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1–3 §1.1 WHERE THIS MATERIAL FITS

This book is an introduction to the analysis of linear elastic structures by the Finite Element Method
(FEM). This Chapter presents an overview of where the book fits, and what finite elements are.

§1.1. Where this Material Fits

The field of Mechanics can be subdivided into three major areas:

Mechanics

{ Theoretical
Applied
Computational

(1.1)

Theoretical mechanicsdeals with fundamental laws and principles of mechanics studied for their
intrinsic scientific value.Applied mechanicstransfers this theoretical knowledge to scientific and
engineering applications, especially as regards the construction of mathematical models of physical
phenomena.Computational mechanicssolves specific problems by simulation through numerical
methods implemented on digital computers.

Remark 1.1. Paraphrasing an old joke about mathematicians, one may define a computational mechanician
as a person who searches for solutions to given problems, an applied mechanician as a person who searches
for problems that fit given solutions, and a theoretical mechanician as a person who can prove the existence of
problems and solutions.

§1.1.1. Computational Mechanics

Several branches of computational mechanics can be distinguished according to thephysical scale
of the focus of attention:

Computational Mechanics




Nanomechanics and micromechanics

Continuum mechanics

{ Solids and Structures
Fluids
Multiphysics

Systems

(1.2)

Nanomechanics deals with phenomena at the molecular and atomic levels of matter. As such it is
closely linked to particle physics and chemistry. Micromechanics looks primarily at the crystallo-
graphic and granular levels of matter. Its main technological application is the design and fabrication
of materials and microdevices.

Continuum mechanics studies bodies at the macroscopic level, using continuum models in which
the microstructure is homogenized by phenomenological averages. The two traditional areas of
application are solid and fluid mechanics. The former includesstructureswhich, for obvious reasons,
are fabricated with solids. Computational solid mechanics takes an applied sciences approach,
whereas computational structural mechanics emphasizes technological applications to the analysis
and design of structures.

Computational fluid mechanics deals with problems that involve the equilibrium and motion of liquid
and gases. Well developed subsidiaries are hydrodynamics, aerodynamics, acoustics, atmospheric
physics, shock and combustion.
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Chapter 1: OVERVIEW 1–4

Multiphysics is a more recent newcomer. This area is meant to include mechanical systems that
transcend the classical boundaries of solid and fluid mechanics, as in interacting fluids and structures.
Phase change problems such as ice melting and metal solidification fit into this category, as do the
interaction of control, mechanical and electromagnetic systems.

Finally, systemidentifies mechanical objects, whether natural or artificial, that perform a distin-
guishable function. Examples of man-made systems are airplanes, buildings, bridges, engines, cars,
microchips, radio telescopes, robots, roller skates and garden sprinklers. Biological systems, such as
a whale, amoeba, inner ear, or pine tree are included if studied from the viewpoint of biomechanics.
Ecological, astronomical and cosmological entities also form systems.1

In the progression of (1.2) thesystemis the most general concept. A system is studied bydecompo-
sition: its behavior is that of its components plus the interaction between components. Components
are broken down into subcomponents and so on. As this hierarchical breakdown process continues,
individual components become simple enough to be treated by individual disciplines, but component
interactions get more complex. Consequently there is a tradeoff art in deciding where to stop.2

§1.1.2. Statics vs. Dynamics

Continuum mechanics problems may be subdivided according to whether inertial effects are taken
into account or not:

Continuum mechanics

{
Statics
Dynamics

(1.3)

In dynamics actual time dependence must be explicitly considered, because the calculation of inertial
(and/or damping) forces requires derivatives respect to actual time to be taken.

Problems in statics may also be time dependent but with inertial forces ignored or neglected. Accord-
ingly static problems may be classed into strictly static and quasi-static. For the former time need not
be considered explicitly; any historical time-like response-ordering parameter, if one is needed, will
do. In quasi-static problems such as foundation settlement, metal creep, rate-dependent plasticity
or fatigue cycling, a realistic measure of time is required but inertial forces are still neglected.

§1.1.3. Linear vs. Nonlinear

A classification of static problems that is particularly relevant to this book is

Statics
{

Linear
Nonlinear

(1.4)

Linear static analysis deals with static problems in which theresponseis linear in the cause-and-
effect sense. For example: if the applied forces are doubled, the displacements and internal stresses
also double. Problems outside this domain are classified as nonlinear.

1 Except that their function may not be clear to us. “The usual approach of science of constructing a mathematical model
cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to
all the bother of existing? Is the unified theory so compelling that it brings about its own existence? Or does it need a
creator, and, if so, does he have any other effect on the universe? And who created him?” (Stephen Hawking).

2 Thus in breaking down a car engine for engineering analysis, say, the decomposition does not usually proceed beyond the
components you can buy at a parts shop.
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1–5 §1.2 WHAT DOES A FINITE ELEMENT LOOK LIKE?

§1.1.4. Discretization methods

A final classification of CSM static analysis is based on the discretization method by which the
continuum mathematical model isdiscretizedin space,i.e., converted to a discrete model with a
finite number of degrees of freedom:

Spatial discretization method




Finite Element (FEM)
Boundary Element (BEM)
Finite Difference (FDM)
Finite Volume (FVM)
Spectral
Meshfree

(1.5)

In CSM linear problems finite element methods currently dominate the scene as regards space
discretization.3 Boundary element methods post a strong second choice in specific application
areas. Fornonlinearproblems the dominance of finite element methods is overwhelming.

Space finite difference methods in solid and structural mechanics have virtually disappeared from
practical use. This statement is not true, however, for fluid mechanics, where finite difference
discretization methods are still important. Finite-volume methods, which directly address the dis-
cretization of conservation laws, are important in difficult problems of fluid mechanics, for example
high-Re gas dynamics. Spectral methods are based on transforms that map space and/or time
dimensions to spaces (for example, the frequency domain) where the problem is easier to solve.

A recent newcomer to the scene are the meshfree methods. These combine techniques and tools
of finite element methods such as variational formulation and interpolation, with finite difference
features such as non-local support.

§1.1.5. FEM Variants

The termFinite Element Methodactually identifies a broad spectrum of techniques that share com-
mon features outlined in §1.3 and §1.4. Two subclassifications that fit well applications to structural
mechanics are4

FEM Formulation




Displacement
Equilibrium
Mixed
Hybrid

FEM Solution

{ Stiffness
Flexibility
Mixed (a.k.a. Combined)

(1.6)

Using the foregoing classification, we can state the topic of this book more precisely: thecomputa-
tional analysis of linear static structural problemsby the Finite Element Method. Of the variants
listed in (1.6), emphasis is placed on thedisplacementformulation andstiffnesssolution. This
combination is called theDirect Stiffness Methodor DSM.

3 There are finite element discretizations in time, but they are not so widely used as finite differences.

4 The distinction between these subclasses require advanced technical concepts, which cannot be covered in an introductory
treatment such as this book.
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Figure 1.1. The “findπ ” problem treated with FEM concepts: (a) continuum object, (b) a discrete
approximation by inscribed regular polygons, (c) disconnected element, (d) generic element.

§1.2. What Does a Finite Element Look Like?

The subject of this book is FEM. But what is a finite element? The concept will be partly illustrated
through a truly ancient problem: find the perimeterL of a circle of diameterd. SinceL = π d, this
is equivalent to obtaining a numerical value forπ .

Draw a circle of radiusr and diameterd = 2r as in Figure 1.1(a). Inscribe a regular polygon of
n sides, wheren = 8 in Figure 1.1(b). Rename polygon sides aselementsand vertices asnodes.
Label nodes with integers 1, . . . 8. Extract a typical element, say that joining nodes 4–5, as shown in
Figure 1.1(c). This is an instance of thegeneric element i– j pictured in Figure 1.1(d). The element
length isLi j = 2r sin(π/n). Since all elements have the same length, the polygon perimeter is
Ln = nLi j , whence the approximation toπ is πn = Ln/d = n sin(π/n).

Table 1.1. Rectification of Circle by Inscribed Polygons (“Archimedes FEM”)

n πn = n sin(π/n) Extrapolated by Wynn-ε Exactπ to 16 places

1 0.000000000000000
2 2.000000000000000
4 2.828427124746190 3.414213562373096
8 3.061467458920718
16 3.121445152258052 3.141418327933211
32 3.136548490545939
64 3.140331156954753 3.141592658918053
128 3.141277250932773
256 3.141513801144301 3.141592653589786 3.141592653589793

Values ofπn obtained forn = 1, 2, 4, . . . 256 are listed in the second column of Table 1.1. As can
be seen the convergence toπ is fairly slow. However, the sequence can be transformed by Wynn’s
ε algorithm5 into that shown in the third column. The last value displays 15-place accuracy.

Some key ideas behind the FEM can be identified in this example. The circle, viewed as asource
mathematical object, is replaced by polygons. These arediscrete approximationsto the circle.
The sides, renamed aselements, are specified by their endnodes. Elements can be separated by

5 A widely used lozenge extrapolation algorithm that speeds up the convergence of many sequences. See, e.g, [180].
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1–7 §1.3 THE FEM ANALYSIS PROCESS

disconnecting nodes, a process calleddisassemblyin the FEM. Upon disassembly ageneric element
can be defined,independently of the original circle, by the segment that connects two nodesi and j .
The relevant element property: side lengthLi j , can be computed in the generic element independently
of the others, a property calledlocal supportin the FEM. The target property: the polygon perimeter,
is obtained by reconnectingn elements and adding up their length; the corresponding steps in the
FEM beingassemblyandsolution, respectively. There is of course nothing magic about the circle;
the same technique can be be used to rectify any smooth plane curve.6

This example has been offered in the FEM literature, e.g. in [111], to aduce that finite element ideas
can be traced to Egyptian mathematicians fromcirca 1800 B.C., as well as Archimedes’ famous
studies on circle rectification by 250 B.C. But comparison with the modern FEM, as covered in
following Chapters, shows this to be a stretch. The example does not illustrate the concept of degrees
of freedom, conjugate quantities and local-global coordinates. It is guilty of circular reasoning: the
compact formulaπ = limn→∞ n sin(π/n) uses the unknownπ in the right hand side.7 Reasonable
people would argue that a circle is a simpler object than, say, a 128-sided polygon. Despite these
flaws the example is useful in one respect: showing a fielder’s choice in the replacement of one
mathematical object by another. This is at the root of the simulation process described below.

§1.3. The FEM Analysis Process

Processes using FEM involve carrying out a sequence of steps in some way. Those sequences
take two canonical configurations, depending on (i) the environment in which FEM is used and (ii)
the main objective: model-based simulation of physical systems, or numerical approximation to
mathematical problems. Both are reviewed below to introduce terminology used in the sequel.

§1.3.1. The Physical FEM

A canonical use of FEM is simulation
of physical systems. This must done by
using models. Therefore the process is
often calledmodel-based simulation.

The process is illustrated in Figure 1.2.
The centerpiece is thephysical system
to be modeled. Accordingly, this con-
figuration is called thePhysical FEM.
The processes of idealization and dis-
cretization are carried outconcurrently
to produce the discrete model. The
solution step is handled by an equa-
tion solver often customized to FEM,
which delivers a discrete solution (or
solutions).

Physical
 system

simulation error:  modeling & solution error

solution error

Discrete
model

Discrete
solution

VALIDATION

VERIFICATION

FEM

CONTINUIFICATION

Ideal 
Mathematical

model

IDEALIZATION &
DISCRETIZATION

SOLUTION

ocassionally
relevant

Figure 1.2. The Physical FEM. The physical system
(left) is the source of the simulation process. The ideal
mathematical model (should one go to the trouble of

constructing it) is inessential.

6 A similar limit process, however, may fail in three or more dimensions.

7 This objection is bypassed ifn is advanced as a power of two, as in Table 1.1, by using the half-angle recursion
√

2 sinα =√
1 −

√
1 − sin2 2α, started from 2α = π for which sinπ = −1.
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Chapter 1: OVERVIEW 1–8

Figure 1.2 also shows aideal mathematical model. This may be presented as acontinuum limitor
“continuification” of the discrete model. For some physical systems, notably those well modeled
by continuum fields, this step is useful. For others, such as complex engineering systems, it makes
no sense. Indeed Physical FEM discretizations may be constructed and adjustedwithout reference
to mathematical models, simply from experimental measurements.

The concept oferror arises in the Physical FEM in two ways. These are known asverificationand
validation, respectively. Verification is done by replacing the discrete solution into the discrete model
to get the solution error. This error is not generally important. Substitution in the ideal mathematical
model in principle provides the discretization error. This step is rarely useful in complex engineering
systems, however, because there is no reason to expect that the mathematical model exists, and even
if it does, that it is more physically relevant than the discrete model.

Validation tries to compare the discrete solution against observation by computing thesimulation
error, which combines modeling and solution errors. As the latter is typically unimportant, the
simulation error in practice can be identified with the modeling error.

One way to adjust the discrete model so that it represents the physics better is calledmodel updating.
The discrete model is given free parameters. These are determined by comparing the discrete
solution against experiments, as illustrated in Figure 1.3. Inasmuch as the minimization conditions
are generally nonlinear (even if the model is linear) the updating process is inherently iterative.

Physical
 system

 simulation error

Parametrized
discrete
model

Experimental
database

Discrete
solution

FEM

EXPERIMENTS

Figure 1.3. Model updating process in the Physical FEM.

§1.3.2. The Mathematical FEM

The other canonical way of using FEM focuses on the mathematics. The process steps are illustrated
in Figure 1.4. The spotlight now falls on themathematical model. This is often an ordinary or partial
differential equation in space and time. A discrete finite element model is generated from a variational
or weak form of the mathematical model.8 This is thediscretizationstep. The FEM equations are
solved as indicated for the Physical FEM.

On the left Figure 1.4 shows anideal physical system. This may be presented as arealizationof
the mathematical model. Conversely, the mathematical model is said to be anidealizationof this
system. E.g., if the mathematical model is the Poisson’s PDE, realizations may be heat conduction
or an electrostatic charge-distribution problem. This step is inessential and may be left out. Indeed
Mathematical FEM discretizationsmay be constructed without any reference to physics.

The concept oferror arises when the discrete solution is substituted in the “model” boxes. This
replacement is generically calledverification. As in the Physical FEM, thesolution error is the

8 The distinction between strong, weak and variational forms is discussed in advanced FEM courses. In the present book
such forms will be largely stated (and used) as recipes.
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1–9 §1.3 THE FEM ANALYSIS PROCESS

Discretization & solution error

REALIZATIONIDEALIZATION

solution error

Discrete
model

Discrete
solution

VERIFICATION

VERIFICATIONFEM

IDEALIZATION &
DISCRETIZATION

SOLUTION

Ideal
physical
 system

Mathematical
model

ocassionally relevant

Figure 1.4. The Mathematical FEM. The mathematical model (top) is the source of
the simulation process. Discrete model and solution follow from it. The ideal physical

system (should one go to the trouble of exhibiting it) is inessential.

amount by which the discrete solution fails to satisfy the discrete equations. This error is relatively
unimportant when using computers, and in particular direct linear equation solvers, for the solution
step. More relevant is thediscretization error, which is the amount by which the discrete solution
fails to satisfy the mathematical model.9 Replacing into the ideal physical system would in principle
quantify modeling errors. In the Mathematical FEM this is largely irrelevant, however, because the
ideal physical system is merely that: a figment of the imagination.

§1.3.3. Synergy of Physical and Mathematical FEM

The foregoing canonical sequences are not exclusive but complementary. This synergy10 is one of
the reasons behind the power and acceptance of the method. Historically the Physical FEM was the
first one to be developed to model complex physical systems such as aircraft, as narrated in §1.7.
The Mathematical FEM came later and, among other things, provided the necessary theoretical
underpinnings to extend FEM beyond structural analysis.

A glance at the schematics of a commercial jet aircraft makes obvious the reasons behind the Physical
FEM. There is no simple differential equation that captures, at a continuum mechanics level,11 the
structure, avionics, fuel, propulsion, cargo, and passengers eating dinner. There is no reason for
despair, however. The time honoreddivide and conquerstrategy, coupled withabstraction, comes
to the rescue. First, separate the structure out and view the rest as masses and forces, most of which
are time-varying and nondeterministic.

9 This error can be computed in several ways, the details of which are of no importance here.

10 Such interplay is not exactly a new idea: “The men of experiment are like the ant, they only collect and use; the reasoners
resemble spiders, who make cobwebs out of their own substance. But the bee takes the middle course: it gathers its
material from the flowers of the garden and field, but transforms and digests it by a power of its own.” (Francis Bacon).

11 Of course at the (sub)atomic level quantum mechanics works for everything, from landing gears to passengers. But
it would be slightly impractical to represent the aircraft by, say, 1036 interacting particles modeled by the Schr¨odinger
equations. More seriously, Truesdell and Toupin correctly note that “Newtonian mechanics, while not appropriate to the
corpuscles making up a body, agrees with experience when applied to the body as a whole, except for certain phenomena
of astronomical scale” [162, p. 228].
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Second, consider the aircraft structure as built
of substructures(a part of a structure devoted
to a specific function): wings, fuselage,
stabilizers, engines, landing gears, and so on.
Take each substructure, and continue to break
it down into components: rings, ribs, spars,
cover plates, actuators, etc, continuing through
as many levels as necessary.

Eventually those components become suffi-
ciently simple in geometry and connectivity
that they can be reasonably well described by
the continuum mathematical models provided,
for instance, by Mechanics of Materials or
the Theory of Elasticity. At that point,stop.
The component level discrete equations are
obtained from a FEM library based on the
mathematical model.

FEM Library

Component

discrete

model

Component

equations

Physical

 system

System

discrete

model

Complete

solution

Mathematical

model

SYSTEM

LEVEL

COMPONENT

LEVEL

Figure 1.5. Combining physical and mathematical
modeling through multilevel FEM. Only two levels
(system and component) are shown for simplicity;

intermediate substructure levels are omitted.

The system model is obtained by going through the reverse process: from component equations to
substructure equations, and from those to the equations of the complete aircraft.

This system assemblyprocess is governed by the classical principles of Newtonian mechanics,
which provide the necessary “component glue.” The multilevel decomposition process is diagramed
in Figure 1.5, in which the intermediate level is omitted for simplicity.

Remark 1.2. More intermediate decompo-
sition levels are used in systems such as off-
shore and ship structures, which are character-
ized by a modular fabrication process. In that
case the multilevel decomposition mimics the
way the system is actually fabricated. The
general technique, calledsuperelements, is
discussed in Chapter 11.

Remark 1.3. There is no point in practice
in going beyond a certain component level
while considering the complete system. The
reason is that the level of detail can become
overwhelming without adding relevant infor-
mation. Usually that point is reached when
uncertainty impedes further progress. Further
refinement of specific components is done by
the so-called global-local analysis technique
outlined in Chapter 11. This technique is an
instance ofmultiscale analysis.

joint

Physical System

Idealized and
Discrete System

support

member

IDEALIZATION

�
�
�
�

�
�
�
�

Figure 1.6. The idealization process for a simple structure.
The physical system — here a roof truss — is directly idealized
by the mathematical model: a pin-jointed bar assembly. For
this particular structure idealized and discrete models coalesce.

For sufficiently simple structures, passing to a discrete model is carried out in a singleidealization
and discretizationstep, as illustrated for the truss roof structure shown in Figure 1.6. Other levels
are unnecessary in such cases. Of course the truss may be viewed as a substructure of the roof, and
the roof as a a substructure of a building.
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1–11 §1.4 INTERPRETATIONS OF THE FINITE ELEMENT METHOD

§1.4. Interpretations of the Finite Element Method

Just like there are two complementary ways of using the FEM, there are two complementary inter-
pretations for teaching it. One stresses the physical significance and is aligned with the Physical
FEM. The other focuses on the mathematical context, and is aligned with the Mathematical FEM.

§1.4.1. Physical Interpretation

The physical interpretation focuses on the flowchart of Figure 1.2. This interpretation has been
shaped by the discovery and extensive use of the method in the field of structural mechanics. This
historical connection is reflected in the use of structural terms such as “stiffness matrix”, “force
vector” and “degrees of freedom.” This terminology carries over to non-structural applications.

The basic concept in the physical interpretation is thebreakdown(≡ disassembly, tearing, partition,
separation, decomposition) of a complex mechanical system into simpler, disjoint components called
finite elements, or simplyelements. The mechanical response of an element is characterized in terms
of a finite number of degrees of freedom. These degrees of freedoms are represented as the values
of the unknown functions as a set of node points. The element response is defined by algebraic
equations constructed from mathematical or experimental arguments. The response of the original
system is considered to be approximated by that of thediscrete modelconstructed byconnectingor
assemblingthe collection of all elements.

The breakdown-assembly concept occurs naturally when an engineer considers many artificial and
natural systems. For example, it is easy and natural to visualize an engine, bridge, aircraft or skeleton
as being fabricated from simpler parts.

As discussed in §1.3, the underlying theme isdivide and conquer. If the behavior of a system is too
complex, the recipe is to divide it into more manageable subsystems. If these subsystems are still too
complex the subdivision process is continued until the behavior of each subsystem is simple enough
to fit a mathematical model that represents well the knowledge level the analyst is interested in. In
the finite element method such “primitive pieces” are calledelements. The behavior of the total
system is that of the individual elements plus their interaction. A key factor in the initial acceptance
of the FEM was that the element interaction can be physically interpreted and understood in terms
that were eminently familiar to structural engineers.

§1.4.2. Mathematical Interpretation

This interpretation is closely aligned with the flowchart of Figure 1.4. The FEM is viewed as
a procedure for obtaining numerical approximations to the solution of boundary value problems
(BVPs) posed over a domain
. This domain is replaced by the union∪ of disjoint subdomains
(e)

called finite elements. In general the geometry of
 is only approximated by that of∪
(e).

The unknown function (or functions) is locally approximated over each element by an interpolation
formula expressed in terms of values taken by the function(s), and possibly their derivatives, at a
set ofnode pointsgenerally located on the element boundaries. The states of the assumed unknown
function(s) determined by unit node values are calledshape functions. The union of shape functions
“patched” over adjacent elements form atrial function basisfor which the node values represent the
generalized coordinates. The trial function space may be inserted into the governing equations and
the unknown node values determined by the Ritz method (if the solution extremizes a variational
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principle) or by the Galerkin, least-squares or other weighted-residual minimization methods if the
problem cannot be expressed in a standard variational form.

Remark 1.4. In the mathematical interpretation the emphasis is on the concept oflocal (piecewise) approx-
imation. The concept of element-by-element breakdown and assembly, while convenient in the computer
implementation, is not theoretically necessary. The mathematical interpretation permits a general approach
to the questions of convergence, error bounds, trial and shape function requirements, etc., which the physical
approach leaves unanswered. It also facilitates the application of FEM to classes of problems that are not so
readily amenable to physical visualization as structures; for example electromagnetics and thermal conduction.

Remark 1.5. It is interesting to note some similarities in the development of Heaviside’s operational methods,
Dirac’s delta-function calculus, and the FEM. These three methods appeared as ad-hoc computational devices
created by engineers and physicists to deal with problems posed by new science and technology (electricity,
quantum mechanics, and delta-wing aircraft, respectively) with little help from the mathematical establishment.
Only some time after the success of the new techniques became apparent were new branches of mathematics
(operational calculus, distribution theory and piecewise-approximation theory, respectively) constructed to
justify that success. In the case of the finite element method, the development of a formal mathematical theory
started in the late 1960s, and much of it is still in the making.

§1.5. Keeping the Course

The first Part of this book, which is the subject of Chapters 2 through 11, stresses the physical
interpretation in the framework of the Direct Stiffness Method (DSM) on account of its instructional
advantages. Furthermore the computer implementation becomes more transparent because the
sequence of computer operations can be placed in close correspondence with the DSM steps.

Subsequent Chapters incorporate ingredients of the mathematical interpretation when it is felt con-
venient to do so. Nonetheless the exposition avoids excessive entanglement with the mathematical
theory when it may obfuscate the physics.

In Chapters 2 and 3 the time is frozen at about 1965, and the DSM presented as an aerospace
engineer of that time would have understood it. This is not done for sentimental reasons, although
that happens to be the year in which the writer began thesis work on FEM under Ray Clough.
Virtually all commercial codes are now based on the DSM and the computer implementation has not
essentially changed since the late 1960s.12 What has greatly improved since is “marketing sugar”:
user interaction and visualization.

§1.6. *What is Not Covered

The following topics are not covered in this book:

1. Elements based on equilibrium, mixed and hybrid variational formulations.
2. Flexibility and mixed solution methods of solution.
3. Kirchhoff-based plate and shell elements.
4. Continuum-based plate and shell elements.
5. Variational methods in mechanics.
6. General mathematical theory of finite elements.

12 With the gradual disappearance of Fortran as a “live” programming language, noted in §1.7.7, changes at the computer
implementation level have recently accelerated. For example C++ “wrappers” are becoming more common.
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1–13 §1.7 *HISTORICAL SKETCH AND BIBLIOGRAPHY

7. Buckling and stability analysis.
8. General nonlinear response analysis.
9. Structural optimization.
10. Error estimates and problem-adaptive discretizations.
11. Non-structural and multiphysics applications of FEM.
12. Designing and building production-level FEM software and use of special hardware (e.g. vector and

parallel computers)

Topics 1–6 belong to what may be called “Advanced Linear FEM”, whereas 7–8 pertain to “Nonlinear FEM”.
Topics 9–11 fall into advanced applications, whereas 12 is an interdisciplinary topic that interweaves with
computer science.

§1.7. *Historical Sketch and Bibliography

This section summarizes the history of structural finite elements since 1950 to date. It functions as a hub for
dispersed historical references.

For exposition convenience, structural “finitelementology” may be divided into four generations that span 10 to
15 years each. There are no sharp intergenerational breaks, but noticeable change of emphasis. The following
summary does not cover the conjoint evolution of Matrix Structural Analysis into the Direct Stiffness Method
from 1934 through 1970. This was the subject of a separate essay [56], which is also given in Appendix H.

§1.7.1. Who Invented Finite Elements?

Not just one individual, as the historical sketch will make clear. But if the question is tweaked to: who created
the FEM in everyday use? there is no question in the writer’s mind: M. J. (Jon) Turner at Boeing over the
period 1950–1962. He formulated and perfected the Direct Stiffness Method, and forcefully got Boeing to
commit resources to it while other aerospace companies were enmeshed in the Force Method. He established
and formulated the first continuum based finite elements. In addition to Turner, major contributors to current
practice include: B. M. Irons, inventor of isoparametric models, shape functions, the patch test and frontal
solvers; R. J. Melosh, who recognized the Rayleigh-Ritz link and systematized the variational derivation of
stiffness elements; and E. L. Wilson, who developed the first open source (and widely imitated) FEM software.

All of these pioneers were in the aerospace industry at least during part of their careers. That is not coincidence.
FEM is the confluence of three ingredients, one of which is digital computation. And only large industrial
companies (as well as some government agencies) were able to afford mainframe computers during the 1950s.

Who were the popularizers? Four academicians: J. H. Argyris, R. W. Clough, H. C. Martin, and O. C.
Zienkiewicz are largely responsible for the “technology transfer” from the aerospace industry to a wider range
of engineering applications during the 1950s and 1960s. The first three learned the method from Turner directly
or indirectly. As a consultant to Boeing in the early 1950s, Argyris, a Force Method expert then at Imperial
College, received reports from Turner’s group, and weaved the material into his influencial 1954 serial [4].
Clough and Martin, who were then junior professors at U.C. Berkeley and U. Washington, respectively, spent
“faculty internship” summers at Turner’s group during 1952 and 1953. The result of this collaboration was
a celebrated paper [164], widely considered the start of the present FEM. Clough baptized the method in
1960 [25] and went on to form at Berkeley the first research group that expanded the idea into Civil Engineering
applications. Olek Zienkiewicz, originally an expert in finite difference methods who learned the trade from
Southwell, was convinced in 1964 by Clough to try FEM. He went on to write the first textbook on the subject
[183] and to organize another important Civil Engineering research group in the University of Wales at Swansea.

§1.7.2. G1: The Pioneers

The 1956 paper by Turner, Clough, Martin and Topp [164], henceforth abbreviated to TCMT, is recognized as
the start of the current FEM, as used in the overwhelming majority of commercial codes. Along with Argyris’
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serial [4] they prototype the first generation, which spans 1950 through 1962. A panoramic picture of this
period is available in two textbooks [124,134]. Przemieniecki’s text is still reprinted by Dover. The survey by
Gallagher [70] was influential at the time but is now difficult to access outside libraries.

The pioneers were structural engineers, schooled in classical mechanics. They followed a century of tradition
in regarding structural elements as a device to transmit forces. This “element as force transducer” was the
standard view in pre-computer structural analysis. It explains the use of flux assumptions to derive stiffness
equations in TCMT. Element developers worked in, or interacted closely with, the aircraft industry. (As noted
above, only large aerospace companies were then able to afford mainframe computers.) Accordingly they
focused on thin structures built up with bars, ribs, spars, stiffeners and panels. Although the Classical Force
Method dominated stress analysis during the 1950s [56], stiffness methods were kept alive by use in dynamics
and vibration. It is not coincidence that Turner was an world-class expert in aeroelasticity.

§1.7.3. G2: The Golden Age

The next period spans the golden age of FEM: 1962–1972. This is the “variational generation.” Melosh
showed [115] that conforming displacement models are a form of Rayleigh-Ritz based on the minimum po-
tential energy principle. This influential paper marks the confluence of three lines of research: Argyris’ dual
formulation of energy methods [4], the Direct Stiffness Method (DSM) of Turner [165–167], and early ideas
of interelement compatibility as basis for error bounding and convergence [65,114]. G1 workers thought of
finite elements as idealizations of structural components. From 1962 onward a two-step interpretation emerges:
discrete elements approximate continuum models, which in turn approximate real structures.

By the early 1960s FEM begins to expand into Civil Engineering through Clough’s Boeing-Berkeley connection
[31,32] and had been baptized [25,27]. Reading Fraeijs de Veubeke’s famous article [66] side by side with
TCMT [164] one can sense the ongoing change in perspective opened up by the variational framework. The
first book devoted to FEM appears in 1967 [183]. Applications to nonstructural problems had started in 1965
[182], and were treated in some depth by Martin and Carey [111].

From 1962 onwards the displacement formulation dominates. This was given a big boost by the invention of the
isoparametric formulation and related tools (numerical integration, fitted natural coordinates, shape functions,
patch test) by Irons and coworkers [95–98]. Low order displacement models often exhibit disappointing
performance. Thus there was a frenzy to develop higher order elements. Other variational formulations,
notably hybrids [127,130], mixed [89,157] and equilibrium models [66] emerged. G2 can be viewed as closed
by the monograph of Strang and Fix [149], the first book to focus on the mathematical foundations.

§1.7.4. G3: Consolidation

The post-Vietnam economic doldrums are mirrored during this post-1972 period. Gone is the youthful exu-
berance of the golden age. This is consolidation time. Substantial effort is put into improving the stock of G2
displacement elements by tools initially labeled “variational crimes” [148], but later justified. Textbooks by
Hughes [94] and Bathe [9] reflect the technology of this period. Hybrid and mixed formulations record steady
progress [8]. Assumed strain formulations appear [105]. A booming activity in error estimation and mesh
adaptivity is fostered by better understanding of the mathematical foundations [155].

Commercial FEM codes gradually gain importance. They provide a reality check on what works in the real
world and what doesn’t. By the mid-1980s there was gathering evidence that complex and high order elements
were commercial flops. Exotic gadgetry interweaved amidst millions of lines of code easily breaks down in
new releases. Complexity is particularly dangerous in nonlinear and dynamic analyses conducted by novice
users. A trend back toward simplicity starts [106,107].

§1.7.5. G4: Back to Basics

The fourth generation begins by the early 1980s. More approaches come on the scene, notably the Free
Formulation [16,17], orthogonal hourglass control [61], Assumed Natural Strain methods [10,145], stress hybrid
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models in natural coordinates [125,135], as well as variants and derivatives of those approaches: ANDES
[49,116], EAS [141,142] and others. Although technically diverse the G4 approaches share two common
objectives:

(i) Elements must fit into DSM-based programs since that includes the vast majority of production codes,
commercial or otherwise.

(ii) Elements are kept simple but should provide answers of engineering accuracy with relatively coarse
meshes. These were collectively labeled “high performance elements” in 1989 [48].

“Things are always at their best in the beginning,” said Pascal. Indeed. By now FEM looks like an aggregate
of largely disconnected methods and recipes. The blame should not be placed on the method itself, but on the
community split noted in the book Preface.

§1.7.6. Recommended Books for Linear FEM

The literature is vast: over 200 textbooks and monographs have appeared since 1967. Some recommendations
for readers interested in further studies withinlinear FEM are offered below.

Basic level (reference): Zienkiewicz and Taylor [185]. This two-volume set is a comprehensive upgrade of
the previous edition [184]. Primarily an encyclopœdic reference work that gives a panoramic coverage of
FEM applications, as well as a comprehensive list of references. Not a textbook or monograph. Prior editions
suffered from loose mathematics, largely fixed in this one. A three-volume fifth edition has appeared recently.

Basic level (textbook): Cook, Malkus and Plesha [33]. The third edition is comprehensive in scope although
the coverage is more superficial than Zienkiewicz and Taylor. A fourth edition has appeared recently.

Intermediate level: Hughes [94]. It requires substantial mathematical expertise on the part of the reader.
Recently (2000) reprinted as Dover edition.

Mathematically oriented: Strang and Fix [149]. Still the most readable mathematical treatment for engineers,
although outdated in several subjects. Out of print.

Best value for the $$$: Przemieniecki’s Dover edition [134], list price $15.95 (2003). A reprint of a 1966
McGraw-Hill book. Although woefully outdated in many respects (the word “finite element” does not appear
except in post-1960 references), it is a valuable reference for programming simple elements. Contains a
fairly detailed coverage of substructuring, a practical topic missing from the other books. Comprehensive
bibliography in Matrix Structural Analysis up to 1966.

Most fun(if you appreciate British “humor”): Irons and Ahmad [98]. Out of print.

For buying out-of-print books through web services, check the search engine inwww3.addall.com (most
comprehensive; not a bookseller) as well as that ofwww.amazon.com. A newcomer iswww.campusi.com

§1.7.7. Hasta la Vista, Fortran

Most FEM books that include programming samples or even complete programs use Fortran. Those face an
uncertain future. Since the mid-1990s, Fortran is gradually disappearing as a programming language taught
in USA engineering undergraduate programs. (It still survives in Physics and Chemistry departments because
of large amounts of legacy code.) So one end of the pipeline is drying up. Low-level scientific programming
is moving to C and C++, mid-level to Java, Perl and Python, high-level to Matlab, Mathematica and their
free-source Linux equivalents. How attractive can a book teaching in a dead language be?

To support this argument with some numbers, here is a September-2003 snapshot of ongoing open source
software projects listed inhttp://freshmeat.net. This conveys the relative importance of various languages
(a mixed bag of newcomers, going-strongs, have-beens and never-was) in the present environment.

1–15



Chapter 1: OVERVIEW 1–16

Lang Projects Perc Lang Projects Perc Lang Projects Perc

Ada 38 0.20% APL 3 0.02% ASP 25 0.13%

Assembly 170 0.89% Awk 40 0.21% Basic 15 0.08%

C 5447 28.55% C# 41 0.21% C++ 2443 12.80%

Cold Fusion 10 0.05% Common Lisp 27 0.14% Delphi 49 0.26%

Dylan 2 0.01% Eiffel 20 0.10% Emacs-Lisp 33 0.17%

Erlang 11 0.06% Euler 1 0.01% Euphoria 2 0.01%

Forth 15 0.08% Fortran 45 0.24% Haskell 28 0.15%

Java 2332 12.22% JavaScript 236 1.24% Lisp 64 0.34%

Logo 2 0.01% ML 26 0.14% Modula 7 0.04%

Object Pascal 9 0.05% Objective C 131 0.69% Ocaml 20 0.10%

Other 160 0.84% Other Scripting Engines 82 0.43%

Pascal 38 0.20% Perl 2752 14.42% PHP 2020 10.59%

Pike 3 0.02% PL/SQL 58 0.30% Pliant 1 0.01%

PROGRESS 2 0.01% Prolog 8 0.04% Python 1171 6.14%

Rexx 7 0.04% Ruby 127 0.67% Scheme 76 0.40%

Simula 1 0.01% Smalltalk 20 0.10% SQL 294 1.54%

Tcl 356 1.87% Unix Shell 550 2.88% Vis Basic 15 0.08%

Xbasic 1 0.01% YACC 11 0.06% Zope 34 0.18%

Total Projects: 19079

References

Referenced items have been moved to Appendix R. Not yet sorted.
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1–17 Exercises

Homework Exercises for Chapter 1

Overview

EXERCISE 1.1 [A:15] Work out Archimedes’ problem using a circumscribed regular polygon, withn =
1, 2, 4, . . . 256. Does the sequence converge any faster?

EXERCISE 1.2 [D:20] Select one of the following vehicles: truck, car, motorcycle, or bicycle. Draw a two
level decomposition of the structure into substructures, and of selected components of some substructures.

EXERCISE 1.3 [D:30] In one of the earliest articles on the FEM, Clough [27] writes:

“When idealized as an assemblage of appropriately shaped two- and three-dimensional elements in this manner,
an elastic continuum can be analyzed by standard methods of structural analysis. It should be noted that the
approximation which is employed in this case is of physical nature; a modified structural system is substituted
for the actual continuum. There need be no approximation in the mathematical analysis of this structural
system. This feature distinguishes the finite element technique from finite difference methods, in which the
exact equations of the actual physical system are solved by approximate mathematical procedures.”

Discuss critically the contents of this paragraph while placing it in the context of time of writing (early 1960s).
Is the last sentence accurate?
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