
1

3D Surface Recovery via Deterministic Annealing
based Piecewise Linear Surface Fitting Algorithm

Bing Han, Chris Paulson, and Dapeng Wu
Department of Electrical and Computer Engineering

University of Florida Gainesville, FL 32611
Correspondence author: Prof. Dapeng Wu, wu@ece.ufl.edu, http://www.wu.ece.ufl.edu

Abstract

The 3D surface fitting problem is to find a 3D surface that fits to a set of 3D points. Geometric fitting
is commonly used in computer vision for 3D modeling and reconstruction. Finding a good fit to a given data
set is a classical and challenging problem. Although there are many existing algorithms for specific cases, the
geometric fitting problem is far from ‘solved’. Geometric fitting is highly related to statistical regression, which is
to approximate an unknown mathematical function that fits to input-output data pairs observed with random errors.
In this paper, we present a new piecewise plane fitting method for 3D surface fitting. Different from traditional
algorithms, we first segment the input space to several separate regions. With an assumption that each region is
locally linear, we can use plane fitting to recover the 3D geometric surface. We propose a non-linear deterministic
annealing algorithm for space partitioning. The non-linear deterministic annealing algorithm is able to avoid many
shallow local optima. The algorithm also considers local structures to help data partitioning In the optimization
process. The experimental results show that the new method can achieve better performance in both the average
approximation error and correct identification rate on both synthetic data and real world data.

Index Terms

Deterministic Annealing, 3D surface recovery, surface fitting

I. INTRODUCTION

The geometric fitting problem is to find a geometrical surface that best fits to a set of 3D points.
Geometric fitting is commonly used in 3D model fitting and 3D visual reconstruction in computer vision.
The 3D surface fitting is highly related to statistical regression, which is an important tool in diverse
areas.

Given a 3D point data set X = {xi},xi ∈ R3, i = 1, 2, ..., n, the geometrical fitting problem is usually
stated as the optimization of a cost that measures how the geometrical surface function S = {x : gθ(x) =
0} fits the data set X. The most commonly used objective function is the least squares cost,

D =
∑

i=1,...N

d(xi, gθ)
2 (1)

where
d(xi, gθ) = min ‖xi − xj‖2, xj ∈ S (2)

The fitting function gθ is learned by minimizing the design cost, D, measured over the input data set, X.
It is well-known that for most choices of D, the cost measured during design monotonically decreases as
the size of the learned fitting function gθ is increased. With a large set of functions, it is easy to create
a surface which passes through each input data point but is suspiciously complicated. The principle of
Occam’s razor states that the simplest model that accurately represents the data is most desirable. So we
prefer to use a few basis functions which yield a smoother, simpler surface which could well approximates
the original data.

Generally, there are two approaches to solve the over fitting problem. One approach is to add penalty
terms to the data set, like smoothness or regularization constraints. Another approach is to first build
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a large model and then remove some parameters by retaining only the vital model structure. Although
both approaches can generate parsimonious models, the descent based learning methods all suffer from a
serious limitation. The non-global optima of the cost surface may easily result in poor local minima to the
descent based learning methods. Techniques adding penalty terms to the cost function further increases
the complexity of the cost surface and worsen the local minimum problem.

In this paper, we propose a different approach to solve the geometrical fitting problem. Instead of
estimate a complicated function to fit all the data points, we partition the data set into several subset such
that the data points in each subset could be approximated by a simpler model. The space partitioning
helps to reduce the size of the surface model while keeping the design cost small enough.

One of the most popular clustering algorithm is Lloyd’s algorithm, which starts by partitioning the input
data into k initial sets. It calculates the centroid of each set via some metric. Usually, Lloyd’s algorithm
is used in a Euclidean space and centroid is calculated by averaging dimensions in Euclidean space. It
iteratively associates each point with the closest centroid and recalculates the centroids of the new clusters.
Alghouth widely used in real world applications, there are two serious limitations of Lloyd’s algorithm.
The first limitation is that the partitioning result depends on the initialization of the cluster centers, which
may lead to poor local minima. The second limitation is that Lloyd’s algorithm can only partition linear
separable clusters.

In order to avoid initialization dependence, a simple but useful solution is to use multiple restarts with
different initializations to achieve a better local minima. Global k-means [1] is proposed to build the
clusters deterministically, which use the original k-means algorithm as a local search step. At each step,
global k-means add one more cluster based on previous partitioning result. Deterministic annealing [2]
is another optimization technique to find a global minimum of a cost function. Deterministic annealing
explore a larger cost surface by introducing a constraint of randomness. At each iteration, the randomness
is constrained and a local optimization is performed. Finally, the imposed randomness is reduce to zero,
and the algorithm optimizes over the original cost function.

Kernel method [3] is used to solve the second problem by mapping the data points from input space to
a higher dimensional feature space through a non-linear transformation. Then the optimization is applied
in the feature space. The linear separation in the feature space turns out to be a non-linear separation in
the original input space.

In this paper, we propose a non-linear deterministic annealing approach for space partitioning in 3D
Euclidean space. We use deterministic annealing to divide the input space into several regions with different
sizes and shapes. With the partition, we can easily find a linear local surface to fit the data inside each
region. Deterministic annealing method offers two great features: 1) the ability to avoid many poor local
optima; 2) the ability to minimize the cost function even its gradients vanish almost everywhere. Due
to the fact that the data is localized to a few relatively dense clusters, we design a kernel function to
map the data point from the geometric space to surface feature space and apply deterministic annealing
in the feature space instead of the geometric space. We compare the proposed non-linear deterministic
annealing (NDA) algorithm with the widely used Lloyd’s algorithm on both artificial data and real world
data. The experimental results show that NDA algorithm outperforms Lloyd’s algorithm in both mean
squared approximation error and error probability.

In the following section we formally define the 3D geometric fitting problem and briefly describe
deterministic annealing and kernel method for space partitioning. In Section III we present the proposed
kernel deterministic annealing algorithm along with an analysis of its computational complexity. The
experimental result is shown in Section IV. Finally Section V concludes this paper.

II. THE 3D GEOMETRIC FITTING PROBLEM

The following terms and notations are used throughout this report.
• Input samples x1, ...,xN ∈ R3 are 3D data points.
• A feature vector fi = Φ(xi) ∈ F is computed by some mapping Φ : R3 → F . It typically consists

of a vector of d measurements: f = (f1, ..., fd).
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• d is the dimensionality of the pattern or of the pattern space.
• A data set is denoted X = {x1, ...,xn}.
Given a set of data X of scattered 3D points, we would like to find the geometric surface that best

fits to the scattered data. The fitting problem is usually stated as the optimization of a cost that measures
how well the fitting function g(xi) fits the data. The most commonly used objective function is the least
squares cost. Finding a good fit is a challenging problem and may be more of an art than a science. If we
use a large set of functions as the basis, we may create a surface which passes through each data point but
is suspiciously complicated. Using few basis functions may yield a smoother, simpler surface which only
approximates the original data. Due to the over fitting problem, we propose an new approach to optimize
the objective function via space partitioning. We first partition the data set into several subsets such that
the data points x in each subset could be approximated by a linear surface model. In other words, we
would like to use a set of plain models to approximate the date set. The objective of space partitioning
is to minimize the geometric fitting error.

min
gθk

D =
K∑

k=1

∑
i∈Ck

d(xi, gθk
) (3)

where, xi = [xi, yi, zi]
T is the i-th point data, θk = [ak, bk, ck]

T is the k-th linear surface model, and di,k

is is the fitting error between xi and plane model gθk
= 0 which is defined as

di,k = d(xi, gθk
) =

(xT
i gθk

− 1)2

a2
k + b2

k + c2
k

(4)

A. Deterministic Annealing
The deterministic annealing (DA) approach [2] to clustering has demonstrated substantial performance

improvement over traditional supervised and unsupervised learning algorithms. DA mimics the annealing
process in static The advantage of deterministic annealing is its ability to avoid many poor local optima.
The reason is that deterministic annealing minimizes the designed cost function subject to a constraint
on the randomness of the solution. The constraint, Shannon entropy, is gradually lowered and eventually
deterministic annealing optimize on the original cost function. Deterministic annealing mimics the sim-
ulated annealing [4] in statistical physics by the use of expectation. Deterministic annealing derives an
effective energy function through expectation and is deterministically optimized at successively reduced
temperatures. The deterministic annealing approach has been adopted in a variety of research fields, such
as graph-theoretic optimization and computer vision. A. Rao et al. [5] extended the work for piecewise
regression modeling. In this subsection, we will briefly review their work.

Given a data set (x,y), the regression problem is to optimize the cost that measures how well the
regression function f(x) approximates the output y, where x ∈ Rm, y ∈ Rn, and g : Rm → Rn. In
the basic space partitioning approach, the input space is partitioned into K regions and the cost function
becomes

min
Λk

D =
K∑

k=1

∑
i∈Ck

d(yi, f(xi,Λk)) (5)

where d(·, ·) is the distortion measure function. Instead of seeking the optimal hard partition directly,
randomness is introduced for randomized assignment for input samples.

D =
1

N

N∑
i=1

K∑
j=1

P (xi ∈ Cj)d(yi, f(xi,Λk)) (6)
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In A. Rao et al.’s work, they use the nearest prototype (NP) structure as constraint and given the set
of prototypes{sj : j = 1, 2, 3, ..., K} in the input space, a Voronoi criterion is defined for NP partition

C =
1

N

N∑
i=1

K∑
j=1

P (xi ∈ Cj)||xi − sj||. (7)

Although the ultimate goal is to find the hard partition, some “randomness” is desired during the
assignment. Shannon entropy is introduced as a constraint of the randomness.

H = − 1

N

N∑
i=1

K∑
j=1

P (xi ∈ Cj) log P (xi ∈ Cj). (8)

Eventually, this constrained optimization problem could be rewritten as the minimization of the corre-
sponding Lagrangian

min
{Λj}{sj},γ

F = D − TH (9)

where, γ is a nonnegative Lagrange multiplier which controls the randomness of the space partition.

B. Non-linear Partitioning
Kernel methods (KMs) are a class of algorithms for pattern analysis whose general task is to find and

study types of relations of input data. KMs perform a nonlinear mapping of the input data to a higher
dimensional feature space. Then a variety of methods can be applied for pattern analysis in the feature
space. The advantage of KMs is that KMs do not need to compute the coordinates of the data in the
feature space explicitly but only compute the innor products between all pairs of data in the feature space
by using kernel functions.

Take the most popular k-means algorithm [6] as an example, kernel k-means maps data points from
the input space to a higher dimensional feature space through a nonlinear transformation φ and then
apply standard k-means in the feature space. The clustering result in linear separators in feature space
corresponds to nonlinear separators in input space. Thus kernel k-means avoid the limitation of standard
k-means that the clusters must be linearly separable.

III. NON-LINEAR DETERMINISTIC ANNEALING

In this paper, we propose a new approach based on non-linear deterministic annealing to solve the
3D geometric fitting problem. We first use a non-linear function to map the input point data to a high
dimensional feature space using the local geometric structure of the data. Then we apply deterministic
annealing in the feature space to leverage the local geometric structure for clustering.

To solve the space partitioning problem, we do not use prototype to calculate the difference. The
reason is that the prototype in space partitioning is generally not sufficient to represent a plane in 3D
space. Instead, we estimate the linear plane model and calculate the fitting error as the Euclidean distance
between the data and the plane. The traditional local optimization algorithm will likely stuck at a local
optima. In order to avoid local optima, we use local geometric structure from neighboring data points and
embedded the data vectors to a higher dimension as follows.

The input data is given as a 3D point, xi = [xi, yi, zi]
T . With the assumption that nearest data points

are on the same plane, we could estimate the local plane model, Li = [ai, bi, ci]
T of data point xi and its

K nearest neighbor points.

L =




a(X)
b(X)
c(X)


 (10)



5

f =

[
x
L

]
(11)

Then we revise the distortion function as follows,

D(fi, gθj
) = D1(I1fi, gθj

) + D2(I2fi, gθj
) (12)

I1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 (13)

I2 =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 (14)

where D1 = di,j calculate the fitting error between the data point and the estimated plane, and D2 calculate
the difference between the local estimated plane model and the cluster scale estimated plane model. D2

is defined as follows:

D2(I2fi, gθj
) =

I2f
T
i × gθj

|I2fi| × |gθj
| (15)

After the mapping, we apply deterministic annealing algorithm to partition the data into several clusters
as follows.

min
gθj

F = D − TH (16)

where gθj
= [aj, bj, cj] is the geometrical surface model parameter to be estimated, D is the sum of square

of geometrical fitting error and H is the entropy constraint. We define D and H as follows:

D =
1

N

N∑
i=1

K∑
j=1

p(xi, gθj
)d(xi, gθj

) =
N∑

i=1

p(xi)
K∑

j=1

p(gθj
|xi)d(xi, gθj

) (17)

H(X, gθ) =
N∑

i=1

K∑
j=1

p(xi, gθj
) log p(xi, gθj

) (18)

To perform optimization we need to further analyze its terms. We can rewrite equation (18) by applying
the chain rule of entropy as

H(X, gθ) = H(X) + H(gθ|X) (19)

Notice that the first term H(X) is the entropy of the source and is therefore constant with respect to the
cluster gθj

and association probabilities p(gθj
|xi). Thus we can just focus on the conditional entropy

H(gθ|X) =
N∑

i=1

p(xi)
K∑

j=1

p(gθj
|xi) log p(gθj

|xi) (20)

The minimization of F with respect to association probabilities p(gθj
|xi) gives rise to the Gibbs distribution

p(gθj
|xi) =

exp(−d(xi,gθj
)

T
)

Zx

(21)

where the normalization is

Zx =
K∑

j=1

exp(−d(xi, gθj
)

T
) (22)
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1) Algorithm 1 NDA based geometrical segmentation algorithm
2) Set Limit
3) Kmax: maximum number of clusters
4) Tinit: starting temperature
5) Tmin: minimum temperature
6) δ: perturbation vector
7) α: cooling rate (must be < 1)
8) Imax: maximum iteration number
9) th: Iteration threshold

10) sth: Surface distance threshold
11) Initialization
12) T = Tinit, K = 2, Λ1 = (XT X)−1XT~1, Λ2 = Λ1, [p(Λ1|xi), p(Λ2|xi)] = [ 1

2
, 1

2
],∀i.

13) Perturb
14) Λj = Λj + δ,∀j.
15) Lold = D − TH .
16) Loop until convergence, i = 0 ∀j
17) For all xi in the training data, compute the association probabilities

p(Λj |xi) =
exp(− d(xi,Λj)

T
)

PK
j=1 exp(− d(xi,Λj)

T
)

(25)

18) update the surface model
Λj ←− Λj + α∇Λj F. (26)

19) i = i+1;
20) if (i > Imax or ∇Λj F < th ) End Loop
21) Model Size Determination
22) if(d(Λj ,Λj+1) < sth)
23) replace Λj ,Λj+1 by a single plane
24) K =number of planes after merging
25) Cooling Step
26) T = αT .
27) if (T < Tmin)
28) perform last iteration for T = 0 and STOP
29) Duplication
30) Replace each plane by two planes at the same location, K = 2K.
31) Goto Step 10

Fig. 1. NDA based geometrical segmentation algorithm

The corresponding minimum of F is obtained by plugging equation (21) back into equation (16)

F ∗ = min
p(gθj

|xi)
F = −T

N∑
i=1

p(xi) log Zx (23)

To minimize the Lagrangian with respect to the cluster model gθj
, its gradients are set to zero yielding

the condition

∇gθj
F =

1

N

N∑
i=1

p(gθj
|xi)∇gθj

d(xi, gθj
) = 0 (24)

Non-linear deterministic annealing method (NDA) introduces the entropy constraint to explore a large
portion of the cost surface using randomness, while still performing optimization using local information,
which is similar to fuzzy c-means algorithm. Eventually, the amount of imposed randomness is lowered so
that upon termination NDA optimizes over the original cost function and yields a solution to the original
problem.

However, there is no close form solution for NDA, therefore we use a gradient descent algorithm to
solve this problem. In this paper, We compare NDA based geometrical segmentation algorithm to the
projection based iterative algorithm (PI) and adaptive projection based iterative algorithm (API). I present
our algorithm in Figure. 1. For comparison purpose, I also give PI algorithm in Figure. 2.
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1) Algorithm 2 Projection based iterative algorithm for geometrical segmentation
2) Set Limit
3) Kmax: maximum number of clusters
4) Imax: maximum iteration number
5) th: Iteration threshold
6) Initialization
7) Start with a random cluster assignment to all input vectors and estimate the linear plane model for each cluster by minimizing

the total least squares.
8) Loop until convergence, i = 0 ∀j
9) a. Assign each input vector x to the each cluster with the smallest geometrical fitting error.

10) b. Estimate the linear plane model for each cluster by minimizing the total least squares.

Fig. 2. Projection based iterative algorithm for geometrical segmentation

TABLE I

THE AVERAGE SQUARED APPROXIMATION ERROR.

K PI API NDA
3 3.77× 10−1 3.00× 10−9 1.17× 10−12

4 4.01× 10−1 9.81× 10−8 2.21× 10−12

5 2.43× 10−1 2.86× 10−9 3.06× 10−12

6 2.94× 10−1 8.801× 10−9 3.00× 10−12

IV. EXPERIMENTAL RESULTS

In this paper, I compared three geometric segmentation algorithms, PI algorithm, API algorithm, and
NDA based geometric segmentation algorithm, based on both synthetic data and real world data.

A. NDA on Synthetic Data without Noise
The purpose of the first experiment is to compare NDA, PI, and API on synthetic data without noise. I

generated the synthetic data using MATLAB ‘randperm’ function. The data is a set of 3D points on several
linear planes without noise. In this experiment, I run each algorithm for 1000 times. Each time, a random
data set is generated and used. We segment the same data set with different algorithms and calculate the
average squared approximation error. Below is the experimental result in Table. I. K represents the number
of planes in a test data set. For each plane, 100 random points are generated. The date set 1 contains 300
data in total from 3 non parallel planes. The data set 2 contains 400 data from 4 planes. The data set 3
contains 500 data from 5 planes and the data set 4 contains 600 data from 6 planes. The average squared
approximation error of NDA is ignorable comparing to the errors of PI and NPI. From the experimental
result, we can say that NDA algorithm outperforms both PI and API algorithms in the average squared
approximation error. The reason NDA algorithm outperforms PI and API algorithms is that NDA is able
to separate the space non-linearly and avoid many poor local optima.

We also measure the performance of the segmentation algorithms in percentage of correct identification
of planes. We test the same data set as used in the previous experiment and compute the correct
identification percentage averaging over all tests. Below is the experimental result in Table. II. We observed
that correct identification rates of NDA and API are much higher than the correct identification rate of PI
algorithm. The reason API algorithm outperforms PI algorithm is that API algorithm does not depends
on random initialization while the segmentation results of PI algorithm heavily depends on initialization.
Still NDA performs best among the three algorithms in correct identification rate.

B. NDA on Synthetic Data with Noise
The purpose of the second experiment is to compare NDA, PI, and API algorithms on synthetic data

with noise. I generated the synthetic data with Gaussian noises in the same way as in the first experiment.
In this experiment, I also run each algorithm for 1000 times. Each time, a random data set is generated
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TABLE II

THE CORRECT IDENTIFICATION RATE.

K PI API NDA
3 83% 96% 99%
4 79% 93% 99%
5 82% 94% 97%
6 78% 97% 98%

TABLE III

THE AVERAGE SQUARED APPROXIMATION ERROR.

K PI API NDA
3 6.61× 10−1 8.96× 10−1 2.41× 10−1

4 8.18× 10−1 5.98× 10−1 3.19× 10−1

5 6.98× 10−1 4.42× 10−1 3.96× 10−1

6 1.16 9.44× 10−1 6.71× 10−1

and used. We segment the same data set with different algorithms and calculate the average squared
approximation error. The experimental result is shown in Table. III. K represents the number of planes in
a test data set. It shows that NDA algorithm outperforms both PI and API algorithm. The average squared
approximation fitting error of NDA algorithm is less than 50% compare to the fitting error of PI algorithm.
However, the performance gain is less compared to the first experiment. The reason is that the non-linear
mapping in NDA depends on the estimation of the local geometric structures. While the estimation of the
local geometric structures is very sensitive to the added noises. Even though the performance gain is less,
we can still say that the NDA algorithm outperforms both PI and API algorithms in the average squared
approximation error from the experimental result. We also show the experimental result in 3D view in
Fig. 3 and Fig. 4. Fig. 3 shows the segmentation results of test data set 1 with three planes by the NDA
algorithm. Fig. 4 shows the segmentation results of the same test data set by the PI algorithm.

C. NDA on Real World Data
In the second experiment, we test the geometric segmentation algorithm on some real world data. We

use the 3D structure data set from the ‘housing’ image sequence. The data set includes 72 data points
recovered by 3D reconstruction of 2D registered feature points. Most of the data points fall on the walls of
the house in the image and we would like to estimate the surface model of the walls by geometric fitting.
Fig. 5 shows the input 3D data points on the 1st frame of the ‘housing’ image sequence. The goal is to
segment the data points into three groups and each group represent a wall in the image. Fig. 6 shows the
geometric segmentation result by NDA algorithm and Fig. 7 shows the geometrical segmentation result
by PI algorithm. It is pretty clear that NDA algorithm partitions the input data set into three clusters and
each cluster represents a wall in the image. PI algorithm fails to find the geometric model of the walls
and the data points are mixed. The experimental result on real world data shows that NDA algorithm can
well segment the data sets based on their geometric relationship.

V. CONCLUSION

In this paper, we propose a kernel deterministic annealing approach for geometric fitting in 3D space.
Due to the fact that the 3D data is localized to a few relatively dense clusters, we design a kernel function
to map the data point from geometrical space to surface model space and apply deterministic annealing in
the feature space. We then use deterministic annealing to partition the feature space into several regions
with different sizes and shapes. For each region, we can easily find a linear plane model to fit the data.
Deterministic annealing method offers two important features: 1) the ability to avoid many poor local
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Fig. 4. The first group partitioned by K-means.



10

1

2
3

4

567

8
9 10

11

12

13

14
15

16

17
18

19

20

21

22

23
24

25

26

27
28

29

30

31

32

33

34
35

36

37

38

39

40

41

42

43

44 45

46

47

48

49

50

51

52

53

54

55
56

57

58

59 60

61

62

63 64

65

66

67

68

69

70

71

72

Fig. 5. The input data points on the 1st frame of ‘housing’ image sequence.
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Fig. 6. The geometrical segmentation result by NDA of ‘housing’ data set.
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Fig. 7. The geometrical segmentation result by the PI algorithm of ‘housing’ data set.

optima; 2) the ability to minimize the cost function even its gradients vanish almost everywhere. We
present experimental results that compare kernel deterministic annealing and classic Lloyd’s algorithm
and ISODATA on both artificial data and real data. From the experimental results, it shows that KDA
algorithm outperforms both ISODATA and Lloyd’s algorithm in both cases. In the future, we would like
to study how to use KDA algorithm in image registration, computer vision, and 3D reconstruction.
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