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ABSTRACT

Rotation of targets poses a great challenge for the design of an automatic image-based target detection system.
In this paper, we propose a target detection algorithm that is robust to rotation of targets. Our key idea is to
use rotation invariant features as the input for the classifier. For an image in Radon transform space, namely
R(b, θ), taking the magnitude of 1-D Fourier transform on θ, we get |Fθ{R(b, θ)}|. The rotation invariance
of the coefficients of the combined Radon and 1-D Fourier transform, |Fθ{R(b, θ)}| was proved in this paper.
These coefficients are used as the input to a maximum-margin classifier based on I-RELIEF feature weighting
technique. The objective of the I-RELIEF technique is to maximize the margin between two classes and improve
the robustness of the classifier against uncertainties. For each pixel of the Synthetic Aperture Radar (SAR)
image, a feature vector can be extracted from a sub image centered at that pixel. Then our maximum-margin
classifier decides whether the pixel is target or non-target which produces a binary-valued image. We further
improved the detection performance by connectivity analysis, image differencing, and diversity combining. Our
performance evaluation of the proposed algorithm was based on the data set collected by Swedish CARABAS-II
systems. In conclusion, the experimental results show that our proposed algorithm achieved superior performance
over the benchmark algorithm.
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1. INTRODUCTION

SAR imaging sensors can provide images of a wide ground region and has the ability to visualize what is being
covered by the foliage [1][2]. At the low VHF-band, around 20MHz - 90MHz, radar waves are more likely to
detect targets that exceed a certain dimension. Since this dimension is usually much larger than the leaves and
branches, the sensors are able to detect the concealed objects underneath the forest. The reflected radar waves
from the hidden objects are used to form SAR images in which the larger targets are seen as brighter areas than
the smaller objects.

Another problem is to develop an algorithm that can automatically analyze the image and provide the
essential information. For example, the essential information can be scene type, existence of certain objects, or
location of all the specified objects. In this paper, all the research is made based on a data set captured by
CARABAS-II radar which can be downloaded at [3] for free. The purpose of this project is to locate all the
vehicles concealed in the forest which is known as automatic target detection (ATD). Also a benchmark algorithm
has been provided with the dataset by [1], but this algorithm detected too many false alarms; therefore, further
research needs to be conducted to develop a more accurate algorithm.

Techniques using adaptive boosting [4], extended fractal feature [5], genetic programming [6], multiscale au-
toregressive (MAR), multiscale autoregressive moving average (MARMA) models, singular value decomposition
(SVD) methods [7], and constant false alarm rate (CFAR) processing [8] were studied. According to Lundberg
et al. [1], the main technical challenge in designing an ATD algorithm for a forest covered region is not detecting
targets, but reducing the false alarm rate to a useful level. The SAR is considered to be a good sensor in the
foliage penetrating scenario; however, when the targets are concealed by the forest, the branches and leaves will
cause a significant amount of noise to appear in the image. One thing to consider is the density of the forest and
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the noise in the image are directly proportional. Another key point is most algorithms work well for open areas,
but not in the forest because of the strong noise which is produced by the leaves and branches of the trees.

One important assumption that is made when analyzing the images is that the background clutter is stationary
and targets are non-stationary. Now due to this assumption that was made, the target detection problem is
equivalent to the change analysis which can be defined as finding the differences between the test image and a
reference image. The next important clarification is to define test image as an image in which the algorithm
tries to locate the targets from the surrounding area. Also the reference image is an image of the same location
as the test image, but taken when the targets have moved to a different location. In order to detect the moving
targets in the test image, the algorithm takes the difference of the two photos and the outcome consist mostly
of the moving targets. The effectiveness of the change-based ATD scheme has been proved by [9][10][11][12].

Along with the dataset [3], a benchmark algorithm and the results are given in [1]. This algorithm is
a statistical hypothesis test followed by a CFAR filter and morphological post processing. In the statistical
hypothesis test, the targets are assumed to be deterministic signal while the background clutter and noise are
assumed to be Gaussian random variables. Then the decision is made for every pixel in the image according to
Neyman-Pearson criterion. Now the statistical hypothesis test is used in the benchmark algorithm which is not
the optimal solution because the statistical hypothesis test treats each pixel in the SAR image as independent
random variable; therefore, loses the spatial information which is vital for detecting targets in the SAR image.
Another reason why the statistical hypothesis test is not optimal is because this test uses the same statistical
model for different targets.

In our previous work [13], we used a fundamentally different ATD algorithm which shows improvement in the
results. Our past algorithm shares the same change analysis idea with the benchmark algorithm, but our scheme
is able to determine the targets from local features of labeled SAR images. Now the previous algorithm leads to
a more dedicated classifier for the particular target; however, our algorithm trades generality for performance.

Our framework for the new algorithm is similar to the previous algorithm [13] with the exception of a more
advanced local descriptor. The function of the local descriptor is to extract local features from the given region
of interest in the image. Then the local features computed for region of interest have been proved to be successful
in applications of imagery data analysis [14]. In our previous work [13], local features are vectors whose elements
are intensity values extracted from a sliding window centered at a pixel of interest. However, in this paper, an
extra rotation invariant transform step is applied to the region of interest. In order to receive the feature vectors
which are invariant to different object orientations, we use the outcome of the extra rotation invariant transform
as elements of the feature vectors. The diagram of the new algorithm is shown in Fig. 1.

Since all the learning and testing images are considered geometrically registered; therefore, the differencing
step is taking the difference of each pixel between the two images. After the differencing step comes the pre-
processing step which is a denoising step that removes the obvious background. One of the main benefits from
the preprocessing step is that it will be able to improve the performance of the algorithm and the converging
speed at the learning stage. Next, the proof of the rotation invariant transform step is introduced in Section
3.1. Now the feature extraction is a step that translates a matrix into a vector which shares the same elements.
Following feature extraction comes I-RELIEF or Iterative-RELIEF step which is a feature weighting algorithm
looking for a weight vector that maximize the margin between two classes and minimize the margin of elements
within the same class. Then the classifier is based on the ratio of the distances from the unknown feature of the
two classes. Lastly, the post processing works to cluster nearby pixels, remove small detections and the output
is the location of every detection. Refer to later part of this paper and our previous work [13] for more details.

The rest of this paper is organized as below. Section 2 briefly describes the data set. In Section 3, we present
our proposed scheme. Section 4 shows the experimental results. Section 5 concludes the paper.

2. DATA DESCRIPTION

The dataset collected during a flight campaign held in Sweden in summer 2002 was used for the evaluation of
the performance of the algorithm. All the images in the dataset were taken by CARABAS-II ultra-wide-band
SAR system mounted on a Sabreliner airplane. This system was operated in the frequency range of 20MHz -



Figure 1: Flow chart of our scheme: (a) learning; (b) testing; (c) diversity combining; black blocks are additional
parts in this paper.

90MHz which corresponds to the wavelength of 3.3 meters to 15 meters. The wavelengths of 3.3 meters to 15
meters are comparable to the size of vehicles as targets to be pursued.

In this dataset, all the images are 3000× 2000 pixels which are highly accurate intensity matrices that cover
the same 3km by 2km ground area; therefore, the resolution of the data is 1 meter per pixel. There are 24 images
in the dataset which were taken at 4 different target locations and 6 flights for each location. For each image, the
locations and heading of every vehicle, flight heading, incidence angle, and Radio Frequency Interference (RFI)
level are given with the dataset. Fig. 2 shows two sample images and the amplified target regions. Please refer
to [1] for more details about the dataset.

3. PROPOSED TARGET DETECTION SCHEME

Fig. 1 shows the flow chart of our proposed scheme. It consists of three parts: learning, testing and majority
voting.

Learning and testing share the same procedures of differencing, preprocessing, rotation invariant transform
and feature extraction. These four common steps can be noted as general feature extraction shown as Fig. 3.
This function module serves to extract a feature vector set {xi, i = 1, 2, ..., N} from the test image It(x, y) and
the reference image Ir(x, y). For a given location (x, y) in the image, there would be a corresponding feature
vector extracted from a small window centered at (x, y). The small window slides across the image to extract
feature vectors from different locations into the output feature vector set. Now to discuss in more detail, the
differencing step takes the pixels from the test image and subtracts the pixels from the reference image to remove
background noise and clutter. To further suppress the noise in the difference image, both the low pass filter
and small threshold are used in this process. First a small threshold is applied to the filtered image in order
to remove pixels that are obviously noise. Then the uniform matrix h is used as the convolution kernel of the
low pass filter. The calculation of image Id is shown in equation (1). In the third step, the rotation invariant



Figure 2: Sample images from dataset. Left: Sigismund deployment, flight heading 225; Middle: Fredrik
deployment, flight heading 225; Right: Amplified target regions (25 targets each)

Figure 3: General feature extraction procedure.

transform which will be discussed in section 3.1 was applied. Finally, the feature extraction step is an element
reordering step which puts elements of a matrix into a vector in a specific order.

Id =
{

h ∗ (It − Ir) h ∗ (It − Ir) > th
0 h ∗ (It − Ir) ≤ th

(1)

In the learning stage, locations of all the targets are assumed to be given, so the extracted feature set can
be labeled as either “1”, target or “0”, non-target. The labeled feature set is fed to the I-RELIEF feature
weighting algorithm to find the best weight vector w that maximize the margin between two classes of features
and minimize the margin within the same class. At the end of this stage, a trained weight vector w∗ and two



Figure 4: Rotation invariant transform procedure.

representative feature vectors from target and non-target classes are stored for future use in the testing stage.
Here, the arithmetic average of all the feature vectors within each class is used as a representative feature vector
of that class.

For the testing stage, feature vectors are extracted by moving a sliding window across every possible pixel in
the image. Then the vectors are fed to a classifier which is explained in section 3.3. The output of the classifier
is then assigned to the corresponding pixel as a decision of “1” target or “0” non-target. At the end of this stage,
a decision mask of a binary valued image is exported to the next step.

Finally, the last stage is comprised of majority voting and post processing. Now majority voting independently
makes decisions based on several different reference images and chooses the most frequent output as the final
decision. Then the purpose of post processing is to connect all the adjacent target pixels into clusters of potential
targets, remove those clusters which are too small to be a target, and output the center of each cluster as the
location of detections.

There is an algorithm performance evaluation module after all the above steps to compare the location of
every detection given by the algorithm with the ground truth locations from the dataset. If an output location
is within certain distance range from any ground truth location, a correct detection is claimed, otherwise, a
false alarm has occurred. For each ground truth target, only one correct detection can be assigned. Otherwise
the detection rate will be inaccurate because the algorithm may claim more detection than what was actually
detected.

3.1 Rotation Invariant Transform

Local photometric descriptors computed from interest regions such as Scale Invariant Feature Transform (SIFT)
[15] have been used in many applications with great success. However, the manipulated local descriptors are not
suitable choices in our research because the target is too small and the image is extremely noisy. In our previous
work [13], raw pixel values from a small window are extracted as local features which is the simplest descriptor
and indicates good performance of detecting targets.

Raw pixel value descriptor is simple to process and it preserves all the information within the interest
region; however, the raw pixel value is a low level local feature which contains a significant amount of redundant
information. For example, the same target with different orientations could lead to very different features because
the redundant information can easily lead to over fitting or the algorithm diverges in the learning stage if the
targets of different orientations were used as training samples.

In our research the detection algorithm was designed to locate targets in SAR images no matter the rotational
position of the target. The rotation invariant transform extracts underlying features which is irrelevant to the
orientation of the object and use these features to describe the characteristics of the target. Now the extracted
rotation invariant feature is an abstraction of the raw data at a higher level which is only related to the target
itself but not its orientation. Then, the detection problem is brought into a normalized framework.

Our paper uses an algorithm which consists of Radon transform and Fourier transform shown in Fig. 4. Two
dimensional Radon transform is the projection of the image intensity along a radial line oriented at a given angle
[16]. A straight line AA′ in Fig. 5 can be defined parametrically by:

{
x(t) = bcosθ + tsinθ
y(t) = bsinθ − tcosθ

(2)



Figure 5: 2-D Radon transform sketch.

Then, the Radon transform can be written as:

R(b, θ) =
∫ ∞

−∞
I(x(t), y(t)) dt (3)

or the identical expression:

R(b, θ) =
∫ ∞

−∞

∫ ∞

−∞
I(x, y)δ(b− xcosθ − ysinθ)dxdy (4)

By doing this for different values of b and θ from 0 degree to 180 degree, the original image I(x, y) is
transformed into R(b, θ).

In order to prove that the proposed rotation invariant transform will get the same output for an original
image I(x, y) and its rotated version I ′(x, y), we will need to prove:

|Fθ{R{I ′(x, y)}} = |Fθ{R{I(x, y)}} (5)

where Fθ{•} is Fourier transform along the direction of θ and R{•} is the Radon transform. According to the
geometry knowledge, an image rotated by θ0 degree counterclockwise becomes:

I ′(x, y) = I(xcosθ0 − ysinθ0, xsinθ0 + ycosθ0) (6)

Then, its Radon transform can be written as:

R′(b, θ) = R{I ′(x, y)} =
∫ ∞

−∞

∫ ∞

−∞
I ′(x, y)δ(b− xcosθ − ysinθ)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
I(xcosθ0 − ysinθ0, xsinθ0 + ycosθ0)δ(b− xcosθ − ysinθ)dxdy (7)

Define variables m and n as: {
m = xcosθ0 − ysinθ0

n = xsinθ0 + ycosθ0
(8)



Then, {
x = mcosθ0 + nsinθ0

y = −msinθ0 + ncosθ0
(9)

dxdy = |J |dmdn, |J | = det

[
cosθ0 sinθ0

−sinθ0 cosθ0

]
= 1 (10)

Pluging equation (9) and (10) into (7) will get:

R′(b, θ) =
∫ ∞

−∞

∫ ∞

−∞
I(m, n)δ(b−mcos(θ + θ0)− nsin(θ + θ0))dmdn = R(b, θ + θ0) (11)

Take the Fourier transform on both sides and take the magnitude, it becomes:

|Fθ{R′(b, θ)}| = |Fθ{R(b, θ + θ0)}| = |ejωθ0Fθ{R(b, θ)}| = |Fθ{R(b, θ)}| (12)

Then the proof is done. In the same way, it can be proved that for a rotated and translated image I ′′(x, y):

|Fθ{|Fb{R{I ′′(x, y)}}|}| = |Fθ{|Fb{R{I(x, y)}}|}| (13)

This is actually a rotation and translation invariant transform. The proof is given but it is not used because
the sliding window mechanism which covers every possible translational position is very robust to translational
variance and another operation of taking magnitude means more information loss.

Assume I ′′(x, y) is another version of I(x, y) with θ0 degrees counterclockwise rotation followed by (x0, y0)
translation. Then it can be written as:

I ′′(x, y) = I(xcosθ0 − ysinθ0 + x0, xsinθ0 + ycosθ0 + y0) (14)

Its Radon transform is:

R′′(b, θ) =
∫ ∞

−∞

∫ ∞

−∞
I(xcosθ0 − ysinθ0 + x0, xsinθ0 + ycosθ0 + y0)δ(b− xcosθ − ysinθ)dxdy (15)

Denote: {
m = xcosθ0 − ysinθ0 + x0

n = xsinθ0 + ycosθ0 + y0
(16)

Equation (15) turns to be:

R′′(b, θ) =
∫ ∞

−∞

∫ ∞

−∞
I(m,n)δ(b + x0cos(θ + θ0) + y0sin(θ + θ0)−mcos(θ + θ0)− nsin(θ + θ0))dmdn

= R(b + x0cos(θ + θ0) + y0sin(θ + θ0), θ + θ0) (17)

Take the Fourier transform along the direction of b on both sides of equation (17):

Fb{R′′(b, θ)} = ex0cos(θ+θ0)+y0sin(θ+θ0)Fb{R(b, θ + θ0)} (18)

And:
|Fb{R′′(b, θ)}| = |Fb{R(b, θ + θ0)}| (19)

Then, further proof of equation (13) is to take the Fourier transform along θ direction on both sides of equation
(19) and take the magnitude.

In this research we used the rotation invariant features instead of the raw pixel values used in our previous
work [13] because the rotation invariant algorithm can detect targets of different orientations whereas raw pixel
values algorithm is sensitive to change of orientation. Having the capability of being insensitive to different
orientations will alleviate the potential of over fitting problem with raw pixel value features. However, the
proposed rotation invariant transform needs to take the magnitude of the Fourier transform coefficients which
loses all the phase information, so the new feature is less accurate than the raw feature. When using the rotation
invariant features the accuracy is traded for generality.



3.2 I-RELIEF

Feature weighting transforms the original feature vector x into a new feature vector x′ by assigning each feature
a positive weight w(i). The feature and weight vectors can be defined as:

x =




x(1)

x(2)

...
x(I)


w =




w(1)

w(2)

...
w(I)


x′ =




x′(1)

x′(2)
...

x′(I)


 (20)

where x′(i) = x(i)w(i), i = 1, 2, . . . , I, I is the data dimensionality.

I-RELIEF or Iterative-RELIEF is an improved version of RELIEF which is a feature weighting algorithm
for increasing the discrimination between classes. The key idea of RELIEF is to solve a convex optimization
problem with a margin-based objective function:

max
w

N∑
n=1

(
I∑

i=1

w(i)|x(i)
n −NM (i)(xn)| − (21)

I∑

i=1

w(i)|x(i)
n −NH(i)(xn)|)

s.t. ‖w‖22 = 1,w ≥ 0 (22)

NM means the nearest miss of x and NH means the nearest hit of x. Two problems with RELIEF are that
NM and NH are defined in the original feature space and the outliers can dramatically influence the margin
calculation. To solve the two problems, I-RELIEF calculates the margin based on the probabilities of NM , NH,
and outliers estimated in the weighted feature space and updates the weights iteratively. Refer to [17] for details.

3.3 Classifier

The structure of our classifier is shown in Fig. 6 which is the same as our previous work [13]. Also, our classifier
shares the similar philosophy with Neyman-Pearson detector. Now looking at Fig. 6, D1 and D0 are all Euclidean
distances and different values of threshold causes a trade off between detection rate and false alarm rate.

4. EXPERIMENTAL RESULTS

To evaluate the performance of our algorithm, we set up experiments based on the 24 public SAR images
included in the CARABAS-II radar data set. These images are categorized as mission 2, 3, 4 and 5 according
to the 4 different vehicle locations. For each location, 6 images known as pass 1 through 6, were taken in
different operating conditions such as flight heading, incidence angle, and radio frequency interference level.
Once we receive a test image we always chose the reference image from the different locations but under the
same operating conditions; therefore, for any test image, there could be 3 independent reference images for three
independent training processes.

The image of mission 3 pass 5 was always used as the test image in the learning stage from which target and
non-target training sets were extracted. Now the I-Relief feature weighting algorithm will generate an optimized
weight vector w∗ from the two training sets. We put the w∗ weight vector together with the averages of the two
sets of training samples into our classifier. The above procedures were repeated for each reference image to finish
the learning stage. Finally, we obtained three classifiers for the three reference images with the same structure
but different parameters.

In the testing stage for each test and reference image pair, the classifier trained in the learning stage will
make a decision for each pixel and output a decision mask. Since there are three independent reference images
there will have three independent decision masks which by majority voting will merge into one final decision
mask. Then post processing of clustering will apply to the mask and the centroid of a large enough cluster will



Figure 6: The diagram of classification.

mark the position of the detection. When evaluating the performance of our algorithm, we compare the position
of the detections with the locations of real targets and if the distance is less than 10 pixels (i.e. 10 meters), we
claim that one detection has been made. For each real target location, only one detection can be claimed and
the rest of our detections are false alarms.

The above experiment setup is the same as our previous work [13], except an additional rotation invariant
module was added to the experiment which is implemented with the help of Radon Transform and Fast Fourier
Transform (FFT). Actually Radon Transform requires discrete values of θ between 0◦ and 180◦ as inputs. In
our experiment, θ is chosen to be 0◦, 15◦, 30◦, 45◦, ..., 180◦. When the Radon Transform is applied to the sliding
window of 19× 19 with the given θ values, the feature vector increases its dimension from 361 to 377. Since the
output of the Radon transform is a 29× 13 instead of 19× 19 matrix and FFT does not change its dimension.

Table 1 shows the parameters used in our experiment. Table 2 shows the experimental results from our
algorithm compared with the benchmark algorithm. However, image of mission 3 pass 5 was not used for testing
because it served as a training set. In conclusion, our experimental results show that our algorithm produces
a lower false alarm rate and higher detection rate than the benchmark algorithm. For example, our algorithm
produced 25 false alarms and missed one detection and the benchmark algorithm produced 86 false alarms and
missed 13 detections.

5. CONCLUSION

In this paper, we addressed a target detection problem for SAR images. We proposed a detection algorithm
using a rotation invariant local descriptor. Our detection algorithm consists of rotation invariant local descriptor,
supervised learning, feature weighting and diversity combining. The rotation invariant local descriptor makes
our target detection algorithm robust against rotation of targets and more suitable for scenarios where target



Processing step Parameter Value
Preprocessing Averaging kernel size 5× 5 pixels

Denoising threshold 0.25
Rotation invariant transform Discrete θ values 0◦, 15◦, 30◦, 45◦, ..., 180◦

Feature extraction Sliding window size 19× 19 pixels
Maximum number of iterations 500

I-RELIEF feature Distance metric ‘Euclidean’
weighting Kernel function f(d) = exp(−d/σ)

Kernel width σ 25
Classification Threshold λ on DR 3.0

Minimum number of
Post processing connected pixels as 35 pixels

a target
Evaluation Distance threshold 10 pixel

Table 1: Parameters used to test performance

Target image Correct detections False alarms
Benchmark Our Benchmark Our

Mission Pass Algorithm Scheme Algorithm Scheme
2 1 25 25 2 0
3 1 22 25 1 4
4 1 25 25 2 0
5 1 23 25 4 2
2 2 25 25 2 1
3 2 25 25 4 1
4 2 25 25 3 3
5 2 25 25 4 2
2 3 25 25 3 2
3 3 23 25 4 1
4 3 25 25 0 1
5 3 24 25 2 0
2 4 24 25 3 0
3 4 25 25 2 0
4 4 25 25 4 1
5 4 25 24 4 1
2 5 25 25 3 1
3 5 (Used for training)
4 5 25 25 2 2
5 5 23 25 29 0
2 6 25 25 1 1
3 6 25 25 3 1
4 6 25 25 1 1
5 6 23 25 3 0

Total 562 574 86 25
Table 2: Comparing of results from benchmark algorithm and that from proposed scheme. Image of mission 3
pass 5 should not be counted in testing because it is used for training.



orientation is significant. Feature weighting increases the discrimination between target and non-target classes.
Compared with the baseline algorithm [1], our algorithm achieves fewer false alarms while achieving higher
probability of target detection.
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