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Abstract

3D reconstruction is a major problem in computer vision. This paper considers the problem of reconstructing
3D structures, given a 2D video sequence. This problem is challenging since it is difficult to identify the trajectory
of each object point/pixel over time. Traditional stereo 3D reconstruction methods and volumetric 3D reconstruction
methods suffer from the blank wall problem, and the estimated dense depth map is not smooth, resulting in loss
of actual geometric structures such as planes. To retain geometric structures embedded in the 3D scene, this
paper proposes a novel surface fitting approach for 3D dense reconstruction. Specifically, we develop an expanded
deterministic annealing algorithm to decompose 3D point cloud to multiple geometric structures, and estimate the
parameters of each geometric structure. In this paper, we only consider plane structure, but our methodology can be
extended to other parametric geometric structures such as spheres, cylinders, and cones. The experimental results
show that the new approach is able to segment 3D point cloud into appropriate geometric structures and generate
accurate 3D dense depth map.

Index Terms

Geometric segmentation, surface fitting, dense matching, 3D reconstruction

I. INTRODUCTION

3D reconstruction is a major problem in computer vision. In the past, quite a few approaches have
been developed for modeling and rendering 3D scene from 2D image sequences [1][2][3][4]. Currently,
most of the systems and applications in 3D reconstruction are used for visual inspection and architecture
modeling. However, there is an increasing demand for 3D entertainment, for example, 3D movies. The
change of demand results in an attention for smooth visual quality of the reconstructed 3D scene. In
this case, visual quality of reconstructed 3D scene becomes a dominant performance measure, while the
foremost goal in previous approaches is accuracy of the estimated position of each point in 3D geometry.

In the last two decades, tremendous progress has been made on self-calibration and 3D surface model-
ing [5][6][7][8]. Most of the methods use 2D video sequences or 2D images as input and try to retrieve the
depth information of the scene captured by the input images. The estimated depth helps to reconstruct the
full 3D view of the scene. The existing techniques are able to accurately estimate the camera motion and
compute a sparse depth map from the original image sequence [9][10][11][1][12][13][14]. Here, sparse
depth map means a depth map that only contains depths of ‘a small portion’ of object points in a 3D scene.
However, full reconstruction of a 3D scene requires knowledge of depth of every object point in a 3D
scene. To obtain a dense depth map, one needs to solve the problem of dense matching/correspondence,
i.e., alignment of every pixel between two adjacent input images [15][16][17].

A traditional solution to the dense matching problem is called epi-line searching. Epi-line search method
uses geometric constraints to reduce the problem of 2D search to the problem of 1D search [18][19][20].
Although the search is constraint to 1D which seems easier to search, the blank wall problem, which is
not solved in 2D feature correspondence, still exists in epi-line search. The blank wall problem is that
given a textureless blank wall, it is very hard to find an accurate pixel-to-pixel correspondence between
two input images.



2

Recently, more algorithms are proposed to solve the dense matching problem. Jangheon Kim and
Thomas Sikora [21] proposed a dense disparity estimation algorithm which employs Gaussian scale-
space with anisotropic disparity-field diffusion. Strecha and Van Gool [22] proposed a PDE based depth
estimation algorithm based on the relative confidence that the system has in the data coming from the
different views. Lhuillier and Quan proposed a quasi-dense approach to surface reconstruction in which
they used a best first search based on combined 3D and 2D information [3][23]. Instead of using pixel-
based searching and matching, volumetric reconstruction takes the scene as a tessellation of 3D cubes,
called voxels. Each voxel may be either empty or occupied by the scene structure. Various methods have
been proposed to build the volumetric model. Volumetric reconstruction could well recover the scene of
the moving foreground, however, it is hard to reveal the static background structure using volumetric
methods. In Arce and Marroquin paper [24], they proposed a stereo disparity reconstruction algorithm.
By partitioning the reference image into a set of non-overlapping regions, the disparity reconstruction
problem is formulated as a parametric segmentation problem.

In this paper, we propose a novel 3D dense reconstruction method based on geometric segmentation
and surface fitting. We use the existing techniques for feature correspondence, projective reconstruction
and self-calibration to achieve sparse 3D reconstruction. To obtain dense 3D reconstruction, we need to
solve the dense matching problem. To address this, we use geometric segmentation to segment the 3D
point cloud (obtained from sparse 3D reconstruction) into multiple geometric structures, and estimate the
parameters of each geometric structure by surface fitting.

Different from previous 3D point segmentation algorithms [25][26][27][28][29], we develop an ex-
panded deterministic annealing algorithm for geometric segmentation; under the assumption that each
resulting geometric structure is a (linear) plane, we use surface fitting to estimate the depth of each
object point in the geometric structures. Although we only consider plane structure in this paper, our
methodology can be extended to other parametric geometric structures such as spheres, cylinders, and
cones. Compared to the existing epi-line searching methods, our proposed approach is able to produce
accurate dense depth map for textureless structures since we use geometric segmentation and surface
fitting to bypass the blank wall problem. Compared to the existing volumetric reconstruction methods,
our approach is able to produce accurate dense depth map for the static background structures due to
geometric segmentation and surface fitting. In addition, our approach is able to generate smoother 3D
dense reconstruction than the traditional methods. The experimental results show that our approach is able
to segment 3D point cloud into appropriate geometric structures and generate accurate 3D dense depth
map.

The rest of the paper is organized as follows. Section II describes the background and formulates
the problem. Section III presents our system for 3D reconstruction. Section IV presents our methods
for geometric segmentation and surface fitting. Experimental results are shown in Section V. Section VI
concludes this paper.

II. BACKGROUND AND PROBLEM FORMATION

In this section, we briefly review the 3D reconstruction techniques and formulate the geometric fitting
problem mathematically.

A. 3D Reconstruction
3D reconstruction has been a major topic in computer vision for decades. Most 3D reconstruction

approaches follow the same procedure [20] shown in Fig. 1.
As shown in Fig. 1, the first step in 3D reconstruction from a video sequence is to partition the whole

video sequence into multiple scenes. For each scene, motion detection is needed to separate moving objects
from the static background. Then, 3D reconstruction for moving foreground and static background are
conducted separately; and the reconstructed 3D points from the foreground and background are combined
to reconstruct the scene as a whole.
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Fig. 1. The procedure for 3D video reconstruction.

The second step is sparse reconstruction. Sparse reconstruction consists of feature correspondence,
projective reconstruction and Euclidean reconstruction. The camera motion is estimated and the Euclidean
structure of the static background scene is recovered. For the moving regions, we introduce the virtual
camera concept and apply the same reconstruction algorithm to recover the 3D structure. During the last
two decades, tremendous progress has been made to camera self-calibration and structure computation.
Sparse reconstruction starts from feature correspondence which is the most crucial part of the process. The
goal of image correspondence, also called feature correspondence, is to identify two pairing points that are
from two different image frames and correspond to the same 3D point [30][31]. It is known that not all
points in a frame are suitable for matching or tracking; so only a few points are selected as feature points
for matching [32]. Sparse reconstruction only relies on (sparse) feature point matching, which is different
from dense reconstruction. Furthermore, feature points may be mismatched, known as outliers [33],
which may degrade the accuracy of the sparse reconstruction result. After feature correspondence is
done, projective reconstruction is conducted. Given correctly matched feature points from two input
images, projective reconstruction is to find the relative pose between the two views. A projection is
mathematically expressed by fundamental matrix. Given a sufficient number of matched feature point
pairs, we are able to compute the fundamental matrix. The projective reconstruction is determined by a
projective transformation. To identify this projective transformation, canonical decomposition is applied.
However, the resulting projection is not suitable for visualization and an update to a full-fledged Euclidean
reconstruction is required to recover the metric 3D geometric structure. The update to a metric structure,
determined up to an unknown scalar factor, needs the information of intrinsic parameters of the camera.
Since we have no prior knowledge of the camera, this approach is called self-calibration and has received
a lot of attention in recent years. The approach we present here is called absolute conic constraint, or
absolute quadric constraints.

The sparse reconstruction gives a sparse structure of the desired scene; however, it could not give a
satisfied visual presentation. Thus, we still need to compute the depth of a lot more points, which is
known as dense reconstruction or surface reconstruction. In this paper, we propose a novel approach to
obtain the dense depth map. Unlike the previous approaches, we apply geometrical segmentation and
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surface fitting instead of dense searching and matching. Here we assume that the static background could
be decomposed into multiple parametric surfaces, which allows us to partition the 3D point clouds into
multiple clusters based on their geometric properties. For each cluster/region, we obtain a parametric
model of the region via surface fitting. Under the assumption that each region has a sufficient number of
feature point pairs, combined with the sparse depth map, we could then compute the depth of each pixel
via the obtained parametric model of each region/sufface. Combining the depth maps of different regions,
we finally obtain the depth map of the whole 3D scene. The merit of our approach is that it is able to
generate smoother 3D dense reconstruction than the traditional methods. The geometric fitting problem
is formulated in Section II-B and we give the solution to the geometric fitting problem in Section IV.

B. Geometric Fitting
The classic geometric fitting problem is to find a geometrical surface that best fits a set of 3D points.

Geometric fitting is commonly used in 3D model fitting and 3D visual reconstruction in computer vision.
Given a 3D point data set X = {yi},yi ∈ R3, i = 1, 2, ..., n, a geometrical fitting problem can be

formulated as the problem of minimizing a cost that measures how well the parametric model of a surface
gθ(y) = 1 fits the data set X , where θ is the parameter vector of the surface model. A commonly used
cost function is quadratic cost as below,

D =
1

n

n∑
i=1

[d(yi, gθ)]
2 (1)

d(yi, gθ) = min
y∈S

‖yi − y‖2, (2)

where ‖ · ‖2 is the Euclidean norm of a vector; and S = {y : gθ(y) = 1}. The parameter θ of function
gθ(y) can be estimated by the method of least squares, i.e., minimizing D over θ.

There is another problem we need to consider here: how many surfaces are contained in the given
3D scene. Obviously, the more surfaces, the smaller D, resulting in over-fitting the data set X . But too
few surfaces will lead to under-fitting the data set X . The principle of Occam’s razor states that the
simplest model that accurately represents the data is most desirable. So we prefer to use a few surface
functions, which yield smoother surfaces that could well approximate the data set X . Generally, there are
three approaches to the over-fitting problem. The first approach is to add a penalty function to D; the
penalty function increases with the number of surfaces. The second approach is to add smoothness or
regularization constraints to the problem that minimizes (1). The third approach is to first assume a large
number of surfaces and then identify a small number of (true) surfaces by compressive sensing techniques.
Although the three approaches can generate parsimonious models, the three approaches typically use a
gradient based computation procedure to solve the problem, which may produce local optimal solutions
that are far away from the global optimal solution.

To improve the three approaches, one possible method is to use a clustering algorithm to partition the
data set X into multiple clusters, each of which is used to estimate the parameter of a single surface.
One of the most popular clustering algorithm is Lloyd algorithm, which starts with randomly selecting k
initial centroids. Lloyd algorithm iteratively associates each point with the closest centroid and recalculates
the centroids of the new clusters. Although widely used in real world applications, there are two serious
limitations of Lloyd algorithm. The first limitation is that the partitioning result depends on the initialization
of the cluster centroids, which may lead to poor local minima. The second limitation is that Lloyd algorithm
can only partition points in linearly separable clusters rather than more complicated geometric structures
such as spheres. In order to avoid initialization dependence, a simple but useful solution is to use multiple
restarts with different initializations and select the best local minimum. Global k-means [34] is proposed
to build the clusters deterministically, which use the original k-means algorithm as a local search step.
At each step, global k-means add one more cluster based on previous partitioning result. Deterministic
annealing [35] is another optimization technique to find a global minimum of a cost function. Deterministic
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Fig. 2. Flowchart for our 3D video reconstruction system.

annealing explore a larger cost surface by adding a penalty on the product of temperature and the degree
of randomness, i.e., entropy. At each iteration, the temperature is reduced and then a local optimization
is performed. Finally, the temperature is reduced to zero and hence the imposed degree of randomness is
reduce to zero, and the algorithm optimizes the original cost function D. Kernel method [36] can be used
to mitigate the second limitation of Lloyd algorithm by nonlinearly mapping a data point in the input space
to a higher dimensional feature space through an expanded transformation. Then the clustering problem is
solved in the feature space. The linear separation in the feature space turns out to be a nonlinear separation
in the original input space.

III. 3D VIDEO RECONSTRUCTION

In this section, we describe our 3D reconstruction system. As shown in Fig. 2, our 3D reconstruction
consists of the following steps: 1) feature points are extracted/selected from each image; 2) feature
correspondence is established between any two consecutive images; 3) camera motion is estimated and
the camera is calibrated; 4) the depth of each feature point is estimated; 5) our algorithm for geometric
segmentation and surface fitting is applied to the 3D point cloud (corresponding to the feature points);
6) a dense depth map is obtained by using the parametric models of the surfaces. Next, we explain each
component in Fig. 2.

A. Feature Selection
The first step in 3D reconstruction is to select candidate features in all images for tracking across

different views. Point features can be identified by Harris’ criterion [37], which is defined by

C(x) = det(G) + k × trace2(G) (3)

where x = [x, y]T is a candidate feature; [·]T denotes the transpose of a vector/matrix; C(x) is the quality
of the feature; k is a user-specified parameter and G is a 2× 2 matrix that depends on x, given by

G =

[ ∑
W (x) I2

x

∑
W (x) IxIy∑

W (x) IxIy

∑
W (x) I2

y

]
(4)
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where W (x) is a rectangular window centered at x and Ix and Iy are the gradients along the x and y
directions which can be obtained by convolving the image I with the derivatives of a pair of Gaussian
filters. The size of the window can be decided by the user, for example 7 × 7. If C(x) exceeds a user-
specified threshold, then the point x is selected as a candidate point feature.

B. Feature Correspondence
Once the candidate point features are selected, the next step is to identify a pair of feature points (in two

consecutive images), which correspond to the same object point in 3D space. The classic image alignment
algorithm was the Lucas-Kanade algorithm [30]. In this subsection, we present the Lucas-Kanade algorithm
for feature correspondence based on a translational model.

We use sum of squared differences (SSD) to quantify the dissimilarity of two point features. The objec-
tive of Lucas-Kanade algorithm is to minimize the SSD between two images. The feature correspondence
problem is formulated by the following optimization problem:

min
d

∑

x∈W (x)

[I2(x + d)− I1(x)]2 (5)

where d is the displacement of a feature point at position x in Frame I1, with respect to Frame I2. The
solution to (5) is given by

d = −G−1b

where

b
.
=

[∑
W(x)

IxIt∑
W(x)

IyIt

]
(6)

and G is given by (4), and It
.
= I2 − I1.

C. Estimation of Camera Motion Parameters
In this subsection, we present a method for estimating camera motion parameters from the established

feature correspondence [38]. We will follow the notation used in Ref. [7].
The method is based on a perspective projection model with a pinhole camera. Suppose we have a

generic point p ∈ R3 with coordinates Xp = [X, Y, Z, 1]T relative to a world coordinate frame. Given two
image frames of one scene which is related by a motion g = (R, T ), the two image projection point x1

and x2 are related as follows:
λ1x̌1 = Π1Xp, λ2x̌2 = Π2Xp (7)

where x̌ = [x, y, 1]T is measured in pixels; λ1 and λ2 are the depths of x1 and x2, respectively; Π1 = [J, 0]
and Π2 = [JR, JT ] are the camera projection matrices; and J is the camera calibration matrix.

The camera calibration matrix J is also known as the intrinsic matrix. It contains 5 intrinsic parameters,
including camera focal length, image format, and principal point. There are two classic approaches for
camera calibration, one is Tsai’s two stage algorithm [39] and the other is Zhang’s algorithm [1] based on
homography constrains. In our paper, we use Tsai’s algorithm to estimate the camera calibration matrix
J .

In order to estimate λ1, λ2, Π1 and Π2, we need to introduce the epipolar constraint. From Eq. (7), we
have

x̌T
2 J−T T̂RJ−1x̌1 = 0 (8)

The fundamental matrix is defined as:
Fm

.
= J−T T̂RJ−1 (9)

With the above model, we could estimate the fundamental matrix Fm via the eight-point algorithm [7].
Then we could decompose the fundamental matrix to recover the projection matrices Π1 and Π2 and the
3D structure. We only give the solution here by canonical decomposition [38]:

λ1x̌1 = Xp, λ2x̌2 = (T̂ ′)T FmXp + T ′ (10)



7

D. Depth Estimation
The Euclidean structure Xe is related to the projective reconstruction Xp by a linear transform H ∈

R4×4,
Πip ∼ ΠieH

−1,Xp ∼ HXe, i = 1, 2, ..., m (11)

where ∼ means equality up to a scale factor and

H =

[
J 0

−νT J 1

]
∈ R4×4 (12)

With the assumption that J is constant, we could estimate the unknowns J and ν with a gradient decent
optimization algorithm [7]. In order to obtain a unique solution, we also assume that the scene is generic
and the camera motion is rich enough.

E. Geometric Segmentation and Surface Fitting
One disadvantage of point feature correspondence is that only a small number of points are qualified as

feature points. So, with the depth estimation, the previous 3D depth map recovery is sparse. The problem
with sparse structure is that it is not suitable for human visualization. Therefore, in this paper, we propose
a new dense matching method based on geometric segmentation.

We first segment the 3D point cloud (obtained from sparse 3D reconstruction) into multiple regions,
each of which represents a geometric structure, i.e., surface. For simplicity, we model each surface by
a parametric plane model. With the depth information of the feature points obtained from the sparse
3D reconstruction, we can compute the depth of each pixel on a plane, via the parametric model of the
plane. Since the depth information we obtained is based on a plane model, the image rendered from the
3D model is much smoother than the traditional approaches. In order to simplify the problem of surface
fitting (i.e., estimation of the parameters of the plane model), we first segment the input image based on its
geometric structure. It is different from the traditional object-based image segmentation. The segmentation
process is critical because proper segmentation could simplify the surface fitting. On the contrary, improper
segmentation will result in too many surfaces/planes, leading to high complexity in surface fitting. Our
algorithm for geometric segmentation and surface fitting will be presented in Section IV.

F. Dense 3D Reconstruction
Here, we only consider two images. Suppose for the first image, we have the 3D point set {Xj

e}n
j=1,

which could be divided into K clusters, denoted by X1, X2, · · · , XK . For each cluster, we assume there
are at least three non-collinear points, which usually can be satisfied. Then we model each cluster by a
plane. We use X1 as an example. We can use the following plane model to fit the points in X1,

X · µ = 1 (13)

where µ = [a, b, c, 0]T is the plane parameter vector and can be estimated by the least squares method,
given 3D points in X1.

For an arbitrary image point xi = [xi, yi]T , which is an image of a 3D point in X1, we could estimate
its depth λi by solving the following equation,

λix̌i = H−1
1 Π1X

i
e (14)

where x̌i = [xi, yi, 1]T , H−1
1 and Π1 are estimated by Eq. (10) and Eq. (12), respectively. In Eq. (14),

only λi is unknown and with the constraint on Xi
e via Eq. (13), we can obtain the value of λi.

Since we are able to obtain the depth of any image point via the above procedure, we can obtain a
dense depth map of each frame.
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IV. GEOMETRIC SEGMENTATION AND SURFACE FITTING

As we have discussed, not all points in an image are suitable for matching or tracking. The feature
points that we have selected are only a small portion of a whole image. Therefore, the first reconstruction
is a sparse 3D reconstruction. The sparse structure is not suitable for human visualization. For this reason,
a dense matching is necessary to establish a 3D geometric view. It is known that the most popular solution
for dense matching is based on the epi-polar constraint. This approach uses geometric constraints to restrict
correspondence search from 2D to 1D range. The main disadvantage of this approach is that the dense
depth map is not smooth because of outliers. Lhuillier and Quan [3] proposed a dense matching method
called quasi-dense approach. However, the non-smoothness problem still exists.

In this section, we propose an expanded deterministic annealing approach for space partitioning and
surface fitting in 3D Euclidean space. Under the assumption that the 3D scene under study consists of a
few geometric structures, we design a non-linear function to map the data point from geometrical space to
surface model space and apply deterministic annealing in the feature space to partition the feature space
into multiple regions. For each region, we use a linear plane model to fit the 3D points in the region.
We call our method as expanded deterministic annealing method. Our method has three merits: 1) the
ability to avoid many poor local optima; 2) the ability to minimize the cost function even if its gradients
vanish almost everywhere; 3) the ability to achieve non-linear separation of 3D points. However, there
is no closed form solution to the expanded deterministic annealing problem; therefore we use a gradient
descent algorithm to solve this problem. Next, we present the problem of geometric segmentation and
surface fitting.

Given a set of 3D points {yi}, we would like to find multiple geometric surfaces that best fit the 3D
point cloud {yi}. The problem can be formulated as below

min
{θk}K

k=1

K∑

k=1

∑
yi∈Xk

d(yi, gθk
) (15)

where K is the number of surfaces (i.e., planes here); {θk}K
k=1 denotes the set {θ1, θ2, · · · , θK}; Ck denotes

the cluster of 3D points that belong to the k-th plane; yi = [xi, yi, zi]
T is the i-th point; θk = [ak, bk, ck]

T

is the parameter vector of the k-th plane model, where 1
ak

, 1
bk

, and 1
ck

are intercepts of the plane on x-axis,
y-axis, and z-axis, respectively; and d2

i,k is the squared distance (fitting error) between yi and plane model
gθk

(y) = yT θk = 1, which is defined as

d2
i,k = d2(yi, gθk

) = (yT
i θk − 1)2 (16)

This is a joint problem of model selection and parameter estimation, i.e., we need to determine how
many surfaces (or the number of clusters of 3D points) and estimate the parameters of the parametric
model of each surface. This problem is particularly challenging because the more surfaces, the smaller
fitting error but the higher probability of over-fitting; the fewer surfaces, the larger fitting error.

The problem in (15) can be solved by deterministic annealing (DA) [35]. The DA approach to clustering
has demonstrated substantial performance improvement over traditional supervised and unsupervised
learning algorithms. DA mimics the annealing process. DA works as below. First, it minimizes the cost
function subject to a constraint on the degree of randomness of the solution. The constraint on Shannon
entropy, is gradually shrunk as the temperature reduces, and the constraint eventually vanishes as the
temperature goes to zero; hence the solution of DA converges to the solution of minimizing the original
cost function. Similar to the simulated annealing [40], the cooling schedule allows DA to avoid many poor
local optima. The DA approach has been adopted in a variety of research fields, such as graph-theoretic
optimization and computer vision. Rao et al. [41] apply DA to solving a piecewise regression problem.

In this paper, we propose a new approach, called expanded deterministic annealing (EDA), to solve
the geometric segmentation and surface fitting problem. Specifically, we first use a non-linear function to
map the input 3D points to a high dimensional feature space using the local geometric structure of each



9

3D point. Then we apply deterministic annealing to the points in the feature space for clustering (i.e.,
geometric segmentation) and surface fitting. Different from Ref. [41], our EDA approach leverages local
geometric structure for clustering. Next, we present our EDA approach.

The input data is a set of 3D points, yi = [xi, yi, zi]
T (i = 1, · · · , N ). Under the assumption that L

nearest 3D points of a given point yi are on the same local plane, we use the least squares method to
estimate this local plane model parameters, denoted by Li = [ai, bi, ci]

T . Let

fi =

[
yi

Li

]

So we expand a 3D point yi to 6D point fi; then we apply DA to this expanded 6D space to solve the
geometric segmentation and surface fitting problem. Define

P1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 ,

P2 =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

In our EDA algorithm, we use the following (new) distortion function

D(fi, gθk
) = β ×D1(P1fi, gθk

) + D2(P2fi, gθk
), (17)

where D1(yi, gθk
) = d2

i,k, which is defined in (16); D2(P2fi, gθk
) is defined by

D2(P2fi, gθk
) = 1− (P2f

T
i · θk)

2; (18)

and β is a positive real number, which balances the two types of distortions D1 and D2. Note that D1

quantifies the fitting error between a given 3D point yi and the global plane, which yi belongs to; D2

quantifies the difference between the local plane model of yi and the global plane model of yi; and
P2f

T
i · θk is a cosine similarity between the two plane models. One novelty of our EDA algorithm is the

introduction of D2, which can be regarded as locally averaged distortion and help mitigate the effect of
outliers, i.e., an outlier 3D point only contributes distortion D1 weighted by β. E.g., if we choose β = 0.1,
then the contribution from D1 is reduced by a factor of 10.

Denote the number of clusters by K. We apply DA to partition {yi} into K clusters and estimate the
parameters of planes, each of which corresponds to one cluster. Since K is not a given parameter, our
EDA algorithm will search for the optimal value of K, as shown in Algorithm 1. For a given value K,
our EDA algorithm solves the following problem.

min
{θk}K

k=1

F = D − TE (19)

where θk = [ak, bk, ck]
T (k = 1, · · · , K) is the surface model parameter to be estimated; D is defined in

(17); and E is the entropy constraint. We define D and E as follows:

D =
1

N

N∑
i=1

K∑

k=1

P (yi ∈ gθk
)×D(fi, gθk

), (20)

E = − 1

N

N∑
i=1

K∑

k=1

P (yi ∈ gθk
)× log P (yi ∈ gθk

), (21)
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where

P (yi ∈ gθk
) =

exp(−D(fi,gθk
)

T
)

∑K
j=1 exp(−D(fi,gθj

)

T
)

(22)

We use a gradient descent algorithm to solve the problem (19) as shown in Algorithm 1. We explain
Step 2 of Algorithm 1 as below. Since a plane model is specified by equation gθ(y) = yT θ = 1, given
3D points {yi}N

i=1, for K = 1, we can estimate the parameter vector θ of the plane that fits all the 3D
points, by solving the following problem

θ̂ = arg min
θ

N∑
i=1

(yT
i θ − 1)2. (23)

Hence, θ̂ can be obtained by the least squares solution as below

θ̂ = (YTY)−1YT~1N , (24)

where Y = [y1,y2, · · · ,yN ]T is a matrix of dimension N × 3, and ~1N = [1, 1, · · · , 1]T is a vector of
dimension N. In Step 4b, Θ = [θT

1 , θT
2 , · · · , θT

K ]T ; ∇ΘF denotes the gradient of F with respect to Θ.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments to demonstrate that our proposed approach is able to segment
3D point cloud into appropriate geometric structures and generate accurate 3D dense depth map. The
rest of the section is organized as below. Section V-A shows the estimation accuracy of our proposed
Algorithm 1 (EDA) for synthetic data with the knowledge of ground truth. In Section V-B, we present the
results of the estimation accuracy of Algorithm 1 for noisy synthetic data with the knowledge of ground
truth. Section V-C investigates the estimation accuracy of Algorithm 1 for real-world data.

In this section, we compared three geometric segmentation algorithms, Projection based iterative geo-
metric segmentation algorithm (PI), Adaptive projection based iterative algorithm (API), and expanded
DA based geometric segmentation algorithm(EDA), based on both synthetic data and real world data.

A. EDA on Synthetic Data without Noise
In this section, we show the estimation accuracy of Algorithm 1 (EDA) for synthetic data with the

knowledge of ground truth; the synthetic data here does not contain noise. We also compare EDA to
Algorithm 2 and Algorithm 3. Algorithm 2 is a projection based iterative geometric segmentation algorithm
(PI for short); we design Algorithm 2 (PI) based on the same principle of the Lloyd algorithm (a.k.a.,
K-means). Algorithm 3 is an adaptive projection based iterative algorithm (API for short); we design
Algorithm 3 (API) based on the same principle of ISODATA, which generalizes K-means by allowing K
to be unspecified.

To generate synthetic data, we first determine the number of planes, denoted by K; then specify the
analytic form of each of the K planes and the area of each plane; for each plane, we uniformly generate
100 3D points on the plane area. The same data set is applied to the three algorithms. In the experiment, we
run each algorithm 1000 times; in different run, a different set of 3D points are (randomly) generated; then
we compute the average performance of each algorithm in terms of average squared approximation error
and correct identification rate. Table I shows average squared approximation error for PI, API, and EDA
algorithms, where the squared approximation error is quantified by the Euclidean norm of the estimation
error for the plane model parameters. We test four different number of planes, i.e., K = 3, 4, 5, 6. As
observed from Table I, the approximation error of EDA is negligible comparing to that of PI and API,
which demonstrates that the EDA algorithm significantly outperforms both PI and API algorithms in terms
of estimation accuracy for the plane models. This is because EDA is able to separate the 3D point cloud
in a non-linear manner, and can avoid many poor local optima.
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Algorithm 1 EDA based joint geometrical segmentation and surface fitting
1) Input: y1, y2, ..., yN ;

Kmax: maximum number of clusters
Tinit: starting temperature
Tmin: minimum temperature
α: cooling rate (must be < 1)
Imax: maximum iteration number
ε: threshold for F
ε: threshold for plane merging
σ2: variance of Gaussian perturbation

2) Initialization
Compute θ1 via (24); T = Tinit; K = 2; θ2 = θ1; P (yi ∈ gθ1) = P (yi ∈ gθ2) = 1

2
,∀i.

3) Perturb
Generate Gaussian vector δk of zero mean and covariance matrix σ2I; θk ← θk + δk (k = 1, 2);
Fold = D − TH;
j=0;

4) Loop until convergence
4a) For each i and each k, compute P (yi ∈ gθk

) via (22);
4b) Update the surface models

Θ ← Θ− γ∇ΘF (γ is obtained by Armijo rule);
F = D − TE;
j = j + 1;
If (j < Imax and (Fold − F )/Fold > ε)

Fold = F ; Goto Step 4a;
5) Model size determination

{ if (||θk − θm||2 < ε), then replace θk and θm by (θk + θm)/2 } ∀k, m;
K = number of planes after merging;

6) Cooling
T = αT ;
If (T < Tmin)

perform Step 4a, 4b and Step 5 for T = 0
Goto Step 9

7) Duplication
Replace each plane by two planes at the same location; K = 2K;

8) Goto Step 3
9) Output: {θk}K

k=1.

TABLE I

AVERAGE SQUARED APPROXIMATION ERROR.

K PI API EDA
3 3.77× 10−1 3.00× 10−9 1.17× 10−12

4 4.01× 10−1 9.81× 10−8 2.21× 10−12

5 2.43× 10−1 2.86× 10−9 3.06× 10−12

6 2.94× 10−1 8.801× 10−9 3.00× 10−12

10 5.38× 10−1 3.32× 10−8 7.81× 10−10

20 1.01 6.73× 10−7 5.28× 10−8
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Algorithm 2 PI based joint geometrical segmentation and surface fitting
1) Input: y1, y2, ..., yN ;

K: maximum number of clusters
Imax: maximum iteration number
ε: threshold for θ

2) Initialization
∀i, use uniform distribution 1

K
to generate index k ∈ {1, · · · , K} of the cluster that yi belongs to;

∀k, estimate the plane parameter θk via (24), using only {yi ∈ Ck};
∀k, θold

k = θk;
j = 0;

3) Loop until convergence
3a) ∀i, compute k̂ = arg mink(y

T
i θk − 1)2, and assign yi to cluster Ck̂;

3b) Update the surface models
∀k, estimate the plane parameter θk via (24), using only {yi ∈ Ck};

3c) j=j+1;
3d) If (j < Imax and ((θold

k − θk)/θ
old
k > ε, for some k))

∀k, θold
k = θk; Goto Step 3a;

4) Output: {θk}K
k=1.

TABLE II

CORRECT IDENTIFICATION RATE.

K PI API EDA
3 83% 96% 99%
4 79% 93% 99%
5 82% 94% 97%
6 78% 97% 98%
10 73% 92% 95%
20 66% 88% 91%

Table II shows correct identification rate for PI, API, and EDA algorithms. The correct identification
rate is quantified by the percentage of 3D points whose plane memberships are correctly identified. Note
that there are K planes and we have the ground truth of which plane a 3D point belongs to. We observe
that the correct identification rates of EDA and API are much higher than that of the PI algorithm. The
reason why the API algorithm outperforms the PI algorithm is that the API algorithm is not sensitive
to initialization while the PI algorithm is very sensitive to initialization. Again, EDA performs the best
among the three algorithms in terms of correct identification rate. This is again because EDA is able
to separate the 3D point cloud in a non-linear manner, and can avoid many poor local optima. We also
observe that if the number of plane is too large, like K > 10, the performance get worse. The reason is
that as the total number of planes increases, it becomes harder to distinguish two similar planes and it
becomes possible that many of the points may be classified into wrong categories. Therefore, we consider
it as one of the limitations of the EDA algorithm.

B. EDA on Synthetic Data with Noise
In this section, we show the estimation accuracy of Algorithm 1 (EDA) for synthetic data with the

knowledge of ground truth; the synthetic data here contains additive white Gaussian noise. We also
compare EDA to Algorithm 2 and Algorithm 3.
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Algorithm 3 API based joint geometrical segmentation and surface fitting
1) Input: y1, y2, ..., yN ;

Kmax: maximum number of clusters
Kmin: minimum number of clusters
Imax: maximum iteration number
Nmin: minimum number of points in a cluster
ε: threshold for θ
σ2: variance of Gaussian perturbation

2) Initialization
∀i, use uniform distribution 1

K
to generate index k ∈ {1, · · · , K} of the cluster that yi belongs to;

∀k, estimate the plane parameter θk via (24), using only {yi ∈ Ck};
∀k, θold

k = θk;
j = 0;

3) Loop until convergence
3a) ∀i, compute k̂ = arg mink(y

T
i θk − 1)2, and assign yi to cluster Ck̂;

3b) Update the surface models
∀k, estimate the plane parameter θk via (24), using only {yi ∈ Ck};

Discard those clusters whose sizes are less than Nmin;
K = number of planes after discarding clusters;
∀yi in the discarded clusters, compute k̂ = arg mink(y

T
i θk − 1)2, and assign yi to cluster Ck̂;

Perform Step 3b;
If (K < Kmin), CALL subroutine Split;
If (K > Kmax), CALL subroutine Merge;
If (j < Imax and ((θold

k − θk)/θ
old
k > ε, for some k))

∀k, θold
k = θk; Goto Step 3a;

Else Goto Step 6;
4) Split

Replace each plane by two planes at the same location; K = 2K;
Generate Gaussian vector δk of zero mean and covariance matrix σ2I; θk ← θk + δk (∀k);
Perform Step 3a and 3b; return.

5) Merge
Find k and m that achieve mink 6=m ||θk − θm||2; then replace θk and θm by (θk + θm)/2;
K = K − 1; perform Step 3a and 3b; return.

6) Output: {θk}K
k=1.

In the experiment, for each 3D point, the variance of its additive white Gaussian noise is 1/100 of
the area of the plane where the 3D point is located. In the experiment, we run each algorithm 1000
times; in different run, a different set of 3D points and their additive white Gaussian noise are (randomly)
generated; then we compute the average performance of each algorithm in terms of average squared
approximation error and correct identification rate. Table III shows average squared approximation error
for PI, API, and EDA algorithms, where the squared approximation error is quantified by the Euclidean
norm of the estimation error for the plane model parameters. As observed from Table I, the EDA algorithm
outperforms both PI and API algorithms in terms of estimation accuracy for the plane models. However,
the performance gain of EDA is much less than that for the noiseless case. The reason is that the non-
linear mapping in EDA depends on the accuracy of estimation of the local geometric structures and the
estimation of the local geometric structures is very sensitive to the added noise.

Table IV shows correct identification rate for PI, API, and EDA algorithms. We observe that EDA



14

TABLE III

AVERAGE SQUARED APPROXIMATION ERROR UNDER NOISY DATA.

K PI API EDA
3 6.61× 10−1 8.96× 10−1 2.41× 10−1

4 8.18× 10−1 5.98× 10−1 3.19× 10−1

5 6.98× 10−1 4.42× 10−1 3.96× 10−1

6 1.16 9.44× 10−1 6.71× 10−1

TABLE IV

CORRECT IDENTIFICATION RATE UNDER NOISY DATA.

K PI API EDA
3 77% 92% 94%
4 80% 92% 93%
5 72% 91% 95%
6 74% 89% 93%

performs the best among the three algorithms. Since EDA is not suitable for large number of planes. In
this experiment, we only perform comparison among all three algorithms with K < 10.

C. EDA on Real World Data
In this section, we show the geometric segmentation accuracy of Algorithm 1 (EDA) for real world

data. We also compare EDA to Algorithm 2 and Algorithm 3.
The real world data we use is the ‘house’ video sequence. We first apply the schemes in Section III-A

through Section III-D to the ‘house’ video sequence, and obtain 72 3D points. Specifically, Fig. 3 shows
72 feature points selected from the 1st frame of the ‘house’ video sequence, by the scheme in Section III-
A; Fig. 4 shows two frames used for estimating the depths of the 72 feature points; Fig. 5 shows the
estimated camera pose of the 1st and 88th frame, and the estimated 3D positions of the 72 feature points,
by the scheme in Section III-C and Section III-D, respectively. From Fig. 3, it can be seen that most of
the 72 feature points are on the walls of the house in the image.

We use the EDA algorithm to segment the 72 3D points shown in Fig. 5, and identify the geometric
structures (i.e., the walls) where the 3D points are embedded. Fig. 6 shows the geometric segmentation
result of the EDA algorithm, and Fig. 7 shows the resulting geometric structures (i.e., planes). Note that
Fig. 3 is a front view of the house while Fig. 6 and Fig. 7 are top views of the house. From Fig. 6 and
Fig. 7, it is observed that the EDA algorithm segments the 3D points into three groups, each of which
correctly corresponds to a wall in the image; in addition, most of the 3D points are correctly classified
into the true geometric structure (i.e., wall). Since the EDA algorithm is able to correctly identify the
true geometric structures of the scene, the EDA algorithm produces accurate dense 3D reconstruction as
shown in Fig. 7.

Fig. 8 and Fig. 9 show the geometric segmentation result of the PI and API algorithm, respectively. It is
observed that both the PI and API algorithm produce poor geometric segmentation result; in other words,
PI and API algorithms fail to identify the true geometric structures of the scene. Since the geometric
segmentation results are very poor, we do not show the parametric models produced by the PI and API
algorithm.

VI. CONCLUSION

In this paper, we propose a novel approach to the problem of dense 3D reconstruction. Our approach
is based on geometric segmentation and surface fitting. We first use the existing techniques for feature
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Fig. 3. Feature points on the 1st frame of the ‘house’ video sequence.

selection, feature correspondence, projective reconstruction and self-calibration to obtain sparse 3D re-
construction. Then, we use an expanded Deterministic Annealing (EDA) algorithm, which is proposed
in this paper, to segment the 3D space into multiple geometric structures; at the same time, the EDA
algorithm also produces estimates of the parameters of each geometric structure. The resulting geometric
structures help achieve dense 3D reconstruction; i.e., for each pixel in an image, its depth can be estimated
by computing the parametric model of the geometric structure that the pixel belongs to. Experimental
results demonstrate that the EDA algorithm is able to segment the 3D space in a non-linear manner, and
is more accurate in geometric segmentation and surface fitting, compared to the PI and API algorithms.
Our proposed approach to dense 3D reconstruction can generate smoother dense map, compared to the
traditional methods.

A limitation of our proposed method is that, just like every feature-point-based algorithm, our method
also suffers from the well-known “blank wall” problem (i.e., the problem of having no texture); this is
because our method relies on texture so that feature points can be extracted.

In our future work, we will develop surface fitting algorithms for non-linear surface models, e.g., sphere
surface. The EDA algorithm used in this paper is based on a plane model gθk

(y). In order to apply EDA
for non-linear surface models, we need to use a non-linear surface model gθk

(y) and related distortion
function d(yi, gθk

). The challenge is that if we simply substitute the plane model with the non-linear
surface model, the computational complexity is much higher. Therefore, optimization is needed to apply
the EDA for non-linear surface model.

DISCLAIMERS

The views and conclusions contained herein are those of the authors and should not be interpreted as
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(a) The 1st frame in the ‘house’ video sequence (b) The 88th frame in the ‘house’ video sequence

Fig. 4. Two frames used for sparse depth estimation.
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[7] Y. Ma, S. Soatto, and J. Košecká, An invitation to 3-d vision: from images to geometric models. Springer Verlag, 2004.
[8] H. Li, B. Adams, L. Guibas, and M. Pauly, “Robust single-view geometry and motion reconstruction,” in ACM SIGGRAPH Asia 2009,

pp. 1–10, 2009.
[9] P. Beardsley, P. Torr, and A. Zisserman, “3D model acquisition from extended image sequences,” in Proceedings of the 4th European

Conference on Computer Vision, pp. 683–695, Springer-Verlag, 1996.
[10] A. Fitzgibbon and A. Zisserman, “Automatic camera recovery for closed or open image sequences,” in Proceedings of the 5th European

Conference on Computer Vision-Volume I-Volume I, pp. 311–326, Springer-Verlag, 1998.
[11] M. Pollefeys, R. Koch, and V. Gool, “Self-calibration and Metric Reconstruction in Spite of Varying and Unknown Internal Camera

Parameters,” Journal of Computer Vision, 1998.
[12] F. Devernay and O. Faugeras, “Automatic Calibration and Removal of Distortion from Scenes of Structured Environments,” Investigative

and Trial Image Processing, vol. 2567, pp. 62–72, 1995.
[13] N. Cornelis, B. Leibe, K. Cornelis, and L. Van Gool, “3d urban scene modeling integrating recognition and reconstruction,” International

Journal of Computer Vision, vol. 78, no. 2, pp. 121–141, 2008.
[14] M. Pollefeys, D. Nistér, J. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. Engels, D. Gallup, S. Kim, P. Merrell, et al., “Detailed

real-time urban 3d reconstruction from video,” International Journal of Computer Vision, vol. 78, no. 2, pp. 143–167, 2008.
[15] J. Yagnik and K. Ramakrishnan, “A model based factorization approach for dense 3D recovery from monocular video,” in Seventh

IEEE International Symposium on Multimedia, p. 4, 2005.
[16] V. Popescu, E. Sacks, and G. Bahmutov, “Interactive point-based modeling from dense color and sparse depth,” in Eurographics

Symposium on Point-Based Graphics, 2004.
[17] H. Chang, J. Moura, Y. Wu, K. Sato, and C. Ho, “Reconstruction of 3D dense cardiac motion from tagged MR sequences,” in IEEE

International Symposium on Biomedical Imaging: Nano to Macro, pp. 880–883, 2004.
[18] O. Faugeras and R. Keriven, “Complete dense stereovision using level set methods,” in Proceedings of the 5th European Conference

on Computer Vision, p. 393, 1998.
[19] R. Koch, M. Pollefeys, and L. Gool, “Multi viewpoint stereo from uncalibrated video sequences,” in Proceedings of the 5th European

Conference on Computer Vision, p. 71, 1998.
[20] M. Pollefeys, R. Koch, M. Vergauwen, and L. Van Gool, “Automated Reconstruction of 3D Scenes from Sequences of Images,” ISPRS

Journal Of Photogrammetry And Remote Sensing, vol. 55, no. 4, pp. 251–267, 2000.
[21] J. Kim and T. Sikora, “Gaussian scale-space dense disparity estimation with anisotropic disparity-field diffusion,” in In Proc. of IEEE

3DIM, 2005.



18

−150 −100 −50 0 50

440

460

480

500

520

540

560

y
x

z

Fig. 7. Estimated geometric structures.

[22] C. Strecha and L. V. Gool, “Pde-based multi-view depth estimation,” in 1 st International Symposium on 3D Data Processing
Visualization and Transmission (3DPVT, pp. 416–425, 2002.

[23] M. Lhuillier and L. Quan, “Surface reconstruction by integrating 3D and 2D data of multiple views,” in Proceedings of IEEE
International Conference on Computer Vision 2003, pp. 1313–1320, 2003.

[24] E. Arce and J. Marroquin, “High-precision stereo disparity estimation using HMMF models,” Image and Vision Computing, vol. 25,
no. 5, pp. 623–636, 2007.

[25] A. Fitzgibbon and A. Zisserman, “Multibody structure and motion: 3-D reconstruction of independently moving objects,” Computer
Vision-ECCV 2000, pp. 891–906, 2000.

[26] R. Vidal, Y. Ma, S. Soatto, and S. Sastry, “Two-view multibody structure from motion,” International Journal of Computer Vision,
vol. 68, no. 1, pp. 7–25, 2006.

[27] L. Wolf and A. Shashua, “Two-body segmentation from two perspective views,” 2001.
[28] P. Torr, “Geometric motion segmentation and model selection,” Philosophical Transactions of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences, vol. 356, no. 1740, p. 1321, 1998.
[29] G. Qian, R. Chellappa, and Q. Zheng, “Bayesian algorithms for simultaneous structure from motion estimation of multiple independently

moving objects,” Image Processing, IEEE Transactions on, vol. 14, no. 1, pp. 94–109, 2005.
[30] B. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in International Joint

Conference on Artificial Intelligence, vol. 3, p. 3, 1981.
[31] J. Barron, D. Fleet, and S. Beauchemin, “Performance of Optical Flow Techniques,” International Journal Of Computer Vision, vol. 12,

no. 1, pp. 43–77, 1994.
[32] J. Shi and C. Tomasi, “Good features to track,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600, 1994.
[33] M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
[34] A. Likas, N. Vlassis, et al., “The Global K-Means Clustering Algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451–461, 2003.
[35] K. Rose, “Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems,”

Proceedings of the IEEE, vol. 86, no. 11, pp. 2210–2239, 1998.
[36] B. Kulis, S. Basu, I. Dhillon, and R. Mooney, “Semi-Supervised Graph Clustering: A Kernel Approach,” Machine Learning, vol. 74,

no. 1, pp. 1–22, 2009.
[37] C. Harris and M. Stephens, “A combined corner and edge detector,” in Alvey vision conference, vol. 15, p. 50, Manchester, UK, 1988.
[38] Z. Zhang, “Determining the epipolar geometry and its uncertainty: A review,” International Journal of Computer Vision, vol. 27, no. 2,

pp. 161–195, 1998.
[39] R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and

lenses,” IEEE Journal of robotics and Automation, vol. 3, no. 4, pp. 323–344, 1987.
[40] S. Kirkpatrick, “Optimization by Simulated Annealing: Quantitative Studies,” Journal of Statistical Physics, vol. 34, no. 5, pp. 975–986,

1984.
[41] A. Rao, D. Miller, K. Rose, and A. Gersho, “A Deterministic Annealing Approach for Parsimonious Design of Piecewise Regression

Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 2, pp. 159–173, 1999.



19

−1.5 −1 −0.5 0 0.5 1 1.5 2−101

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Fig. 8. Geometrical segmentation result of the PI algorithm.
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Fig. 9. Geometrical segmentation result of the API algorithm.


