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ABSTRACT

Object tracking is an important component of many computer vision systems. It is widely used in video surveil-
lance, robotics, 3D image reconstruction, medical imaging, and human computer interface. In this paper, we
focus on unsupervised object tracking, i.e., without prior knowledge about the object to be tracked. To address
this problem, we take a feature-based approach, i.e., using feature points (or landmark points) to represent
objects. Feature-based object tracking consists of feature extraction and feature correspondence. Feature corre-
spondence is particularly challenging since a feature point in one image may have many similar points in another
image, resulting in ambiguity in feature correspondence. To resolve the ambiguity, algorithms, which use ex-
haustive search and correlation over a large neighborhood, have been proposed. However, these algorithms incur
high computational complexity, which is not suitable for real-time tracking. In contrast, Tomasi and Kanade’s
tracking algorithm only searches corresponding points in a small candidate set, which significantly reduces com-
putational complexity; but the algorithm may lose track of feature points in a long image sequence. To mitigate
the limitations of the aforementioned algorithms, this paper proposes an efficient and robust feature-based track-
ing algorithm. The key idea of our algorithm is as below. For a given target feature point in one frame, we first
find a corresponding point in the next frame, which minimizes the sum-of-squared-difference (SSD) between the
two points; then we test whether the corresponding point gives large value under the so-called Harris criterion.
If not, we further identify a candidate set of feature points in a small neighborhood of the target point; then find
a corresponding point from the candidate set, which minimizes the SSD between the two points. The algorithm
may output no corresponding point due to disappearance of the target point. Our algorithm is capable of track-
ing feature points and detecting occlusions/uncovered regions. Experimental results demonstrate the superior
performance of the proposed algorithm over the existing methods.

Keywords: Object Tracking, Sum-of-Squared Difference (SSD), Harris Criterion, Tomasi-Kanade’s model,
Occlusion.

1. INTRODUCTION

Accurate tracking of feature points over image sequences is a critical and essential process for vision systems
ranging from unmanned aerial vehicles to medical devices. Study has shown that establishing correspondence
between image patches, through correlation-based measures or sum-of-squared differences (SSD), can achieve
effective feature tracking.

A feature-based tracking algorithm must first assume a form to model an object’s motion. Traditionally,
motion has been represented as translational, which indeed proves reliable for small, linear movements. When
tracking over a longer image sequence, however, more complex models are needed as geometric deformations of
objects become significant. Shi and Tomasi noted in [1] that translational models are poor representations when
an object has undergone an affine transformation. In their approach, translational models are used for tracking,
which provides higher reliability and accuracy over smaller inter-frame camera motions. To monitor the image
sequence for occlusions via comparisons between the first and current frames, affine models are utilized, which
serve to better account for longer object deformations that potentially could have occurred.

Once a motion model has been established, an object can be tracked over frames through SSD or correlation
methods. To ensure that the accuracy of tracked features is maintained and to reject outliers that arise through



occlusion, a successful tracking algorithm must adopt a criterion through which to monitor a feature’s quality.
In [1], Shi and Tomasi used a measurement of features’ rms residue between the initial and current frame, which
they described as “dissimilarity”, to quantify the change in a feature’s appearance over frames. Jin, Favaro,
and Soatto [2] proposed a rejection rule based on a normalized cross-correlation function which furthermore
compensated for differences in intensity variation among the patches of interest. In order to achieve stability
and robustness against occlusions, several other tracking methods [3], [4] have used Kalman filters to smooth the
object trajectory and monitor the object’s motion.

Feature correspondence presents a challenging problem for feature-based object tracking, as ambiguity often
arises when a feature point in one image has many similar points in another image. To alleviate ambiguity,
algorithms often perform an exhaustive search or compute pixel correlations over large windows. As a result,
the computational complexity of the algorithms is considerably increased. In contrast, Tomasi and Kanade in [5]
use small windows to track the translational motion of objects by minimizing a residue error, thus reducing
complexity. However, their approach may lose a significant percentage of tracked points over longer sequences.

To prevent this loss of feature points, our algorithm couples the approach taken by Tomasi and Kanade
with an SSD criterion. Furthermore, to ensure robustness but still avoid computational complexity, our method
employs the combined motion model described in [1].

Depending on the application, not all feature points in an image sequence necessarily provide “useful” infor-
mation to the researcher. To obtain segmentation of objects and the image background, our algorithm uses the
greedy learning procedure developed by Williams and Titsias in [6]. Their learning model sequentially extracts
object parameters from a sequence using a robust statistical approach, and thus avoids the complexity that often
results from segmentation algorithms. The approach taken by Williams and Titsias stems from an earlier model
described by Jojic and Frey in [7], which conversely learns objects simultaneously using a variational method.
By first segmenting the objects from the sequence, our algorithm is able to filter out undesirable features and
thus ensure that all of the tracked points are indeed meaningful.

The remainder of this paper is organized as follows. In Section 2, we introduce the translational and affine
image motion models, and Shi-Tomasi’s [1] combined motion model. Section 3 explains the object segmentation
method used in our algorithm. In Section 4, we present our point feature tracking algorithm. Section 5 shows
the experimental results and a performance evaluation of the proposed algorithm versus previous approaches.
Finally, we conclude the paper and describe future work in Section 6.

2. IMAGE MOTION MODELS

In order to track a point feature in a video sequence, an image motion model should first be defined. The image
motion model relates information about the image’s deformation. Generally, either a translational model or an
affine motion model is used.

2.1. Translational motion model

Image intensity patterns change in an intricate way. In the translational motion model, however, we only con-
centrate on the “regions” of the image that can be modeled as undergoing a linear transformation. Translational
motion models assume that each point in the window undergoes identical motion. Translational models for point
feature tracking are easy to implement and computationally costless. Fig. 1(a) shows the translational motion
of a fixed window W(x).

Let x be the central point of the concentrated “region”. Let W(x) be the window around x. Let the function
h describe the transformation of the image motion. We have

h(x̃) = x̃ + ∆x, (1)

where, ∀x̃ ∈ W(x), ∆x ∈ R
2. This model is valid for portions of a scene that are flat and parallel, and

whose movements are parallel, to the image plane. The approximation applies only locally in space and in time.
Although coarse, the model is at the core of most feature matching or tracking algorithms due to its simplicity
and the efficiency of its implementation.



(a) (b)

Figure 1. (a) Translational motion deformation of local domain W(x), and (b) affine motion deformation of local domain
W(x).

2.2. Affine motion model

When variations of the displacement vector are noticeable even within the small windows used for tracking,
translational models fail to describe the event, as different motions occur within the same window. An affine
motion model, shown in Fig. 1(b), is thus introduced.

More precisely, an affine motion model is defined as:

h(x̃) = Dx̃ + d, (2)

where D ∈ R
2×2 and d ∈ R

2. D is a deformation matrix and d is the translation of the center of the window.
The quality of this estimation depends on the size of the feature window, the texture of the image within it,
and the amount of camera motion between frames. This model serves as a good approximation for small planar
patches parallel to the image plane that undergo an arbitrary translation and rotation about the optical axis, and
only a modest rotation about an axis orthogonal to the plane. The affine model represents a convenient tradeoff
between simplicity and flexibility. In the prevailing algorithms, an affine motion model is used to identify the
good features.

2.3. Combined motion model

Both translational models and affine models have limitations, and thus a combination of the two models will
be established. In Shi and Tomasi’s paper [1] , they monitor the quality of image features during tracking by
measuring features’ rms residues between the first and the current frame. When the dissimilarity becomes too
large, the feature will be abandoned. For this case, affine models, rather than translational, prove more suitable.
When the window is small, the matrix D is harder to estimate, as the variations of motion within the window
are smaller and therefore less reliable.

Generally, smaller windows are preferable for tracking because they are less likely to straddle a depth dis-
continuity. Whereas an affine motion is used for comparing features between the first and the current frame, a
translational model is preferable during tracking for its improved accuracy and reliability.

3. OBJECT SEGMENTATION

In this section, we will briefly describe the approach to object segmentation taken by Titsias and Williams in [6].
For our algorithm, object segmentation will be used to isolate features of interest for tracking.

3.1. Segmentation model

The goal of the algorithm is to learn appearance-based models to describe the background and foreground objects
in an image. The variable f will be used to describe the appearance of the foreground object, where, for brevity,
we will assume in this explanation that only one object is present. A vector of probabilities, π, will be assigned



to the image, where πj ≈ 1 when pixel j is part of the foreground object and πj ≈ 0 otherwise. The background
appearance will be described by b. A single frame can then be described by the following mixture distribution:

p(x) =
P∏

p=1

[πppf (xp; fp) + (1 − πp)pb(xp; bp)], (3)

where P denotes the number of pixels in the image, pf(xp; fp) = N(xp; fp; σ2
f ), pb(xp; bp) = N(xp; bp; σ2

b ), and
N(x; µ; σ2) represents a Gaussian distribution with mean µ and variance σ2.

To account for the object motion over frames, we let jf and jb denote the object and background transfor-
mation, respectively. If, assuming only translations, we then let the matrix Tjf

represent the transformation jf

and Tjb
represent jb, then:

p(x|jf , jb) =
P∏

p=1

[(Tjf
π)ppf(xp; (Tjf

f)p) +

(1 − Tjf
π)ppb(xp; (Tjb

b)p)]. (4)

The parameters needed to model the scene, given by θ = {f , π,b, σ2
f , σ2

b}, can be obtained by maximizing the
likelihood L(θ) =

∑N
n=1 logp(xn|θ) using the EM algorithm, where jf and jb are the unknown parameters. To

reduce complexity, Williams and Titsias extract the background and foreground appearances sequentially.

3.2. Learning the background

To obtain the background of the sequence, the foreground mask π is effectively set to zero so that (4) becomes:

p(x) =
P∏

p=1

[pb(xp; bp)]. (5)

The log likelihood of the background is then:

Lb =
N∑

n=1

log
J∑

jb=1

Pjb
p(xn|jb), (6)

which is then maximized using the EM algorithm to obtain jb.

3.3. Learning the foreground

After finding the background, the foreground mask π in (4) is then allowed to take on non-zero values. As
a direct maximization over the new likelihood would require a search over Jf × Jb possibilities, Williams and
Titsias instead use the constrained EM algorithm presented in [8]; the computational complexity is reduced to
Jf by using the background transformation already obtained. By introducing a distribution Qn(jf , jb) and using
Jensen’s inequality, they produce a lower bound on the likelihood:

F =
N∑

n=1

∑
jbjf

Qn(jf |jb)Qn(jb){log[Pjf
Pjb

×
P∏

p=1

p(xn
p |jb, jf )] − log[Qn(jf |jb)Qn(jb)]}, (7)

which can be tightened by setting Qn(jb, jf ) = P (jb, jf |xn) for every image xn. Maximization can then be
performed, where in the expectation step F is maximized with respect to the Qn distribution and in the max-
imization step F is maximized with respect to the object parameters {f , π, σ2

f}. The update equations are
omitted here, but can be found in [6].



Figure 2. An example of the response of the Harris feature detector using p = 6.

4. TRACKING ALGORITHMS

Robustness and accuracy are two important criterions for a tracking algorithm. In addition, feature tracking
demands a computationally efficient approach. In this section, we will first describe several basic feature-based
algorithms. Then, we will present our new algorithm, which will seek to achieve better efficiency and performance
than previous approaches.

4.1. Feature selection

In the first step of feature selection, candidate features in one or more frames from the given sequence of images
are selected. No feature-based algorithm can work unless good features can be identified first. For the case
of point features, a popular algorithm is the well-known Harris corner detector. The quality of a point with
coordinates x = [x, y]T , as a candidate feature, can be measured by

C(x) = det(G) + k × trace2(G), (8)

computed on the window W(x). In the equation, G is a 2 × 2 matrix which depends on x, given by

G =
( ∑

I2
x

∑
IxIy∑

IxIy

∑
I2
y

)
, (9)

where Ix and Iy are the gradients obtained by convolving the image I with the derivatives of a pair of Gaussian
filters and k is a constant parameter that can be chosen by the user.

A point feature is selected if C(x) exceeds a certain threshold τ . In this way, a feature is selected only if
the window contains “sufficient texture”. In order to achieve tracking efficiency, we do not want the features to
be concentrated in a small region within the whole image. However, in some specific feature-rich regions, more
than one feature may be selected out, which does not prove efficient for tracking. To mediate this problem, we
define a minimal space p between two selected features, such that a candidate feature point should be sufficiently
distanced from other selected points.

Fig. 2 and Fig. 3 show two sets of initial features selected from the same image. A small minimal space p
results in more features which serve to describe the same region. Generally, we choose p to be 5 or 6 in order to
achieve a better tradeoff between robustness and efficiency.

4.2. Sum-of-squared-difference criterion

Under the assumption of the simple translational deformation model, tracking a point feature x is the process of
finding out the location x + �x on the frame at time t + τ whose window is most similar to the window W(x).

A common way of measuring similarity is by using the sum-of-squared-difference(SSD) criterion. The SSD
criterion compares the image window W centered at the location (x, y) at time t and other candidate locations



Figure 3. An example of the response of the Harris feature detector using p = 3.

(x + dx, y + dy) on the frame at time t + dt, where the point could have moved between the two frames. The
displacement d is obtained by minimizing the SSD criterion

Et(dx, dy) .=
∑

[I(x + dx, y + dy, t + dt) − I(x, y, t)]2, (10)

where the subscript t indicates the translational deformation model.

One alternative way to compute the displacement d is to evaluate the function at each location and choose
the one that gives the minimum error. This formulation is due to Lucas and Kanade [9], and was originally
proposed in the context of stereo algorithms. The algorithm was later refined by Tomasi and Kanade [5] in a
more general feature-tracking context.

4.3. Pyramidal decomposition

Multi-scale decomposition is a widespread tool in image processing. The typical recursive form of the algorithm,
which decomposes signals into information at different levels, leads to large improvements in computational effi-
ciency. Simoncelli and Freeman [10] proposed a steerable pyramid for efficient and accurate linear decomposition
of an image into scale and orientation. Bouguet developed an algorithm to implement pyramidal image scales of
the Lucas-Kanade feature tracker.

The proposed tracking scheme is implemented in a multi-scale fashion by constructing a pyramid of images
through smoothing and downsampling of the original image. For instance, let I0 be the original image and IL−1

represent the image at level L − 1. The Lth level image is then defined as follows:

IL(x, y) =
1
4
IL−1(2x, 2y)+

1
8
(IL−1(2x − 1, 2y) + IL−1(2x + 1, 2y)

+ IL−1(2x, 2y − 1) + IL−1(2x, 2y + 1))+
1
16

(IL−1(2x − 1, 2y − 1) + IL−1(2x + 1, 2y + 1)

+ IL−1(2x − 1, 2y − 1) + IL−1(2x + 1, 2y + 1)).
(11)

For a given feature central point x, its corresponding coordinates on the pyramidal images are defined by

xL =
x
2L

. (12)



Figure 4. A 3-level, k = 1 steerable pyramid(non-oriented). Shown are the three bandpass images at each scale and the
final lowpass image [10].

Then we could compute each motion direction vector dL on each level of pyramidal images. Finally, we could
sum up all levels of motion vector d as

d =
∑

2LdL. (13)

A key problem to any feature tracker is the tradeoff between accuracy and robustness. Intuitively, accuracy
requires a small tracking window in order to preserve details in the image while robustness prefers a bigger
intergration window to handle larger motions. The advantage of pyramidal implementation is that, while each
motion vector dL is obtained by way of smaller integration windows, the overall displacement vector d can
account for larger pixel motions, thus achieving both accuracy and robustness.

Fig. 4 shows a 3-level steerable pyramid decomposition of a disk image, with k = 1, where k represents the
number of orientation bands. Fig. 5 shows a 3-level steerable pyramid decomposition with k = 3. The filters are
directional second derivatives oriented at θ ∈ {−2π/3, 0, 2π/3}.

4.4. Improved algorithm

From our experimental data, we find out that both minimal SSD criterion or Tomasi-Kanade’s algorithm [5]
will lose track of more than half of the initial selected features after 15 to 30 frames. In order to increase
the robustness of the tracking algorithm, we combine the two tracking methods and propose a more robust
feature-based tracking algorithm.

First, we will use Harris’s criterion to select the set of initial candidate features (S1) in the first frame of
the video sequence. Each feature is then tracked using two methods of detection. Minimal SSD criterion is
applied in the first step to find the most similar region of the target feature in the time adjacent frame. If the
quality C(x) of the region W(x + d) exceeds the chosen threshold τH , it will be updated to the set of tracking
features. However, when the motion becomes more complicated or after the feature is tracked through a long
sequence of frames, the most similar region that fit minimal SSD criterion may not be a good feature to keep
on tracking. In this case, the feature will be declared lost of tracking in the former SSD criterion algorithm. In
the experiment, more than ten percent of features are lost because the quality degrades through the tracking
sequence. In order to solve this problem, we will introduce Tomasi-Kanade’s [5] algorithm as a complement to
minimal SSD criterion.

Once the quality C(x) of the tracked feature is lower than the threshold τH , we will define another set of
candidate features (S2) to be

S2 = S3 − S1, (14)

where S3 = {x1, ...xj , ...xm} are the potential features in the tracking window W2(x). After subtracting the
points that are already in the set of initial candidate features, other features will be calculated to find the one
that gives the minimal squared difference. If the similarity between the two regions is smaller than the threshold
τE , it will also be taken as a successfully tracked feature.



Figure 5. A 3-level, k = 3 steerable pyramid(second derivative). Shown are the three bandpass images at each scale and
the final lowpass image [10].

In this way, we can increase the robustness when tracking point features along a long image sequence. The
algorithm could also perform well when the motion between two time adjacent images is not purely translational,
such as through scattering or scaling.

5. EXPERIMENT RESULTS

5.1. Algorithm

The full algorithm is presented in Fig. 6. In the code, the feature quality, C(x), is calculated by Harris’s
criterion. In the event that the object’s motion is known to be translational and void of scaling, the use of the
purely translational model yields improved results versus the model which accounts for scaling.

5.2. Results

We have tested the algorithm on video clips consisting of various types of motion, including translational, affine,
and scaling deformations. Features are identified in the initial frame as the candidate features to be tracked
through the whole image sequence. The performance of the algorithm depends on the content of the test video.

In the experiment, parameters could be adjusted according to the type of motion in the test image sequence.
For each of our simulations, the threshold for selection is τS = 0.01, the threshold for SSD criterion in the
tracking process is τE = 0.1, and the threshold for Harris’s criterion in the tracking process is τH = 10.

To evaluate the proposed algorithm, we applied the algorithm developed by Tomasi and Kanade in [5] and
the improved algorithm which combines the SSD criteria and Tomasi-Kanade’s algorithm.

Fig. 7(a) shows the initial frame of a sequence displaying two bikers traveling at approximately the same
speed. The sequence undergoes translational motion, affine motion, and scaling. In Fig. 7(b), the object mask
created using the greedy learning approach [6] is shown, where noise in the mask has been removed by way of
morphological filters. As evidenced, the mask successfully recovers both bikers, but also erroneously contains
some of the background on the right side of the frame. After applying the mask to the initial frame of the
sequence, the combined tracking algorithm and Tomasi-Kanade’s algorithm were applied to the 50-frame video.
The results from the first and last frame are shown in Fig. 8(a) and Fig. 8(b), respectively, using the combined
method. Furthermore, Fig. 9 illustrates the number of features tracked during each frame of the sequence using
the combined algorithm, shown with the open circles, and the Tomasi-Kanade approach, shown with the filled
squares. The combined algorithm improves the number of successfully tracked features by over 10 percent.

Fig. 10(a) displays the initial frame of a sequence containing a coastguard boat on a river. The object
mask created [6] is shown in Fig. 10(b). Unlike the previous video, the coastguard sequence contains only
translational motion. The first frame of the tracked sequence, after applying the mask, is shown in Fig. 11
for the combined algorithm. However, as evidenced in Fig. 12, the combined algorithm proves equivalent to
the results obtained using the Tomasi-Kanade approach. Thus, as expected, the combined algorithm only offers
improved performance for image sequences containing affine or scaling deformations.



Figure 6. Combined feature-based tracking algorithm.

(a) (b)

Figure 7. (a) 1st frame in the bike sequence. (b) Mask for bike sequence created using [6].



(a) (b)

Figure 8. Image in tracked bike sequence: (a) 1st frame. (b) 50th frame.

6. CONCLUSION

In this paper, we have proposed a new algorithm for feature tracking based on SSD criterion and Tomasi-Kanade’s
algorithm. To isolate features of interest, we applied a method for object segmentation developed by Williams
and Titsias. The algorithm has proven computationally inexpensive and robust to various types of object motion.

For many computer vision systems, an algorithm that operates in real-time is generally preferable. In the
future, we will seek to adopt a method of segmenting objects that can perform in real-time.
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Figure 9. Number of features selected from the bike sequence using the combined algorithm and the Tomasi-Kanade(TK)
algorithm.

(a) (b)

Figure 10. (a) 1st frame in the coastguard sequence. (b) Mask for coastguard sequence created using [6].

Figure 11. 1st tracked frame in the coastguard sequence using the combined algorithm.
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Figure 12. Number of features selected from the coastguard sequence using the combined algorithm and the Tomasi-
Kanade (TK) algorithm.


