =N. As the reduced
complexity provided by SQ, we try to use SQ to replace
VQ in this paper. Another point needed to mention is that
the number of quantisation levels for hexagon lattice are
prime numbers 1, 7, 19, 37, …, growing along circles with
larger and larger radius, which could be found in Fig. 4.
Therefore it is easy to design quantisers of prime number of
quantisation levels with hexagonal lattices, whereas it is
difficult and inferior with rectangular lattices for circular
distributions.

4.4 Tri-axis coordinate system for circular and
elliptical distributions

How about the distribution is not uniform, what will the
optimal quantisation lattices be? This is a problem of
finding the transform from a non-uniform distribution to a
uniform distribution.

4.4.1 Elastic quantisation lattices for circular and
elliptical distributions: From the optimal hexagonal
lattice for a uniform distribution, we state that the optimal
vector quantiser for a circular distribution forms an
expanded hexagonal lattice, as shown in Figs. 6 and 7. The
expansion ratio between the optimal lattice for a 2D circular
distribution and that of a 2D uniform distribution along the
radius direction may approximately follow the expansion
ratio between the Lloyd–Max quantiser for the
corresponding 1D distribution and that of a 1D uniform
distribution, that is, the Lloyd–Max quantiser for the
corresponding 1D distribution.

4.4.2 Design methodology: We firstly focus on the
positions of quantisation levels of a 2D vector quantiser.
IET Commun., pp. 1–11
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Fig. 6 Circularly expanded hexagon lattice for 2D circular
Gaussian distribution

Fig. 9 Expanded hexagonal lattice for 2D circular Gaussian

Fig. 8 Tri-axis frame for a general 2D elliptical distribution
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The lattice patterns of the proposed quantiser are determined
beforehand, as shown in Figs. 9 and 10. The quantisation
levels approximately fall on the centroids of the lattice,
which are uniformly distributed in each annulus. We restrict
them to be on the same circle for simplicity, and each
quantisation region of lattice does not need to be hexagonal.
In different annuluses, quantisation levels are staggered
arranged similar to those of the rotated polar quantisation
[15]. The optimal distance between the quantisation levels
and the origin for the magnitude quantisation is determined
by weighting the Lloyd–Max quantiser of the corresponding
1D distribution with the unitary-variance. For more precise
locations of MMSE magnitude quantisation levels, they are
further searched outwards in radial directions for MMSE.
To be specific, for a 2D circular distribution, its pdf could

be separately represented in the polar coordinate system as
f (r, θ) = f1(r)·f2(θ), while it is not for elliptical distributions.
Fig. 7 Elliptically expanded hexagon lattice for 2D elliptical Gaussian

a Horizontal elliptical hexagonal lattice
b Vertical elliptical hexagonal lattice

IET Commun., pp. 1–11
doi: 10.1049/iet-com.2012.0684
For an arbitrary elliptical distribution, the data could be
transformed by unitary transforms into a distribution whose
principal axes are parallel to the coordinate systems, and
then translated to the origin. After such transformation, the
distribution

distribution

5
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Fig. 10 Expanded hexagonal lattice for 2D elliptical Gaussian
distribution
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equal-probability contours of distributions could be uniformly
represented by the following equation in Cartesian coordinate
system

∑n
i=1

x2i
b2i

= 1 (1)

b1 = b2 = · · · = bn = b for circular distributions; bis are not
all equal for elliptical distributions. The weighting effect from
b1 and b2 for 2D elliptical distributions is important. As if the
quantisers of circular distributions are used for elliptical
distributions, the resultant ‘MSE per dimension’ has a ratio
of b21/b

2
2. Whereas, from Shannon R-D theory (i.e. reverse

water filling), we know that if the MSE is less than the
variance of each component, the bit-rate should be allocated
such that the MSE per dimension is nearly equal. Therefore
we should use b1 and b2 to weight quantisation levels
towards this for elliptical distributions.
The magnitude quantisation is non-uniform. For both

circular and elliptical distributions, the 2D quantisation
levels fall on each circle or oval could be represented by
the coordinates (c·b1·cosθ, c·b2·sinθ) shown as stars in
Fig. 8c increases non-uniformly in radial directions. c could
be determined by searching outward starting from Lloyd–
Max quantisation for Gaussian distribution in radial
directions.
The uniform phase quantisation is optimal for circular

distributions, but may not for elliptical distributions. We
take uniform phase quantisation for both kinds of
distributions, since the optimal phase quantisation for
elliptical distributions is a little perturbation from the
uniform phase quantisation. We will show its suboptimality
for elliptical distribution in experiments. As shown in
Fig. 9, the number of quantisation levels in each annulus is
6
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1, 6, 12 and 18, similar to that of the regular hexagonal
lattice. Within each magnitude annulus, the k phase regions
all have equal size, whose boundaries are represented as
follows

(j − 1)
2p

k
≤ u , j

2p

k
(2)

where j = 1, 2, …, k.
The boundaries of quantisation intervals are obtained by

the nearest neighbour scheme based on the fixed
quantisation levels. The resultant quantisation regions are
not necessarily hexagonal. The optimal VQ for any
distributions, including uniform distributions, in finite
regions is deformed from hexagonal lattices in this way
(Fig. 10).
4.4.3 Number of quantisation levels in each
annulus: How many quantisation levels should we assign
to each annulus? Previously, for the restricted polar
quantisation [11], quantisation levels N is factorised into
N =Nθ·Nr, where Nθ is the number of quantisation levels in
each annulus, and Nr is the number of annuluses. Although
the optimal ratio between Nθ and Nr is studied, some
numbers of N cannot be perfectly factorised, not to mention
a prime number. This difficulty also lies in the unrestricted
polar quantisation [14]. The non-continuity of quantisation
patterns exists in all the previous works. It is also an
imperfection in our schemes. We have two schemes to
arrange magnitude quantisation levels against phase
quantisation levels. Our quantiser design and optimisation
methodology is much simpler than that of the unrestricted
polar quantisation.
The first scheme allows freedom in the number of phases

assigned at each magnitude level. The optimal patterns are
derived from experiments, which are coincident with
Wilson’s scheme [14] but with better performance and
Dirichlet boundaries, as shown in Fig. 11.
The second one is the progressive quantisation scheme [19]

as shown in Fig. 12. The number of annuluses L increases
with the number of quantisation levels N = 1, 7,
19, . . . , 1+ 6 · (1+ 2+ 3+ · · · ). Define set NL = {1, 7,
19, …, 1 + 3 l(l + 1)} and NL(l ) is the lth element in set NL.
That is the number of annuluses L is determined by

L = inf{l:N − 3l ≤ NL(l)}, N ≤ 4
inf{l:N + 7− 6l ≤ NL(l)}, o/w

{
(3)

where inf is the infimum. Therefore the quantiser could be
implemented progressively with the increase of N. The
previously located quantisation levels need not change their
relative positions, only their magnitudes should be shrinked
a little as suggested by the Lloyd–Max quantiser of 1D
Gaussian. Or hierarchically, we could further quantise each
existing quantisation region with our scheme.
Comparing the two schemes of quantisation lattice

patterns, we can see that the quantitative descriptions of the
first optimal scheme are difficult to provide. For small N,
the second scheme has performance close to the first
scheme, although with possible different lattice patterns; for
large N, their performance difference decreases, and the
quantisation patterns of the second scheme asymptotically
approach those of the first scheme. Scheme one and scheme
two have a lot of common quantisation lattice patterns.
IET Commun., pp. 1–11
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Fig. 11 First optimal quantisation scheme
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4.4.4 Expansion rule: How far away are the quantisation
levels found by the expansion rule along radial direction for
2D distributions from those found by the Lloyd–Max
quantiser for the corresponding 1D distributions? Take
Gaussian distribution for example. For 2D Gaussian with
joint pdf given by

PX x1, x2
( ) = 1

2p
exp − x21 + x22

2

{ }
(4)

where −∞ < x1, x2 <∞. Its polar coordinate representation is

PR,Q(r, u) =
r

2p
exp{− r2/2} (5)

where
IET Commun., pp. 1–11
doi: 10.1049/iet-com.2012.0684
0 ≤ r , 1, 0 ≤ u , 2p r = x21 + x22
( )1/2

u = tan−1

x2
x1

( )
The number of annuluses L of the quantiser for 2D

circular Gaussian has the following relationship with the
number N1 of quantisation levels of 1D Gaussian distribution

N1 = 2 L, L = 1
2 L− 1, L ≥ 2

{
(6)

Then the expansion rule for r in (5) with L annuluses is found
in table of the Lloyd–Max quantiser for 1D Gaussian with N1

quantisation levels. For example, N = 7, L = 2 case as shown
in Fig. 11. It corresponds to N1 = 3 of the quantiser for 1D
Gaussian, that is, r1 = 0, r2 = 1.2240.
Then how far away are r1 = 0, r2 = 1.2240 from the optimal

r∗1, r∗2? Consider an upper bound of the difference between r1
7
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Fig. 12 Second progressive quantisation scheme
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and r∗1 when L = 1. The radial expansion follows the rule for
Rayleigh distribution. However, there is no quantisation level
at origin for Rayleigh distribution, so we have to utilise the
quantiser for Gaussian distribution for our quantiser


1
0


u1
u0

r2

2pe
− r2/2
( )

du dr
1
0


u1
u0

r
2pe

− r2/2( )du dr
=

��
p

2

√

The Lloyd–Max quantiser for 1D Gaussian distribution is as
follows


1
0

x���
2p

√ e− x2/2
( )

dx
1
0

1���
2p

√ e− x2/2( )dx =
��
2

p

√

Then the upper bound of the difference is around

0.46 = ��
p
2

√ −
��
2
p

√( )
for unit variance distributions. As N
8
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obtains larger, the difference becomes smaller. These are
also the maximal searching ranges to find the optimal
magnitude quantisers. The Lloyd–Max quantiser for
one-dimension Gaussian is a good initial for finding the
optimal magnitude quantisation for 1D distributions.
The magnitude quantisation is almost independent of the

phase quantisation. It means that when phase quantisation
changes, the magnitude quantisation suffers a little
perturbation at most. As the number of quantisation levels
goes larger, the perturbation turns smaller.
5 Experimental results and discussions

In this section, we first show the basic properties of the
proposed scalar quantiser. Then we show experimental
results with a 2D memoryless source of unitary circular
Gaussian and Laplace distributions, and elliptical Gaussian
and Laplace distributions with b1 = 2, b2 = 1.
IET Commun., pp. 1–11
doi: 10.1049/iet-com.2012.0684



Fig. 14 Optimal magnitude levels for different number of
quantisation levels for uni-variance circular Gaussian distribution
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We will compare MSE and the R-D performance of our

proposed quantisers based on the first scheme with optimal
quantisation lattices, the unrestricted polar quantisers [14]
(indicated by ‘UPQ’), the restricted polar quantisers [11]
(indicated by ‘PQ’), the rectangular quantisers [6] (indicated
by ‘rectangular’). The rate here is defined as log2N/2. The
distortion is shown with MSE per dimension. The
benchmark is R-D function for a Gaussian memoryless source

R(D) = 1

2
log2

1

D

( )
(7)

where 0 <D≤ 1. Each quantiser is tested for its best
performance, with the corresponding optimal quantisation
levels, and the optimal ratio between the number of phase
quantisation levels and the number of magnitude
quantisation levels. For example, the rectangular quantisers
are almost tested with n2 quantisation levels for circular
distributions, that is, each dimension is quantised by a
Lloyd–Max quantiser with n quantisation levels, and 2n × n
for elliptical distributions, that is, data are quantised by a
Lloyd–Max quantiser with 2n and n quantisation levels,
respectively, applied to the two dimensions. We also show
the results of the vector quantisers found by Linde-Buzo-
Gray (LBG) algorithm [20]. Since LBG is highly initial
dependent and the results with bad initialisation are much
worse than those of our proposed quantisers. Thus we use
our proposed quantiser as initialisation of LBG algorithm,
to see how much LBG could improve on top of our algorithm.

5.1 Basic optimal properties

1. The property of optimal solutions is considered as follows.
Assume MMSE per dimension is the objective. For N = 7 = 1
+ 6 with two magnitude levels (i.e. the first magnitude
quantisation level is quantised with one phase quantisation
level, the second magnitude quantisation level with six
phase quantisation levels), MSE per dimension performance
on uni-variance circular Gaussian is shown in Fig. 1 with
respect to different radius of circles where lies the second
magnitude quantisation level. The radius shown in Fig. 13
starts from the second quantisation level of Lloyd–Max
quantiser for univariate Gaussian around 1.224. Then MSE
per dimension decreases with the increase of radius, reaches
Fig. 13 MSE per dimension for quantisation of 10 000 samples
from uni-variance circular Gaussian distribution

IET Commun., pp. 1–11
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its unique minimum about 1.43, and then increases with the
increase of radius. With more magnitude levels and more
than one radiuses needed to be tuned for the optimal
performance, there are definitely local minima. However,
the optimal radiuses could be easily and quickly found with
values starting from the quantisation levels of Lloyd–Max
quantisers for univariate Gaussian.
2. For the quantisation lattices with the same number of
magnitude quantisation levels, the radiuses of the optimal
magnitude levels increase with the number of quantisation
levels N, and are saturated with relatively large N. The
optimal radiuses of the second magnitude quantisation level
are shown by the vertical coordinates of points in Fig. 14
corresponding to the number of quantisation levels N = 5( =
1 + 4), 6( = 1 + 5), 7( = 1 + 6), 8( = 1 + 7) and 9( = 1 + 8).
They increase with N, and gradually slow down. This gives
us a guidance on how to tune the optimal magnitude
quantisation levels.

5.2 Circular Gaussian distribution

We show the R-D performance of different quantisers on a
uni-variance circular Gaussian distribution in Fig. 15. From
Fig. 15, we can see that the R-D performance of our
proposed quantisers is always a little better than that of
UPQs, and much better than that of PQs and that of
rectangular quantisers. They have the same R-D
performance when N = 4, because of we assign them the
same quantisation levels. Rectangular quantisers may have
better performance than PQs with some n2 (such as n = 3)
quantisation levels. Lloyd–Max quantiser with LBG on top
of our proposed algorithm can improve performance a little
in some cases to match random input better.
5.3 Elliptical Gaussian distribution

We show the R-D performance of different quantisers on an
elliptical Gaussian distribution in Fig. 16. From Fig. 16, we
can see that UPQs do not consider the different variances
among different random vector components, thus do not
perform well. Our proposed quantisers almost always
perform better than rectangular quantisers, except when
N = 8. Since N = 8 = 4 × 2 is the best factorisation for the
9
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Fig. 17 R-D comparison among different quantisers for circular
Laplace distribution

Fig. 15 R-D comparison among different quantisers for circular
Gaussian distribution

www.ietdl.org
rectangular quantiser on elliptical distributions when the ratio
of data component variances equals 2. Whereas, for other N
non-factorable, rectangular quantisers perform much worse
than polar quantisers and the proposed quantisers as
expected, although we did not plot it in the figure. Also
Lloyd–Max quantiser with LBG on top of our proposed
algorithm can improve performance a little in some cases to
match random input better.
5.4 Circular Laplace distribution

We show the R-D performance of different quantisers on a
uni-variance circular Laplace distribution in Fig. 17. It
indicates in Fig. 17 that our proposed quantisers always
perform a little better than UPQs, and much better than PQs
and rectangular quantisers. PQ performs better than
rectangular when N = 4, because of Laplace distribution is
peak at the centre. However, PQ following Guassian
distribution does not perform well here. Lloyd–Max
quantiser with LBG on top of our proposed algorithm
almost performs similar to our proposed quatisation with a
small improvement.
Fig. 16 R-D comparison among different quantisers for elliptical
Gaussian distribution
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5.5 Elliptical Laplace distribution

We show the R-D performance of different quantisers on an
elliptical Laplace distribution in Fig. 18. It tells that our
proposed quantisers always perform better than UPQs, and
better than rectangular quantisers except when N = 8 = 4 × 2.
Our proposed quantisers have predominant advantages
when N = 7, 19, 37, …. Lloyd–Max quantiser with LBG on
top of our proposed algorithm has a general improvement
over our proposed quatiser.
5.6 Bit-rate saving

We also evaluate the average bit-rate saving of our quantisers
compared to other quantisers. Average bit-rate is calculated
by using Bjontegaard’s method [21, 22] with fitting
polynomials of degree 3. Bit-rate saving is evaluated based
on relative average bit-rate in percentage as shown in the
following equation

Rc − Rp

Rp
× 100% (8)
Fig. 18 R-D comparison among different quantisers for elliptical
Laplace distribution
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Table 1 Average bit-rate saving of the proposed quantisers
over other quantisers

UPQ,% PQ,% Rectangular, %

circular Gaussian 0.36 6.78 3.22
elliptical Gaussian 22.4 — 16.9
circular Laplace 0.94 24.5 5.62
elliptical Laplace 19.8 — 6.32

www.ietdl.org
where Rc is the average bit-rate of the compared quantisers,
and Rp is the average bit-rate of the proposed quantisers.
From Table 1, we can see that the proposed quantiser saves

0.4–24.5% bit-rate on average, compared with unrestricted
polar quantisers, restricted polar quantisers and rectangular
qantisers. We did not list the average bit-rate gain over
restricted polar quantisers for elliptical distributions, which
is even higher than that over unrestricted polar quantisers.

6 Conclusions

In this paper, we proposed a scheme to use transformation
plus scalar quantisation to replace the optimal vector
quantisation. The unitary transforms rather than scaling
transforms were needed for the optimal vector quantiser
approximation. After transformation, scalar quantisation for
both circular and elliptical distributions was studied in the
proposed tri-axis coordinate system. The optimal
quantisation levels were found in the elastic hexagonal
lattices, which include the optimal and the progressive
quantiser lattice patterns. The experimental results showed
that our proposed quantisers almost always had better
performance than UPQs, PQs and rectangular quantisers on
both Gaussian and Laplace distributions, especially with a
prime number of quantisation levels. We achieved O(N2)
design complexity and 0.4–24.5% bit-rate saving, where N
is the number of quantisation levels per dimension.
Therefore we claimed that transforms plus scalar quantisers
could approximate the optimal vector quantisers in terms of
R-D performance but with much less computational
complexity. Our future work will focus on the optimal
vector quantiser approximation in high-dimensional spaces,
and the applications in image and video coding.
The future work will focus on optimal quantisers for

arbitrary distribution, which could be modelled by Gaussian
mixture model or Laplacian mixture model, and develop
algorithms for higher dimentional signals.
IET Commun., pp. 1–11
doi: 10.1049/iet-com.2012.0684
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