
Example: RVs Marginally Gaussian but not Jointly Gaussian 
 
We have seen that the MMSE estimator takes on a particularly simple form when x and θ 
are jointly Gaussian and we went to great lengths to show that this is satisfied for the 
Bayesian linear model.   
 
The definition of jointly Gaussian is: Two Gaussian RVs X and Y are jointly Gaussian if 
their joint PDF is a 2-D Gaussian PDF.  (Of course, there is an obvious extension to 
random vectors). 
 
Note the main ingredients here: both RV’s must individually be Gaussian and they must 
have a joint PDF that is Gaussian.  This raises the obvious question: Is it possible to have 
two RVs that are each individually Gaussian but are NOT jointly Gaussian? 
 
The answer is: Yes…. otherwise we wouldn’t make such a big stink about this.  So let’s 
see if we can find one such case to demonstrate that we DO have to worry about this. 
 
Remember that given a joint PDF pXY(x,y) the individual PDFs are the marginal PDFs 
that are found by integrating out “the other variable,” that is:  
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So we see what we need for our counterexample: we need a joint PDF that is NOT a 2-D 
Gaussian but that integrates to two Gaussian marginal PDFs.  So let’s construct one of 
these.  Let’s start with a 2-D joint Gaussian PDF and modify it.  Define the 2-D Gaussian 
PDF with zero-mean, uncorrelated RVs, which is then given by: 
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y which looks like this in a contour plot: 
 
 
 
 
 
 
 
Now, from what we have studied about 2-D Gaussian PDFs, integrating over x this gives 
a Gaussian marginal in y; likewise, integrating over y gives a Gaussian marginal in x.  But 
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because of the symmetry of this joint PDF about both x and y axes we can write these 
integrations as  
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In other words we only have to integrate over the following hatched quadrants to get the 
marginals, as long as we multiply by 2: 
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This gives us the route to what we need.  If we take this original 2-D Gaussian PDF and 
set it to zero over the non-hatched quadrants above (the parts we didn’t need to create the 
marginals) and multiply the rest by two we get a new 2-D PDF that is definitely NOT 
Gaussian: 
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The new RVs X~ and Y~ are definitely NOT jointly Gaussian but they are each Gaussian 
because (as we have constructed above) the marginals of their joint PDF are Gaussian! 


